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ABSTRACT OF THE DISSERTATION

The Taylor Map on Complex Path Groups
by

Matthew Steven Cecil
Doctor of Philosophy in Mathematics

University of California San Diego, 2006

Professor Bruce Driver, Chair

The heat kernel measure v is constructed on W(G), the group of paths based
at the identity on a simply connected complex Lie group G. An isometric map, the
Taylor map, is established from the space of L?(1;)—holomorphic functions on W(G) to
a subspace of the dual of the universal enveloping algebra of Lie(H (G)), where H(G) is
the Lie subgroup of finite energy paths. Surjectivity of this Taylor map can be shown

in the case where G is stratified nilpotent.
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Introduction

1.1 Background

A holomorphic function u : C — C is determined by its derivatives at the origin.

One can recover values of u by its everywhere convergent Taylor expansion

u®)(0) 2
u(z) =Y ;,0) (1.1)

k=0
. El . . .
Let j; denote the Gaussian py(2) = —e~ ¢ . The following equation is easy to verify
by switching to polar coordinates.
ksl s kg
27y (2)dxdy = 0t"k!. (1.2)
C

Our goal is to use this orthogonality of powers of z along with our Taylor expansion of
u to relate the L2(u;) norm of u to its derivatives at the origin.

Consider

" u®)(0)2F
un(2) = ZIE:?) (1.3)

k=0
Then Eq. (1.1)) indicates that u,, — u pointwise and therefore uniformly on any compact
set. Furthermore, for any f € L?(y;) and R > 0,

||f||%2(1|z‘§Rm) < ||f‘|%2(m)’



and ||f||%2( is increasing as a function of R. So by the MCT,

Lizj<rAt)
. 9 B ,
ngréo ||f||L2(1\z\§Rut) - Hf”Lz(M).

Combining these results with Eq. (1.2) and Eq. (1.3) yields

2 I T 2
HUHLQ(;Lt) - I%EI;O||U||L2(1‘Z|SR;L75)

- _— 2
— R (JLH;OHU"HLQ(HZKRW))

— i : 2
- nh—{go]%lgréoHunHLQ(l'z‘SR#t)

S
= lim [[un[72(,,)

= 1im/|un(z)|2,ut(z)dwdy
C

" &) (0)2F 4, (0)Z
. u zZVu z
- [ 30 (SR e
k,1=0 ’ )

n—00 k!

"ok 0
= lim Z W/zkzlut(z)dxdy
k,1=0 c

Ltk
= lim » _ lu®@(0)
k=0

k2
ZZH!U Ol

k=0

More generally, if u : C?— C is holomorphic and py(z) = (%)d et , then

4k d
HUH%?(M) = y Z |(aei1 667;2 e aeik u)(o)‘27 (14)

k=0 41, ip=1

where {ei}le is the standard basis for C?. The proof of Eq. is exactly analagous
to the above one dimensional case.

Let T(C%) denote the tensor algebra over C%, that is T(C?%) = @32 ,(CH)®*. To
every holomorphic u : C*— C we can associate an element oy, = Drogar €T (C%), where

oy € (CY)®F is the symmetric tensor defined by

(Ozk, 21 Q202Q & Zk)((cd)®k = (6Z18Z2 T azku)(o)



for every z1, 22, -+ , 2z, € C. Here (, )(Cd>®k denotes the inner product on (C%)®* arising
from the standard one on C?. If we define a norm || - ||; on T(C?) by
2 2
Hﬁ”t = Z HHﬁk’H(Cd)@k
k=0

for B = @726k with g € ((Cd)®k, then Eq. indicates that the map u — ay, is
unitary.

The physicist V. A. Fock introduced this isomorphism in 1932 in [7], and the
work was later clarified by Segal and Bargmann in the '50’s and ’60’s (see [II, 2], 22]).
The correspondence proves useful in understanding the structure of quantum fields. In
the above classical case, if one considers (C?)®* as the k-particle state space, then the
map u € HL?(p;) — o, € T(C?) exhibits the wave-particle duality of a bosonic system.
It is also closely related to the characterization theorem for generalized function in white
noise analysis (see, for example, [12, [16] 15]).

In [4], Driver and Gross proved a generalization of the above result on a complex
connected Lie group G with given Hermitian inner product ( , ) on the Lie algebra
g = T.G. In this context, u; denotes heat kernel measure on G with respect to a right
invariant Haar measure dx. Let T'(g) denote the tensor algebra over g, and for each

t > 0, define a norm || - ||; on T'(g) by

Y. 2
18113 ::Zt?’|ﬁk|‘g®k (1.5)
k=0
for B = @ B with B, € g®*, where || - ||(g2x denotes the cross norm on a®k arising

from the inner product on g®* determined by the given inner product on g. If we let
T(g): denote the completion of T'(g) with respect to this norm, then T'(g); is a complex
Hilbert space with respect to the Hermitian inner product given by polarizing the norm
in Eq. above.

Let T'(g)" denote the algebraic dual of T'(g). Then we can identify the topo-
logical dual space of T'(g); with the subspace of T'(g)" consisting of those « € T'(g)" such
that

[e.9]

1k
lall? := 7 llewllEgeyeon < oo,
k=0



where o = &2 oy, with oy, € (g*)®*, where || - ||(g+)@r denotes the cross norm on (g%)®F

arising from the inner product on g* dual to the given inner product on g. Denote this
space T'(g);.

Let J denote the ideal in T'(g) generated by {{ ®@n—n®&—[&,n]: &,n € g},
and J? = {a € T(g); : (a,v) = 0 for all v € J}. To any holomorphic function u on G,

we can associate an element oy, of J given by

(0, &1 @+ @ &) = (&1 Gpu)(e).

Then the main theorm of [4] states that if G is simply connected, then the map u €
HL(G, u(x)dr) — oy, € JP is unitary.

Infinite dimensional analogues have been proven by Gordina in [9] and [I0] on
GL(H), the group of invertible operators on a complex Hilbert space H, and groups
associated with a [y — factor. The goal of this work is to establish yet another infininte
dimensional Taylor map, this one on W(G), the groups of paths based at the identity on

a simply connected complex Lie group G.

1.2 Statement of Results

Let G be an arbitrary complex simply connected Lie group and g = T.G its Lie
algebra. Assume there is a given Hermitian inner product ( ,)g on g. Let (, ) denote

the real left invariant Riemannian metric on G determined by
(A,B) =Re(A,B); VY ABcg

where A denotes the unique left invariant vector field satisfying A(e) = A € g. We will
use ( , )g to denote this inner product on g.
Choose X¢ to be an orthonormal basis for the complex inner product space
(g,(, )g)- If we denote the complex structure on g by J, then Xgr = {Xc, JXc} is an
orthonormal basis of the real inner product space (g, (, )q). Define the Laplacian on G
by
A=Y B+ TA =Y A2 (1.6)

AeXc AeXRr



Then A¢ is a stongly elliptic operator and in the case where G is unimodular, it is
the Laplace-Beltrami operator (see Remark 2.2 in [4]). Let H (G) denote the space of
complex valued holomorphic functions on G. Let dx denote a fixed right invariant Haar
measure.

Define W(G) to be the based path group on G, i.e. the continuous paths
o :[0,1] — G such that ¢(0) = e. Similarly, we’ll let YW(g) denote the continuous paths
h:[0,1] — g such that h(0) = 0. Define the energy of a path o € W(G) by

1 e .
Blo) = Ih |LU(S)—1*O'/(S)’§dS, if o is absolutely continuous

0, otherwise
The finite energy subgroup of W(G) is then given by
H(G)={oc e W(GQ)| E(0) < o0}.
Similarly, for a h € W(g), let

fol W/ (s)|3ds, if h is absolutely continuous
(hv h)H(g) =

o, otherwise

We define the Cameron-Martin subspace of W(g) as

H(g) = {h € W(g)| (h,h) (g < oo}

Given h,k € H(g), we can define a Hermitian inner product on H(g) by

1
(h k) srg) = /0 (' (3), K (5)) ods.

With this inner product, H(g) is a Hilbert space. As above, we let (h,k)p(y) =
Re(h, k) p(g)- It is often convenient to think of H(g) as the “Lie algebra” of W(G).

Let Sc C H(g) be an orthonormal basis for the complex inner product space
(H(g),( , )u(g)- The complex structure J on H(g) is that on g defined pointwise.
That is, for h € H(g), Jh € H(g) is given by (Jh)(t) = J(h(t)) for all t € [0,1].
Then Sg = {Sc, JSc} is an orthonormal basis for the real inner product space (H(g), (
» VH(g))-

Our goal is to extend the results of [4, O, 10} 22} 21| [I] to holomorphic functions

on W(G). In order to do so, we will need a notion of heat kernel measure on W(G).



We construct a W(G)-valued Brownian motion, and define v, our heat kernel measure,
to be the endpoint distribution of this process. Specifically, let {5(t, s) }o<s<1,0<t<oco0 b€
a g-valued Brownian sheet with half the usual covariance defined on some probability
space (2, F, P) (For more details, see section 3.2). The following theorem is the main

result of chapter 3.

Theorem 1.1 (Theorem . Suppose G is a Lie group with left invariant Riemannian
metric (, ) and go € W(G). Then there ezists a continuous adapted W(G)-valued process
{Z(t) }+>0 on a filtered probability space (W {Fi}t>0,F, P) such that for each s € [0,1],

Y (-, s) solves the stochastic differntial equation:
Z(5t7 8) = LE(t,s)*ﬁ(dta 5) with E(Ov S) = 90(5)'
More precisely,

S(6t,s) = > A(S(t,)84(0t,s)  with (0,5) = go(s).
AeXy

where BA(t,s) = (A, B(t,s))q. Here 34(t,s) denotes the Stratonovich differential of the
process t — [(A(t,s). We will use “6” for the Stratonovich differential and “d” for the

Ito differential of a semimartingale.
Definition 1.2. Let vy := Law(X(t, -)).

Given a partition of [0,1], P = {0 = s0 < s1 < -+ < 8 < Sp41 = 1}, and
g € W(Q), define mp : W(G) — G™ by

mp(g) = (9 (51),9(52) s, 9 (50))-

Definition 1.3. A function f is a holomorphic cylinder function on W(G) if there exists
a partition P and a holomorphic function F': G — C such that f = F o wp.

Definition 1.4. Let H; denote the L?(1;)-closure of the holomorphic cylinder functions
on W(G).



‘H; will serve as our Hilbert space of holomorphic functions. In order to state
our version of the Taylor map, we must establish a suitable notion of “derivatives at the
origin” for a function f € H;. The following theorem is motivated by the results of
Sugita and others ([23, 24]) in the setting of an abstract Wiener space and can be found
in Chapter 4.

Notation 1.5. Let H(H(G)) denote the functions on H(G) which are holomorphic in
the sense of Notation [4.5]

Theorem 1.6 (Theorem [A.7)). There exists an injective linear map R : Hy — H(H(G))
with the following properties:

1. For f a holomorphic cylinder function, Rf = f|p(q)-

F
2. For g € H(G), |(Rf)(g)]* < HfH%z( € }?G), where |g|p () denotes the Rie-

mannian distance between g and the identity path in H(G).

147

Denote by T'(H(g)) the tensor algebra over the complex vector space H(g).
For each ¢ > 0, define a norm on T'(H(g)) by

[e.e]

k! o
16117 = Z tfk’ﬁkﬁ where = @20k

k=0

with B, € H(g)®" for k = 0,1,2, ..., where | ;| denotes the cross norm on H (g)** arising
from the inner product on H (g)®k determined by the given inner product on H(g). We’ll
denote the completion of T'(H(g)) with respect to this norm by T'(H(g)),. Then the
Hermitian inner product on T'(H(g)), given by polarizing the above turns T'(H(g)), into
complex Hilbert space.

The topological dual space of T'(H(g)), may be identified with the subspace
T(H(g)); of the algebraic dual T(H(g))" of T(H(g)) consisting of those a € T'(H(g))’
such that

HO‘H% = E‘O‘k’%H(g)*)@k < 00,
k=0
where oy, € (H(g)*)®"* and |l (11 (g)*)er denotes the cross norm on (H(g)")®* determined

by the Hermitian inner product on H(g)* dual to the given Hermitian inner product on
H(g).



For u € H(H(QG)), let o, € T(H (g))' be defined by
(Qu,h1 @ hy @ -+ @ hy) = (hiha - hyu)(e)

for hj € H(g) for j =1,...,n, where e represents the identity path in WW(G) and

(u)(g) = oy - )

for g € H(G) and h € H(g). We will sometimes write o, = (1 — D);'u. Then by
definition of the Lie bracket on H(g), o, annihilates the two sided ideal

J(H(g)) = ((@n—n®&—[n]l,n e H(g)).

Let J°(H(g)) denote the annihilator of J(H(g)), that is

JO(H(g)) == {a € T(H(9))' |l s(r1(g)) = 0},

and let
JP(H(g)) == J°(H(g)) NT(H(g));-

We are now able to define the Taylor map on H;. Using the above notation,
we send f € Hy — agry € JP(H(g)). Then we are able to show the following in Chapter
4.

Theorem 1.7 (Corollary [4.13). For any complex Lie group G, the Taylor map, (1 —
D);'R:Hy — JP(H(g)), is an isometry.

In the previous cases [4, [0l 10, 22, 21, [I], the analagous Taylor map was also

surjective. Chapter 5 is devoted to proving the the following special case.

Theorem 1.8 (Theorem [5.12). Suppose G is a stratified nilpotent Lie group. Then the
Taylor map, f € Hy — agrs € JP(H(g)), is unitary.

The appendix contains a section on reproducing kernels, a section containing
example calculations, as well as a section devoted to stating and proving a theorem
orignially found in [6] which is essential to proving surjectivity of the Taylor map when

G is a stratified nilpotent Lie group.



Finite Dimensional

Approximations

The primary purpose of this chapter is to summarize relations between the
infinite group W(G) and finite products of G based on a partition of [0, 1]. The relations
will be used often throughout the sequel.

2.1 Approximations to W(G)

For the entirety of this chapter, we'lllet P = {0 =59 < $1 < -+ < 85, < Spt1 =
1} denote a partition of [0,1]. We will also use the notation #(P) = n, the number of
partition points of P.
A partition P gives rise to a cannonical map on W(G), p : W(G) — G#(P)
defined by
mp(g) = (9(s1), 9(s2), .-, g(sn)). (2.1)

Notation 2.1. Let e denote the identity path. That is e(t) = e € G for all ¢ € [0, 1].
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Notice that for h € H(g),

d
wpue(h) 1= lgmp(e®) (2.2
d
_ £|t20(6th(sl)’ ...,6th(s”))
— (1), s h(s0)). (2.3)

Furthermore, for any g € H(G), Lg«h € T4H(G), and we have the relationship

d
Tpug(Lgxh) = £\t:07f7>(96th)

d
= @\tzo(g(«ﬁ)eth(sl)a e g(sn)et o))
= Lyp(g)s (Tpse(h)) - (2.4)
We will revisit Eq. (2.3)) and Eq. (2.4) in the next section.

(P)

Functions on G#() determine a natural class of functions on W(G) via the

map mp.
Definition 2.2. A function f: W(G) — C is a smooth cylinder function if there exists
a partition P = {0 = sg < 51 < ... < 5, < 1} of [0,1] and a F € C*®°(G#(P)) such that
flg) = F(g(s1),...,9(sp)) for all g € W(G). That is, f = F omp. The collection of
smooth cylinder functions is denoted FC>(W).

Notation 2.3. We write f € FCX(W) if f = F omp for an F € C(G#P)).

Definition 2.4. A function f € FC*®(W) is a holomorphic cylinder function if there
exists an I’ € H(G#(P)) such that f = F omp. The collection of holomorphic cylinder
functions is denoted HFC*(W).

Expressions involving cylinder functions often reduce to related finite dimen-
sional expressions. For example Remark below indicates that differentiation of a
cylinder function f = F omp is equivalent to a differentiation of F. In addition, the set

of cylinder functions is closed under the operation of differentiation.

Definition 2.5. Given h € H(g) and f € FC*> (W), define

(1f)(9) = Lloflg ") ¥g € WIC)

where g - e € W(G) is defined by (g - e*)(s) = g(s) - ") for all s € [0, 1].
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Notation 2.6. Suppose f = F o mp where F € C®(GIPl).  Then for A € g and
ie{l1,2,..,n} let

- d
A(Z)F(:cl,xg, ey Tp) 1= @’01?(331, ooy T etA,:riH, ey Tp)- (2.5)
Remark 2.7. Notice that for h € H(g),
- T —~—()
hf=> (h(si) F)omp. (2.6)
i=1

In particular, note that f is still a smooth cylinder function based on the same partition

P.

2.2 Approximations to H(g)

The differential of the map mp : W(G) — G#P) maps H(g) to g#") as seen
in Eq. (2.3). Proposition shows that there is an isometric Lie algebra isomorphism

(P) (P)

between a subspace of H(g) and g#()| where the metric on g#(P) is described below.

K :[0,1]> — R will be used to denote the reproducing kernel for H(R) and H(C), i.e.
K(s,t) = s At as in Notation See section 1 of the appendix for more details.

Definition 2.8. Define ( , )p to be the unique left invariant Hermitian inner product

on the fibers of TG#(P) such that for 1 < 1,5 <n,
(AD, BU))p = (A, B),Qy; forall A,B € g,

where @ is the inverse of the matrix {K(s;, s;)}}';—; and A® and BU) are defined as in

Remark 2.7

Remark 2.9. Staying consistent with earlier notation, we’ll let ( , )» = Re( , )p denote

the corresponding real left invariant Riemannian metric on the fibers of TG#(P).
Definition 2.10. Let Hp(g) denote the subspace of H(g) given by
Hp(g) = {h € H(g) N C*((0,)\P) [h" = 0 on [0, 1]\P}.

Remark 2.11. Notice that Hp(g) is a closed subspace of H(g), but not a Lie subalgebra

with the inherited pointwise commutator.
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Proposition 2.12. Let mp,. : H(g) — a#(P) be given by Eq. , that is

Wp*gh = (h(sl), veey h(sn)).
Then Nul(mp.) = Hp(g)*.

Proof. First suppose that h € Nul(mp..), that is h(s;) = 0 for all i = 0,1,...,n. Let
k € Hp(g). Then there exist Ao, ..., A,—1 € g such that

n—1

k’(t) = Z Al(t NSip1 —TA Si)-
=0

Notice that
n—1
k/(t) - Z Ailsi,1<t<si .
=0

Then

1

(hy k) ) (R (1), k:’(t))g dt

I
T S—

=

I
]

s
I
=)

Si41 ,
/Si (R'(t), Aq) jdt

i
L

(h(siv1) = h(si), Ai)g

Il
3 -
L L[]
- O

(0, 4;),

I
=
o

Therefore, Nul(mp..) € Hp(g)™*.
Now suppose that h € Hp(g)t. Let A; = h(sit1) — h(s;) € g for i =
0,1,...,n — 1. Again, set

n—1

k‘(t) = Z Ai(t N Siy1 — T A 87;).
=0

Then k € Hp(g) and, as above,

n—1
k,(t) — Z Ai15i71<t<8¢'
=0
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We necessarily have

= lIh(sisn) = b (s) 5,

which clearly implies that h(s;+1) —h(s;) =0 for i =0,1,...,n — 1. But since h(0) = 0,
we have that h(s;) = 0 for all i = 0,1,...,n. Therefore, h € Nul(nps), and Hp(g)+ C
Nul(mpse)- O

Remark 2.13. Proposition [2.12] indicates that
L
H(g) = Hp(g) ® Nul(mpue).

In particular, if Pp : H(g) — Hp(g) is orthogonal projection, then Pph is the element
of Hp(g) that agrees with h at all partition points. This projection will be important in
Chapter 5.

As indicated in Remark Hp(g) is not a Lie algebra with the inherited
pointwise commutator. We can, however, define a new bracket on Hp(g) using the

above projection map.

Proposition 2.14. Define [ , |p on Hp(g) by [h,klp = Pp[h,k]. Then (Hp(g),], |p)

1s a Lie algebra.

Proof. One simply needs to verify the Jacobi identity. For any h,k € Hp(g), |[h, k]p is
piecewise linear and therefore determined by its values on the partition points. Since
for any s; € P, [h,k]p(s;) = [h(si), k (si)], the Jacobi identity follows from that for [, ]
on g. [

Proposition 2.15. Consider Hp(g) as described in Definition with inner product

(. )#(g and commuator [, |p, and g# )

with inner product ( , )p and commuator | , |.
Then the map mpy : Hp(g) — g#(m, the map described in Proposition restricted

to Hp(g), is an isometric Lie algebra isomorphism.
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Proof. To see that mp,. is an isometry, associate to A = (A4y,..., 4;,) € g#(P) a path
ha(t) =31, K(si,t)A; € Hp(g). Then if B = (By, ..., By) € g#P),

n

(hz‘th)H(g) = Z (K(3i7 ')aK(Sja ))H((C) (AiaBj)g
ij=1

= D K(sis)) (4, By)y. (2.7)

ij=1
where we have used Remark of the appendix.
{K(si, )} j=1 Is a postive definite matrix, so setting B = A in Eq. (2.7)
shows that A — h4 is injective and hence surjective by the rank nullity theorem. By

Definition

ve(ha); Tpae(h ha(se)®), hp(s)

(mPse(ha), mpse(hB) z:: ( A(sk) B(s1) >7>
Z 1 (ha(sk), hB(sl))
o
Z QuiK (si, s1) K (55, 51)(Ai, Bj)g

- Z K(si,85) (Ai, By),

1,7=1

= (hAa hB)H(g) 5

where Eq. (2.7) was used in the last equality. Therefore, 7p,, is an isometry. ]

We end this section by showing how the above results on tangent spaces allow
us to relate distances on our Lie groups H(G) and G#(P). We first prove the result in

the case of a general Riemannian manifold.

Definition 2.16. Define the distance function on a Riemannian manifold, d : M x M —

R, b
Y 1
d(m,n) = inf/ |0’ (s)|ds,
0

where the infimum is taken over all C!'—paths o such that ¢(0) = m and o(1) = n.

Notice that d(m,n) = d(n,m).
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Remark 2.17. In the case where the manifold is a Lie group G with a left invariant

metric, it follows that for all z,y, z € G,
d(zzx, zy) = d(z,y).
Notation 2.18. For z € G, we will sometimes use the notation
|z| := d(e, x).

Notice by Remark

o] = =7

and

d(z,y) = |a"y| = |y~ 'al.

Proposition 2.19. Suppose (M, g) and (N, h) are Riemannian manifolds with 7 : M —
N a surjective map such that Ty @ Nul(Twm)™ — w(m)N is an isometric isomorphism
for allm € M. If d™ and dV denotes the distance on M and N respectively, then for
all my,mg € M,

dN(7r(m1), W(mg)) S dM(ml, mQ).

1

Proof. For all m € M and all v,, € T,, M, we can write vy, = Wy, + w;,,

where w,,, €

Nul(mm) and wi;, € Nul(mm)t. Since wy, and w;; are orthogonal, |wi|, < [vml,-

Finally, since mypnvm = W*mwfn, we have
| T amVm |n = ’W*mwmh = ‘wmg < |vmlg-

Now let o : [0,1] — M be a Cl-path such that ¢(0) = m; and o(1) = mg. Then

moo:[0,1] — N is a path connecting 7(my) to 7 (ms3), and

1 1
™ (n(my),m (ma)) < U(woo) = /0 |Tso(5)0” (8) nds < /O |0 (5)]gds = 1(0).
Taking the infimum over all paths o gives the desired result. O

Corollary 2.20. For any partition P and any g € H(G),

Impglr < l9lu(c)-
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Proof. We apply Proposition with (M, g) = (H(G),( , )u(e)), (N, h) = (G#P) (|
)p), and m = wp. Notice by Eq. (2.4), for any g € H(G) and h € H(g), Tpug(Lgeh) =
Lr,g+mpsch. Since all metrics are left invariant, Proposition indicates that mp,, :
LgHp(g) — Lrpgeg” ) is an isometric isomorphism. Therefore,

G#(P)

|Tpglp =d (mpe,wpg) < AT (e, 9) = lglm(c)-

2.3 Associated Laplacians

Remark indicates that taking derivatives is a well defined operation on

cylinder functions. So too is the following natural Laplacian.

Definition 2.21. For f € FC°(W), define the Laplacian Ag(q) by

A f= Z h*f.

heSg
If f = Fomp, then by Eq. (2.6) and Proposition of the appendix,
S () (i)
Apyf =Y Y (hlsj) " h(si) F)omp (2.8)
heSg i,j=1
= > > K(sj,s)(ADADF) o mp.
AeXp i,j=1

So if we define an operator Ap on C°(G#(P)) by

ApF= )" " K(sj,s)(AVADF),
AeXp 1,j=1

then we have the relationship
Ap(Fomp) = (ApF)omp.
Remark 2.22. Given the map 7p.. : Hp(g) — g#(P) as described in Proposition m ,
for f = F omp,
Ay f= Z i(@mm(i)l’)oﬂp

heSg i,j=1

—_—~2
= Z (mpseh F)omp,
he Sk
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or in other words

/—\_/2
ApF = Z Tpsch F.
heSr

L
In particular, since H(g) = Hp(g) ® Nul(Ilp), if Sf is an orthonormal basis for the real
inner product space (Hp(g),( , )r(g)), then

A f= Z h2 f
heSE
2
= Z (Wp*gh F) o TP,

heSE

and

2
ApF = Y mpuch F. (2.9)
hesy

Suppose f € FC>®(W) and f = F o 7p for some partition P. Then for any
partition P O P, we can also write f = F o mp for an appropriate F ¢ COO(GWs').
Regardless of the choice of representation of f as a cylinder function, Apg)f is well

defined.

Proposition 2.23. Suppose P D P are two partitions of [0,1] and f € FC(W) has the
property that f = Forp =F o np for appropriate F' € C®(G#P)Y and F e COO(G‘ﬁ|).
Then (Apr) oOTTp = (Aﬁﬁ) OTp-

Proof. For convenience, we’ll consider the case where #(P) = n and P =P U {sn+1}
for some s, < sp+1 < 1. The general case will follow by analagous compuations and

iteration. For any A € g, g € W(G), and i =1,2,...,n,

(ADF)(rp(9)) = %It:oﬁ(g(ﬁ), s g (sim1) s 9(si)e ™, g (sit1), s g(sn41))

tA

— %hzoF(g(sﬂ, g (8i21),9(s1)e, g(sit1), -, g(sn))

= (AYF)(mp(9)).



18

Also,

(AMTVF) (m5(9)) = = li=oF (g(51), -, 9(5n), 9(Sns1)e™)

—0F(g(s1), -, 9(sn))

It follows that

n+1
(ApF)omp =Y > K(sjs)(AVAVF) omp

AeXp i,j=1

= Z Z K(sj,si)(ﬁ(j)ﬁ(i)F) omp
AeXp 1,j=1
= (ApF)omp.
O

The following is a summary of definitions and basic properties of strongly con-
tinuous semigroups of operators on a Banach space X. A more detailed exposition can

be found in a variety of sources, specifically [18] and [§].

Definition 2.24. Let X be a Banach space. Then a collection of bounded linear oper-

ators Sy for ¢t > 0 is a strongly continuous semigroup on X if
1. So=1.
2. Ss+t - SSSt.

3. S(yf € C([0,00),X) for all f e X.

Definition 2.25. The generator of a strongly continuous semigroup S; is the linear

operator L given by

Lf =lim 2 =]
t—0 t

)

for all f such that the limit exists.

Remark 2.26. Any generator of a strongly continuous semigroup is closed and densely

defined. See, for example, the proposition on page 237 of [1§].
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Proposition 2.27. Suppose S; is a strongly continuous semigroup on X with generator

L. Then uy := Sif satisfies

0

aut = Luy with uy = f.

Proof. The proof follows readily from the above definitions. Certainly ug = Sof = If =
f by property (1) of Definition Furthermore, by property (2) of Definition m
and Definition [2.25

D=
Gtut = Us s=0Us+t

d
= S |s= Ss
ds| 0Ss+tf

d
= £|S=OSS(Stf>
~ lim Ss(Stf) — (Sef)

s—0 S
= L(S:f)
= Lut.

O

Notation 2.28. In light of the above Proposition, if S; is a strongly continuous semi-

group on X with generator L, we will write
St = etL.

Given a linear operator, it is natural to ask if it generates some semigroup.
This question is answered in generality by the Hille-Yoshida Theorem (pg. 238 of [18]).
We are primarily concerned with operators on Hilbert spaces, in which case the following

proposition will be sufficient.

Proposition 2.29. Suppose L is a self-adjoint operator defined on a dense subset of a

Hilbert space H. Then the closure of L generates a strongly continous semigroup on H.

Notation 2.30. We will abuse notation and use the same symbol to denote the operator

and its closure.
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The left invariant Laplacians Ag and Ap are essentially self-adjoint with re-
spect to our right invariant Haar measure on their domains of definition, the complactly
supported smooth functions. Hence their closures generate strongly contiuous semi-
groups on L?(G,dz) and L?(G#(P) dzx) respectively, where dz denotes the appropriate

right invariant Haar measure.

Definition 2.31. If e'” is a strongly continuous semigroup such that for all f € L?(G, dz)

(1) (y /fy:r ou(2)da

for some p; € L*(G,dx), then we call p; the convolution semigroup kernel of e

Definition 2.32. Let G be a Lie group with {4;}¢ , an orthonormal basis for g with
respect to a real left invariant Riemannian metric ( , ). A left invariant second order

differential operator L is strongly elliptic if for any f € C?(G),

L= o (4id;f) (g +Zb(Af) )+ cf(9).

ij=1

where
d

S aygied > Colef?
ij=1

for some Cy > 0 and for all £ € R?.

Remark 2.33. That Ap is a strongly elliptic operator is evident from Eq. (2.9)). In this

case, {aij}‘ii,j:l is the identity matrix and hence

d

> e =g
ij=1
The following theorem summarizes some important properties found in Robin-
son [19] of strongly continuous semigroups generated by strongly elliptic operators and
their corresponding convolution kernels. [19] treats the case where dx represents left
invariant Haar measure, though the case of right invariant Haar measure is similar. For

the reader’s convenience, we will cite each property separately.
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Theorem 2.34. Let L be a strongly elliptic second-order operator with no zeroth order
coefficient (c =0 in Deﬁnition on a Lie group G of dimension d. Let dx denote

right invariant Haar measure. Then there exists a strictly positive convolution semigroup

kernel pr € C*°((0,00) x G) satisfying:

1. [opi(x)de = 1. (pg. 253 of [19])

2. p¢ satisfies the following “heat” equation

o pu(z) = Ipy()
with the initial condition
lim py () = 6(2),

with the limit interpreted in a weak sense. (pg. 253 of [19])

3. There exist constants a,b > 0 and w > 0 such that for all t > 0 and g € G,

—blg|?

pe(g)| < at= et e

wt
(Theorem 4.1 of [19]).

Notation 2.35. Let pf denote the smooth semigroup kernel for the operator ﬁAp, and

let p&* denote the smooth semigroup kernel for the operator iAg.

Remark 2.36. The fact that Ap and Ag are essentially self-adjoint implies that p] and

ptG are invariant under x — !, that is,

and



Heat Kernel Measure

In this chapter, we construct the heat kernel measure on W(G). The measure
is constructed as the law of a continuous W(G) valued process. To prove the existence

of such a process, we first require some geometric estimates.

3.1 Geometric Preliminaries

The following theorem is well known and can be found in a variety of sources

(for example, see [2, 20]).

Theorem 3.1 (Bishop’s Comparision Theorem). Let (M, g) be an N-dimensional com-

plete Riemannian manifold, k > 0, and assume that

Let o € M and V (r) denote the Riemannian volume of the ball of radius r centered at

oe M. Then N1
" (sinh/kp\
Vr) < wN_l/ () dp,
0 VE

where wn_1 is the surface area of the unit N-1 sphere in RN. Also,

V(r) <wy_irNeVE,

22
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Proposition 3.2. Let G be a finite dimensional Lie group with left invariant metric { |
). Then (G, (,)) satisifies the hypotheses of Bishop’s Comparison Theorem (Theorem
. That is, there ezists a k such that

Ric(€,€) > k£, €) VEeTG. (3.1)

Proof. Since both R( , ) and ( , ) are bilinear, it suffices to show Eq. (3.1)) for vectors
€ € TM with |{] = 1. The set {(e,&) € TG|¢ € T.G with |¢| = 1} is compact and hence
has Ricci curature bounded below by some constant x. Then since ( , ) is left invariant,

Ric(¢,€&) > k for any g € G and for all £ € T,G with [£| = 1. O

Remark 3.3. In particular, Proposition indicates that (G#(P) (| )p) satisfies the

hypotheses of Bishop’s Comparision Theorem.

The following proposition can be found in [5]. We include the proof for com-

pleteness.

Proposition 3.4. Let G be a Lie group. Then there exists a constant ¢ < oo such that

for all x € G, ||Ady|| < el®l, where || - || denotes the operator norm.

Proof. Let o : [0,1] — G be a C'—path such that 0(0) = e and o(1) = z. Then

d

d
o) = - le=0Ado(t) Ady () -10(11) = Ado(r)ady(o (1)),

where 0(0’(t)) = Ly()-1,0'(t). Hence,
t
lAdaoll = 1 + [ Ado(ryadgorop

t
<1+ C/ Ado’(’r)a’d0<0'/(7')>d7-’
0

where ¢ = max{||ad,|| : @ € g and ||a|| = 1} and ||ad,|| denotes the operator norm of

ads. Therefore by Gronwall’s inequality,

1
I = Adugy | < xp (< [ 0lo'0)lat) = ) < e
0
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In the proof of Theorem to follow, we will need to estimate distances on
(G#(P) dp) in terms of distances on G. The following notation and Proposition [3.6| will
be used in the proof of Theorem [3.8]

Notation 3.5. Let {z,y} denote a point in G x G. Hence, for a two point partition P,
Hz,y}p = dp({x,y},{e,e}), where dp is the distace function on G x G relative to the

metric (, )p.

For the next two propositions, suppose 0 < u < v < 1l and let P = {0 < u <
v<1}. We'llllet |- |% = (-,)p and |- |§ = (-,")g, s0 for {A, B} € g x g,

{A, B} = ({A. B}, {4, B})p

({4,0} +{0,B},{4,0} +{0, B})p

({4,0},{4,0})» + ({A4,0},{0, B})p

+ ({0, B}, {4,0})» + ({0, B}, {0, B})p

= a|A[} — 2b(A, B)g + ¢|B]2, (3.2)

where a, b, c € R are determined by the following special case of Definition [2.§

Thatis,a:m,andb:c:ﬁ.

Proposition 3.6. For all A, B € g,

4= =Bly < V{w/v)(v - u) {4, B} p. (3.3)

and

Bl < Vol{A, B}lp (3.4)
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Proof. By completing the squares in Eq. (3.2]) we have

b c b
BB =a (1~ 2B+ - D)imi)

b ac — b2
el LB B

=7 |A- —B|g \B|§. (3.5)

u(v —u)
Then since 7|B|2 >0,

u
——|A— —B]?> < |{4, B}/?
oA GBS A BY,

which implies that
4 - 2Blg < V{u/o)( — wl{A, B}lp.

Similarly, since u(v ) |A +B 12 >0, Eq. |D also yields

[Blg < Vvl{A, B}|».

Lemma 3.7. For any x,y € G, we have that
d(z,y) = z7"y| < 2v0 —ue VP {2y} |p, (3.6)
where c is the same constant as in Proposition .

Proof. Let z,y € G, 0 : [0,1] — G and 7 : [0,1] — G be two smooth paths such that
o(0) = 7(0) = e, o(1) = x, and 7(1) = y. Since o7~ : [0,1] — G is a path joining
e to xy~ !, it follows that |xy~1| < fol 10((c771)(s5))|ds, where 6 is the Maurer-Cartan
form. Furthermore, {o,7}:[0,1] — G X G is a smooth path with {o,7}(0) = {e, e} and
{o,7}(1) = {x,y}. Define A =6(c’(s)) and B = 0(7'(s)). Then

1
=/ﬁAwmw,
0
1
=/Wmew,
0

p({o,7}) = /1&1 ()} [pds.

and
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Notice that by Eq. (3.4)),

=/ﬂ3@mw

<f/HA ()} pds

= Vulp({o,7})
< tp({o,7}). (3.7)
Set 1(g) = g~'. Then
=1y d tB d —tB,_—1
(7Y =07 = LB = —\OL( ) = —/oe =—-R-1,B

dt

Therefore,

0((o77") (5)) = Lro=1(5)e{ Rr=1(5):0"(5) + Lo(e)u(771)'(5)}
= Lro1(s) A Rr1(s)s Lo(s)xA(8) = Lo(s)s Rr-1(5). B(8)}
= Ad(5)(A(s) — B(s)).

So using Eqs. , , and Proposition
1
uylgémmﬁA@—B@mws

1 u u
§A|M¢@WM@—UB®E+O—UNM®M%

1 u u
< [ e OIAGs) - LB+ (- 2)IB(s)|ds

0
1 u
SeﬂﬂA< o) (o — )+ (1~ “)a) [{A(s), B(s)} |pds
oD (o) =) + ) (o, 7)) (3.8)

N2

<wﬂf@”ﬂfywwmn

< 2¢Uo™H o =ulp ({0, 7).

where in line (3.8) we have also used Eq. (3.7). Minimizing this last inequality over all

o joining e to x and all 7 from e to y shows that

ey~ < 2V —ued VP {2, y ) p.
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1

Sending z — 2~ ! and y — y~! in the above expression also gives

[ty < 2= el ey
= 20— ue I .

3.2 Construction of v,

Let {B(t,s)}o<s<1,0<t<oo be a g-valued Brownian sheet with half the usualy
covariance. That is, {8(%, s) }o<s<1,0<t<oo 1S a jointly continuous, mean zero gaussian g-
valued process defined on a probability space (2, F, P) such that, if 34(t, s) := (A, B(t, $))g
for A € g, then

B3t )57 (r,0)] = {4, Blg(t A )5 K (s5,0)

for all s,0 € [0,1], t,7 € [0,00), and A, B € g, where E denotes expectation relative to
the measure P. In other words, for fixed s, t — [((t,s) is a g-valued Brownian motion
with variance K (s, s), and for fixed ¢, s — ((t,s) is a g-valued Brownian motion with
variance t.

We now are able to prove the existence of a Brownian motion on W(G), which

gives us a heat kernel measure.

Theorem 3.8. Suppose G is a Lie group with Lie algebra g and left invariant Rie-
mannian inner product { , ) and go € W(G). Then there exists a continuous adapted
W(G)-valued process {£(t)}i>0 on the filtered probability space (W {Fi}i>0,F, P) such
that for each s € [0,1], X(-, s) solves the stochastic differntial equation:

(6, 8) = Ly1,6)+8(0t, 5) with %(0,s) = go(s). (3.9)
More precisely,

Y(ot,s) = Z A(S(t,5)) 840t s)  with (0, s) = go(s), (3.10)
AeXp
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where Xp C g is an orthonormal basis for the real inner product space, A is the left
invariant vector field on G satisfying A(e) = A, and BA(t,s) = (A,B(t,s)). Here
B4(6t,s) denotes the Stratonovich differential of the process t — (4(t,s). We will use

“0” for the Stratonovich differential and “d” for the differential of a semimartingale.

Remark 3.9. For fixed s, the existence of a G—valued process X(t, s) satisfying Eq.
follows from the existence of Brownian motion on a finite dimensional Lie group. See,
for example, Theorem 4.8.7 in [14]. The challege in proving Theorem is showing that

there exists a jointly continuous version of ¥, that is ¥(¢,-) is a W(G)-valued process.

Before proving the existence of a continuous version of the process in Theorem

we first prove a couple of propositions regarding a related process.

Definition 3.10. Let {%°(¢)};>0 denote the solution to Eq. given by Remark
with initial condition go(s) = e for all s € [0, 1].

Notation 3.11. Given the processes (3(t,s) and X°(¢) defined above, for P a partition
of [0,1], define a continuous G#(P)-valued process ¥p by

Sp(t) = mp 0 (1, ),

and

573(t) = Wp*ﬁﬁ(t7 ) = (/8(t7 81)7 ﬂ(tv 32)7 ceey ﬂ(ta Sn))
Proposition 3.12. Xp solves the SDE
Yp(0t) = Ly 1)« 8p ()
with $p(0) = (e, e, ...,e) € G*P). Furthermore, Xp has generator %A'p.
Proof. Using Eq. (3.9) and Eq. (2.4)) we see that ¥p solves the SDE
Ep(0t) = Tpaso(r,s)X0(dt, 5)
= WP*EO(t,s)LEo(t,s)*ﬁ(étv S)

= Ly, (1)« ™PxeB(01, 5)
= sz(t)*ﬂp(&f, S), (3.11)
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with initial condition ¥p(0) = (e, e, ...,e) € G#(P). Note that by It6’s lemma, for any
function F' € C®(G#(P)),

3

AF(Zp(t) =D > (AVF)(Sp(1)87(0t, 5:)
=2 D (AR (Ep()Bp(dt,s:)

S (BUAOR)SH0)5A 5Bt 5,)
1,j=1 A,BEXR

=Y > (ADF)(Ep(1)Bp(dt, i)
i=1 AeXp

N 1
£5 30 (BOAOR)(Sp(0) 5K (s 55) (A, Bt
i,j=1 A,BEXR

=3 3 AOE)ER(0)5A L 5)

which implies that Xp(t,-) is a G#(P)-valued process with generator iA’p. O

Proposition 3.13. Let P be a partition of [0,1]. Then for any bounded measureable
function f: G#P) — C and T > 0,

E[f(Sp(T))] = / F )P () dz,

G#(P)

where p? 1s the convolution semigroup kernel corresponding to the operator %A'p (see

Notation .

Proof. First assume that f € C2(G#(P)). For 0 <t < T, define

R@) = [ Har s = [ @

Then F; satisfies
0 1
—F, = —-ApF,
at t 4 PLty



for 0 <t <7T. By Ito’s lemma and Proposition [3.12

AF(Zp(0) = Y Y (ADR)(Sp(1)8A (0L 5:) + (;F

L APR)(Ep(0)dt — L (ApF)(Ep ()it
=3 S (ADF)(Sp(t)BAdL, 50),
i=1 AeXg

) (o)
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which implies that M; := F;(3Xp(t)) is a local martingale. Our next goal is to show that

M; is square integrable. It suffices to show

,Ib
/
0

for any Tp € (0,7p) and i = 1,2, ..., n.
For any A € g#(P),

(A@Ft) (zp(lt))]2 dt < oo,

d

ds ds

9 paedy ) = L oy 1eAbA) = (Df(ay), AdyA).

(3.12)

Recall from Proposition we have ||Ad,A||g < [|Al|ge?! for some ¢ > 0. Therefore,

— fze*ty™ | < ||DFf]|ol| Al |gec.

d
ds

In addition, by part 3 of Theorem it follows that

Loy 0 )y = 0T =),

where sup., <7 C(7) < oo, for any € > 0. We then have

; d sAD
(A9FR) @) = Sl [ sty R
ds G#(P)

(y)dy

d SA®D _
:/G of (e y NP, (y)dy

wpy ds'®T

= [ (D™, Ad ADYE. )
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Moreover, for any Ty € (0,7,

sup ‘(A(i)Ft) (z)] = sup

0<t<Ty 0<t<Ty

/ (Df(@y™), AdyAD)p7_,(y)dy
G#(P)

< |IDflloo| AV K (T0), (3.13)
where Ko(Tp) = supy_r,<,<7 C(7)<oo. From Eq. (3.13), it follows that

TO
E/
0

which verifies Eq. (3.12). Therefore, M; = F;(Xp(t)) is a Martingale for 0 < ¢ < T.
For any t € (0,T), EM; = EM,, that is

. 2 )
(A9R) (Sp®)| dt < 11Dl ADK (To) Ty < oo,

E[F(3p(t))] = E[Fo(2p(0)]

= Fo(e,e,...,€)

= / v~ )pr (y)dy
G#(P)

= / FW)p7 (y)dy, (3.14)
G#(P)

where in line (3.14])) we have used Remark
Since f € C2(G#(P)), it is bounded, and therefore so is F. Furthermore, there

exists a constant C' > 0 such that
1f(z) = f()| < Clay™ ' = Cly x|
Then for any w € €,

lim |1 (Zp(8) (W) — £ (Ep(D)(@))]

< liTr;l 1f(Ep(®)(w)y™) = F(Ep(T)(w))|pT (y)dy
3 G#(P)
< liTr;l C|Sp(T)(w) " Sp(t) (w)y ™ pT(y)dy
t G#(P)
glti%lcmp( Yw)1Ep(t) \/#( )!y YpT (y)dy
S}}TI}}C’\EP( )(w) ™ S () (w) (3.15)

=0,



32

since Yp is continuous. The heat kernel growth bounds of Theorem imply in line
(3.15) that [ |y~ pF(y)dy < oo. Therefore, the DCT allows us to conclude

B (S (D)) = I BIAe )] = [ )y
O

Proof of Theorem[3.8. We first consider the process 3° as given in Definition Our
immediate goal is to show that there exists a continuous version of this process.
Fix 7 € [0,00), and define a process u(t) = X0(7,s)71x%(¢, s) for t > 7. Then

u(1) = e € G and u(t) solves the stochastic differential equation:

Su(t) = Lyo(rg-1. Y A(BO(t,5))34(5t, 5)

AcXp
= 3 AE(r,5) 10, 5)) 54 (6, 5)
AeXp
Z A ﬂA 9t s).
AeXp

Therefore, if f € C°°(G) of polynomial growth with f(e) = 0, then using It6’s lemma,
for all t > 7, we get

T Aex

/ Z (Af)(u(r)B(dr, s) + / Z (A2f) K(s,s)dr
T Aexp T AeXp

= [ 3 Anweystans + K6 [acnuar
T AeXr T

So we see that u(t) is a process on G with generator Ag. It then follows that

for any f € C(G),

(t=7)G(s,5)
4

(t—71)K(s,s) T)K(s s)

E(f(u(t)) = (5226 p (e / @R o) (@), (3.16)

where p{*(x) denotes the heat kernel on G (see Notation [2.35). We now set f(z) =
d(z,e)P = |z|P. Let V(r) denote the volume of the ball of radius r centered at e € G,
relative to the metric (, ). Then by Bishop’s Comparison theorem (Theorem [3.1]), there
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is a constant v € (0, 00) such that V(r) < 4r™e?. Then using our heat kernel estimate

Theorem [2.34] and an integration by parts, we find that

Blu) = [ oD ypo @)

. [ b2
<alt—r7|2 / rPeTnKG ¢@ t=TE(:3) gy (1)
0

n o0 2pr+1 77br2
< — _ 2 p—1 _ =7 (t—7)K(s,s) w(t_T)K(S7S)
< —alt — 72 /0 (pr = 1K(.9) )e e V(r)dr

n o0 Tp+l —br2
< Kt —7[2 / eI " dy
o (t—T7)K(s,s)

where K = 2aye“T. Using the following scaling argument

e 2 o)
/ rke e dr = a5 rke_rze*/awdr,
0 0
we get,
o) T B
Elu(t)|P < K|t — 7|2 K (s, 5)5/ eV 5 g < KMt -2 (3.17)
0

since K(s,s) <1 for all s.
Consider the partition P = {0 < s < 0 < 1}. Then for any smooth cylinder

function f of polynomial growth such that f = F o wp for some smooth F : G?> — C,

B (t ) = BP0 = 57 F)ece) = [ PP @)dody. (319

Let f(g) = d(g(s),g(o))? for all g € W(G). Then f = F omp where F(z,y) = d(x,y)P.
Using our heat kernel estimates (Theorem [2.34) and Lemma we get that

B = [ ol ey
<2ls — 0]% / ]{x,y}]pecl{x’y}‘pf(:c,y)dxdy
G2
< K2|s — ol

by a computation very similar to Eq.(3.17)).
Consequently, for each T" € (0, 00), there is a constant K,(T") such that

E[d(2°(t,5), 20(7,0) ] < Kp(T)(t = 7|7 + |5 — o?),
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for all t,7 € [0,7] and s,o € [0,1]. Therefore, by Kolmogorov’s continuity criteria (see
Theorem 1.4.1 of [14], or Theorem 53 of [I7]) there is a continuous version X(t,s) of
320(¢, 5) such that for all 3 € (0, 3) there exists a positive random variable K3 on W such
that

d(S(t,5), B(1,0)) < Ka(t —7]% + |s — 0|2)  as.

Furthermore, E[Kg] < oo for all p € (1,00). Since for each s € [0,1], X(+, s) is a version
of ¥.0(-, ), it follows that ¥ satisfies the hypothesis of the theorem with go(s) = e.

For the general case, define 3(t,s) = go(s)X(t,s). Then {3(t)}s>o is a contin-
uous adapted W(G)-valued process which satisfies ((3.9)). O

Definition 3.14. The measure vy = Law(3(t,-)) is called the heat kernel measure on

W(G).
Definition 3.15. Let v = Law(Xp(t)).

Proposition 3.16. v} and v; satisfy the heat equations on W(G) and G#P) in the

following weak sense. If f = F omp is a cylinder function, then

0 1

5ivt (F) = v[ (;ApF) (3.19)
and

0 = 1A 3.20

&Vt(f) = Vt(Z H(G)f)' ( . )

Proof. Eq. (3.19) follows from the martingale decomposition in Proposition That
is

0P () = TP 0)

— GEM+ [ Lm0

=E[-(ApF)(Xp(t))]

1
4

where M; is the martingale

n

M= """ (ADF)(Sp(1)Bp(dt, s:).

i=1 AeXp
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Eq. (3.20) follows readily from the above, since

D (5) = 2B o mp(3(1.)] = DEIFSp(0)] = f (CApF) = 0 Anc ).

ot ot
]
Proposition 3.17. Suppose f € such that f = Fonp. Then ||fl|r2(,) = [|Fll2p)-

Proof.

1£11220,) = ENF (2, )] = E[F o wp(S(t,))1°] = EIF(Sp (1)) = |1 Fll72(,p)-



The Taylor Map

4.1 Skeleton Theorem

For this chapter, we consider T > 0 to be fixed. In the previous chapter, we
constructed vp, the heat kernel measure on W(G). Recall that HFC>(W) is used to
denote the holomorphic cylinder functions on W(G).

Definition 4.1. Let Hy denote the L?(vr)-closure of HFC™®(W).

We wish to establish our Taylor map on this space Hy. In order to do so, we
need a suitable notion of “derivatives at the origin” for a function f € Hrp.

For g € H(G), define a function Ry : HFC>®(W) N L?(vr) — C by

Then R, is clearly linear and is defined on a dense subset of Hy. The following

proposition indicates that R, is bounded and has a continuous extension.

Proposition 4.2. For all g € H(G), Ry can be extended uniquely to a continous linear

functional on all of Hr.

Proof. Pick g € H(G), and let f € HFC®(W) N L?(vy) with f = F o 7p for some
partition P of [0,1]. Recall that by Definition v is the heat kernel measure with

respect to right invariant Haar measure on G#(P) associated to the Laplacian iAp.

36
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Applying the finite dimensional results of Driver and Gross, specifically Remark 5.5 in
[4], we find that

lnp ()%
T .

|Ry()I> = |F(mp(g))]? < ||F||%2(V7T’)€

By Corollary TP (9))% < |g]2H(G), and so using Proposition

‘9@{(@)

Ry(NP < 1 lBape T (4.1)

|9‘§_1(G>
So [|[Ryl|> < e~ T ', and R, is therefore continuous. For f € Hrp, pick {fn}3, C

HFC>®(W)NL%(vr) such that f,, — f. We can then define Ry(f) = lim, oo Ry(fn). O
Notation 4.3. In the sequel, R, will refer to this extension.

Remark 4.4. Clearly, Propositionimples that if f,, — fin Hy, then for any g € H(G),
R, fn — Ryf. More precisely, Eq. (4.1)) indicates that the convergence is locally uniform.

We will show that a function f € Hp has a holomorphic “skeleton”. That is,
despite the fact that f is an L?(v7) equivalence class, its values on H(G) are determined
and “(f|H(G)) (9)” := Ry(f) is holomorphic. We prove this result in Theorem We

first need an appropriate notion of holomorphic functions on H(G).

Notation 4.5. We will refer to a function u : H(G) — C as holomorphic if it is holo-
morphic in the sense of Gross and Malliavin [11]. Specifically, we require that for every
g € H(G), the map h € H(g) — u(g-e”) is Frechét differentiable at h = 0 and that this

Frechét derivative is complex linear and continuous in H(g)* as a function of g.

Proposition 4.6. Let G be a Lie group and suppose F € C*(G). For every g € G,
define dF, € g* by
d
(@F)(A4) = 41 oF(g- ).

Then dFy is the Frechét derivative of F' at g, and furthermore, dFy is continuous in g*

as a function of g.

Proof. That dFy is continuous in g* as a function of g follows from the fact that F' €
C*(G). To see that dF, is the Frechét derivative of F' at g, we need to show that

L IFlg-e?) = Flg) - (dF,)(4)]

=0.
A=0 [1Allg
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Notice that

Therefore,
1
i (@€ = Flg) = @R)A _ | i |(4Fy ) (4) — (aFy)(4)
A0 |1 A]lg A—0 [1Alg
1
< i 90 9P e = dE || Al
A—0 1Allg
1
= }‘iino ; [|[dF.cta — dFg||g-dt
= 07
by the continuity in g of dFy. O

Theorem 4.7 (Skeleton Theorem). There exists a linear map R : Hy — H(H(G)) with

the following properties:

1. For f a holomorphic cylinder function, Rf = f|m(q)-

‘Q‘%{(G)

2. For g€ H(G), |(Rf)(9)]* < HfH%Z(uT)e ‘

Proof. Given f € Hy, define Rf by
(Rf)(9) = Ry f

for all g € H(G). By the definition of R, if f € HFC>®(W) N L?(vr), then
(Rf)(g) = f(9)

for all g € H(G). So (1) is satisfied. (2) follows from Eq. (4.1). It remains to show
that Rf € H(H(Q)).
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We first suppose that f € HFC*®(W) N L?(vy). Then f = F o mp for some
F € H(G#(P)) and some partition P of [0,1]. Let dF denote the Frechét derivative of
F. Define for g € H(G),

(df)g = (dF)ﬂpg O TPxe-

Then

i (9 €") = £(9) = (df)gh]

h—0 1P| £(q)

_ |F(mpg - €™P+<") — F(mpg) — (dF )rp, Tpsch]|
h—0 1P| £1(q)

F TPy — (dF)x el

< tim |F(mpg - e ) = F(mpg) — (dF)rp, Tpsehl (4.2)
h—0 || p«ehllp

g |F(mpg - eP+<h) — F(mpg) — (dF )np, Tpseh|
Tpach—0 ||7pschl|p

-0,

by the fact that dF' is the Frechét derivative of F' and where in line we used the
fact that [|h|[f(g) > |[mpseh||p, Which follows from Proposition So f is Frechét
differentiable at any g € H(G). df is continuous in g since both dFy,. and 7p are. F
holomorphic implies that dF' is complex linear, and since mp,, is as well, df is complex
linear. Therefore, f|g ) = Rf € H(H(G)).

For a general f € H;, we fix g € H(G) and choose {f,}7°; C HFC*(W)N
L%(vr) such that f, — f. Remark indicates that (Rf,) (g-e") — (Rf)(g-e")
uniformly for A in some neighborhood of 0. Therefore, by Theorem 3.18.1 of [13],
h — (Rf) (g - ") is holomorphic and jointly continuous in g. O

Remark 4.8. We will show later in Corollary that R is injective.

4.2 The Taylor Isometry

Given the results of the previous section, we are able to define the Taylor map

on Hr.
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Definition 4.9. Given f € Hr, define agy € JX(H(g)) by
(ORf 1 @ hy @ -+ ® hp) = (hihy - - ha R )(e), (4.3)

where hq,...,h, € H(g), and e denotes the identity path in W(G). Notice that by
Proposition Rf € H(H(G)), so the right hand side is well defined. The map f —
agy will be called the Taylor map.

Notation 4.10. We will often use (1 — D);lR to denote the above Taylor map.

Theorem 4.11. Let f € HFC®(W) N L*(vr) and ary € T(H(g)) as given in the

above. Then |\f||i2(yT) = ‘|aRf||3%(H(g))'

Proof. Suppose f = F o wp where P is a partition of [0,1]. Let Sg:) be an orthonormal
basis for (Hp(g),( , )r(g))- Extend this to an orthonormal basis for H(g) = Hp(g) ELB
Nul(mpy.), which we will denote S¢. Recall that by Proposition %g = {mpsch|h €
SE} is an orthonormal basis for (g#(7), (', )p). Note that for all h € Hp(g)™*,

n

Onfe) =3 ((h(s:)? F) o mp)(e) = 0

i=1
since h|p = 0. Then
2 S tk 2
HaFHJg(Q#(P)) = Tl Z {ap, A1 ® - @ Apg)|
k=0 A1,...,Ak€xg
e’} tk ~ ~ )
=> = > A AF)(ee, 0]
k=0 " \Ay,.,A,€xE
fe’e) tk ~ ~ )
=> = Do 1uheh)e)l
k=0 hl,...,hkesg
0o tk ~ R )
=> = D ke
k=0 " \hi,..,hx€Sc

Then using the finite dimensional results found in [4] and the fact that Rf = f|g,(q),

Hf”?’ﬁ(ut) = HFH%%W) = HQFH?@(Q#(M) = HafH?]%(H(g)) = ”aRf"ag(H(g))~
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O

Before proving Corollary [£.13] which extends this result to any f € Hyp, we

need the following theorem.

Proposition 4.12. Suppose {f,}5°, € HFC®(W)N L*(vy) with f, — f € Hy. Then

for all hy, ho,...,h; € H(g) and g € H(G),

(aho---hiRfn) (9) = (haha - hiRS) (9).

Proof. Pick g € H(G), and hy,hso,...,h; € H(g). Define a sequence of functions F,, :

Ck — C by
Fo(é1,6, 000 6k) = Rfp(g - - 5202 b,

Similarly, define F : C¥ — C by
F(&1,&, ., &) = Rf(g- 81 - e82h2 . gl
Then by Remark [1.4] V&1, &, ..., & € C,

Fn(£17§27 agk‘) - F(fla&?a 7£kf)

uniformly in a neighborhood of the origin. Furthermore, F' and F), are holomorphic.

Notice that

- - - dk
(ks - bR 1) (9) = (e, F)(0,0,0.,0)

and -
(iLliLQ o iLka> (g) = (5162 - ‘ng)(0,0, ,0)

Repeated use of Cauchy’s integral formula gives

g B i k Fn(§17€27"’7§k)
<h1h2 hkan> (9) = <2m'> fgl—R j{gk_R €160 &1 A &1

...dfl’
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for R>0. The locally uniform convergence allows us to use the DCT to conclude

tim (hiha - hiRf2) (9)

n—oo

T i k Fn(§17§27---7§k)
B nh—{go (2772‘) ?I{&R %IfklR €160 & d&d&g—1 - - - d&1
= L ’ : Fn(§17§27"'7§k)
N <2m'> yI{&IR ?liklR"h—’H;O €160 &n d&d&g—1 - - - d&1

_<27ri> ﬁﬂR ?{mR §1&a -+ &k N RS

= (b PR (0).

O]

Corollary 4.13. The Taylor map described in Definition[{.9 is an isometry, i.e. for all
/€ Hr,

HfHQLZ(uT) = ||aRf|’3%(H(g))'

Proof. Let {fn,}5, C HFC>®(W) N L*(vr) such that f, — f. By Theorem m
{ags, }oo, € J%(H(g)) is Cauchy, and hence converges to some @ € JY(H(g)). It
remains to show that @ = ary. That is, for any hq, ho, ..., hi, € H(g),

(@, h1 @ha @ -+ @ hy) = (apf, h1 @ ha ® - @ hy).
By Proposition [£.12]
(@,h1 @ ha ® -+ ® hy) :nli_)rlgo<aan,h1®h2®-"®hk>
= nlLIrolo (3152 e Bkan) (e)
= <illil2 i 'ilka) (e)
= (arfph1 ®ha® -+ ® hy,).
O

Corollary 4.14. Since the Taylor map, (1 — D);'R : Hy — JO.(H(g)) is injective, it
necessarily follows that R:Hp — H(H(G)) is injective.



Surjectivity

In this chapter, we prove the surjectivity of the Taylor map when G is a stratified
nilpotent Lie group. We also present a motivating example where G is the complex

Heisenberg group.

5.1 Introduction

Let g is a d-dimensional step r complex stratified nilpotent Lie algebra. This

means that there is a sequence of nonzero subspaces V; for i = 1, .., such that
8=V,

with [V1,V;] C Vi for j =1,...,r—1and [V1,V;] = {0}. It follows that [V;, V}] C Vi,
with the convention that Vi = {0} for s > r. This gives a decomposition of H(g),

H(g) = @i H(VQ),

with [H(V1), H(V;)] € H(Vjq1) for j =1,...,r—1 and [H(V1), H(V;)] = {0}. Therefore,
H(g) is a step r complex stratified nilpotent Lie algebra as well. We will furthermore
assume that the subspaces {V;}’_, are orthogonal with respect to our inner product ( ,
)a

Our goal is to show that given o € J(H(g)), there exists a function i, € Hr

such that (1 — D);lRaa = «. Of primary importance will be that finite rank tensors

43
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are dense in J%(H(g)) when H(g) is stratified nilpotent. This was orignially proven in
[6], and is included in section 6.2 of the appendix for completeness. The Taylor map
will be show to be onto o € J(H(g)) of finite rank, and the following theorem states
that this is sufficient.

Theorem 5.1. Let J C J%(H(g)) be a dense subset. If for every a € J there exists a
function tiq, € Hy such that (1—D) ' Riiq = o, then the result holds for all a € J(H(g)).

Proof. Let o € JY(H(g)), and pick a sequence {a,}3°, C J such that o, — « as
n — oo. For each a,, there exists a 1, € Hr such that (1 — D);Rﬂan = ay,. Recall
by Corollary that the Taylor map (1 — D);'R : Hy — J2(H(g)) is an isometry.
Since a;, — «a in JA(H(g)), {an}S, is Cauchy, and therefore so is {@a, }3°; in Hr.
‘Hr is closed and hence there exists a i, € Hr such that u,, — .. Finally, since the

Taylor map is continuous,

a= lim oy = lim (1 — D);'Riia, = (1 — D). ' Ril.

n—oo n—oo

O]

Remark 5.2. For the remainder of this chapter, it will be assumed that o € J2(H (g)) is

of finite rank.

Given o € J(H(g)), we wish to construct a converging sequence of approxi-
mating cylinder function. We first construct a holomorphic function with « as its set of
derivatives at the identity. The following theorem is motivated by results in [3] and is

the subject of section 5.3.

Theorem 5.3. Let g be a stratified Lie algebra and o € JY(H(g)) be of finite rank. For
every g € H(G) define
ua(g) =Y {a,g®")/n!

n=0

Then uq is a holomorphic function on H(G) satisfying (1 — D);lua =a.

Let P={0=150 < -+ < sp < Spt1 = 1} be a partition of [0, 1].

Definition 5.4. Let Hp(G) ={h € H(G)|h” =0 on [0,1]\P}. Similarly, define Hp(g)
={h € H(g)|h”" =0 on [0,1]\P}.
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Remark 5.5. Note in the above definitions, Hp(g) is a subspace of H(g), but not a Lie
subalgebra. Furthermore, Hp(G) is not a subgroup of H(G).

Definition 5.6. Let Pp : W(G) — Hp(G) be defined so that Pp(g) and g agree at all
partition points of P and ¢” =0 on [0,1]\P. In a similar manner, define Pp : W(g) —

Hp(g).

Remark 5.7. Pp defined above restricted to H(g) is orthogonal projection onto the
subspace Hp(g).

In order to constuct ., we will construct a converging sequence of cylinder
functions which we will show are Cauchy in L?(vr). Our candidate cylinder functions
are defined below.

Remark 5.8. Given a partition P, Fp = u, o Pp defines a cylinder function.

Our first goal will be to estimate HFPH%Q(W) when « is of finite rank. Let Sc

be an orthonormal basis for H(g). Then
% 7n . )
1Pl 2y =2 7 | Do |(ha--haFp)(@ |, (5.1)

n!
n=0 hi,...hn€SC

where e is the zero path, i.e. the path e € H (G) such that e(t) = 0 for all ¢ € [0, 1].
Definition 5.9. Given a partition P, let a(P) = (1 — D) (Fp).

Notation 5.10. For a function u € C*(W(G)), g € W(G), and hy, ho, ...h, € H (g),
denote

(D”u (g) i ®h®--® hn> = (illiLQ cee ﬁnu)(g) (5.2)

Remark 5.11. Using the above notation,

(o, ¢] Tn
HFPH%%W):ZH > Ka(P),hi@hy @+ @ hy)f’
n=0 hi,...hn€Sc

The following theorem summarizes the main result of this chapter.

Theorem 5.12. Let {Pg}2, be a sequence of refining partitions and o € J%(H(g)) of
finite rank. Then for every n > 0, there exists a function RF* : H (g)" — T(H (g)) such
that

((Pr), 1 @ hy @ -+ ® hy) = (v, Pp,hy @ Ppha ® -+ @ Pp hyy + REF (ha, ..., b))
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with the property that

> [ RRF (hay e h))P = 0 as k — oo,
hi,...hnESC

In particular,

o — (Pi)|l g0 (11(gy) — 0 as k — oo.
5.2 An example: the complex Heisenberg group

We present a proof of the surjectivity of the Taylor map in the simplest non-
trivial case. The methods of this section will resemble, and perhaps motivate, those
used in the general case to come. In the event that a proposition is more clearly stated
or proved in the general case, we will refer the reader to the corresponding proposition
in the sequel.

Let G denote the complex Heisenberg Lie group. We may realize G as C® with

the following group multiplication:
1
(a,b,c) - (a',b,d)=(a+d,b+b,c+ + i(ab’ —a'b)).

Note that the origin acts as the identity, and (a,b,c)~! = (—a, —b, —c). Then g =T.G
is the complex Heisenberg Lie algebra, which again can be thought of as C? with a
bracket operation. If we let X = (1,0,0), Y = (0,1,0), and Z = (0,0,1), then g =
span{X,Y, Z}, where [X,Y] = Z and Z is in the center of g. Throughout this paper,
we will use coordinate notation for both elements of the group and elements of the Lie

algebra. The standard inner product on C3,
((Zb 22, 23)? (’LUl, w2, 'LU3)) = 21W1 + 22W2 + Z3W3,

will be our given Hermitian inner product.
il
Remark 5.13. If we set Vi = span{X,Y} and Vi = span{Z}, then g = Vi @ V5. Since

Vi, V1] = V4 and [V4, V] = [Va, Vo] = 0, we see that g is a step 2 stratified nilpotent Lie
algebra.
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We intend to show that for fixed 7' > 0 and o € J%(H (g)), there exists a @, €
Hy such that Rii, = ua where u, € H(H(G)) with (1— D) tu, = a. We assume that «
is of finite rank, i.e. there exists an N > 0 such that > ° (an,v(n)) = S (o, v(n))

n=0

for all v(n) € H(g)®". By Theorem the result will follow for all o € J2(H(g)).

5.2.1 Construction of u,

There is an obvious identification between G and g in this example, and an

easy calculation shows that for all ¢ > 0,
etlabie) — t(a,b,c).

This relationship holds pointwise for elements of the path group, and so for g € H(g),
ed = g € H(G). Using the BCH formula, we have for A, B € g,

A-B=et. B

:A+B+%[A,B],

where we are identifying g and G as elements of C3.
The following Proposition show that elements of the Lie algebra and the path
group can be thought of interchangably.

Lemma 5.14. Suppose g € W(C3). Then g € H(g) iff g € H(G).

Proof. Suppose g = (g1,92,93) € H(g), i.e. [|g'[|r2(0,1)) < 0o. Note that
191122017y = 1191112201y + 11931122007y + 1195172 ((0,17)
so in particular, Hgl’AH%g([O’H) < oo fori=1,2,3. Also, for all s € [0,1],
(s) =1 [ itr)ar
1
< [ i) ar
0

=gl 21 (0,1
< lgillz2(0,17)- (5.3)
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This implies that
1
19l L2(j0,17) = /0 gi(s)|ds

1
S/O gill 20,17 ds
= llgill 2(0,1))- (5.4)

Observe the relationship

Lys(ed’ (9) = Soleco(=g(5)) g5+ ¢)
= (61(5), 64(5), 64(5) — 5 ()h(s) + 3 oals)eh(s)) (55)

Then considering g as an element of W(G) we calculate the energy:

1
E(g) = /0 Lys(0d (s) %ds
1

=, I(gi(S)»g’z(S),gé(S)—%(91(5)95(8)—92(8)9’1(8)))|2d8

1
<9 [ (1607 + {larIPIhoI + oI ) s

9
< 9”9’”%2([0,1}) + §|’9'1H2L2([071])\|9§H%2([0,1])

< 0.

So g € H(G).
Now suppose ¢ € H(G), i.e. E(g) < co. Using Eq. (5.5)), we see that since

1
E(g)* = HgiH%?([o,l]) + HgiH%?([o,l]) +llgs — 5(9195 - 9293)”%2([0,1})7

we have that ||g1|z2(0,1)), 1195/|22(p0.1)), and |95 — 5(9195 — 9291)[172(0.)) are finite. So
it is sufficient to show that ||g3||12(j0,1)) < 00. Note that

1
gl 2o < Ilgz — 5(9195 — 92901 22(0,1))

+ 1 Hglgl —QQQ,H
2 2 HHL2(o1]) -
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By Eq. ,

9195 — 9293HL2([0,1]) < HglgéHLQ([O,l}) + HQQQML?([O,l])

< 2[lg1ll 20,1921l 220, 1))

< 00.

Therefore, HgéHLQ([OJD < Q0. [

Throughout the paper, we will make use of the above relationship, often with-

out comment.

Theorem 5.15. For every o € J% of finite rank, define

o0

ua(g) =Y {a,g®")/n!

n=0

Then uq € H(H(G)) such that (1 — D) u, = a.

This theorem is restated and proved in the general case in Theorem [5.43

5.2.2 Cylinder Function Approximations

Let P ={0 =50 < 81 < -+ < 8y < Spq1 = 1} be a partition of [0,1]. In
order to constuct i, € Hyp such that (1 — D) 1 Rii, = «, we will construct a sequence
of cylinder functions which we will show are Cauchy in L?(vr). Our candidate cylinder

functions are defined below.

Remark 5.16. Given a partition P, Fp := us o Pp defines a cylinder function, where Pp
is defined as in Definition

Our first goal will be to estimate HFPH%Q(VT) when « is of finite rank. Let Sc

be an orthonormal basis for H(g). Then

o] ™" B
1Fpl[2wn =D | D I mnFr)()f |, (5.6)

n=0  \hi,..hn€Sc

What follows is a rewriting of the above in terms of derivatives of u, at the zero path.
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Remark 5.17. 1t is not difficult to check that sums like (5.6) above are basis indepen-
dent. In the sequel, our calculations will be rewritings of such sums, and hence be basis

independent as well.
Definition 5.18. Given a partition P, let a(P) = (1 — D) (Fp).

Notation 5.19. For a function v € C*(W(G)), g € W(G), and hq, ha,...h, € H (g),
denote
(hihg - hpu)(g) = (D"u(g) ,h @ hy @ - @ hy). (5.7)
Lets first consider single derivatives of Fp. A quick calculation yields

d

(hFp)(g) = @It:on(g -th) = %hzoua(Pp(Q ~th)),

so if we set

d
hp(9) = Lpp(g)-14 7 =0 Pp(g - th),

then we have
(hPp)(g) = (Dua(Pp(9)), hp(9))- (5.8)

Notation 5.20. For the remainder of this section, upper indices will be used to denote

coordinate functions.

Let g = (g%, ¢%,¢%) and h = (h', h%,h3). Then

hp(9)
d
= S loPp(=g) - Pp(g - th)
d t
= —lo(=Ppg) - (Ppg +tPph+ (0,0, 5 Pp(g'h* — g*h'))
d t
= S o(tPph+ 5(0,0, Pp(g'h? = g*h') — (Ppg")(Pph?) + (Ppg®)(Pph')))
1
= Pph+ 5(Pplg, b = [Ppg, Pph]).
Notation 5.21. Let Rp(g,h) = %(Pp[g, h] — [Ppg, Pph]). Therefore,

hp(g) = Pph + Rp(g,h).
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Remark 5.22. If we let 6; = s;11 — s; and 8;¢7 = ¢/ (si41) — ¢7(s4) for i = 0,1,....,n — 1

and j = 1,2, 3, then a calculation reveals that

1 S — S; s —S; 2
9= L (0.0, S (0007 — s,g2nt) (=) o)) -5

Proposition gives the equivalent statement in the general case.

Remark 5.23. Note that Rp(e,h) = 0, and since Rp(g,h) is zero except in the third
component, we have [Rp(g,h), k] =0 for all k € H(g).

The above allows us to characterize the first derivatives of Fp at the zero path

in terms of «,

or in other words,

(a(P), h) = (o, Pph). (5.10)

We wish to obtain the analagous result for higher order derivatives. = We’ll do the
computation for second order derivatives, and the result for higher order derivatives will

follow by similar computations. First, a claim with a simple proof:
Claim 5.24. &|,—oRp(g - tk,h) :== Rp(k(g),h) = Rp(k,h).

For all g € W(G) and h,k € H(g),

(kFp)(9) = 1o ((Poh + Rplg - th, byu ) (Po(g - )
= ((Ppk+ Bp(g,k)(Pph + Rp(g, h)ua ) (Pp(9)
+ (Rp(k:,h ua)
= (D*ua(Pp(9)), (Ppk + Rp(g,k) ® (Pph+ Rp(g, b))
+ (Dua(Pp(9)), Rp(k, h).
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Therefore,
(khPp)(e) :== {aa(P), k © h) = (g, Ppk & Pph) + (a1, Rp(k, h)).

The general expression is best expressed using the following notation. Given
hi,ho,....,hy € H(g), let th---hk = {(hl,hj)h < ]} Also, let 0h1h2...hk = Pph ®
Pphy ® --- ® Pphy, and if z € th‘..hk with * = (hi,hj) then let 9h1h2mhk/{$} =
Pphi ® Ppho ® --- ® % R ® P/pE ® - -+ ® Pphy, where the hat denotes omission.
Then we have that

(h1-+h.Fp)(e)
=(a(P),h1 ®--- @ hy)
=, 0h.n)+ >, {0 Onyngen,/{21}) ® Rp(a1))

T1€QR, ..y,

+ Z (@, (Ony .1y, /{71, 22}) ® Rp(71) ® Rp(22)) + ...

©1,22€0Q, ..y,

Y @Oy D e B 611

Pt | g | €y
Remark 5.25. In the above, we have pushed all the Rp terms to the right. This allowed
by Remark
For example, given hq, ho, hs, hy € H(g), we have that
(h1hahshaFp)(e) = (o, Pphy ® Pphs ® Pphs ® Pph)
o, Pph3 @ Pphy @ Rp(h1, ha))
o, Pphy ® Pphy @ Rp(hi,h3))
a, Pphy @ Pphs @ Rp(hi,hy))
a, Pphy @ Pphy @ Rp(ha, h3))
(ha, ha))
(ha; ha))

a, Pphy @ Ppha ® Rp(hs, hy
o, Rp(hi,ha) @ Rp(hs, ha))

)

o Rp(h1,h3) ® Rp(ha, ha))

)

+
+
+
+
+ {(a, Pph1 ® Pph3 @ Rp(ha, hy
+
+
+
+

a Rp(h1, hy) ® Rp(ha, h3)).

)
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5.2.3 L*(vr) Estimates

The goal of this section is to show that for any partition P, the cylinder function

Fp is in L?(vy). The following proposition is proven in the general case in Proposition

of the sequel.

Proposition 5.26. Given o € T(H(g))%, and hi,hs,...h € So , Bhihy..ne € (H(g)")®"

given by Bhiny..h, = @0 Ly, g..gn, satisfies
<Ct,h1 Q- ®hk®77> = </6h1h2..hk777>7 (512)

for any n € H(g)®", and furthermore,

S e Bigyen = lnetl Bygreyon < o0 (5.13)
hi,ha,....,h€So

Section 1 of the appendix concerns the reproducing kernel for path spaces. For
calculations in this specific case, the follow proposition is sufficient. A proof can be

found in Proposition
Proposition 5.27. Fori,j =1,2,..dim(G), we have 3 q. Rt (s) hi (t) = 8;5(s A t).
Proposition 5.28. For every partition P, Y, res. ||Rp(h, k)|[* = z.

Proof. A quick calculation using Remark reveals that

5h15k‘2 5h26k12
| Bp(h, B2 = Z' |

)

where

-1 [t 1
C== 1—26)2%dt = —.
4/0( ) 12

Then

1 2 25.1.112
S |{Re(h B = Z 5 16:h16;k2 — hélk|'

h,k€Sc i=0 h,keSc
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Multiplying out the expression on the right gives
Z |6:h 0k — 5;h26;kY|? B Z |6;h1 |2 6:K%)?

h,keSc h,keSc
B L
h,k€Se 0;
B Z §;h28;k 6;h10; k2
i
h.keSc
|0:h? ][0k |
+ Z T.
h,keSc

Using Proposition [5.27, we get that the first and last terms in the above are each &;,

while the middle terms are zero. Hence,

n—1

1 1
2 2 _ § -

h,k€Sc
O
We are now able to show that our cylinder functions Fp are square integrable
for every partition P. Note that using our notation from before,

(e 9]

TTL
1Fpl[2pn =D | 2. HaPhmehe o). (5.14)
n=0  \hi,..hn€Sc

Our assumption that « is of finite rank, along with (5.11]) allow us to rewrite the expres-

sion as

1PpI2 0

,_
(V)
—

=y = Yoo K O/ {2 ai}) @1 Rp ().

k=0 " hi,..hi€Sc j=0 xl,...,x]‘Eth 7777 R

(5.15)

The important point is that now the right hand side only involves a finite number of
sums over our basis elements, each of which can be controlled. So in order to show that

HFPH%Q(VT) is finite, it suffices to pick a “typical” term from the right hand side and
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show that it is finite. The following should be enough to convince the reader that a
typical term in line (5.15)) is finite without any of the cumbersome notation the general
case would require. Consider
> e, Pphi®- - ® Pphy_y @ Rp(hp—s, hi—2) @ Rp(hp—1,hi)))>.  (5.16)
hi,...h €Sc

Recall that Pp is orthogonal projection onto the subspace Hp(g), so if we first choose

an orthonormal basis SE for Hp(g), then extend this to an orthonormal basis for Sc, we

get that the above (5.16)) is equal to

> ) e ®Ppha @ -+ ® Pphg_s @ Rp(hi—3, hi—2) ® Rp (hi—1, b)) |
h2,...hk€5(c h165¢7;>

< Y. Ha,h ® Pphy® -+ © Pphy_y ® Rp(hi—3, hi—2) ® Rp(hi_1, hi))[*.
hi,...hi €Sc

We can repeat this procedure and in this manner change all of the Pph; terms into
hi. Finally, we use Proposition [5.26|in combination with Proposition to bound the

whole term.

Z [{(r, Pphy -+ - ® Pphy_g @ Rp(hy_3, hi—2) @ Rp(hi—1, hy))?

hi,...hi €Sc
< Z (e, hy -+ @ hg—g @ Rp(hg—3, hi—2) @ Rp(hj—1, hi))|?
h1,...h, €Sc
= Z ‘<Bh1...hk_4a RP(h’k‘—E}) th—Q) & R’P(hk;_l, hk‘)>|2
hi,...hi ESc
< D Bl gyl B (himss i) |31 o) [ Rp (i1, B I
hi,...h €Sc
= Z Hﬁhl---hk—4||?H(g)*)®k*4 Z ||RP(hk—3’hk—2)||§—I(g)
hi,...hx_4E€Sc hg—3,hx—2€Sc
< | > (IRp (w1, ) i)
hg_1,h€Sc
) 1\’
= llok—al[{rr(g)yor—s (6) . (5.17)

Remark 5.29. Note that the bound in (5.17)) of the above is independent of our partition
P.
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Since Eq. (5.15]) involves only a finite number of sums like those in Eq. (5.16]),
each of which is bounded independent of partition by calculations similar to Eq. (5.17]),
we have now shown that Fp € L2(vr), and ||Fp|| 12(vp) 18 bounded independent of

partition.

5.2.4 Convergence of Fp

. . 2

In this section, we’ll show ||a — a(Pn)HJ%(H(g) — 0 as n — 0, where {P,}>2,
is a sequence of refining partitions. This will imply that Fp, is L?(vr)—Cauchy, hence
the limiting function 4, is in Hp. We first require the following proposition, which is

true for any sequence of partitions with |P| — 0.

Proposition 5.30. Given o € H(g)*,

> o, Rp(h,K))> =0 as [P| — 0.
h,k€So
Proof. For all v € H(g), there exists an & € H(g) such that (a,v) = (v, &)y (). Suppose
a(s) = (z(s),y(s),2(s)), and Rp(h1, ha)s represents the third component of Rp(h1, ha).
Then

1 —_—
(a, Rp (b, k) = (Rp (b k), &) r(g) = /0 R (h, k) (s)2/(5)ds.
Summing over our orthonormal basis we get

> Ko, Rp(h k)P = ) / Rp(h, k), (s)ds/ol Rp(h, k), (6)2 (t)dt

h,k€Sc h,keSc

—/ 2 Z(s)2(t) Y Rp(h,k)s(s)Rp(h, k)5(t)dsdt, (5.18)
[0,1] h.kESc

where the second equality is justified by Fubini’s theorem and Proposition [5.28
Define

Gp(s,t) = Y. (Rp(h,k)y(s) Rp(h 150 - (5.19)

h,k€So
It will be shown that ||Gp||r2(o,152) — 0 as [P| — 0. Note that by Eq. (5.9),

n—1

Gp(s,t) = )

h,kE€Se i,j=0

515 (0:h10:k* — 8:h%0:k")(5;h16;k% — 6;h26,k1) K73 (s,), (5.20)
10j
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Where
i 1 2(s —s;
KP] (S7t) = l(si,si+1](8)1(5j,5j+1](t)Z(l - ( )

By computations similar to those in Proposition [5.28

> (816K — 5;h26:k")(6;h10,k% — 8;126,k1) = 26;56,0,
h,keSc

where §;; is the Kronecker delta. Therefore, Eq. (5.20]) reduces to

n—1
Gp(s,t)| =D 2Kp(s,1).
=0

Hence the function Gp has support only on the set {(s,t)|s; < s,t < s;41 for some
i = 0,..,n — 1}, and since Gp is bounded independent of partition, we have that

HGPHLz([O,lP) — 0 as "P‘ — 0. AISO,
1/2
H?@ Z/||L2([0,1]2) = (/ |Z/(S)Z/(t)‘2d8dt>
[0,1]?
1 1 1/2
= ([ s [ wpa)
0 0
< [él[7(q) < oo (5.21)
In summary,

Z |<O£,Rp(h,]€)>|2: Z |(RP(h7k)7d)H(g)|2

h,keSc h,k€Sc
= / 2(s)2 (t)Gp(s,t)dsdt
[0,1]2
= (¢ ®2',Gp) 120,112
<||2' @ 2|l 12,112 1G Pl L2((o0,172) - (5.22)
The result follows from taking the limit |P| — 0. O
The above proposition forms the basis of the more general result:

Proposition 5.31. Given o € (H(g)®™)",

Z |<O[,R’P(h1,h2)®"'®R’P(h2mflahZM)>|2 —0
h1,ha,...ham €Sp

as |P| — 0.
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Proof. For a € (H(g)®™)", define

¢P(a) = Z |<Oé,R’p(h1,h2) Q- ®R'P(h2mflvh2m)>’2~
hi,ha,...hom ESc

Then ¢p is a seminorm on (H(g)®™)". Using Proposition we can see that

op(@)® < llallfygemy D IRp(h1,he) @ @ Rp(ham-1, hom)| | (gem
hi,ha,...hom ESc

1 m
< lgony (3)

or equivalently that

1\ 2
or(@) < llallungeny (5) (5.23)
Suppose a = (-, k1 ® -+ @ km) r(gyem. Then
pp(a)? = > [(Rp(h1,ha) @ - @ Rp(ham—1, hom), k1 @ -+ ® k) pr(gyem |

hi,h2,...ham€Sc

< Y |Bp(hahe) k)l % - < [(Bp(ham—t, ham), k)l
hi,ha,...hom €Sc

= (Il G202y ) % -+ (1Kl i) [1GPl 220,12 )

= 1GP[I o002y [T 1%l Frq) »
=1

where Gp is as given in Eq. . The proof of Proposition tells us that
I|GPl2(0,1)2) — 0 as |[P| — 0. Therefore, ¢p(a) — 0 as [P| — 0. Furthermore,
the same is true for all finite linear combinations of such indecomposable a. Therefore,
¢p(a) — 0 as |P| — 0 for all « of finite rank.

For a, § € (H(g)*™)",

op(a)

IN

op(a—B) + ép(B)

<(s)

m

2 e = Bl ¢z (gyemy + dp(B)-

=
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Let € > 0 and choose 3 € (H(g)®™)" finite rank such that ||a — Bll(r(gemy* < e Then

lim ¢ ) <
IPHO

NG R ——r

lim

[Pl— [P
1

(6) ot = Bl gromy

Our choice of € was arbitrary. Therefore, ¢pp(a) — 0 as |P| — 0. O

Proposition 5.32.

Z (o, Pphy @ + -+ @ Pphy, @ Rp(his1, i) ®@ -+ @ Rp(hperp—1, hiin))|* — 0
hi,....;hg4n€Sc

as |P| — 0, for any integer k and even integer n > 0.

Proof. By choosing a basis for Hp(g), then extending it to a basis Sc for H(g), we get

\71>i|m0 Z [{a, Pphy @ + -+ @ Pphy, @ Rp (i1, i) @ -+ @ Rp(Bgetn—1, higin))|?

hi,...hk1n€Sc
= \%ilrﬂo > Hah @ @b ® Rp(hgi, hiya) ® -+ @ Rp(Akn—1, b)) |
= lim Z ’<ﬁh1...hk7 Rp(hk+1, hk+2) X ® RP(hk+n717 hk+n)>‘27
hl,--~7hk+n€S(C

Where fy,,..pn, comes from Proposition Let

J'P = Z |<ﬁh1...hka RP(hk+17 hk+2) Q- & R’P(thrnfla hk+n)>’2

hi,..;hi4n€Sc

Notice that by Eq. (5.13) and Proposition

el < S B Paggyyen [ Bp (it hicso) gy - [1BP (i i) P
hl,...,hk+n65¢;

2 1\"
< lomsl [ (gyyor ) <°
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Therefore,
lim Jp
[P|—0
= Z \7l>i|mo Z [(Bha..hges Bp (M1, hg2) ® + -+ @ Rp(Bgein—1, hign))|?
hiyehk€Sc! ' Rpgtsehin€Se
=0,
by Proposition [5.31 ]

For the remainder of this section, we restrict ourselves to refining partitions.
That is, a sequence of partitions {P,}o>; such that P, C P,y for all n > 0. The
following two results are shown in the general case in Lemma and Proposition [5.88

o

Lemma 5.33. Let {P,}°, be a sequence of refining partitions. Then U2 Hp, (g) is
dense in H(g).

Remark 5.34. Since Pp, is orthogonal projection onto the subspace Hp, (g) and Hp, (g) C
Hp, . (g), the above lemma implies that for h € H(g),

Proposition 5.35. Let {P,}2° ;| be a sequence of refining partitions. Then for hy, ..., hy €
S(Cv

k
11 @+ @ hy, = Pp,hn @ -+ ® Pp, hil [y en <KD |y — PpohyllGg:  (5:24)
j=1

In addition, for o € T(H(g))7,
S Hah @ @he— P @@ Pp )P < Kl Po ) (5:25)
hi,....,hi €ESc

We are now set to prove

Proposition 5.36. Let {P,}°; be a sequence of refining partitions and o € JL(H (g))
of finite rank. Then

lim fla - Oé(’Pn)H?]%(H(g)) =0 .
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Proof. Again, the fact that « is of finite degree is essential to this proposition. Assume
a has rank N. Let S¢ be a basis for H(g) adapted to our sequence of partitions in
the following sense.  First construct an orthonormal basis for Hp,(g), then extend
inductively, i.e. given an orthonormal basis for Hp,(g), extend to an orthonormal basis
for Hp, ,(g) for all i > 0. Lemma guarantees we can construct a basis S¢ for H(g)

in this manner. Using this basis, we calculate

[l = a(Pa)l 0 (sre)

Tk
= Y lehe- k) —(aP) e ekl

oo
k=0 hi,ho,....,h ESc
2
iTk (a,h ® -+ @ hg)—
k=0 " hi,..,htESc Z]L:Z(J) Zzl,...,xjeﬂhl lllll R <a7 (9h17~--,hk/{x17 ) x]}) ®g=1 an ($1)>
Now for any 1 < k < N,
2
Z (o, h ® -+ @ hy)—
k )
By, €Sc Z]L:zcj) Yriseiny o O On g /o wi}) @1y R, (20))
{a,h1 @ -+ ® hg) — (@, Pp,h1 @ -+ @ Pp, hy)|* +
< Gy Z ] j 2
hi,...,hi €Sc Z]Zl le, ,x]Eth """ hy, |<OZ, (ehly-v-,hk/{x17 ) x]}) ®i=1 an ($1)>|
(5.26)

for a constant Cj, which only depends on k. Calculations like Eq. (5.17) show that
is bounded independent of partition. Since every term in involving Rp, goes to

zero as n — oo by Proposition [5.32] we get

nh—{g}i Z <Oz,h1®"'®hk>—

k .
h—1 h1, o hnESE ZJLE% 2 sen, o (O Oni g {2} 1) R, (20)

,,,,,

N
<CIN)Y dim Y [eh @ @) — (@, P, @@ Pphi)[, (5.27)
k—ln Oohl,...,thSC

where C(N) = Zivzl Cp < oo. Eq. 1} of Proposition @ allows us to use the

Dominated Convergence Theorem with dominating function 4|(a, b1 ® - - - ® hy,)|?. That
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is

Jim > @ @hy) = (o, Pp,hy @+ & Pp, hy)|”

hi,...,hx €Sc
= Y lim [l ® - ®h) — (0Pl @@ Pp, )
hi,...,hi €ESC
k
<k Y dim | Y [h— Pphyll
h1,...hi€Sc J=1

= 0’
where we have used Eq. ([5.24]) in conjunction with Remark
Therefore,

. 2 .
lim flac = a(Po)l[J0 1 (g) = 0

Definition 5.37. Define @, € Hr as i, = L2(vr) — lim, o Fp, .

It remains to be seen that Riu, = us. This, however, is a short and straight-

forward calculation given results already obtained in the general case. For g € H (G),

Ria(g) = lim RFp, (g)

n—0

= lim Fp,(g)
n—0

= lim uy(7p, 9)
n—0

= ua(9)-
5.3 Construction of u,

We now return to the case where G is a general simply connected step r nilpo-
tent complex Lie group. In choosing a basis {X;}%_, for g, we are able to realize G as C?

under exponential coordinates with a multiplication law given by the Baker-Campbell-
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Hausdorff formula. Furthermore, since e = A as vectors in C%,

A-B=¢et. B

_ J(4,B)

= T(A, B), (5.28)
where I'(A, B) is given by the BCH formula. That is if we define
Ix = {(mm) € Z%*m +n > O} ,

where m +n > 0 means that m; +n; > 0 for all i = 1, ..., k, and set m! = mq!---my!

and |m| =mq + -+ + my, then

[(A,B)=A+B

)k+1

. (_1 1 m n m n

—_— — ad *ady ---adtad W B. 5.29

+;k(k+1)(§;ﬂ minl([n] + 1) %A @48 T 0% 44p (5:29)
= m,n &

Though ady' B = 0 if ny > 0, it will be notationally convenient to include the term.
In our case, Eq. (5.29)) only contains a finite number of terms, since if |m| + |n| > r,
ad*adyf - ad’*ady B = 0 for any A, B € g. Also notice that (m,n) € Zj, implies that
|m| + |n| > k. Therefore, a more efficient writing of Eq. (5.29) for our purposes is

I(A,B)=A+B

— 1

TG o D) A ads - ad adj (5:30)
k=1 (m,n)GIk
[m|+|n|<r

The gist of Eq. (5.28)) is that we can consider g and G interchangably as the vector
space C? with two operations, [ , |, the Lie bracket which comes from g, and group

multiplication -, which is a linear combination and composition of [ , ] operations.

Remark 5.38. Using exponential coordinates, the identity and inverses are given by 0

and —g respectively, i.e.
0-9g=9-0=yg

and

for all g € G.
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The pointwise application of the above gives us the same relations on the
path space, namely W(g) and W(G) are considered interchangeably as the vector space
W (C?) with operations [ , | and -.

Proposition 5.39. Suppose g € W(C?). Then g € H(G) iff g € H(g).

Proof. First observe two important facts. For all s € [0, 1], we have

lg(s)llg = H NG

g
1
< [ g lgar

=gl 21(0,1))
< 19"l 22(0,1))
= 9/l 1(g)- (5.31)

We also calculate the Maurer-Cartan form,

Lys:8' (5) = le=o(9(s)) - gls +2)

= & |emol(g(s), 905 + €)

r—1

=g'(s)+Y_A(g(s).9 (), (5.32)

i=1
where
—1)k+1 (—1)lml
k+1) min!(|n| + 1)
k

(m,n)€eZ,

adg(s)g/(s).

Im|+|n|=i
Notice that A%(g(s), ¢’ (s)) is a constant times adg(s) (¢'(s)). Also notice that since
ladaBllg < ClIAllgl|Bllg for some constant C, [|Ai(g (s),g' ()llg < Cillg()Illg/ ()
for some constant C;.

First suppose g € H(g). Then |[|g||r(q) = ||ngL2([071]) < 0o. Considering g as
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an element of W(G), we calculate
! 2
- / Lg1(sye0 (5) | 2ds
= [C1as +ZA’ (5))|12ds

< r? (/0 Hg’(s)”ids—i—Z/o HA“g(s),g’(s)Hids)
i—1
5 r—1 1 A )
< r? (HQIHL%[OJ])JFZC?/ Hg(s)\l?Hg’(S)Hgd‘g)
<o (191 + S 25 ) 539

= poly(||gl r(a)) (5.34)

< 00,

where in line (5.33)) we have used Eq. (5.31]).

Now suppose g € H(G). Considering g € W(g), we write g = (g1, 92, -, 9r)
where g; € W(V;). The fact that g € H(G), tells us that E(g) < oo, or in other words

S0y 10 ), o <

2
< oo forall i =1,...,r. We wish to show that

L, "(4)).

(L (), L2(0.1) |

foralli=1,..,r, ||9§||L2([0 ) < oo. First note that A'(g(s),9'(s)) € @ W(V)), ie
it is identically zero in the first ¢ coordinates. This being the case, then ([5.32)) tells us

that

In particular,

“9/1”22([071]) = ” (Lg—l(')*g/ ())1 H%Q([O,l]) < 0.

Now for the second coordinate, we have

(Lg-1(5)+9" (5)), = () + A (g(5), ¢/ (s))2.
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Therefore,
1
HgéHi?([O,l]) = 0 H (Lg—l(s)*g/ (S))2—I—Al(g(s),g/(s))QHﬁdS
1
§4<H 19 (), H%Q([O,l})_l_ClZ/ |’91(5)||§H9/1(3)H§d5>
4(” (N, 720y + CF H91HL2 o1])>

where we have used Eq. (5.31]) restricted to the first coordinate. In this manner, we

can inductively get HggHLg([O gy <ooforalli=1,..r. O

We now have an expression for the product on H(G). That is, using the above

proposition and Eq. (5.30), we have for all g,h € H(G),

g-h=T(g,h)
k+1 1
e — my uzs . mi s
+ Z E( k -l- Z m!n!(|n| + 1)adg ady, adgtady ' h, (5.35)
( 7n)€Ik
|m|+|n|<r

where (g - h) (s) = g(s) - h(s) and (adyh)(s) = adys h(s) for all s € [0,1]. The following
characterizations of Eq. (5.35)) will be useful in the sequel.

Remark 5.40. Notice that

r—1 r—1
g-h=g+h+> Cadh+> Qg h), (5.36)
=0 =2

for some constants C1, ..., Cr_1 and functions @Q;(g, h) which satisfy Q;(g, zh) = 2'Q(g, h)
for = € C, and for fixed g, ||Qi(g, 1)[ls < Cu(g)|[Al,
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Definition 5.41. For h € H(g) and g € H(G), we'll denote

h(g) = %It:o <g : eth)

d
= £|t=0 (g-th)

r—1 r—1
d
= Zli-o (g +th+t> Cadh+> HQ(g, h))
1=0 1=2
r—1

=h+Y_ Ciadih,
=0

where we are using the notation as in Remark

Remark 5.42. Observe that
~ r—1
g-h=g+h(g)+Y_ Qigh).
1=2

Given « € J¥, we would like to construct a holomorphic function u, on H(G)
such that (1 — D);lua = «a. Recall from Chapter 4 that we require that for every
g € H(G), the map h € H(g) — ua(g-e") is Frechét differentiable at h = 0 and
that this Frechét derivative is complex linear and continuous in H(g)* as a function of
g. The following theorem is motivated by results from [3], specifically Remark 5.6 and
Proposition 6.2.

Theorem 5.43. Given o € JX(H(g)) of rank N, for every g € H(G) define

N

ua(g) =) (o, g®")/nl

n=0
In defining u,, we are using the identification between H(G) and H(g) exhibited in
Proposition . Then uq is a holomorphic function on H(G) satisfying (1— D)  ug =

.

Proof. For 0 <n < N, define f,, : H(G) — C by

falg) = %<a,9®”>
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Since finite sums of holomorphic functions are holomorphic, showing that f,, is holomor-
phic is sufficient to prove that u, is holomorphic.

For h € H(g) and g € H(G), define

n—1
1 -
®k ®n—k—1
(dfn)gh = —l0, Y g™ @ h(g) @9 ),
k=0
where ﬁ(g) is given by Definition That is
r—1
h(g) = h+ Z C’ladlgh
1=0

Notice that B(g) is complex linear in h and continuous in g.
To see that (dfy,) o is the Frechét derivative of f, at g € H (G), we first observe
that, using the same notation as Remark [5.40) m

(g-m*" = (9+h(g +ZQ197

n—1

=g+ g*F @ h(g) @ g®"* ! + R (g, h),
k=0

where R"(g,h) is a sum of tensors each containing at least one Q;(g, h), for some [ > 2.

Therefore, [|[R" (g, h)||gen < Cth||§{(g) for an appropriate constant Cy. Therefore
‘fn(g ’ h) - fn(g) - (dfn)g h|

lim
h=0 |17]|£2(g)
oo Mollzgnyenlilg - Mo — g% — g 6% © h(g) ® g*" )|
S 1m

h=o |7 #(g)
— lim Ha|’(H(g)*)®n||Rn(g,h)HH(g)®

h=0 || (g)

2

< lim o lgrr gy Collhlzr e

h—0
=0.

This proves that f,, is holomorphic, and therefore so is u,.

To see that (1 — D) 'u, = «, observe that for h € H(g),

€

to(e™h) = (th) = Zf;< ey

n=0
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tr_1h . et1h)

(o, ET)

Then
k times
hh - hu (e)—i| i| U (€ - ¢
a\E) = dt, t1=0 diy t,=0Uq
d d
R [ (tk+tk71+'“+t1)h
aty =0 gy lnoal® )
_ d d 0 (tk'f‘"'—l-tl)”

Polarization then gives the result for symmetric tensors. The fact that o € J% and the

Burkhoff-Witt theorem gives that for hy, ho, ..., hy € H(g),

leiLQ...iLkua(g) = <Oé, hi®h® - ® hk>

5.4 Derivatives of Fp

Our goal in this section is to characterize the derivatives of Fp in terms of our

given a. Notice that since Fp = u, o Pp, given h € H (g) and g € W(Q),

(hEp)(9) = T ioFp(g - )

= L limoualPr(g - ™).

Setting
hp(g) = Lpp(g)_l*%h:opp(g ce'™)
= Lo~ Pp(g) - Prlg - ™)

then

(hFp)(g) = (Dua(Pp(g)), hp(9)).

and in particular
(hFp)(e) = (o, hp(e))
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since Pp(e) = e.

In our case, the identification of W(G) and W(g) via the exponential map
greatly simplifies the calculation. Using the fact that as functions on W(C?), Pp = Pp,

we have that

—Pp(g) - Pp(g- ™))

Pp(g) - Pp(g - th)).

e () = ol

d

= a0
Pp is a linear function from H (g) to H (g). We now wish to work out hp(g) in more
detail. We first perform the calculations with Pp replaced by P : H(g) — H(g) a

general bounded linear function. In particular, we are interested in the quantity

Climo(~P(9))- Plg - 1h),

since replacing P with Pp gives us our desired hp(g).

Notice that by calculations similar to those in Remark we have that

r—1
g-th=g+t> Cadh+O(t?), (5.37)
=0
for constants C;. Therefore,
r—1
P(g-th) = P(g)+t Y _CiP(ad,h) + O(t?). (5.38)
=0

Proposition 5.44. For any bounded linear function P : H (g) — H (g), there exist
constants Cj ,, independent of P, for 0 <1 <m <, such that

r—1 m

d

ﬁftzo(—P(g)) (g-th) = E E Cmadl P(ad, ™),
m=0 1=0

with the property that Coo =1 and for allm >1, Y 2 Cl, =0

Proof. For notational convenience, we’ll set

r—1
h) =Y CP(ad,h)
=0
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so that Eq. (5.38)) becomes
P(g-th) = P(g) +tA(g,h) + O(t?).

In addition, let

_1\k+1
Nk = ( 1) )
k(k+1)
and for m,n € Zi,
1
T mnl(In) + 1)

With this notation, the simplified BCH formula, Eq. (5.30]), becomes

r—1
T(A,B)=A+B+> Ny Y  Mpnadyi*ady - ady ad} B.
k=1 (m,n)ey,
[m+|n|<r

Also, in the following computation we will often throw out terms of order greater than ¢
from one equality to the next with the knowledge that we will be evaluating the derivative

at zero, and hence they will not contribute. Using the BCH formula and the notation
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defined before,

L li=o(~P(9))- Plg - th)

= Slico(~P(9)) - (Plg) + tA(g, ) + O(F)

d
= 7 ‘tZOtA(ga h)

‘t OZNk Z anad (9)" ad p(g)ad?(g)+t/\(g7h) (P(g) +tA(g,h))

(m,n)eZy
[m|+[n|<r

= A(gah)

r—1
d un u m m
+ =0 Ne D Mmgad™adii o ad”hgadio o m P9)
k=1 (m,n)eZy,
|+ | <r

‘t Otsz D Munad”padly) ingm 04 gy 05 gy iaggmA (9:h)

(m,n)€ZLy
\m\+|n|<r
A(g, |t OtZNk D Mynad”hadp) - adp adyi  P(g)
k=1 (m,n)eTy,
ml+{n|<r
ni=1
\t otZNk > My nad™ (0)@dB g - ad" b ad b A (g, h)
(m,n)EL
|m|+|n|<r
ZNk > My pad” ") Ay - ad b ad i A (g, h)
(m,n)€Zy,
[m|+|n|<r
ni=1

+ZNk > Mupad”}ad, - ad”h adp A9, h)
k=1 (m,n)€Ly
[m|+|n|<r



r—1
= Ag.h) + Z N Z Mo nadZp g adply, - ad”p g adp,
k=1 (m,n)eZy,
[m|+|n|<r
n1#1

+ZNk S (D), padi A (g,h)

(m,n)€Zy
[m|+[n|<r
n1#1

+Z Z:Nk Yo ()M, | adh Al R)

q=1 (m,n)€ZLy
n1#1
[m|+[n|=q
Setting
ZNk > (D" M |
(m,n)eZy
n1#1
Im|+[nl=q
we get
d

%\tzo(—P(g)) - P(g-th)

r—1
)+ Kead} ) (A(g,h)
q=1

r—1 r—1 r—1
=> CP(adyh) +) Kqad} (Z CZP(ad;h)>
=0 q=1 1=0

r—1 r—1r—1
=Y CiP(adgh) + Y Y K,Cad},, Pladyh)
=0 g=11=0
r—1 r—1
=Y CGiP(adgh) + Y K Ciad, ,\ Pladgh)
= g+l=1
>0
r—1 m
= > > Cimadp,Plad; ™h).

m=0 [=0
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Now to see the relation among the constants, note that we have made no as-
sumptions as to the nature of our linear function P. In particular, we could set P to be

the indentity function and we would get

d

h=—|i—o(—¢q)(g-th
gl=0(=9) - (g - th)
r—1 m

=Y Cimadyad;™h

m=0 [=0
r—1 m
= Cooh + Z (Z Cl,m) ad;nh.
m=1 \[=0

We also have made no additional assumptions on our Lie algebra, so if there is a step
r stratified nilpotent Lie algebra in which there exists a g and h such that {adgbh}rm_:lo
are linearly independent, then we necessarily have that Cypo =1 and ;" Cj, = 0 for
m > 0.

Let V be a finite dimensional vector space, and consider the truncated tensor
algebra T(") = @®r_, V& Forv,w € T, the product [v,w] = v ®w —w @ v, along with
the convention that we elminate products of length greater than r, defines a Lie bracket

on T . Tt then follows that for any v,w € V with v,w # 0, ad])w € yem+l) and

r—1

hence the set {adj'w}, —, are linearly independent. ]

Remark 5.45. Since for m > 0, " Ci,, = 0 in the above Proposition, we can rewrite

r—1 m
d -m
Jli=o(=P(9)) - Pg-th) =} | > Cimadp, Pladg " h)
m=0 [=0
r—1 m—1 ~
~ Cum (adl iy Pladly ™h) — adiil Plads ™ 1))
m=0 [=0

where Cjn = 35— Cjim.

Proof. Let m > 0. Then for sequences {a;}!_, and {b;}}_,, if we set A_; = 0 and

!
A= E g,
k=0
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for 0 < I < m, then

> ab =) (A —A_1)b
1=0 1=0
m m—1
= ZAlbl - Z Ay
1=0 1=0
m—1
= > Ai(br = biy1) + Ambp,.
1=0

Our result follows from the above by setting a; = C,, and b = ad!

) P(g)P(adlg’mh). It
then follows that A; = Cj,,. Notice that since ZZZO Cim =0,

Am = Zal = ch,m =0
1=0 1=0
O
Substituting Pp for P in the previous calculation gives
r—1 m—1 ~
hp(g) = Lm (adﬁ,,mg)Pp(adlg*mh) - adl;)l(g)Pp(adlg*m*th (5.39)
m=0 1=0
r—1 m—1 ~
= Pph + 1 m (adlpp(g)Pp(adZ_mh) - adgj(g)Pp(adﬁ;m—lh)) . (5.40)
m=1 [=0

Definition 5.46. For 1 <k < j <r and hy,...,h; € H(g), define Rfk : H(g)? — H(g)
by
RP (b, hy) = adpynyy - - adpp ) (Pp(ady, - - ady,_,h;))

— adpy(ny) * - adpp () (Pp(adny,, - adhj—lhj))'
Observe that Rfk is a multilinear function.

Using this definition, we can then write

7—1 times

A —
1<k<j<r

where the constants C’j,k are given by Remark |5.45
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Ezxample 5.47. Suppose that g is a step 3 stratified Lie algebra. Then

g-h=g+ht 309+ 25 (19, [o,h]] — [, 1]

and therefore
2

t t t
Calculating hp(g) yields

hp(6) = LlmoPr(~g) - Pp(g - th)

= o(~Prg) - (Prg+ tPph+ & Polg. bl + - Pelg.[g.]] — L= Polh.[g.])
tPph+ LPplg,h] + & Pplg, g, h]] — &5 Pplh, [g, 1))
—3[Ppg, Ppg + tPph + L Pplg, h)] + {5[Ppyg, [Ppg, Prg + tPph]|
+5(Ppg + tPph, [Ppg, Ppg + tPph]]

_i|
a0

1 1 1
= Pph+ iPp[g, h] + EPP[% l9, h]] — §[P7>g, Pph]

1 1 1
= ;1Prg. Pplg, hl] + 5 [Ppg. [Ppg, Pph]] + 5 [Ppyg. [Ppg, Pph]]

= Pph + % (PP[.% h] - [Ppg,Pph]) + % (Pp[g, [gahH - [Ppg,Pp[g,h]])

_ é ([Ppg, Pplg, h]] — [Ppg, [Ppg, Pph]))

1 1 1
= Pph + §R§,1(97 h) + 5351(9,97 h) — 6352(979, h).

Notation 5.48. For notational convenience, we will continue using e to denote the identity
path in W(G), while 0 will be used to denote the identity path in W(g).
Remark 5.49. Notice that if any one of hy, ..., h; is 0, then Rfk(hl, . hj)=0.

Recall that our goal is to analyze derivatives of Fp at the identity path. Then
Remark imples that

(hFp)(e) = (o, hp(e))
= (o, Pph+ > CjuR(e,.oe,h)

1<k<j<r

= (o, Pph). (5.42)

Now we consider the second order case.
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Notation 5.50. Suppose R is a function defined on H(g)’. For k € H(g), denote

=0 d
(k( )R>(glv 7gj> = %’t:OR(glv ey 9i—1,9i ¢ tk7gi+17 7g])

Note that if R is multilinear, then

i d -
(EDR) (g1, ..., 95) = %’tZOR(gla s Gim1,Gi + Z Cradl, b+ O(t*), git1, ..., ;)

=0
r—1
= Z CZR(gla -y Gi—1, ad‘lqz-h7 Git+15 -5 g]) (543)
=0

The notation above allows us to write

d d ~
Jli=ohp(g - th) = li—oPph+ > CinRjy(g th...g -k, h)

1<k<j<r

J—1

1<k<j<ri=1

Since Rfk is multilinear, Eq. 1) gives

Therefore

(R0 Ep)(9) = & limo(Fip(g - th)ua) (Pp(g - 1F))
= (p(9)e (9)ue) (Pr(9)) + (i lmohp(g - 1)) (P (g))

= (kp(9)hp(g9)ua)(Pp(g))

7j—1
+ (( > Zéj,kfﬁ(i)Rfk(g’---,g, h)) ua) (Pr(g))
1<k<j<r i=1
= (D*ua(Pp(9))), kp(g) ® hp(g))
j—1
+ Y S Ciu(Dua(Pp(9), KR, (g, o g, ).

1<k<j<r i=1
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In particular,

(EhFp)(e) = (D*ua(e), Pk @ Pph) + Ca1(Dua(e), RS, (k, h))
= (a, Ppk ® Pph + 02,1R271(k', h))

For higher order derivatives, it is not difficult to see that the result of evaluating deriva-
tives of Fp at the identity yields « acting on a sum of tensor products of terms like Pph
and Rfk,with arguents possibly nested brackets. This is summarized in the following

theorem.

Theorem 5.51. Let P a partition of [0,1], and Fp defined as in Remark . Then for
any hi, ha, ..., hy € H(g),

(Pihe -+ hFp) (€) = (@(P), i @ hy @ -+ & hy)
= (a, Pphy ® Pphy ® -+ ® Pphy, + R, (1, ..., hi)),

where R € T(H(g)) is a sum of tensor products determined by iteration of the product
rule and differentiation as in Notation[5.50,

The above theorem is really a summary of the notation that we have built up
over the past section. The truth of Theorem [5.51] can best be seen using examples. The

following continuation of Example [5.47] should provide insight into the general case.

Ezxample 5.52. Again, let g be a step 3 stratified Lie algebra. Recall from Example
that

1 1 1
hp(g) = Pph+ 5 R31(9,h) + 75 RE1(9:9.h) — gREQ(Q,% h).

Also note that since

L 19, g K] + O(#),

/
th=g+th+ ~[g. k
g g+ +2[g, ]+12

the following compuations are justified:

kU 21(.9’ h) = R§1(k»h)+R2 1([g, k], h)
s )R3 1(9,9,h) = R?f,l(k: g,h)

kP RY\(9,9,h) = R} (g, k, 1)

kY RYo(g,9,h) = Ryo(k, g, h)
KPR, (9,9,h) = REo(g, k. h)
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Now computing the first derivative, we see that

(hFp)(g) = (o, hp(9))

1 1 1
= <OZ,P7Dh + §R§,1(ga h) + ERQI(gag’ h) - 6R§2(g’ga h)>a
and so

= 1 1 1
(th)(@) = <a7 Pph + iRzl(ﬁa h) + ERT;J (Qa €, h) - ERQQ(Q7 €, h))

— (o, Pph).
For the second derivatives,
(khFp)(g) = (D*ua(Pp(9))), kp(9) ® hp(9))
+ > i K{Dua(Pp(9))), K RY, (g, ..., g, 1))

1<k<j<3 i=1
= (o, kpl9) © hp(9)) + <a FVBE, (g, ) + 750 KV RE (9,9, 1)
+ 250 AR (g,0,1) — & (o, KO REa(9,9, ) — 40 K B (g, 0,)
= (o, kp(g) © () + §<a7 RE\ (k. h) + B ([g. K], )
+ oyt RE1 (b 0.h) + R4 (9., 1)) — < (s Bk, 0,h) + B (g, b, )

Therefore

(khFp)(e) = (o, Ppk ® Pph) + o (0, RE, (k. ).

For the third derivatives, we get the following expression (the calculation is carried out

in section 3 of the appendix).

(IkhFp)(e) = (a, Ppl ® Ppk ® Pph)
+ (o, Ppk @ %Rgfl(z, h)) + (a, %Rgfl(z, k) ® Pph)
¥ (o, Pl @ LB (h, ) + (o, 3 RS (11 K], 1)
+ (a, %Rz)jl(k, 1,h)) + (a, 1—121%2;1(5, k,h))

1 1
= (o, g R32(1 k. b)) — (@, g R o (k.1 b)),
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5.5 Increments and Multilinear Functions on H(g)

The terms Rfk as defined in Definition are multilinear functions on H(g).
While the structure of our remainder terms can get quite complicated, the fact that they

are multilinear allows us to estimate sums over an orthonormal basis.

Notation 5.53. Given a partition P = {0 = s9 < 51 < ... < 85, < Sp41 = 1}, we'll let ;
denote the increment function for ¢ = 0,...,n — 1. That is, if V is a vector space, and

T :[0,1] — V is a path, then
6T :=T(siy1) — T (i) -
In the case that 7" is the identity function on [0, 1], we omit the 7" in the notation, i.e.
0i = Si41 — Si-

Remark 5.54. The notation above will be used often in the following contexts. If
h € H(g), then
5lh = h(Si+1) —h (Sz) .

If hy,...,hy € H(g), then (hy, ..., h;) € H(g)¥, and
Oi(h1y s hi) i= (h1 (8i41) 5 s P (8i41)) — (R1 (84) 5 oy Bk (4))-

Finally, if A1, ..., hy, € H(g) and T is a multilinear function on g*, then

(SiT(hl, ceey hk) = T(hl (82‘4_1) g ooy hk <8i+1)) — T(hl (81) g ooy hk (Sz))

Notation 5.55. For a given partition P = {0 = sp < $1 < ... < 8 < Sp+1 = 1}, let

t— S;
ti(t) = 1(5i=5i+1](t) < 5 ) .

In the sequel, we will often omit the ¢ in the notation, that is ¢;(t) = ¢;.

Remark 5.56. Notice that
d 1
%ti(t) = 1(Si,si+1](t)57'



With this notation, for h € H(g), we have

n—1
=0

Proposition 5.57. For any g,h € H (g) and any partition P,

n—1

Pplg, h] — [Ppg, Pph] = 2[519751'71](% —17),

=0
or in other words,

n—1
Pp (adyh) — adppg (Pph) =Y ads,q (;h) (ti — 17).
=0

Proof. 1t suffices to show the result on an individual partition increment. Consider the
interval (s;, si+1]. Then on (s;, si+1],

Pplg,h] — [Ppg, Pph (s4),

si)» h(si)] + 0ilg, hlti — [g (si) + Gigti, h (si) + 0ihts]
(si) , h(si)] + dilg, hlti — [g (si) , h(s:)]
51'9, h (Si)]ti — [g (SZ) ,5ih]ti — [52‘9, (5Zh]t12

g h
g h

=
=
=

= (8ilg. h] = [6ig. h (si)] — [g (ss) , 6:h]) ti — [ig, 6:h]t?
= [6ig,6;h)(t; — 7).

In particular, Proposition lets us rewrite our remainder terms.

Rfk(hla ceey hj) = adpp(hl) ce adpp(hk_l)Pp(adhk ce adhjilh])

—adpy(ny) " adppy(n,) Ppladp,,, -+~ adp;_ hj)

n—1
= Z adpp(hl) s adpp(hkil)adgihk (5i(a’dhk+1 tee adhj_lhj)) (ti — t%),
=0

or in bracket notation

n—1

i=0

81
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As we saw in the previous section, the more general remainder term is of the
form

RY,(B1, B, ... Bj)(h1, ..., hy), (5.45)

where B; are multilinear functions coming from nested brackets. It is to be understood
in writing 1} that there exist pi,...,p; > 0 such that Zgzlpi =pand B; : H(g)" —
H(g), in which case

Rﬁk(Blﬂ B27 seey B])(hfl, ceey hp)

= R (Bi(ha, oo by, )y Ba(hpy 415 oo Popy s ) s ooy Bi(Bp—p 15 -y hp)). (5.46)

We will see that the structure and domain of the B; terms are not important for our
calculations. Therefore Eq. (5.45) is useful shorthand. We will often further shorten

the expression in the following manner:
RF,(B1, By, ..., Bj)(h) := R} }(B1, By, ..., Bj)(ha, ..., hy). (5.47)

The meaning of h should be clear from context.

From Eq. (5.44)),

RP(By, ..., Bj)(h, ... hy)

= [PpBu, [, [PpBi1, [6: B, 6 Biy1, [y [Bj—1,Byl] - (i, oo Bp) (8 — £7).

We will see that a futher rewriting of the above is useful. First some more notation.

Notation 5.58. Let S(C) denote a basis for H(C), and X¢ denote a basis for the

complex inner product space (g,( , )g)-
Remark 5.59. If S(C) = {u;}:2,, and X¢ = {Aj}?zl, then {uiAj}fjiol’j:d forms a basis
for (H(g)v( ) )H(g))

Notation 5.60. For integers k > 1 > 0, let Qﬁc denote the set of subsets of size [ of the
integers 1,2, ..., k. That is

Q= {w e 212 (w) = 1.
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Notation 5.61. Suppose uy, ...,u; € H(C) and w € Q. Then

57 (u H 0itly, H Up, (8:)-

JEW j¢w

Similarly, if hi, ..., hx € H(g), then

08 (ha, ..o hie) = (ha, ooy hy)

/ﬁj{ 5z’hj ifjew

hj(s;) otherwise .

where

Ezample 5.62. Suppose w = {1,3,4} € Q2. Then

67 (w1 - us) = (diun) (Syus) (d5ua) (u2 (i) (us (si))

and

(S;‘J(hl, ceny h5) = (5ih1, h2 (SZ) ,(Sihg, 5Z‘h4, h5 (81))
Observe that if T is a bilinear function on g2. Then

0;T(hi,ha) =T
T

—

hi(sit1), ha(sit1)) — T'(ha(sq), ha(si))

hi(si+1), ha(si)) — T(ha(si), ha(si) + T(ha(si), ha(sit1))
hi(si), ha(si)) + T(h1(sit1), ha(siv1)) — T(ha(siv1), ha(si))
hi(si), ha(siy1)) +T(h1( i)sha(si))
)
) —

I
ﬂii
/';: —~

1(8i41), ha(si)) = T(ha(si), ha(si)) + T (h1(si), ha(si+1))
hi(si), ha(si)) +T(h1(81+1 hi(si), ha(si+1) — ha(si))

— T'(ha(
dih1,ha(si)) + T(hi (si), 0iha) + T(dih1, 6ih2)

I
/'j —

I
[M]

(67 (ha, he)).
l

1 wen

o=

This suggests the following Proposition.

Proposition 5.63 (Product Rule). Suppose T be a multilinear function on g€. Then

8;T(ha, ... hy ZZ (s i)

=1 wEQl



84

Proof. For k = 1, the result is trivial. For k = 2, the result follows by the above
calculation. Now suppose it is true for all multilinear functions on g*. Then if T is a

multilinear function on gF*!

5T (Rt ooy his1)
=T(h1 (8i1) -+, g1 (si41)) = T(Ra (i) , -, P (83))

=T(h1 (si+1) s -, b (Si1) s 1 (Sig1)) = T(Ra (Sig1) 5 oo P (Sig1) e (4))
—T(h1(si) ;- b (8i) s hiegr (sig1)) + T(ha (si) o i (8i) 5 hiy (si))
(h1 (Si+1) oo e (Si41) 5 Pgqr (83)) — T(ha (8i) 5 o hie (80) Py (s3))

(0i(hay ooy hi)y Oihir1) + T (8i(hay ooy I ) hi41(s:))

+
N 5 S

=70 (89 (hy,....ht)) , Sihiy) +TZ > (67 (s ) s hrga(si)

=1 weQ =1 wenl

=~

T((57 (R, oo b)) 5 Sih 1) +ZZ (65 (P, oo hk)) s By (s2))

I
=

I=1 weQl =1 wet
k+1 k+1
= S TG (b)) Y S T (s )
=1 {we |, [k+1cw} 1=1 {weQl | [k+1¢w)
k+1
=3 > TGP (has s hir)-
=1 “’EQL-H

O]

Remark 5.64. Letting T be the identity map on g, the above Proposition tells us that

Si(hn ooos g Z > 62, by

=1 weQl,

Furthermore, if T : C¥ — C by T(z1, ..., 2x) = 21 - - - 2, then we get

k
Z - uy,)

?S..N

for uy,...,ur € H(C).
The following proposition is a summary of results that can be found in section

1 of the appendix.



85

Proposition 5.65. Suppose P ={0 =59 < 81 < -+ < 8y, < Sp4+1 = 1} is a partition of
[0,1]. For any s,t € [0,1] and any 1 <i,j <n,

1Y uesyu(s)u(t) =snt
2. Yues(oy l0iul> = K(8;,0;) = &
8. Y ues(c) (Gin) u(s;) = 6;>id;

4- 2ues(cy (Giu) (G;u) = 6ij0;

where 0;; denotes the Kronecker delta and

0; ifj>i
0j>i = N
0 ifj<i

Proposition 5.66. Suppose w € QL. and § € Q™

n’ n >’

withn > 2 and l,m > 1. Then

Z 5;’)('&1 ce un)(5]9<ul ce un) = 5ij5w9 ((Sl)l (Si)n_l y
UL ,...,un €S(C)

where 0,9 = 1 if w =0 and 0 otherwise.

Proof. First suppose w # 6. If wN 6 # (), then WLOG there exists elements p € w with
pé¢0,and g € wnN@. WLOG, say p=1and ¢ =2. Then

Z 8% (uy - - - un)gf(iul )

Ul,...,un €S(C)
= Z (0ju1) (ul (Sj)> Z (0;u2) (5jU2) X e
u1€S(C) u2€S5(C)
% S e )8 )
u3,...,un €S(C)

(5j>i5i)(5ij5i)< > 6;"\{1’2}@3-~un)5§\{2}(u3~.un))
u3
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since d;>;0;; = 0. If wN® = (), then there exist elements p, g such that p € w,p ¢ 6,9 ¢ w,
and ¢ € 0. WLOG, say p=1and ¢ =2. Then

Yoo 0w )8 ()

UL ,...,un €S(C)
= Z (51711) <u1 (Sj)> Z (UQ (Sz>) (5jU2) Xoeee
u1€5(C) u2€5(C)
Sex Z 5;”\{1}(1@ aE Un)55\{2}(u3 —Up)
ug,...,un €S(C)

= (@0) Bi0) | > 07 W )] P )
ug,...,UnGS((C)
=0,
since d;>;0;>; = 0. Now we assume that w = 6. Then

> (ur ) (U )

u1,...,un €S(C)
= H ( Z (5iup) ((SJUP)) H ( (uq (si)) (uq (53)))
PEW \u,eS(C) qewe \uqeS(C)

= 655 (6:)' (s)" "

Corollary 5.67. 32, gy 0t un)8; (@) = 655 Y1y (7) (60)' (s)" "
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Proof.

un€S(C)
u1,...,un €S(C) \ =1 weQl m=10eQm

> ( 5 aml---un)ag(M))

I,;m=1weQl 0€Q? \uy,...,un€S(C)

Z Z Z 51]5w9 31)

ILm=1weQl 0

Remark 5.68. Notice that if h; = u;A; for u; € S(C) and A; € X¢, then

ST (hy, ooy i) = 62 (w1 -+ ) T(Ay, ..., An)

1
and

5Z'T(h1, ceey hn) = 5l(u1 e un)T(Al, ceey An)

Notation 5.69. If 77 and T, are g—valued multilinear functions on g”, then define

Cn(TluTQ) €g b2y g by

Co(T1,T2) = > Ti(A1, .., A,) @ To(Ay, .., Ay).
Aq,..., AneXc
Corollary 5.70. Suppose w € QL, and § € Q™, with n > 2 and l,m > 1. Let T} and

T5 be g—wvalued multilinear functions on g". Then

Z Tl(éf(hl,,hn))®T2(5j9(h1,,hn))

h17---7hnES(C

= 60,0 (8:)" (53)" " On(Th, T)




Proof.

> (6P (has s hn) @ T(09(ha, ooy i)
hi,....,hn €Sc

At,...,An€XC uy,..., unES((C)

= 0ij0w0 (6:) (s)" " D Ti(Ar, ., An) @ Ty(Ay, ., Ay)
At AnEXe

= 60,0 ()" (5:)" " On(Th, T).

Corollary 5.71. Let T1 and Ty be g—valued multilinear functions on g". Then

Z (5Z'T1(h1,...,hn)®(5jT2(h1,...,hn)
hi,...,hn€Sc

= 52-3- (7) (5z)l (Si)nil Cn(Tla TQ)
=1
= 5ian(T1, TQ)(S?JFI — SI”)

Proof.

hi,...,hn€Sc

= Z Z T1(5Z (hla ahn)) ® Z Z TQ((SJ (hla ahn))
hiywhn€Sc \I=1 weQl, m=10cQm

=> > Y Ty (8¢ (h, o hn)) @ To(69 (P, oy i)
=1 weQl, m=10€Qm \hi,....hn€Sc

= Z Z Z 5ij5w0 (5z)l <Si)n_l Z Tl(Al, ey An) & TQ(AI, ey An)
=1 weQl m=10eQn Aj,...,Apn€XC

= 52] Z Z (51)l (Sl)nil Cn(T1,T3)

=1 wel,
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Remark 5.72. Using the bilinear map h@k € g® g — (h, k), . it is clear that for w € Ql
and 6 € Q"

) (Tl(af(hl,...,hn)%Tz(é?(hh---vh”))>

hi,.hn€Sc g
= 01000 (3:) (50)" " Co (T2, T)
where
Cu(T1,To) = > (Ti(A1, oy An), To(Ar, oo An))y -

A1,...,An€XC

In particular,

o NTEE (s )l = (60) ()" D (IT(A, - Al
hi,...,hn€Sc Aq,...,An€Xc

= Co(T. 1) (8)' (s)" "

5.6 Remainder Estimates

In general, we can write

n—1 p
RP(By, ..., Bj)(h1, ..., h > 5‘”T (h1y ooy hp) fu(ti), (5.48)
i=0 1=2 we
where T : g? — g is a mulitlinear function and f,(¢;) is a polynomial, possibly zero, in
t; depending on w, where t; is defined in Notation m Refer to Eq. for the
meaning of the left hand side, while Notation indicates the meaning of the right
hand side.

Ezxample 5.73. For r > 6, the following remainder term appears in a sixth order derivative
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of Fp evaluated at the identity path.

R?;Q([hlv [h27 h3]]a [h4> h5]7 h6)
n—1
= [Pplha, [ha, hs]], [6ilha, hs), 6ihe) (1 — £7)

[[hl (Si)’ [h2(5i), h3(si)“7 [6i[h4a h5]’ 5ih6](ti - t?)
+[0i[P1, [ha, hal], [0i[ha, hs], dihe) (17 — t7)

_ "zzl [[ha(s2), [P2(s0), ha(s)]]s (2121 ey, 07 Thas hs], 6ihe](t: — £7)
i1 Sweay 67 [h, (b2 hall, 271 Cueqy 07 Thas hs], Sihe] (£ — £7)
>

5;")[[}117 [th h3H7 [h47 h5]7 hG]fw(ti)a

where

0 if wnN{6}=0orwn{4,5} =0
Jolti) =q ti—t2 if wn{1,2,3} =0, wnN {6} #0, and wn {4,5} #0
22— if wnN{1,2,3}#0, wN{6} #0, and wN {4,5} £ 0

Proposition 5.74. Suppose f € H(C) and A € g. Then fA € H(g) and
£ Al g = 11 AN
Proof. The proof is a straightforward calculation.
2 ! 2
17 Al = | £ Ol
1
= [ 1rwraizae
1
= 11413 [ 17 0P
= | i1 AllG-
L]

Proposition 5.75. Suppose 1 < k < j < r, and for 1 < i < j, B; : gl — g be

multilinear functions such that Z{Zl pi = p. Let {Pn}>2, be a sequence of refining
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67 T(h) fuo(ti),

where T : g? — g is a mulitlinear function and, for each w € Qé, fu(t;) is a polynomial,

possibly zero, in ¢;. Notice that

IR (BLs s By) (W) [37q) = |

Furthermore,

where C' (w) is an appropriate constant. By Remark

5 T() ot 31

(R) fu ()71 (q)

(R) fuo (8) 1)

16T ()31 fo(t) | -

0.72

b 2 e (Se) 2ol=2 2wetl, 6T (R)II3
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is O(62). Therefore,

lim sup Z ||RfZ(B17---aBj)(E)H%T(g)

n—oo —

hG(SC)p

< lim sup Z C(p) Z 67T (h H wa<tl)”H

n—oo —

he(Se)P 1=0 =2 weN

. ~ 1 - y
<lim sup C(p) p  + > Z 16T (h)]I3
=2

= lim sup C(p) Z

= lim sup C(p) ‘ O(6i)

n—oo

< 00.

O

Proposition 5.76. Suppose 1 < k < j < r, and for 1 <i < j, B; : H(g)"" — H(g)
be bounded multilinear functions such that 25:1 pj =p. Let {Pp}>2, be a sequence of
refining partitions with |Py| = n. Define a function GfZ(Bl, ey Bj) 1 0,1]% — g®% by

Gf}; (Bl, ey B])(U t)

= Y RN B B w) @ R (B, B (WO)
Re(Sc)P

Then HG;D,Z(BD ceey Bj)‘|L2([O,1]2;g®2) —0asn—0.

Proof. Again by Eq. (5.48]), we can write

d
—RPn(By, ..., Bj)(R)(

iy 2 2 T L6()

=2 weN

=0
-yy 5§”T(h)8“5(§“]()fw( (o).
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So
Gf}; (Bl, ey Bj)(u, t)

S (Sl Scoy 8270 52 1))
Sordser ®(zﬁzzzeeggagﬂ ECEL ey <>>)

n—1 p !
fw( ( ))fé w O
= Z Z Z 1(si,si+1}(U)l(sj,s]-+1](t) 5:0; Z o; T ®5§T(h)
i,j=011'=2 weQl, ! he(Se)?
0l

n—1 p , TN
fo(ti(u)) fo(t(1))
= Z Z Z1(Si:$i+1](u)l(sjysﬁﬂ(t) 5.5.9 ’
7=01L1'=2 weq}, w
0eQl

A1,...,Ap€fﬂc

x| 81000 (8:)" (si)P ™ Z T(Al,...,Ap)®M)

i (0 (O EODILD 5 yomt o )

i

Vspssrgn] (W) 15y, (OS5 (Ea(w)) FL{E(8)) (6:)' 72 (s0)P T Co(T, T),

where Cp(T,T) € g ® g is defined as in Notation W So GZZ(Bl, ..., Bj) has support
concentrated near the diagonal, on the set {(u,t) € [0,1]%s; < u,t < s;41 for some
i = 0,...,n — 1}, which is going to zero in measure as n — oo. Also note that our
functions f, are polynomials, and hence are bounded on [0,1] by some constant. For

some i = 0,...,n — 1 and (u,t) € [0,1]? such that s; < u,t < s;11, we have
P
IGTR(By, ooy Bi) (w, )llgeg = 11> D £L(ui) () (61)' 2 (30)P " Cp(T,T)||gog
=2 we,
CP)C? (8:)' 72 ()"~ Cp(T, T) g
C(p)C?(|Co(T, T)|gng

< Q.
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So sz (Bi1, ..., Bj)(u,t) is pointwise bounded independent of partition with measure of
the support going to zero as n — oo. Therefore, HG;DZ(BL---;Bj)HL2([0,1}2) — 0 as

n — 0. O

Corollary 5.77. Suppose 1 < k < j <r, and for 1 <i < j, B; : H(g)" — H(g) be
linear functions such that Zgzl pi =p. Let {Pn}>2, be a sequence of refining partitions

with |Py| =n. Given o € T(H(g))7, then

Z |<a,RZZ(B1, B (AP — 0 asn — oo.
he(Sc)?

Proof. For all o« € H(g)", there exists an @ € H(g), such that (o, v) = (v, @) py (g for all
v e H(g). Then

In particular,

> N R (Br, o, By (R))

he(Sc)P

= 2 /01 (1“?}?}3(31,~--,Bj)(h)’(t),&’(t))gdt/o1 (RP2 (B, Bj) () (), @ () du
he(Sc)?

= / ) Z ng(Bl, wy Bj)(R)' (1) ® ng(Bl, s By) () (1), & (u) ® & (u)) geedt @ du
[0.1] he(Sc)P
(5.49)

= (sz (Bl, . Bj), a® g)Lz([071]279®2),

Where line (5.49) is justified by Fubini’s theorem and Proposition m By Cauchy-

Schwartz,

> Koo RIp(Br,... BW)P = ) \(R;fg(Bl,...,Bj)(E),a

he(Se)? he(Se)?

<118 ® &lz2(oy2.g02) [|GT (B oo By 2,4

)H(g)‘2

]2,69%) "
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. . P
We’ve shown in the above proposition that ||G 7 (B, ..., Bj)||r2(j0,1)2,g92) — 0 as n — 0.
Our result will be proven if we can show ||&’ @ &||2(p,1j2,g92) < 00. An easy calculation

yields

1/2
1 @ @012 02) = ( |80 0 T ot o du)
[0,1]

-/
= [l

= |lélf1q)

1/2
& OGNl (w)l[gdt © du
1]2

< oQ.

We wish to extend the result of Corollary to arbitrary tensor products of
remainder terms. The existing notation, unfortunately, is becoming cumbersome, so we

introduce some more.

Notation 5.78. Suppose 1 < k; < j; < r forl =1,2,...,q. Furthermore, for each I,
suppose for 1 < i < j;, B : H(g)pé — H(g) be linear functions such that » ./ flzl pj =
p. Let P be a partition of [0,1]. Then we will use

RPn (B @@ Rl (BY)(h)

j1,k1 Jarkq

to denote

Pn Pn
Ri™ (Bi,..., B},)(h, b )@@ R (BY, ...,ng)(hp,pgqﬂ, e b)), (5.50)

where in line (5.50) we are using the notation from Eq. (5.45)).

Proposition 5.79. Assume the same setup as in Notation[5.78 above. Let {Pn}22, be
a sequence of refining partitions. Given o € T(H(g))ry, then

S e By (B @@ Ry (BY)(R)2— 0 asn— oo,
he(Sc)P
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Proof. For a € (H(g)®9)", define

—1
> KeRIn (B)®---® R, (B)(W)
he(Sc)P

Then ¢p is a seminorm on (H(g)®?)". Using Proposition we can say that

71 — —
¢p(a)® < HO‘H%H(Q)@q)* Z HRﬁ”kl( )®--® RZ?kq (Bq)(h)H}%I(g)@q

EG(Sc)p

< elfagen | 2 HRj’jfkl(*)(E)H%{(g)
hE(S(c)

sl IR BB
EG(Sc)pgq
< CZHQH?H(Q)@q)*a
for some C? < co. Equivalently,
op(a) < Cllal| (g (g ey (5.51)

Suppose a = (-, k1 @ -+ @ ky) r(g@a. Then

71 P —
op(@)?= 3 |(BP (B @ @R (BYR). ki ®- - ® k) gyeal’
EG(S@)p
< ST AR (BN k) By % < IBE (BY), k) g
hE(Sc)p

—1
= (Il 16T B 202y ) % -+ % (1himl Frg) 1G5, (BN lz2o )

where G;.j"ki (El) is as given in Proposition [5.76 Proposition [5.76[ also tells us that
HG]“ Z( Nr2o2) — 0 as [P| — 0 for i = 1,...,q. Therefore, ¢p(a) — 0 as |P| — 0.

Furthermore, the same is true for all finite linear combinations of such «. Therefore,

¢p(a) — 0 as [P| — 0 for all a of finite rank.
For o, 3 € (H(g)®)",

¢p(a) < ¢p(a—B) + ¢p(B)
< Clla = Bll(r(g)ea): + ¢r(B)-
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Let € > 0 and choose 3 € (H(g)®9)" finite rank such that ||a — Bll(r(g)eayr <. Then

A ¢p(a) < lim Clla = Blluges + i ¢p ()

= Clla = Bl (1 (g)29)*

< Ce.
Our choice of e was arbitrary. Therefore, ¢p(a) — 0 as |[P| — 0. O

The typical remainder term is a tensor product of Pph; and Rfk terms. Adding

the Pph; terms doesnt not effect the results. First a proposition.

Proposition 5.80. Given o € T(H(g))% and hi, ha,...hy, € Sc , there exists B hy. b, €
(H(g)")®™ which satisfies

<OZ7 hl X ® hk: & 7]) - </Bh1h2..hka77>a (552)

for any n € H(g)®™, and furthermore,
2 2
Z Hﬁhlhz..th(H(g)*)Q@n = Han+kH(H(g)*)®(n+k) < 0. (5'53)

hi,h2,....h€Sc
Proof. Since o € T(H (g))7, we can write

Ontk = Z ah1h2.‘.hn+k(', hh®---® hn+k)H(g)®n+k7

hi,h2,...;hn4k€Sc
for some square summable ap,p,..4, , € C, ie.
Z ‘ah1h2-~-hn+k|2 < o0.
h17h2,--.,hn+k65¢:

Set
<ﬂh1h2..‘hk) > = Z ahlhg‘..hn+k('7 hk+1 R ® hn—l—k)H(g)@"'

hgt15e-hnyk€SC

Then it is clear that (5.52)) is satisfied. It then follows that

2 2
> Bnhelfrgyen = > |@hah.. s

hi,h2,....hr€Sc hi,ha,....hn 4k €Sc
_ 2
= ||04n+k:H(H(g)*)®(n+k)

< oQ.
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Remark 5.81. The above proposition remains true if the hy, ha, ...h; terms of our tensor

product are in any position, not just the beginning of our tensor product.

Proposition 5.82. Again, we assume the same setup as Notation . Let {P,}°
be a sequence of refining partitions with #(P,) = n. Given o € T(H(g))7 and g > 0,

then as n — oo

P,
Z |<04;P77nh1®"'®PPnhq®le,k1
hl,...,thSC
he(Sc)P

(B o @R (BYW)] — 0.

Proof. First notice that for any partition P, we can first select a basis Sg for Hp(g),
and then extend it to a basis S¢ for H(g). Then it follows that

—1 —_ —_—
Y. la.Pphi®---@Pphg@ R] 1 (B)) @--- @ R}, . (BY)(W)[?

hi,....,hq€Sc
he(Sc)P
—1 — —
< > Home--@heRM (B)e---oR) (B)(h)P.
hi,....,hq€Sc
he(Sc)P

It follows that

lim > [, Pp,h ® - ® Pphg© Ry (B) @ © RLry (BY)())[?

n—00 J1,k1 Jqs
hl,...,thSC
he(Sc)P
. Pn 1 Prn (DI T\ (2
S Y famsehs @)oo R, B)H)
hl,...,thS(c
he(Sc)P
: Prn (L Pr (B ()2
—dim Y (Buengs R (B @@ B (BY)(B)] (5.54)
hi,...,hgE€SC
EG(S@)Z’
=0.

In line ([5.54)) we have used Proposition We are able to move the limit inside by
the DCT, which is justified by Eq. (5.53)) and Proposition [5.75 O

Remark 5.83. Again, for the above proposition, the Pph terms need not occur at the

beginning of the tensor product.
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Remark 5.84. For all k > 0 and any partition P, Rf is defined by the following expression
(a(P),h1 @ ha ® - -+ @ hy) = (o, Pph1 ® Pphy ® - - - @ Pphy, + Rf(hl, ey hi)).

Since we have shown that Rf consists of a finite sum of terms like those in Proposition
we have shown that for a refining sequence of partitions {P, }5° ;,
Z |<a,RE"(h1,...,hk)>\ — 0 asn — oo.
hi,...,hiz €Sc
Lemma 5.85. Let {P,}°°, be a sequence of refining partitions. Then U2 Hp, (g) is
dense in H(g).

Proof. Recall from Proposition that
Hp(g)* = Nul(mp..) = {h € H(g)|h|p = 0}.

Now suppose that h € H(g) with h L U Hp, (g). Then h € Hp, (g)* for all n, which
imples that h|p, = 0 for all n. Therefore, h|uz€>:1'pn = 0, and since h is continuous, we

necessarily have that h = 0. O

Corollary 5.86. Since Pp, is orthogonal projection onto the subspace Hp, (g) and
Hp,(g9) C Hp,,,(g) for alln =1,2.,..., the above lemma implies that for h € H(g),

Tim [l Pp, bl yq) = 0.

Remark 5.87. If {P,}°°, is a sequence of refining partitions, then Corollary allows
us to construct an orthonormal basis for H(g) adapted to our sequence of partitions in
the following sense. After first constructing an orthonormal basis Sg ! for Hp, (g), extend
this basis inductively from Hp,(g) to Hp, ,(g) fori =1,2,... Then S¢ = Uflesgn is an

orthonormal basis for H(g).

Proposition 5.88. Let {P,}>2 be a sequence of refining partitions. Then for hi, ..., hy €
Sc,

k
1h1 @ -+ @ hy, = Pp,hn @ -+ @ Pp, bl [y en < K2 |k — Ppohyllirg.  (5:55)
j=1

In addition, for o € T(H(g))7,

> Hehi®---®@hy— Pp,h1®--- @ Pp,hy)|* < k3|yaky|3%(H(g)). (5.56)
hi,...,hx €Sc
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Proof. To see Eq. (5.55)), notice that we can rewrite

hi®--®@hy — Pp,h1 ®---® Pp_hy (5.57)
= (h1 — Pp,h1) @ ho @ - - - @ hy,

+ Pp,h1 ® (ha — Pp,h2) ® h3 @ -+~ @ hy + - - -

-+ Pp,h1 ® Pp ho @ --- ® (hx — Pp,hy),

where the RHS is a sum of k terms. Since prnth%{(g) < thm%(g) < 1, the result
easily follows using the relation || Z§:1 ajl|? < k? Z?Zl laj)?.

For Eq. , we choose a basis S¢ adapted to our sequence of partition as
in Remark Then for every n > 0 and h € S¢, Pp,h = h if h € Hp,(g) and 0
otherwise. Similarly, h — Pp h = 0 if h € Hp,(g) and h otherwise. Therefore, using

Bq. (59,

S Hahi®---®hy — Pphi® - Pp, ly) |
B, hr €SE
(a,(h1 — Pp,h1) @ ha @ - - @ hy,)
= Y | P @ (ha— Pphg) ©hs @ @ )+
hi,....,h€Sc coe (a, Pp,h1 @ Pp ha @ -+ ® (hk — PPnhk»

|(ct, (h1 — Pp, h1) @ ha @ - - - @ hy)|?
§k2 Z +|<OZ,P’pnh1®(hg—Ppnh2)®h3®"'®hk>|2+"'
-+ |{a, Pp,h1 @ Pp,ha ® - -+ @ (hy, — Pp, hy))[?

<E Y o ®@hg®--- @ hy)?
hi,...,h €Sc

3 2
= kNl [g (g
0

Corollary 5.89. Let {P,}22, be a sequence of refining partitions and o € T(H(g))r-

Then for any hq, ..., hx € Sc,

lim [(a,h1 @+ ® hy — Pp,hy @ -+ @ Pp, hy)|* = 0.

n—oo
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Proof. This follows easily from Eq. (5.55) and Corollary Specifically,

lim [(,h1 ®--- @ hy — Pp h1 @ --- @ Pp_hi)|?

n—oo

< limloglZo rgl1h1 ® -+ ® hi = Pp,hy @ - @ Pp, ||y gy

k
< nlgfolo kQHQkH?}%(H(g)) Z R — Ppnh’jH%(g)
j=1

k

= szakH?]g(H(g)) Zl nh_{lolo ||hj - PPnth%T(g)
J:

=0.

We are now set to prove the main theorem of the chapter.

Theorem 5.90. Let {P,}>°, be a sequence of refining partitions. Then

nlirrolo oo = a(Po)ll so.(ar(gy — 0 asn — oo.

Proof. The fact that « is of finite rank is essential to this result. We assume that « is

of rank N. Choose Sc¢ to be an orthonormal basis for H(g) adapted to {P,}>2, as in
Remark 5.871 Then

nh_)rgo Ha — Oé(Pn)”%%(H(g))

= lim Y Hehi @ @hg) = (a(Pn), b1 @ -+ @ )|
" Ook:()hi,.‘.,hkesc

N
:nh_EI;OZ Z |<a7h1®®hk:_PPnh1®®P'Pnhk>_<a7Rk(hZ77hk)>|2
k=0 h;,...,hx €Sc

o &: 5 {a,h1 @ @ hy, — Pp hy ®--- ® Pp, hg)|?
< lm
" k=0 by, BRESE +|<a,R7k°"(hi,...,hk)>|2

We have shown already in Remark that

im Y (o By (i b)) = 0.
e hi,...,hix €ESc
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Therefore, there is some finite constant C'y such that
. 2
i o= (Pl (g

N
§,}in§oCNZ > foh @ ®@hy — Pphy @ -+ ® Pp, )|
k=0 h;,...,hi ESc

N
=Cv) >, lim[am® - &h—Pphi® & Pp, )
k=0 h;,...,h €Sc

=0,

by Corollary O

The argument is now complete. We present a brief summary to end.

Given o € J(H(g)), we wish to find an f € Hr such that (1 — D);'Rf = a.
By Theorem and Theorem [6.15] of the appendix, it suffices to assume that « is of
finite rank. Under this assumption, we then constructed a function u, € H(H(G))
in Theorem such that (1 — D) 'us = a. Given a refining sequence of partitions
{Pn}52,, we construct a sequence of cylinder functions { Fp, }2°, C HFC®(W)NL*(vr)
such that

(1-D);'RFp, = (1—D);'Fp, = a(Py).

We have shown in Theorem that a(P,) — a. Since the Taylor map is an isometry,
there is a function f € Hr such that Fp, — f. Finally, since the Taylor map is

continuous,

(1-D);'Rf = lim (1 - D);'RFp, = lim a(P,) = a.

n—oo n—oo



Appendix

6.1 Reproducing Kernels

The following is a summary of the properties of the reproducing kernels on path
spaces, which form the basis of many of our calculations in the previous sections. Given

a continuous function A : [0, 1] — R, define

fol |h(s)|?ds, if h is absolutely continuous
(b, W) 5(R) =

0, if otherwise

Define the real Cameron-Martin space,
H(R) = {h € C([0,1];R)|R(0) = 0 and (h, h) grr) < o0}
Then equipped with the inner product
1
(k= [ WK (s)ds,
0

H(R) is a Hilbert space.

Similarly, for a continuous function & : [0,1] — C, we define

fol |h'(s)|?ds, if h is absolutely continuous
(h, W) (c) = _ ' 7
0, if otherwise

103
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and the complex Cameron-Martin space
H(C) = {h € C([0.11:C)[A(0) = 0 and (h, h)y(c) < oo}

where

(hoh) () = /0 W (s)W(s)ds.

Notation 6.1. We will use S(R) and S(C) to denote orthonormal bases of H(R) and
H(C) respectively.

Remark 6.2. 1t is easy to check that if {u;}32; is an orthonormal basis for H(R), then

{%(ua + iug)}35.—; is an orthonormal basis for H(C).

Proposition 6.3. For any s,t € [0,1],

Y uut)= Y u(s)ul(t)=sAt. (6.1)

ue€S(R) ueS(C)
Proof. By the Fundamental Theorem of Calculus,
1
u(s) = / Lr<su'(T)dT. (6.2)
0

Let ks € H(R) be given by rs() = s A-. If u € H(R), then line (6.2) is equivalent to

u(s) = (u, HS>H(R)7

and so

ST ouls)ult) = > (u k) gy lknu) pe)
wES(R) weS(R)
= (kt, Ks) H(R)

1
= /0 Ljo.q(T) 1,5 (T)dT

=sAt. (6.3)
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To prove the results on the complex Cameron-Martin space, one simply repeats

the above calculations after using Remark to notice that

S u@ulii=y Y (uls) +ivls))(wlt) — iv(0)

ueS(C) u,v€S(R)
:% DT ou(syut)+ Y wis)ot)+i > (ult)u(s) — u(s)o(t))
ueS(R) veS(R) u,veS(R)
= D u(s)u(t).
ueS(R)

O
Notation 6.4. We will let K(s,t) = s At denote the reproducing kernel of H(R) and
H(C). That is
Y uut)y= Y u(s)u(t)=K(s,t).

ueS(R) ueS(C)
Remark 6.5. Since in the proof of Proposition ks(-) = K(s,-), by line (6.3) we have
the relationship

<K(S7 ')ﬂK<t7')>H(R) = (K(Sv ')ﬂK<t7'))H((C) = K(Svt)'

Corollary 6.6. For all s € [0,1],

Yo )= ) luls)P = K(s,s) = s.

ueS(R) ueS(C)

Notation 6.7. Suppose P = {0 = sp < 81 < -+ < 8 < Sp41 = 1} is a partition of
[0,1]. Then for i =1,2,....,n

0i = Sit1 — S
and, for u € H(R) or H(C), let
diw = u(siyr1) — u(s;).

Corollary 6.8. Suppose P is a partition of [0,1]. Then

Sl =) [l = K(8:,6:) = 6.

ueS(R) ueS(C)
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Proof. The proof is a straightforward use of Proposition [6.3] For example,
STl = ) (ulsirr) — ulsi)(usisn) — uls;))
ueS(R) ueS(R)

= > lulsisn)l? = ulsivn)u(s:) — usi)u(sin) + [u(si)]®
ueS(R)

= K(8it1,5i41) — K(si11,5:) — K(s4,8i11) + K (54, 5)
=841 — Si — Sit 5
= 0;.

O

Corollary 6.9. Suppose P = {0 = sp < 81 < -+ < 8 < Sp+1 = 1} is a partition of
[0,1]. Then for 1 <i,j <mn,

S G uls) = > (i) uls;) = 6j5ibi

ueS(R) ueS(C)

where .dj>; =1 if 7 > i and 0 otherwise.

Proof. Again, we only show the proof in the real cases.

> G ulsy) = D ulsipr)uls;) — ulsi)u(s;)
ueS(R) wES(R)

= K (sit1,55) — K(si,55)

=8i+1ANSj; — 8 \S;

_ 6; ifj>1
0 ifj<i

O]

Corollary 6.10. Suppose P = {0 = sg < 81 < -+ < 8y < Sp+1 = 1} is a partition of
[0,1]. Then for 1 <i,j <n,

> (Gau) (Gu) = > (d5u) (5;u) = 6i;0

u€S(R) ueS(C)

where 0;; denotes the Dirac delta function.
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Proof. This is an application of Corollary

Yo @) (Gu) =Y (diw) (ulsjn) — ulsy))

ueS(R) ueS(R)
= 0j+1>i0; — 0j>i0;
= 0;0;.
O
We deal mostly with path spaces on a Lie algebra g. Refer to Chapter 1 for

the definition of H(g).

Proposition 6.11. Suppose {u;}22, is an orthonormal basis for H(R) and {A;}?%, is an
orthonormal basts for (g,( , )g). Then {Uz‘Aj}z.}i is an orthonormal basis for (H(g), (
s VH(g))-  Similarly, if {u;}52, is an orthonormal basis for H(C) and {A}L | is an
orthonormal basis for (g, ( , )g). Then {uzA]}f;i‘f is an orthonormal basis for (H(g), (
s )H(g)-

Proof. The proof is a straightforward calculation. In the real case,
1
(i i Ay = [ (0(6) A5 (5) A
0
1
= [ w5 (o) (g, i) s
0
1
= (Aj,Al)g/ uj(s)u(s)ds
0

= (Aj, Ap) g{ui, ug) g(w)

= 010k-

Proposition 6.12. For any s,t € [0,1],

D h(s)@h(t)=K(s,t) > A® A,

heSk AeXp
Y h(s)@h(t) = K(s,t) Y A® A,
heSc AeXc

where Xg (Xc) is an orthonormal basis for the real (complez) inner product space (g,( ,

>9> ((ga( ’ )9))
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Proof. We use Proposition to write Sp = {uiAj}Zj-’il where {u;}22, = S(R) is an
orthonormal basis for H (R ) and {A;}4_; = Xg is an orthonormal basis for (g, { , )q).

Then

Y hs)@ht)= Y > u(s)Axu(t)A

heSk UGS(R) AeXp

= ) uls)ult) Y AwA

ueS(R) AeXg

=K(s,t) > A®A
AeXy

6.2 Density of Finite Rank Tensors

The theorem below is reproduced from [6] in the context of path spaces and is
essential to our proofs of surjectivity. We suppose that g is a step r complex stratified
nilpotent Lie algebra. Recall that this means that there is a sequence of nonzero subspaces
V; for i = 1, .., 7 such that

g=®i—1V;

with [V1,V;] C Vjqq for j =1,...,r—1and [V1,V;] = {0}. It follows that [V;, V}] C Vi,
with the convention that V; = {0} for s > r. In our case, we assume that these subspaces

are orthogonal. This gives an orthogonal decomposition of H(g),

H(g) = & H(Vi),
with [H(VA), H(V;)] C H(Vjsy) for j = 1, ..,r — 1 and [H(VA), H(V;)] = {0}.
Definition 6.13. For A € C, define 6 : H(g) —H(g) by

Oa(hi+hg+ -+ he) =Y N

for h; € H(V;).

Proposition 6.14. For A\ # 0, d) is an Lie algebra automorphism.
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Proof. Let A # 0. J) is certainly a bijective linear map, so we only need to show it is
a Lie algebra homomorphism. Let h = > _  h; and k = >\, k; with h;, k; € H(V;).
Then

[6xh, OxK] = Z Nhi, Z Mk;
i=1 j=1

= X[k, k)]
ij=1

[

=D A DIk ki)
=1

- =
i—j
=0 | Y[Ry, kiy]

J=1

= S\[h, K.
0

Theorem 6.15. Suppose g is complex stratified nilpotent Lie algebra. Then the finite
rank tensors in JP(H(g)) are dense in JP(H(g)) for each t > 0.

Proof. Let Ty : T(H(g)) — T(H(g)) be the automorphism induced by the automorphism
d.0 on H(g). Then for any h,k € H(g), we have

Tog(h®@k —k®h—[h,k]) = (0gi6h) @ (0giok) — (Ogiek) @ (Ogioh) — dgin[h, K],

and so I'y takes J(H(g)) into and onto J(H(g)). If we let I'j denote the transpose, then
for any o € JO(H(g)) and v € J(H(g)),

0 = (a,Tyv) = (Tha, v).

Therefore, Iy takes JO(H(g)) into itself. To see that Iy is onto J°(H(g)), note that for
any o € JO(H(g)), if we define 8 € J°(H(g)) by (B,v) = (a,T_gv) for all v € T(H(g)),
then it is easy to check that o = I'y3. In addition, § — d,ieh is continuous for any norm

on H(g) and therefore so is § — I'g and 6 — T,
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For every n € Z, let

k

n—1 .92
1 w1 sin’(n0/2)
Fu(6) = 2mn kzmz—:ke - 2mn sin?(0/2)

denote Fejer’s kernel. Then
™

F,(0)do = 1 (6.4)

—
for all n, and if ¢ is continuous on [—m, 7], then

™

A [ Fu(0)6(6)do = ¢(0). (6.5)

In addition, if m € Z; with m > n, then one can show that
™ .
/ Fo(0)e™df = 0. (6.6)
—T
Consider 8 =h1 @ ho ® - - ® hy, € H(g)®*, where h, € H(V},) for p =1,.... k,
where 1 < j, <r. Then

ToB = (e"%h1) @ (€92%hs) @ -+ @ (90 hy)
_ (ezﬂzszljp) 3.

If £ > n, then Z’;:l Jp > n as well, and by Eq. ,

F,(0)TyBdo = 0.

Any element of H (g)®k can be written as a sum of elements like 3, and so in fact
/ F(0)T9B8d0 = 0 for all 3 € H(g)®* with k > n.

Consequently,

/ F(0)Thadd = 0 for all o € (H(g)*)®* with k > n. (6.7)

Since for all oy, € (H(g)")®*, |F/9ak|(H(g)*)®k = ‘ak‘(H(g)*)@“’ it follows that for
each o € JA(H(g)), Ty € JA(H(g)) and ||[Tyalls = ||| Hence 6 — T is strongly
continuous in J9.(H(g)). For a € JO(H(g)). Define

o= [ Fo(0)Tado.

—T
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Then v, € JA(H(g)) for all n > 0 and by Eq. (6.7), it is zero in all ranks greater than

n. Therefore

lim ||y, — |l = lim H/ F,(0)(Tya — a)db
n—00 n—00 _r .

< lim F.(0)||Tha — «|do

=0

by Eq. (6.5). O
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6.3 A Continuation of Example

The following is a continuation of Example [5.52

(RREp) (g) = & li=o(FRFp) (g - 1)

= %’t:O<D2ua(P7D(g ), kp(g-t) @ hp(g - tl))

d — -
+oili=o Y D Cin{Dua(Pp(g - ), kYR (gt ...g -1l h))
1<k<j<3 i=1

d
= %’t:0<D2ua(PP(g 1)), kp(g) @ hp(g))
d
+ altzow%a(]gp(g)% kp(g9) ® hp(g - 1))
d
+ &’t:O<D2Uo¢(PP(g))7 kp(g-tl) ® hp(g))
d 1 1
+ 2 li=o(Dua(Pp(g - 1)), 5 Ry (k, h) + 5 RE, (9, K], )
d 1 1
+ 2 li=o{Dua(Pp(g - 1)), 5 RE (k. 9,h) + 15 RE (9, k. b))
d 1 1
+ %’t=0<Du&(P’P(g : tl))? _6R§2(g7 ka h) - 6R§2(k7gv h)>
d 1
+ %’t:0<Dua(P'P(g))v §R§,1([g ' tla k]> h))
d 1
+ —li=0(Dua(Pp(9)), 75 B3 (k. g - t, 7))
d 1 p
+ %’t:O(Dua(PP(Q)% ERB,l(g -t k,h))
1
6

1
6

d
- %’t:0<Dua(Pp(9)>7 RISP,Q(gtlak7h)>

d
= - li=0{Dua(Pp(9)), G RE2(k, g - tl, b))
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+ (D*ua(Pp(9)),lp(g) ®
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= (D*us(Pp(g)),lp(g) ® kp(g) @ hp(g))

j—1

+ Y > (D*ua(Pp(g)), kp(g) ® Cixl RY (g, .., 9. b))

1<k<j<3 i=1

j—1
+ > D (D*ua(Pp(9), Cikl RT (g, .9, k) @ hp(g))

1<k<j<3 i=1

REL 1) + S RE (906,00 )

Do) 1p(0) © (15 kg ) + (5 a0k 1) ))

(Do Prl) 1ple) © (g REalo ko) = G RE(h0:m) ))

1

+ <Dua(P77(g))7 §R§,1([l7 k]? h)> + <Dua<PP(g)>v %Rz;,l(kv L, h’))
+ <Dua(P77(g))7 T12R§1(l7 k, h)> - <Dua(P77(g))7 éRg;Q(lv k, h)>

~ (Dua(Pp(9)), & FRa(k, 1, 1)

(IkhFp)(e) = (a, Ppl ® Ppk @ Pph)
1 1
+ (o, Ppk ® S RY, (1, h) + (0, 5 RE, (1, k) © Pph)
1 1
+ <O[, Ppl ® QR%),I(IC’ h)> + <Oé, §R§1([l7 k]u h)>
1 1
+ <a7 ﬁRgl(k7 la h)> + <Oé, ERgl(lv ka h)>

1 1
- (Ct, ERLZ)),Q(lu k7 h)> - <CK, 6R§,2<k7 l7 h’))
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