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The Taylor Map on Complex Path Groups
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The heat kernel measure νt is constructed on W(G), the group of paths based

at the identity on a simply connected complex Lie group G. An isometric map, the

Taylor map, is established from the space of L2(νt)−holomorphic functions on W(G) to

a subspace of the dual of the universal enveloping algebra of Lie(H(G)), where H(G) is

the Lie subgroup of finite energy paths. Surjectivity of this Taylor map can be shown

in the case where G is stratified nilpotent.
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Introduction

1.1 Background

A holomorphic function u : C → C is determined by its derivatives at the origin.

One can recover values of u by its everywhere convergent Taylor expansion

u(z) =
∞∑

k=0

u(k)(0)zk

k!
. (1.1)

Let µt denote the Gaussian µt(z) = 1
πte

−|z|2
t . The following equation is easy to verify

by switching to polar coordinates.∫
C

zkzlµt(z)dxdy = δklt
kk!. (1.2)

Our goal is to use this orthogonality of powers of z along with our Taylor expansion of

u to relate the L2(µt) norm of u to its derivatives at the origin.

Consider

un(z) =
n∑

k=0

u(k)(0)zk

k!
. (1.3)

Then Eq. (1.1) indicates that un → u pointwise and therefore uniformly on any compact

set. Furthermore, for any f ∈ L2(µt) and R > 0,

||f ||2L2(1|z|≤Rµt)
≤ ||f ||2L2(µt)

,

1
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and ||f ||2L2(1|z|≤Rµt)
is increasing as a function of R. So by the MCT,

lim
R→∞

||f ||2L2(1|z|≤Rµt)
= ||f ||2L2(µt)

.

Combining these results with Eq. (1.2) and Eq. (1.3) yields

||u||2L2(µt)
= lim

R→∞
||u||2L2(1|z|≤Rµt)

= lim
R→∞

(
lim

n→∞
||un||2L2(1|z|≤Rµt)

)
= lim

n→∞
lim

R→∞
||un||2L2(1|z|≤Rµt)

= lim
n→∞

||un||2L2(µt)

= lim
n→∞

∫
C
|un(z)|2µt(z)dxdy

= lim
n→∞

∫
C

n∑
k,l=0

(
u(k)(0)zk

k!
u(l)(0)zl

l!

)
µt(z)dxdy

= lim
n→∞

n∑
k,l=0

u(k)(0)u(l)(0)
k!l!

∫
C

zkzlµt(z)dxdy

= lim
n→∞

n∑
k=0

tk

k!
|u(k)(0)|2

=
∞∑

k=0

tk

k!
|u(k)(0)|2.

More generally, if u : Cd→ C is holomorphic and µt(z) =
(

1
πt

)d
e
−|z|2

t , then

||u||2L2(µt)
=

∞∑
k=0

tk

k!

d∑
i1,...,ik=1

|(∂ei1
∂ei2

· · · ∂eik
u)(0)|2, (1.4)

where {ei}d
i=1 is the standard basis for Cd. The proof of Eq. (1.4) is exactly analagous

to the above one dimensional case.

Let T (Cd) denote the tensor algebra over Cd, that is T (Cd) ≡ ⊕∞
k=0(Cd)⊗k. To

every holomorphic u : Cd→ C we can associate an element αu = ⊕∞
k=0αk ∈ T (Cd), where

αk ∈ (Cd)⊗k is the symmetric tensor defined by

(αk, z1 ⊗ z2 ⊗ · · · ⊗ zk)(Cd)⊗k = (∂z1∂z2 · · · ∂zk
u)(0)
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for every z1, z2, · · · , zk ∈ Cd. Here ( , )
(Cd)⊗k

denotes the inner product on (Cd)⊗k arising

from the standard one on Cd. If we define a norm || · ||t on T (Cd) by

||β||2t :=
∞∑

k=0

tk

k!
||βk||2(Cd)⊗k

for β = ⊕∞
k=0βk with βk ∈

(
Cd
)⊗k

, then Eq. (1.4) indicates that the map u → αu is

unitary.

The physicist V. A. Fock introduced this isomorphism in 1932 in [7], and the

work was later clarified by Segal and Bargmann in the ’50’s and ’60’s (see [1, 21, 22]).

The correspondence proves useful in understanding the structure of quantum fields. In

the above classical case, if one considers (Cd)⊗k as the k-particle state space, then the

map u ∈ HL2(µt) → αu ∈ T (Cd) exhibits the wave-particle duality of a bosonic system.

It is also closely related to the characterization theorem for generalized function in white

noise analysis (see, for example, [12, 16, 15]).

In [4], Driver and Gross proved a generalization of the above result on a complex

connected Lie group G with given Hermitian inner product ( , ) on the Lie algebra

g ≡ TeG. In this context, µt denotes heat kernel measure on G with respect to a right

invariant Haar measure dx. Let T (g) denote the tensor algebra over g, and for each

t > 0, define a norm || · ||t on T (g) by

||β||2t :=
∞∑

k=0

k!
tk
||βk||2g⊗k (1.5)

for β = ⊕∞
k=0βk with βk ∈ g⊗k, where || · ||(g)⊗k denotes the cross norm on g⊗k arising

from the inner product on g⊗k determined by the given inner product on g. If we let

T (g)t denote the completion of T (g) with respect to this norm, then T (g)t is a complex

Hilbert space with respect to the Hermitian inner product given by polarizing the norm

in Eq. (1.5) above.

Let T (g)′ denote the algebraic dual of T (g). Then we can identify the topo-

logical dual space of T (g)t with the subspace of T (g)′ consisting of those α ∈ T (g)′ such

that

||α||2t :=
∞∑

k=0

tk

k!
||αk||2(g∗)⊗k < ∞,
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where α = ⊕∞
k=0αk with αk ∈ (g∗)⊗k, where || · ||(g∗)⊗k denotes the cross norm on (g∗)⊗k

arising from the inner product on g∗ dual to the given inner product on g. Denote this

space T (g)∗t .

Let J denote the ideal in T (g) generated by {ξ ⊗ η − η ⊗ ξ − [ξ, η] : ξ, η ∈ g},
and J0

t = {α ∈ T (g)∗t : 〈α, v〉 = 0 for all v ∈ J}. To any holomorphic function u on G,

we can associate an element αu of J0
t given by

〈αu, ξ1 ⊗ · · · ⊗ ξk〉 = (ξ̃1 · · · ξ̃ku)(e).

Then the main theorm of [4] states that if G is simply connected, then the map u ∈
HL2(G, µt(x)dx) → αu ∈ J0

t is unitary.

Infinite dimensional analogues have been proven by Gordina in [9] and [10] on

GL(H), the group of invertible operators on a complex Hilbert space H, and groups

associated with a II1− factor. The goal of this work is to establish yet another infininte

dimensional Taylor map, this one on W(G), the groups of paths based at the identity on

a simply connected complex Lie group G.

1.2 Statement of Results

Let G be an arbitrary complex simply connected Lie group and g = TeG its Lie

algebra. Assume there is a given Hermitian inner product ( , )g on g. Let 〈 , 〉 denote

the real left invariant Riemannian metric on G determined by

〈Ã, B̃〉 = Re(A,B)g ∀ A,B ∈ g

where Ã denotes the unique left invariant vector field satisfying Ã(e) = A ∈ g. We will

use 〈 , 〉g to denote this inner product on g.

Choose XC to be an orthonormal basis for the complex inner product space

(g, ( , )g). If we denote the complex structure on g by J , then XR = {XC,JXC} is an

orthonormal basis of the real inner product space (g, 〈 , 〉g). Define the Laplacian on G

by

∆G =
∑

A∈XC

Ã2 + J̃A
2

=
∑

A∈XR

Ã2. (1.6)
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Then ∆G is a stongly elliptic operator and in the case where G is unimodular, it is

the Laplace-Beltrami operator (see Remark 2.2 in [4]). Let H (G) denote the space of

complex valued holomorphic functions on G. Let dx denote a fixed right invariant Haar

measure.

Define W(G) to be the based path group on G, i.e. the continuous paths

σ : [0, 1] → G such that σ(0) = e. Similarly, we’ll let W(g) denote the continuous paths

h : [0, 1] → g such that h(0) = 0. Define the energy of a path σ ∈ W(G) by

E(σ) :=


∫ 1
0 |Lσ(s)−1∗σ

′(s)|2gds, if σ is absolutely continuous

∞, otherwise

The finite energy subgroup of W(G) is then given by

H(G) = {σ ∈ W(G)| E(σ) < ∞}.

Similarly, for a h ∈ W(g), let

(h, h)H(g) :=


∫ 1
0 |h

′(s)|2gds, if h is absolutely continuous

∞, otherwise

We define the Cameron-Martin subspace of W(g) as

H(g) = {h ∈ W(g)| (h, h)H(g) < ∞}.

Given h, k ∈ H(g), we can define a Hermitian inner product on H(g) by

(h, k)H(g) =
∫ 1

0
(h′(s), k′(s))gds.

With this inner product, H(g) is a Hilbert space. As above, we let 〈h, k〉H(g) =

Re(h, k)H(g). It is often convenient to think of H(g) as the “Lie algebra” of W(G).

Let SC ⊂ H(g) be an orthonormal basis for the complex inner product space

(H(g), ( , )H(g)). The complex structure J on H(g) is that on g defined pointwise.

That is, for h ∈ H(g), J h ∈ H(g) is given by (J h)(t) = J (h(t)) for all t ∈ [0, 1].

Then SR = {SC,J SC} is an orthonormal basis for the real inner product space (H(g), 〈
, 〉H(g)).

Our goal is to extend the results of [4, 9, 10, 22, 21, 1] to holomorphic functions

on W(G). In order to do so, we will need a notion of heat kernel measure on W(G).
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We construct a W(G)-valued Brownian motion, and define νt, our heat kernel measure,

to be the endpoint distribution of this process. Specifically, let {β(t, s)}0≤s≤1,0≤t<∞ be

a g-valued Brownian sheet with half the usual covariance defined on some probability

space (Ω,F , P ) (For more details, see section 3.2). The following theorem is the main

result of chapter 3.

Theorem 1.1 (Theorem 3.8). Suppose G is a Lie group with left invariant Riemannian

metric 〈 , 〉 and g0 ∈ W(G). Then there exists a continuous adapted W(G)-valued process

{Σ(t)}t≥0 on a filtered probability space (W,{Ft}t≥0,F , P ) such that for each s ∈ [0, 1],

Σ(·, s) solves the stochastic differntial equation:

Σ(δt, s) = LΣ(t,s)∗β(δt, s) with Σ(0, s) = g0(s).

More precisely,

Σ(δt, s) =
∑

A∈XR

Ã(Σ(t, s))βA(δt, s) with Σ(0, s) = g0(s).

where βA(t, s) = 〈A, β(t, s)〉g. Here βA(δt, s) denotes the Stratonovich differential of the

process t → βA(t, s). We will use “δ” for the Stratonovich differential and “d” for the

Itô differential of a semimartingale.

Definition 1.2. Let νt := Law(Σ(t, ·)).

Given a partition of [0, 1], P = {0 = s0 < s1 < · · · < sn < sn+1 = 1}, and

g ∈ W(G), define πP : W(G) → Gn by

πP(g) = (g (s1) , g (s2) , ..., g (sn)).

Definition 1.3. A function f is a holomorphic cylinder function on W(G) if there exists

a partition P and a holomorphic function F : Gn → C such that f = F ◦ πP .

Definition 1.4. Let Ht denote the L2(νt)-closure of the holomorphic cylinder functions

on W(G).
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Ht will serve as our Hilbert space of holomorphic functions. In order to state

our version of the Taylor map, we must establish a suitable notion of “derivatives at the

origin” for a function f ∈ Ht. The following theorem is motivated by the results of

Sugita and others ([23, 24]) in the setting of an abstract Wiener space and can be found

in Chapter 4.

Notation 1.5. Let H(H(G)) denote the functions on H(G) which are holomorphic in

the sense of Notation 4.5.

Theorem 1.6 (Theorem 4.7). There exists an injective linear map R : Ht → H(H(G))

with the following properties:

1. For f a holomorphic cylinder function, Rf = f |H(G).

2. For g ∈ H(G), |(Rf)(g)|2 ≤ ||f ||2L2(νt)
e
|g|2

H(G)
t , where |g|H(G) denotes the Rie-

mannian distance between g and the identity path in H(G).

Denote by T (H(g)) the tensor algebra over the complex vector space H(g).

For each t > 0, define a norm on T (H(g)) by

||β||2t =
∞∑

k=0

k!
tk
|βk|2 where β = ⊕∞

k=0βk

with βk ∈ H(g)⊗k for k = 0, 1, 2, ..., where |βk| denotes the cross norm on H(g)⊗k arising

from the inner product on H(g)⊗k determined by the given inner product on H(g). We’ll

denote the completion of T (H(g)) with respect to this norm by T (H(g))t. Then the

Hermitian inner product on T (H(g))t given by polarizing the above turns T (H(g))t into

complex Hilbert space.

The topological dual space of T (H(g))t may be identified with the subspace

T (H(g))∗t of the algebraic dual T (H(g))′ of T (H(g)) consisting of those α ∈ T (H(g))′

such that

||α||2t :=
∞∑

k=0

tk

k!
|αk|2(H(g)∗)⊗k < ∞,

where αk ∈ (H(g)∗)⊗k and |αk|(H(g)∗)⊗k denotes the cross norm on (H(g)∗)⊗k determined

by the Hermitian inner product on H(g)∗ dual to the given Hermitian inner product on

H(g).
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For u ∈ H(H(G)), let αu ∈ T (H(g))′ be defined by

〈αu, h1 ⊗ h2 ⊗ · · · ⊗ hn〉 = (h̃1h̃2 · · · h̃nu)(e)

for hj ∈ H(g) for j = 1, ..., n, where e represents the identity path in W(G) and

(h̃u)(g) ≡ d

dt
|t=0u(g · eth)

for g ∈ H(G) and h ∈ H(g). We will sometimes write αu = (1 − D)−1
e u. Then by

definition of the Lie bracket on H(g), αu annihilates the two sided ideal

J(H(g)) := 〈ξ ⊗ η − η ⊗ ξ − [ξ, η]|ξ, η ∈ H(g)〉.

Let J0(H(g)) denote the annihilator of J(H(g)), that is

J0(H(g)) := {α ∈ T (H(g))′|α|J(H(g)) ≡ 0},

and let

J0
t (H(g)) := J0(H(g)) ∩ T (H(g))∗t .

We are now able to define the Taylor map on Ht. Using the above notation,

we send f ∈ Ht → αRf ∈ J0
t (H(g)). Then we are able to show the following in Chapter

4.

Theorem 1.7 (Corollary 4.13). For any complex Lie group G, the Taylor map, (1 −
D)−1

e R : Ht → J0
t (H(g)), is an isometry.

In the previous cases [4, 9, 10, 22, 21, 1], the analagous Taylor map was also

surjective. Chapter 5 is devoted to proving the the following special case.

Theorem 1.8 (Theorem 5.12). Suppose G is a stratified nilpotent Lie group. Then the

Taylor map, f ∈ Ht → αRf ∈ J0
t (H(g)), is unitary.

The appendix contains a section on reproducing kernels, a section containing

example calculations, as well as a section devoted to stating and proving a theorem

orignially found in [6] which is essential to proving surjectivity of the Taylor map when

G is a stratified nilpotent Lie group.



2

Finite Dimensional

Approximations

The primary purpose of this chapter is to summarize relations between the

infinite group W(G) and finite products of G based on a partition of [0, 1]. The relations

will be used often throughout the sequel.

2.1 Approximations to W(G)

For the entirety of this chapter, we’ll let P = {0 = s0 < s1 < · · · < sn < sn+1 =

1} denote a partition of [0, 1]. We will also use the notation #(P) = n, the number of

partition points of P.

A partition P gives rise to a cannonical map on W(G), πP : W(G) → G#(P)

defined by

πP(g) = (g(s1), g(s2), ..., g(sn)). (2.1)

Notation 2.1. Let e denote the identity path. That is e(t) = e ∈ G for all t ∈ [0, 1].

9
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Notice that for h ∈ H(g),

πP∗e(h) :=
d

dt
|t=0πP(eth) (2.2)

=
d

dt
|t=0(eth(s1), ..., eth(sn))

= (h(s1), ..., h(sn)). (2.3)

Furthermore, for any g ∈ H(G), Lg∗h ∈ TgH(G), and we have the relationship

πP∗g(Lg∗h) =
d

dt
|t=0πP(geth)

=
d

dt
|t=0(g(s1)eth(s1), ..., g(sn)eth(sn))

= LπP (g)∗
(
πP∗e(h)

)
. (2.4)

We will revisit Eq. (2.3) and Eq. (2.4) in the next section.

Functions on G#(P) determine a natural class of functions on W(G) via the

map πP .

Definition 2.2. A function f : W(G) → C is a smooth cylinder function if there exists

a partition P = {0 = s0 < s1 < ... < sn ≤ 1} of [0, 1] and a F ∈ C∞(G#(P)) such that

f(g) = F (g(s1), ..., g(sn)) for all g ∈ W(G). That is, f = F ◦ πP . The collection of

smooth cylinder functions is denoted FC∞(W).

Notation 2.3. We write f ∈ FC∞
c (W) if f = F ◦ πP for an F ∈ C∞

c (G#(P)).

Definition 2.4. A function f ∈ FC∞(W) is a holomorphic cylinder function if there

exists an F ∈ H(G#(P)) such that f = F ◦ πP . The collection of holomorphic cylinder

functions is denoted HFC∞(W).

Expressions involving cylinder functions often reduce to related finite dimen-

sional expressions. For example Remark 2.7 below indicates that differentiation of a

cylinder function f = F ◦ πP is equivalent to a differentiation of F . In addition, the set

of cylinder functions is closed under the operation of differentiation.

Definition 2.5. Given h ∈ H(g) and f ∈ FC∞(W), define

(h̃f)(g) :=
d

dt
|0f(g · eth) ∀g ∈ W(G)

where g · eth ∈ W(G) is defined by (g · eth)(s) = g(s) · eth(s) for all s ∈ [0, 1].
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Notation 2.6. Suppose f = F ◦ πP where F ∈ C∞(G|P|). Then for A ∈ g and

i ∈ {1, 2, ..., n} let

Ã(i)F (x1, x2, ..., xn) :=
d

dt
|0F (x1, ..., xi · etA, xi+1, ..., xn). (2.5)

Remark 2.7. Notice that for h ∈ H(g),

h̃f =
n∑

i=1

(h̃(si)
(i)

F ) ◦ πP . (2.6)

In particular, note that h̃f is still a smooth cylinder function based on the same partition

P.

2.2 Approximations to H(g)

The differential of the map πP : W(G) → G#(P) maps H(g) to g#(P) as seen

in Eq. (2.3). Proposition 2.15 shows that there is an isometric Lie algebra isomorphism

between a subspace of H(g) and g#(P), where the metric on g#(P) is described below.

K : [0, 1]2 → R will be used to denote the reproducing kernel for H(R) and H(C), i.e.

K(s, t) = s ∧ t as in Notation 6.4. See section 1 of the appendix for more details.

Definition 2.8. Define ( , )P to be the unique left invariant Hermitian inner product

on the fibers of TG#(P) such that for 1 ≤ i, j ≤ n,

(A(i), B(j))P = (A,B)g Qij for all A,B ∈ g,

where Q is the inverse of the matrix {K(si, sj)}n
i,j=1 and A(i) and B(j) are defined as in

Remark 2.7.

Remark 2.9. Staying consistent with earlier notation, we’ll let 〈 , 〉P ≡ Re( , )P denote

the corresponding real left invariant Riemannian metric on the fibers of TG#(P).

Definition 2.10. Let HP(g) denote the subspace of H(g) given by

HP(g) ≡ {h ∈ H(g) ∩ C2 ((0, 1)\P) |h′′ = 0 on [0, 1]\P}.

Remark 2.11. Notice that HP(g) is a closed subspace of H(g), but not a Lie subalgebra

with the inherited pointwise commutator.
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Proposition 2.12. Let πP∗e : H(g) → g#(P) be given by Eq. (2.2), that is

πP∗eh = (h(s1), ..., h(sn)).

Then Nul(πP∗e) = HP(g)⊥.

Proof. First suppose that h ∈ Nul(πP∗e), that is h (si) = 0 for all i = 0, 1, ..., n. Let

k ∈ HP(g). Then there exist A0, ..., An−1 ∈ g such that

k(t) =
n−1∑
i=0

Ai(t ∧ si+1 − t ∧ si).

Notice that

k′(t) =
n−1∑
i=0

Ai1si−1<t<si .

Then

(h, k)H(g) =
∫ 1

0

(
h′(t), k′(t)

)
g
dt

=
n−1∑
i=0

∫ si+1

si

(
h′(t), Ai

)
g
dt

=
n−1∑
i=0

(h (si+1)− h (si) , Ai)g

=
n−1∑
i=0

(0, Ai)g

= 0.

Therefore, Nul(πP∗e) ⊆ HP(g)⊥.

Now suppose that h ∈ HP(g)⊥. Let Ai = h (si+1) − h (si) ∈ g for i =

0, 1, ..., n− 1. Again, set

k(t) =
n−1∑
i=0

Ai(t ∧ si+1 − t ∧ si).

Then k ∈ HP(g) and, as above,

k′(t) =
n−1∑
i=0

Ai1si−1<t<si .
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We necessarily have

0 = (h, k)H(g)

=
n−1∑
i=0

(h (si+1)− h (si) , Ai)g

=
n−1∑
i=0

||h(si+1)− h (si) ||2g,

which clearly implies that h(si+1)− h (si) = 0 for i = 0, 1, ..., n− 1. But since h(0) = 0,

we have that h(si) = 0 for all i = 0, 1, ..., n. Therefore, h ∈ Nul(πP∗e), and HP(g)⊥ ⊆
Nul(πP∗e).

Remark 2.13. Proposition 2.12 indicates that

H(g) = HP(g)
⊥
⊕Nul(πP∗e).

In particular, if PP : H(g) → HP(g) is orthogonal projection, then PPh is the element

of HP(g) that agrees with h at all partition points. This projection will be important in

Chapter 5.

As indicated in Remark 2.11, HP(g) is not a Lie algebra with the inherited

pointwise commutator. We can, however, define a new bracket on HP(g) using the

above projection map.

Proposition 2.14. Define [ , ]P on HP(g) by [h, k]P = PP [h, k]. Then (HP(g), [ , ]P)

is a Lie algebra.

Proof. One simply needs to verify the Jacobi identity. For any h, k ∈ HP(g), [h, k]P is

piecewise linear and therefore determined by its values on the partition points. Since

for any si ∈ P, [h, k]P(si) = [h (si) , k (si)], the Jacobi identity follows from that for [ , ]

on g.

Proposition 2.15. Consider HP(g) as described in Definition 2.10 with inner product

( , )H(g) and commuator [ , ]P , and g#(P) with inner product ( , )P and commuator [ , ].

Then the map πP∗e : HP(g) → g#(P), the map described in Proposition 2.12 restricted

to HP(g), is an isometric Lie algebra isomorphism.
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Proof. To see that πP∗e is an isometry, associate to A = (A1, ..., An) ∈ g#(P) a path

hA(t) ≡
∑n

i=1 K(si, t)Ai ∈ HP(g). Then if B = (B1, ..., Bn) ∈ g#(P),

(hA, hB)H(g) =
n∑

i,j=1

(K(si, ·),K(sj , ·))H(C) (Ai, Bj)g

=
n∑

i,j=1

K(si, sj) (Ai, Bj)g , (2.7)

where we have used Remark 6.5 of the appendix.

{K(si, sj)}n
i,j=1 is a postive definite matrix, so setting B = A in Eq. (2.7)

shows that A → hA is injective and hence surjective by the rank nullity theorem. By

Definition 2.8,

(
πP∗e(hA), πP∗e(hB)

)
P =

n∑
k,l=1

(
hA(sk)(k), hB(sl)(l)

)
P

=
n∑

k,l=1

Qkl (hA(sk), hB(sl))g

=
n∑

i,j,k,l=1

QklK(si, sk)K(sj , sl)(Ai, Bj)g

=
n∑

i,j=1

K(si, sj) (Ai, Bj)g

= (hA, hB)H(g) ,

where Eq. (2.7) was used in the last equality. Therefore, πP∗e is an isometry.

We end this section by showing how the above results on tangent spaces allow

us to relate distances on our Lie groups H(G) and G#(P). We first prove the result in

the case of a general Riemannian manifold.

Definition 2.16. Define the distance function on a Riemannian manifold, d : M×M →
R, by

d(m,n) = inf
∫ 1

0
|σ′(s)|ds,

where the infimum is taken over all C1−paths σ such that σ(0) = m and σ(1) = n.

Notice that d(m,n) = d(n, m).
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Remark 2.17. In the case where the manifold is a Lie group G with a left invariant

metric, it follows that for all x, y, z ∈ G,

d(zx, zy) = d(x, y).

Notation 2.18. For x ∈ G, we will sometimes use the notation

|x| := d(e, x).

Notice by Remark 2.17,

|x| = |x−1|

and

d(x, y) = |x−1y| = |y−1x|.

Proposition 2.19. Suppose (M, g) and (N,h) are Riemannian manifolds with π : M →
N a surjective map such that π∗m : Nul(π∗m)⊥ → Tπ(m)N is an isometric isomorphism

for all m ∈ M. If dM and dN denotes the distance on M and N respectively, then for

all m1,m2 ∈ M ,

dN (π(m1), π(m2)) ≤ dM (m1,m2).

Proof. For all m ∈ M and all vm ∈ TmM , we can write vm = wm + w⊥
m, where wm ∈

Nul(π∗m) and w⊥
m ∈ Nul(π∗m)⊥. Since wm and w⊥

m are orthogonal, |w⊥
m|g ≤ |vm|g.

Finally, since π∗mvm = π∗mw⊥
m, we have

|π∗mvm|h = |π∗mw⊥
m|h = |w⊥

m|g ≤ |vm|g.

Now let σ : [0, 1] → M be a C1-path such that σ(0) = m1 and σ(1) = m2. Then

π ◦ σ : [0, 1] → N is a path connecting π(m1) to π (m2), and

dN (π(m1), π (m2)) ≤ l(π ◦ σ) =
∫ 1

0
|π∗σ(s)σ

′(s)|hds ≤
∫ 1

0
|σ′(s)|gds = l(σ).

Taking the infimum over all paths σ gives the desired result.

Corollary 2.20. For any partition P and any g ∈ H(G),

|πPg|P ≤ |g|H(G).
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Proof. We apply Proposition 2.19 with (M, g) = (H(G), 〈 , 〉H(G)), (N,h) = (G#(P), 〈 ,

〉P), and π = πP . Notice by Eq. (2.4), for any g ∈ H(G) and h ∈ H(g), πP∗g(Lg∗h) =

LπPg∗πP∗eh. Since all metrics are left invariant, Proposition 2.15 indicates that πP∗g :

Lg∗HP(g) → LπPg∗g
#(P) is an isometric isomorphism. Therefore,

|πPg|P = dG#(P)
(πPe, πPg) ≤ dH(G)(e, g) = |g|H(G).

2.3 Associated Laplacians

Remark 2.7 indicates that taking derivatives is a well defined operation on

cylinder functions. So too is the following natural Laplacian.

Definition 2.21. For f ∈ FC∞
c (W), define the Laplacian ∆H(G) by

∆H(G)f =
∑
h∈SR

h̃2f.

If f = F ◦ πP , then by Eq. (2.6) and Proposition 6.12 of the appendix,

∆H(G)f =
∑
h∈SR

n∑
i,j=1

(h̃(sj)
(j)

h̃(si)
(i)

F ) ◦ πP (2.8)

=
∑

A∈XR

n∑
i,j=1

K(sj , si)(Ã(j)Ã(i)F ) ◦ πP .

So if we define an operator ∆P on C∞
c (G#(P)) by

∆PF ≡
∑

A∈XR

n∑
i,j=1

K(sj , si)(Ã(j)Ã(i)F ),

then we have the relationship

∆H(G)(F ◦ πP) = (∆PF ) ◦ πP .

Remark 2.22. Given the map πP∗e : HP(g) → g#(P) as described in Proposition 2.12 ,

for f = F ◦ πP ,

∆H(G)f =
∑
h∈SR

n∑
i,j=1

(h̃(sj)
(j)

h̃(si)
(i)

F ) ◦ πP

=
∑
h∈SR

(π̃P∗eh
2
F ) ◦ πP ,
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or in other words

∆PF =
∑
h∈SR

π̃P∗eh
2
F.

In particular, since H(g) = HP(g)
⊥
⊕Nul(ΠP), if SPR is an orthonormal basis for the real

inner product space (HP(g), 〈 , 〉H(g)), then

∆H(G)f =
∑

h∈SPR

h̃2f

=
∑

h∈SPR

(π̃P∗eh
2
F ) ◦ πP ,

and

∆PF =
∑

h∈SPR

π̃P∗eh
2
F. (2.9)

Suppose f ∈ FC∞(W) and f = F ◦ πP for some partition P. Then for any

partition P̃ ⊃ P, we can also write f = F̃ ◦ πP̃ for an appropriate F̃ ∈ C∞(G|P̃|).

Regardless of the choice of representation of f as a cylinder function, ∆H(G)f is well

defined.

Proposition 2.23. Suppose P̃ ⊃ P are two partitions of [0, 1] and f ∈ FC∞(W) has the

property that f = F ◦ πP = F̃ ◦ πP̃ for appropriate F ∈ C∞(G#(P)) and F̃ ∈ C∞(G|P̃|).

Then (∆PF ) ◦ πP ≡ (∆P̃ F̃ ) ◦ πP̃ .

Proof. For convenience, we’ll consider the case where #(P) = n and P̃ = P ∪ {sn+1}
for some sn < sn+1 ≤ 1. The general case will follow by analagous compuations and

iteration. For any A ∈ g, g ∈ W(G), and i = 1, 2, ..., n,

(Ã(i)F̃ )(πP̃(g)) =
d

dt
|t=0F̃ (g(s1), ..., g (si−1) , g(si)etA, g(si+1), ..., g(sn+1))

=
d

dt
|t=0F (g(s1), ..., g (si−1) , g(si)etA, g(si+1), ..., g(sn))

= (Ã(i)F )(πP(g)).
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Also,

(Ã(n+1)F̃ )(πP̃(g)) =
d

dt
|t=0F̃ (g(s1), ..., g(sn), g(sn+1)etA)

=
d

dt
|t=0F (g(s1), ..., g(sn))

= 0.

It follows that

(∆P̃ F̃ ) ◦ πP̃ =
∑

A∈XR

n+1∑
i,j=1

K(sj , si)(Ã(j)Ã(i)F̃ ) ◦ πP̃

=
∑

A∈XR

n∑
i,j=1

K(sj , si)(Ã(j)Ã(i)F ) ◦ πP

= (∆PF ) ◦ πP .

The following is a summary of definitions and basic properties of strongly con-

tinuous semigroups of operators on a Banach space X. A more detailed exposition can

be found in a variety of sources, specifically [18] and [8].

Definition 2.24. Let X be a Banach space. Then a collection of bounded linear oper-

ators St for t ≥ 0 is a strongly continuous semigroup on X if

1. S0 = I.

2. Ss+t = SsSt.

3. S(·)f ∈ C([0,∞), X) for all f ∈ X.

Definition 2.25. The generator of a strongly continuous semigroup St is the linear

operator L given by

Lf = lim
t→0

Stf − f

t
,

for all f such that the limit exists.

Remark 2.26. Any generator of a strongly continuous semigroup is closed and densely

defined. See, for example, the proposition on page 237 of [18].
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Proposition 2.27. Suppose St is a strongly continuous semigroup on X with generator

L. Then ut := Stf satisfies

∂

∂t
ut = Lut with u0 = f.

Proof. The proof follows readily from the above definitions. Certainly u0 = S0f = If =

f by property (1) of Definition 2.24. Furthermore, by property (2) of Definition 2.24

and Definition 2.25,

∂

∂t
ut =

d

ds
|s=0us+t

=
d

ds
|s=0Ss+tf

=
d

ds
|s=0Ss(Stf)

= lim
s→0

Ss(Stf)− (Stf)
s

= L(Stf)

= Lut.

Notation 2.28. In light of the above Proposition, if St is a strongly continuous semi-

group on X with generator L, we will write

St = etL.

Given a linear operator, it is natural to ask if it generates some semigroup.

This question is answered in generality by the Hille-Yoshida Theorem (pg. 238 of [18]).

We are primarily concerned with operators on Hilbert spaces, in which case the following

proposition will be sufficient.

Proposition 2.29. Suppose L is a self-adjoint operator defined on a dense subset of a

Hilbert space H. Then the closure of L generates a strongly continous semigroup on H.

Notation 2.30. We will abuse notation and use the same symbol to denote the operator

and its closure.
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The left invariant Laplacians ∆G and ∆P are essentially self-adjoint with re-

spect to our right invariant Haar measure on their domains of definition, the complactly

supported smooth functions. Hence their closures generate strongly contiuous semi-

groups on L2(G, dx) and L2(G#(P), dx) respectively, where dx denotes the appropriate

right invariant Haar measure.

Definition 2.31. If etL is a strongly continuous semigroup such that for all f ∈ L2(G, dx)

(
etLf

)
(y) =

∫
G

f(yx−1)pt(x)dx

for some pt ∈ L2(G, dx), then we call pt the convolution semigroup kernel of etL.

Definition 2.32. Let G be a Lie group with {Ai}d
i=1 an orthonormal basis for g with

respect to a real left invariant Riemannian metric 〈 , 〉. A left invariant second order

differential operator L is strongly elliptic if for any f ∈ C2(G),

(Lf) (g) =
d∑

i,j=1

aij

(
ÃiÃjf

)
(g) +

d∑
i=1

bi

(
Ãif

)
(g) + cf(g),

where
d∑

i,j=1

aijξ
iξj ≥ C0|ξ|2

for some C0 > 0 and for all ξ ∈ Rd.

Remark 2.33. That ∆P is a strongly elliptic operator is evident from Eq. (2.9). In this

case, {aij}d
i,j=1 is the identity matrix and hence

d∑
i,j=1

aijξ
iξj = |ξ|2.

The following theorem summarizes some important properties found in Robin-

son [19] of strongly continuous semigroups generated by strongly elliptic operators and

their corresponding convolution kernels. [19] treats the case where dx represents left

invariant Haar measure, though the case of right invariant Haar measure is similar. For

the reader’s convenience, we will cite each property separately.
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Theorem 2.34. Let L be a strongly elliptic second-order operator with no zeroth order

coefficient (c = 0 in Definition 2.32) on a Lie group G of dimension d. Let dx denote

right invariant Haar measure. Then there exists a strictly positive convolution semigroup

kernel pt ∈ C∞((0,∞)×G) satisfying:

1.
∫
G pt(x)dx = 1. (pg. 253 of [19])

2. pt satisfies the following “heat” equation

∂

∂t
pt(x) = Lpt(x)

with the initial condition

lim
t→0

pt(x) = δ(x),

with the limit interpreted in a weak sense. (pg. 253 of [19])

3. There exist constants a, b > 0 and ω ≥ 0 such that for all t > 0 and g ∈ G,

|pt(g)| ≤ at
−d
2 e

−b|g|2
t eωt.

(Theorem 4.1 of [19]).

Notation 2.35. Let pPt denote the smooth semigroup kernel for the operator t
4∆P , and

let pG
t denote the smooth semigroup kernel for the operator t

4∆G.

Remark 2.36. The fact that ∆P and ∆G are essentially self-adjoint implies that pPt and

pG
t are invariant under x → x−1, that is,

pPt (x) = pPt (x−1)

and

pG
t (x) = pG

t (x−1).
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Heat Kernel Measure

In this chapter, we construct the heat kernel measure on W(G). The measure

is constructed as the law of a continuous W(G) valued process. To prove the existence

of such a process, we first require some geometric estimates.

3.1 Geometric Preliminaries

The following theorem is well known and can be found in a variety of sources

(for example, see [2, 20]).

Theorem 3.1 (Bishop’s Comparision Theorem). Let (M, g) be an N-dimensional com-

plete Riemannian manifold, κ ≥ 0, and assume that

Ric〈ξ, ξ〉 ≥ −(N − 1)κg〈ξ, ξ〉 ∀ξ ∈ TM

Let o ∈ M and V (r) denote the Riemannian volume of the ball of radius r centered at

o ∈ M . Then

V (r) ≤ ωN−1

∫ r

0

(
sinh

√
κρ√

κ

)N−1

dρ,

where ωN−1 is the surface area of the unit N-1 sphere in RN . Also,

V (r) ≤ ωN−1r
Ne

√
κr.

22
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Proposition 3.2. Let G be a finite dimensional Lie group with left invariant metric 〈 ,

〉. Then (G, 〈 , 〉) satisifies the hypotheses of Bishop’s Comparison Theorem (Theorem

3.1). That is, there exists a κ such that

Ric〈ξ, ξ〉 ≥ κ〈ξ, ξ〉 ∀ξ ∈ TG. (3.1)

Proof. Since both R〈 , 〉 and 〈 , 〉 are bilinear, it suffices to show Eq. (3.1) for vectors

ξ ∈ TM with |ξ| = 1. The set {(e, ξ) ∈ TG|ξ ∈ TeG with |ξ| = 1} is compact and hence

has Ricci curature bounded below by some constant κ. Then since 〈 , 〉 is left invariant,

Ric〈ξ, ξ〉 ≥ κ for any g ∈ G and for all ξ ∈ TgG with |ξ| = 1.

Remark 3.3. In particular, Proposition 3.2 indicates that (G#(P), 〈 , 〉P) satisfies the

hypotheses of Bishop’s Comparision Theorem.

The following proposition can be found in [5]. We include the proof for com-

pleteness.

Proposition 3.4. Let G be a Lie group. Then there exists a constant c < ∞ such that

for all x ∈ G, ||Adx|| ≤ ec|x|, where || · || denotes the operator norm.

Proof. Let σ : [0, 1] → G be a C1−path such that σ(0) = e and σ(1) = x. Then

d

dt
Adσ(t) =

d

dε
|ε=0Adσ(t)Adσ(t)−1σ(t+ε) = Adσ(t)adθ〈σ′(t)〉,

where θ〈σ′(t)〉 = Lσ(t)−1∗σ
′(t). Hence,

||Adσ(t)|| = ||I +
∫ t

0
Adσ(τ)adθ〈σ′(τ)〉dτ ||

≤ 1 + c

∫ t

0
Adσ(τ)adθ〈σ′(τ)〉dτ,

where c = max{||adα|| : α ∈ g and ||α|| = 1} and ||adα|| denotes the operator norm of

adα. Therefore by Gronwall’s inequality,

||Adx|| = ||Adσ(1)|| ≤ exp
(

c

∫ 1

0
|θ〈σ′(t)〉|dt

)
= ecl(σ) ≤ ec|x|.
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In the proof of Theorem 3.8 to follow, we will need to estimate distances on

(G#(P), dP) in terms of distances on G. The following notation and Proposition 3.6 will

be used in the proof of Theorem 3.8.

Notation 3.5. Let {x, y} denote a point in G×G. Hence, for a two point partition P,

|{x, y}|P = dP({x, y}, {e, e}), where dP is the distace function on G×G relative to the

metric 〈 , 〉P .

For the next two propositions, suppose 0 < u < v < 1 and let P = {0 < u <

v < 1}. We’ll let | · |2P = 〈·,·〉P and | · |2g = 〈·,·〉g, so for {A,B} ∈ g× g,

|{A,B}|2P = 〈{A,B}, {A,B}〉P

= 〈{A, 0}+ {0, B}, {A, 0}+ {0, B}〉P

= 〈{A, 0}, {A, 0}〉P + 〈{A, 0}, {0, B}〉P

+ 〈{0, B}, {A, 0}〉P + 〈{0, B}, {0, B}〉P

= a|A|2g − 2b〈A,B〉g + c|B|2g, (3.2)

where a, b, c ∈ R are determined by the following special case of Definition 2.8, a −b

−b c

 =

 K(u, u) K(u, v)

K(u, v) K(v, v)

−1

=

 u u

u v

−1

=
1

u(v − u)

 v −u

−u u

 .

That is, a = v
u(v−u) , and b = c = 1

v−u .

Proposition 3.6. For all A,B ∈ g,

|A− u

v
B|g ≤

√
(u/v)(v − u)|{A,B}|P , (3.3)

and

|B|g ≤
√

v|{A,B}|P (3.4)
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Proof. By completing the squares in Eq. (3.2) we have

|{A,B}|2P = a

(
|A− b

a
B|2g + (

c

a
− b2

a2
)|B|2g

)
= a|A− b

a
B|2g +

ac− b2

a
|B|2g

=
v

u(v − u)
|A− u

v
B|2g +

1
v
|B|2g. (3.5)

Then since 1
v |B|

2
g ≥ 0,

v

u(v − u)
|A− u

v
B|2g ≤ |{A,B}|2P ,

which implies that

|A− u

v
B|g ≤

√
(u/v)(v − u)|{A,B}|P .

Similarly, since v
u(v−u) |A− u

v B|2g ≥ 0, Eq. (3.5) also yields

|B|g ≤
√

v|{A,B}|P .

Lemma 3.7. For any x, y ∈ G, we have that

d(x, y) = |x−1y| ≤ 2
√

v − uec|{x,y}|P |{x, y}|P , (3.6)

where c is the same constant as in Proposition 3.4.

Proof. Let x, y ∈ G, σ : [0, 1] → G and τ : [0, 1] → G be two smooth paths such that

σ(0) = τ(0) = e, σ(1) = x, and τ(1) = y. Since στ−1 : [0, 1] → G is a path joining

e to xy−1, it follows that |xy−1| ≤
∫ 1
0 |θ〈(στ−1)′(s)〉|ds, where θ is the Maurer-Cartan

form. Furthermore, {σ, τ} : [0, 1] → G×G is a smooth path with {σ, τ}(0) = {e, e} and

{σ, τ}(1) = {x, y}. Define A ≡ θ〈σ′(s)〉 and B ≡ θ〈τ ′(s)〉. Then

`(σ) =
∫ 1

0
|A(s)|gds,

`(τ) =
∫ 1

0
|B(s)|gds,

and

`P({σ, τ}) =
∫ 1

0
|{A(s), B(s)}|Pds.
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Notice that by Eq. (3.4),

`(τ) =
∫ 1

0
|B(s)|gds

≤
√

v

∫ 1

0
|{A(s), B(s)}|Pds

=
√

v`P({σ, τ})

≤ `P({σ, τ}). (3.7)

Set ι(g) ≡ g−1. Then

(τ−1)′ = ι∗τ
′ = ι∗Lτ∗B =

d

dt
|0ι(τetB) =

d

dt
|0e−tBτ−1 = −R−1∗B,

Therefore,

θ〈(στ−1)′(s)〉 = Lτσ−1(s)∗{Rτ−1(s)∗σ
′(s) + Lσ(s)∗(τ

−1)′(s)}

= Lτσ−1(s)∗{Rτ−1(s)∗Lσ(s)∗A(s)− Lσ(s)∗Rτ−1(s)∗B(s)}

= Adτ(s)(A(s)−B(s)).

So using Eqs.(3.3) , (3.4), and Proposition 3.4,

|xy−1| ≤
∫ 1

0
|Adτ(s)(A(s)−B(s))|gds

≤
∫ 1

0
‖Adτ(s)‖[|A(s)− u

v
B(s)|g + (1− u

v
)|B(s)|g]ds

≤
∫ 1

0
ec|τ(s)|[|A(s)− u

v
B(s)|g + (1− u

v
)|B(s)|g]ds

≤ ec`(τ)

∫ 1

0
(
√

(u/v)(v − u) + (1− u

v
)
√

v)|{A(s), B(s)}|Pds

≤ ec`({σ,τ})(
√

(u/v)(v − u) +
(v − u)√

v
)`P({σ, τ}) (3.8)

≤ ec`({σ,τ})√v − u

(√
u +

√
v − u√

v

)
`P({σ, τ})

≤ 2ec`({σ,τ})√v − u`P({σ, τ}).

where in line (3.8) we have also used Eq. (3.7). Minimizing this last inequality over all

σ joining e to x and all τ from e to y shows that

|xy−1| ≤ 2
√

v − uec|{x,y}|P |{x, y}|P .
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Sending x → x−1 and y → y−1 in the above expression also gives

|x−1y| ≤ 2
√

v − uec|{x−1,y−1}|P |{x−1, y−1}|P

= 2
√

v − uec|{x,y}|P |{x, y}|P .

3.2 Construction of νt

Let {β(t, s)}0≤s≤1,0≤t<∞ be a g-valued Brownian sheet with half the usualy

covariance. That is, {β(t, s)}0≤s≤1,0≤t<∞ is a jointly continuous, mean zero gaussian g-

valued process defined on a probability space (Ω,F , P ) such that, if βA(t, s) := 〈A, β(t, s)〉g
for A ∈ g, then

E[βA(t, s)βB(τ, σ)] = 〈A,B〉g(t ∧ τ)
1
2
K(s, σ)

=
1
2
〈A,B〉g(t ∧ τ)(s ∧ σ)

for all s, σ ∈ [0, 1], t, τ ∈ [0,∞), and A,B ∈ g, where E denotes expectation relative to

the measure P . In other words, for fixed s, t → β(t, s) is a g-valued Brownian motion

with variance 1
2K(s, s), and for fixed t, s → β(t, s) is a g-valued Brownian motion with

variance t.

We now are able to prove the existence of a Brownian motion on W(G), which

gives us a heat kernel measure.

Theorem 3.8. Suppose G is a Lie group with Lie algebra g and left invariant Rie-

mannian inner product 〈 , 〉 and g0 ∈ W(G). Then there exists a continuous adapted

W(G)-valued process {Σ(t)}t≥0 on the filtered probability space (W,{Ft}t≥0,F , P ) such

that for each s ∈ [0, 1], Σ(·, s) solves the stochastic differntial equation:

Σ(δt, s) = LΣ(t,s)∗β(δt, s) with Σ(0, s) = g0(s). (3.9)

More precisely,

Σ(δt, s) =
∑

A∈XR

Ã(Σ(t, s))βA(δt, s) with Σ(0, s) = g0(s), (3.10)
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where XR ⊂ g is an orthonormal basis for the real inner product space, Ã is the left

invariant vector field on G satisfying Ã(e) = A, and βA(t, s) = 〈A, β(t, s)〉. Here

βA(δt, s) denotes the Stratonovich differential of the process t → βA(t, s). We will use

“δ” for the Stratonovich differential and “d” for the differential of a semimartingale.

Remark 3.9. For fixed s, the existence of a G−valued process Σ(t, s) satisfying Eq. 3.9

follows from the existence of Brownian motion on a finite dimensional Lie group. See,

for example, Theorem 4.8.7 in [14]. The challege in proving Theorem 3.8 is showing that

there exists a jointly continuous version of Σ, that is Σ(t, ·) is a W(G)-valued process.

Before proving the existence of a continuous version of the process in Theorem

3.8, we first prove a couple of propositions regarding a related process.

Definition 3.10. Let {Σ0(t)}t≥0 denote the solution to Eq. 3.9 given by Remark 3.9

with initial condition g0(s) = e for all s ∈ [0, 1].

Notation 3.11. Given the processes β(t, s) and Σ0(t) defined above, for P a partition

of [0, 1], define a continuous G#(P)-valued process ΣP by

ΣP(t) := πP ◦ Σ0(t, ·),

and

βP(t) := πP∗eβ(t, ·) = (β(t, s1), β(t, s2), ..., β(t, sn))

Proposition 3.12. ΣP solves the SDE

ΣP(δt) = LΣP (t)∗βP(δt)

with ΣP(0) = (e, e, ..., e) ∈ G#(P). Furthermore, ΣP has generator 1
4∆P .

Proof. Using Eq. (3.9) and Eq. (2.4) we see that ΣP solves the SDE

ΣP(δt) = πP∗Σ0(t,s)Σ0(δt, s)

= πP∗Σ0(t,s)LΣ0(t,s)∗β(δt, s)

= LΣP (t)∗πP∗eβ(δt, s)

= LΣP (t)∗βP(δt, s), (3.11)
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with initial condition ΣP(0) = (e, e, ..., e) ∈ G#(P). Note that by Itô’s lemma, for any

function F ∈ C∞(G#(P)),

dF (ΣP(t)) =
n∑

i=1

∑
A∈XR

(A(i)F )(ΣP(t))βA
P (δt, si)

=
n∑

i=1

∑
A∈XR

(A(i)F )(ΣP(t))βA
P (dt, si)

+
1
2

n∑
i,j=1

∑
A,B∈XR

(B(j)A(i)F )(ΣP(t))βA
P (dt, si)βB

P (dt, sj)

=
n∑

i=1

∑
A∈XR

(A(i)F )(ΣP(t))βA
P (dt, si)

+
1
2

n∑
i,j=1

∑
A,B∈XR

(B(j)A(i)F )(ΣP(t))
1
2
K(si, sj)〈A,B〉dt

=
n∑

i=1

∑
A∈XR

(A(i)F )(ΣP(t))βA
P (dt, si)

+
1
4
(∆PF )(ΣP(t))dt,

which implies that ΣP(t, ·) is a G#(P)-valued process with generator 1
4∆P .

Proposition 3.13. Let P be a partition of [0, 1]. Then for any bounded measureable

function f : G#(P) → C and T > 0,

E[f(ΣP(T ))] =
∫

G#(P)

f(x)pPT (x)dx,

where pPT is the convolution semigroup kernel corresponding to the operator 1
4∆P (see

Notation 2.35).

Proof. First assume that f ∈ C2
c (G#(P)). For 0 ≤ t ≤ T , define

Ft(x) :=
∫

G#(P)

f(xy−1)pPT−t(y)dy =
∫

G#(P)

f(x)pPT−t(yx)dy.

Then Ft satisfies
∂

∂t
Ft = −1

4
∆PFt,
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for 0 ≤ t ≤ T. By Itô’s lemma and Proposition 3.12,

dFt(ΣP(t)) =
n∑

i=1

∑
A∈XR

(A(i)Ft)(ΣP(t))βA
P (δt, si) +

(
∂

∂t
Ft

)
(ΣP(t))

=
n∑

i=1

∑
A∈XR

(A(i)Ft)(ΣP(t))βA
P (dt, si)

+
1
4
(∆PFt)(ΣP(t))dt− 1

4
(∆PFt)(ΣP(t))dt

=
n∑

i=1

∑
A∈XR

(A(i)Ft)(ΣP(t))βA
P (dt, si),

which implies that Mt := Ft(ΣP(t)) is a local martingale. Our next goal is to show that

Mt is square integrable. It suffices to show

E
∫ T0

0

∣∣∣(A(i)Ft

)
(ΣP(t))

∣∣∣2 dt < ∞, (3.12)

for any T0 ∈ (0, T0) and i = 1, 2, ..., n.

For any A ∈ g#(P),

d

ds
f(xesAy−1) =

d

ds
f(xy−1esAdyA) = 〈Df(xy−1), AdyA〉.

Recall from Proposition 3.4, we have ||AdyA||g ≤ ||A||gec|y| for some c > 0. Therefore,∣∣∣∣ d

ds
f(xesAy−1)

∣∣∣∣ ≤ ||Df ||∞||A||gec|y|.

In addition, by part 3 of Theorem 2.34, it follows that∫
G#(P)

ec|y|pPT−t(y)dy = C(T − t),

where supε≤τ≤T C(τ) < ∞, for any ε > 0. We then have(
A(i)Ft

)
(x) =

d

ds
|s=0

∫
G#(P)

f(xesA(i)
y−1)pPT−t(y)dy

=
∫

G#(P)

d

ds
|s=0f(xesA(i)

y−1)pPT−t(y)dy

=
∫

G#(P)

〈Df(xy−1), AdyA
(i)〉pPT−t(y)dy.
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Moreover, for any T0 ∈ (0, T ),

sup
0≤t≤T0

|
(
A(i)Ft

)
(x)| = sup

0≤t≤T0

∣∣∣∣∫
G#(P)

〈Df(xy−1), AdyA
(i)〉pPT−t(y)dy

∣∣∣∣
≤ ||Df ||∞|A(i)|K(T0), (3.13)

where K0(T0) = supT−T0≤τ≤T C(τ)<∞. From Eq. (3.13), it follows that

E
∫ T0

0

∣∣∣(A(i)Ft

)
(ΣP(t))

∣∣∣2 dt ≤ ||Df ||∞|A(i)|K(T0)T0 < ∞,

which verifies Eq. (3.12). Therefore, Mt = Ft(ΣP(t)) is a Martingale for 0 ≤ t ≤ T .

For any t ∈ (0, T ), EMt = EM0, that is

E[Ft(ΣP(t))] = E[F0(ΣP(0)]

= F0(e, e, ..., e)

=
∫

G#(P)

f(y−1)pPT (y)dy

=
∫

G#(P)

f(y)pPT (y)dy, (3.14)

where in line (3.14) we have used Remark 2.36.

Since f ∈ C2
c (G#(P)), it is bounded, and therefore so is F . Furthermore, there

exists a constant C > 0 such that

|f(x)− f(y)| ≤ C|xy−1| = C|y−1x|.

Then for any ω ∈ Ω,

lim
t↑T

|Ft(ΣP(t)(ω))− f(ΣP(T )(ω))|

≤ lim
t↑T

∫
G#(P)

|f(ΣP(t)(ω)y−1)− f(ΣP(T )(ω))|pPT (y)dy

≤ lim
t↑T

∫
G#(P)

C|ΣP(T )(ω)−1ΣP(t)(ω)y−1|pPT (y)dy

≤ lim
t↑T

C|ΣP(T )(ω)−1ΣP(t)(ω)|
∫

G#(P)

|y−1|pPT (y)dy

≤ lim
t↑T

C̃|ΣP(T )(ω)−1ΣP(t)(ω)| (3.15)

= 0,
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since ΣP is continuous. The heat kernel growth bounds of Theorem 2.34 imply in line

(3.15) that
∫
G#(P) |y−1|pPT (y)dy < ∞. Therefore, the DCT allows us to conclude

E[f(ΣP(T ))] = lim
t↑T

E[Ft(ΣP(t))] =
∫

G#(P)

f(y)pPT (y)dy.

Proof of Theorem 3.8. We first consider the process Σ0 as given in Definition 3.10. Our

immediate goal is to show that there exists a continuous version of this process.

Fix τ ∈ [0,∞), and define a process u(t) ≡ Σ0(τ, s)−1Σ0(t, s) for t ≥ τ . Then

u(τ) = e ∈ G and u(t) solves the stochastic differential equation:

δu(t) = LΣ0(τ,s)−1∗
∑

A∈XR

Ã(Σ0(t, s))βA(δt, s)

=
∑

A∈XR

Ã(Σ0(τ, s)−1Σ0(t, s))βA(δt, s)

=
∑

A∈XR

Ã(u(t))βA(δt, s).

Therefore, if f ∈ C∞(G) of polynomial growth with f(e) = 0, then using Itô’s lemma,

for all t ≥ τ , we get

f(u(t)) =
∫ t

τ

∑
A∈XR

(Ãf)(u(r))βA(δr, s)

=
∫ t

τ

∑
A∈XR

(Ãf)(u(r))βA(dr, s) +
1
2

∫ t

τ

∑
A∈XR

(Ã2f)(u(r))
1
2
K(s, s)dr

=
∫ t

τ

∑
A∈XR

(Ãf)(u(r))βA(dr, s) +
K(s, s)

4

∫ t

τ
(∆Gf)(u(r))dr.

So we see that u(t) is a process on G with generator (t−τ)G(s,s)
4 ∆G. It then follows that

for any f ∈ C(G),

E(f(u(t)) = (e
(t−τ)K(s,s)

4
∆Gf)(e) =

∫
G

f(x)pG
(t−τ)K(s,s)(x)dx, (3.16)

where pG
t (x) denotes the heat kernel on G (see Notation 2.35). We now set f(x) =

d(x, e)p = |x|p. Let V (r) denote the volume of the ball of radius r centered at e ∈ G,

relative to the metric 〈 , 〉. Then by Bishop’s Comparison theorem (Theorem 3.1), there
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is a constant γ ∈ (0,∞) such that V (r) ≤ γrneγr. Then using our heat kernel estimate

Theorem 2.34, and an integration by parts, we find that

E|u(t)|p =
∫

G
|x|ppG

(t−τ)K(s,s)(x)dx

≤ a|t− τ |
n
2

∫ ∞

0
rpe

−br2

(t−τ)K(s,s) eω(t−τ)K(s,s)dV (r)

≤ −a|t− τ |
n
2

∫ ∞

0
(prp−1 − 2brp+1

(t− τ)K(s, s)
)e

−br2

(t−τ)K(s,s) eω(t−τ)K(s,s)V (r)dr

≤ K|t− τ |
n
2

∫ ∞

0

rp+1

(t− τ)K(s, s)
rne

−br2

(t−τ)K(s,s) eγrdr

where K = 2aγeωT . Using the following scaling argument∫ ∞

0
rke

−r2

α eγrdr = α
k+1
2

∫ ∞

0
rke−r2

e
√

αγrdr,

we get

E|u(t)|p ≤ K|t− τ |
p
2 K(s, s)

p
2

∫ ∞

0
rp+1e−r2

e

q
T
b

γr
dr ≤ K̃1

p |t− τ |
p
2 (3.17)

since K(s, s) ≤ 1 for all s.

Consider the partition P = {0 < s < σ < 1}. Then for any smooth cylinder

function f of polynomial growth such that f = F ◦ πP for some smooth F : G2 → C,

E[f(Σ0(t, ·)] = E[F (ΣP(t, ·)] = (e
t
4
∆PF )(e, e) =

∫
G2

F (x, y)pPt (x, y)dxdy. (3.18)

Let f(g) = d(g(s), g(σ))p for all g ∈ W(G). Then f = F ◦ πP where F (x, y) = d(x, y)p.

Using our heat kernel estimates (Theorem 2.34) and Lemma 3.7, we get that

E[f(Σ0(t, ·)] =
∫

G2

|x−1y|ppPt (x, y)dxdy

≤ 2|s− σ|
p
2

∫
G2

|{x, y}|pec|{x,y}|pPt (x, y)dxdy

≤ K̃2
p |s− σ|

p
2

by a computation very similar to Eq.(3.17).

Consequently, for each T ∈ (0,∞), there is a constant Kp(T ) such that

E[d(Σ0(t, s),Σ0(τ, σ))p] ≤ Kp(T )(|t− τ |
p
2 + |s− σ|

p
2 ),
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for all t, τ ∈ [0, T ] and s, σ ∈ [0, 1]. Therefore, by Kolmogorov’s continuity criteria (see

Theorem 1.4.1 of [14], or Theorem 53 of [17]) there is a continuous version Σ(t, s) of

Σ0(t, s) such that for all β ∈ (0, 1
2) there exists a positive random variable Kβ on W such

that

d(Σ(t, s),Σ(τ, σ)) ≤ Kβ(|t− τ |
p
2 + |s− σ|

p
2 ) a.s.

Furthermore, E[Kp
β] < ∞ for all p ∈ (1,∞). Since for each s ∈ [0, 1], Σ(·, s) is a version

of Σ0(·, s), it follows that Σ satisfies the hypothesis of the theorem with g0(s) = e.

For the general case, define Σ̂(t, s) = g0(s)Σ(t, s). Then {Σ̂(t)}t≥0 is a contin-

uous adapted W(G)-valued process which satisfies (3.9).

Definition 3.14. The measure νt = Law(Σ(t, ·)) is called the heat kernel measure on

W(G).

Definition 3.15. Let νPt = Law(ΣP(t)).

Proposition 3.16. νPt and νt satisfy the heat equations on W(G) and G#(P) in the

following weak sense. If f = F ◦ πP is a cylinder function, then

∂

∂t
νPt (F ) = νPt (

1
4
∆PF ) (3.19)

and
∂

∂t
νt(f) = νt(

1
4
∆H(G)f). (3.20)

Proof. Eq. (3.19) follows from the martingale decomposition in Proposition 3.12. That

is

∂

∂t
νPt (F ) =

∂

∂t
E[F (ΣP(t)]

=
∂

∂t
E[Mt +

∫ t

0

1
4
(∆PF )(ΣP(t))dt]

= E[
1
4
(∆PF )(ΣP(t))]

= νPt (
1
4
∆PF ),

where Mt is the martingale

Mt =
n∑

i=1

∑
A∈XR

(A(i)F )(ΣP(t))βA
P (dt, si).
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Eq. (3.20) follows readily from the above, since

∂

∂t
νt(f) =

∂

∂t
E[F ◦ πP(Σ(t, ·)] =

∂

∂t
E[F (ΣP(t)] = νPt (

1
4
∆PF ) = νt(

1
4
∆H(G)f).

Proposition 3.17. Suppose f ∈ such that f = F ◦ πP . Then ||f ||L2(νt) = ||F ||L2(νPt ).

Proof.

||f ||2L2(νt)
= E[|f(Σ(t, ·))|2] = E[|F ◦ πP(Σ(t, ·))|2] = E[|F (ΣP(t))|2] = ||F ||2

L2(νPt )
.
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The Taylor Map

4.1 Skeleton Theorem

For this chapter, we consider T > 0 to be fixed. In the previous chapter, we

constructed νT , the heat kernel measure on W(G). Recall that HFC∞(W) is used to

denote the holomorphic cylinder functions on W(G).

Definition 4.1. Let HT denote the L2(νT )-closure of HFC∞(W).

We wish to establish our Taylor map on this space HT . In order to do so, we

need a suitable notion of “derivatives at the origin” for a function f ∈ HT .

For g ∈ H(G), define a function Rg : HFC∞(W) ∩ L2(νT ) → C by

Rg(f) = f(g).

Then Rg is clearly linear and is defined on a dense subset of HT . The following

proposition indicates that Rg is bounded and has a continuous extension.

Proposition 4.2. For all g ∈ H(G), Rg can be extended uniquely to a continous linear

functional on all of HT .

Proof. Pick g ∈ H(G), and let f ∈ HFC∞(W) ∩ L2(νT ) with f = F ◦ πP for some

partition P of [0, 1]. Recall that by Definition 3.15, νPT is the heat kernel measure with

respect to right invariant Haar measure on G#(P) associated to the Laplacian 1
4∆P .

36
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Applying the finite dimensional results of Driver and Gross, specifically Remark 5.5 in

[4], we find that

|Rg(f)|2 = |F (πP(g))|2 ≤ ||F ||2
L2(νPT )

e
|πP (g)|2P

T .

By Corollary 2.20, |πP(g)|2P ≤ |g|2H(G), and so using Proposition 3.17,

|Rg(f)|2 ≤ ||f ||2L2(νT )e
|g|2

H(G)
T . (4.1)

So ||Rg||2 ≤ e
|g|2

H(G)
T , and Rg is therefore continuous. For f ∈ HT , pick {fn}∞n=1 ⊂

HFC∞(W)∩L2(νT ) such that fn → f. We can then define Rg(f) = limn→∞ Rg(fn).

Notation 4.3. In the sequel, Rg will refer to this extension.

Remark 4.4. Clearly, Proposition 4.2 imples that if fn → f inHT , then for any g ∈ H(G),

Rgfn → Rgf . More precisely, Eq. (4.1) indicates that the convergence is locally uniform.

We will show that a function f ∈ HT has a holomorphic “skeleton”. That is,

despite the fact that f is an L2(νT ) equivalence class, its values on H(G) are determined

and “
(
f |H(G)

)
(g)” := Rg(f) is holomorphic. We prove this result in Theorem 4.7. We

first need an appropriate notion of holomorphic functions on H(G).

Notation 4.5. We will refer to a function u : H(G) → C as holomorphic if it is holo-

morphic in the sense of Gross and Malliavin [11]. Specifically, we require that for every

g ∈ H(G), the map h ∈ H(g) → u(g · eh) is Frechét differentiable at h = 0 and that this

Frechét derivative is complex linear and continuous in H(g)∗ as a function of g.

Proposition 4.6. Let G be a Lie group and suppose F ∈ C∞(G). For every g ∈ G,

define dFg ∈ g∗ by

(dFg)(A) =
d

dt
|t=0F (g · etA).

Then dFg is the Frechét derivative of F at g, and furthermore, dFg is continuous in g∗

as a function of g.

Proof. That dFg is continuous in g∗ as a function of g follows from the fact that F ∈
C∞(G). To see that dFg is the Frechét derivative of F at g, we need to show that

lim
A→0

|F (g · eA)− F (g)− (dFg)(A)|
||A||g

= 0.



38

Notice that

F (g · eA)− F (g)− (dFg)(A) =
∫ 1

0

(
d

dt
F (g · etA)− (dFg)(A)

)
dt

=
∫ 1

0

(
d

ds
|s=0F (g · e(s+t)A)− (dFg)(A)

)
dt

=
∫ 1

0

(
d

ds
|s=0F (

(
g · etA

)
· esA)− (dFg)(A)

)
dt

=
∫ 1

0

(
(dFg·etA)(A)− (dFg)(A)

)
dt.

Therefore,

lim
A→0

|F (g · eA)− F (g)− (dFg)(A)|
||A||g

≤ lim
A→0

∫ 1
0 |(dFg·etA)(A)− (dFg)(A)|dt

||A||g

≤ lim
A→0

∫ 1
0 ||dFg·etA − dFg||g∗ ||A||gdt

||A||g

= lim
A→0

∫ 1

0
||dFg·etA − dFg||g∗dt

= 0,

by the continuity in g of dFg.

Theorem 4.7 (Skeleton Theorem). There exists a linear map R : Ht → H(H(G)) with

the following properties:

1. For f a holomorphic cylinder function, Rf = f |H(G).

2. For g ∈ H(G), |(Rf)(g)|2 ≤ ||f ||2L2(νT )e
|g|2

H(G)
t .

Proof. Given f ∈ Ht, define Rf by

(Rf)(g) = Rgf

for all g ∈ H(G). By the definition of Rg, if f ∈ HFC∞(W) ∩ L2(νT ), then

(Rf)(g) = f(g)

for all g ∈ H(G). So (1) is satisfied. (2) follows from Eq. (4.1). It remains to show

that Rf ∈ H(H(G)).
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We first suppose that f ∈ HFC∞(W) ∩ L2(νT ). Then f = F ◦ πP for some

F ∈ H(G#(P)) and some partition P of [0, 1]. Let dF denote the Frechét derivative of

F . Define for g ∈ H(G),

(df)g = (dF )πPg ◦ πP∗e.

Then

lim
h→0

|f(g · eh)− f(g)− (df)gh|
||h||H(g)

= lim
h→0

|F (πPg · eπP∗eh)− F (πPg)− (dF )πPgπP∗eh|
||h||H(g)

≤ lim
h→0

|F (πPg · eπP∗eh)− F (πPg)− (dF )πPgπP∗eh|
||πP∗eh||P

(4.2)

= lim
πP∗eh→0

|F (πPg · eπP∗eh)− F (πPg)− (dF )πPgπP∗eh|
||πP∗eh||P

= 0,

by the fact that dF is the Frechét derivative of F and where in line (4.2) we used the

fact that ||h||H(g) ≥ ||πP∗eh||P , which follows from Proposition 2.15. So f is Frechét

differentiable at any g ∈ H(G). df is continuous in g since both dFπP · and πP are. F

holomorphic implies that dF is complex linear, and since πP∗e is as well, df is complex

linear. Therefore, f |H(G) = Rf ∈ H(H(G)).

For a general f ∈ Ht, we fix g ∈ H(G) and choose {fn}∞n=1 ⊂ HFC∞(W) ∩
L2(νT ) such that fn → f . Remark 4.4 indicates that (Rfn) (g · eh) → (Rf) (g · eh)

uniformly for h in some neighborhood of 0. Therefore, by Theorem 3.18.1 of [13],

h → (Rf) (g · eh) is holomorphic and jointly continuous in g.

Remark 4.8. We will show later in Corollary 4.14 that R is injective.

4.2 The Taylor Isometry

Given the results of the previous section, we are able to define the Taylor map

on HT .
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Definition 4.9. Given f ∈ HT , define αRf ∈ J0
T (H(g)) by

〈αRf , h1 ⊗ h2 ⊗ · · · ⊗ hn〉 = (h̃1h̃2 · · · h̃nRf)(e), (4.3)

where h1, ..., hn ∈ H(g), and e denotes the identity path in W(G). Notice that by

Proposition 4.6, Rf ∈ H(H(G)), so the right hand side is well defined. The map f →
αRf will be called the Taylor map.

Notation 4.10. We will often use (1−D)−1
e R to denote the above Taylor map.

Theorem 4.11. Let f ∈ HFC∞(W) ∩ L2(νT ) and αRf ∈ T (H(g))′ as given in the

above. Then ||f ||2L2(νT ) = ||αRf ||2J0
T (H(g))

.

Proof. Suppose f = F ◦ πP where P is a partition of [0, 1]. Let SPC be an orthonormal

basis for (HP(g), ( , )H(g)). Extend this to an orthonormal basis for H(g) = HP(g)
⊥
⊕

Nul(πP∗e), which we will denote SC. Recall that by Proposition 2.12, XP
C := {πP∗eh|h ∈

SPC } is an orthonormal basis for (g#(P), ( , )P). Note that for all h ∈ HP(g)⊥,

∂hf(e) =
n∑

i=1

((h(si)(i)F ) ◦ πP)(e) = 0

since h|P ≡ 0. Then

||αF ||2J0
T (g#(P))

=
∞∑

k=0

tk

k!

 ∑
A1,...,Ak∈XPC

|〈αF , A1 ⊗ · · · ⊗Ak〉|2


=
∞∑

k=0

tk

k!

 ∑
A1,...,Ak∈XPC

|(Ã1 · · · ÃkF )(e, e, .., e)|2


=
∞∑

k=0

tk

k!

 ∑
h1,...,hk∈SPC

|(h̃1 · · · h̃kf)(e)|2


=
∞∑

k=0

tk

k!

 ∑
h1,...,hk∈SC

|(h̃1 · · · h̃kf)(e)|2


= ||αf ||2J0
T (H(g)).

Then using the finite dimensional results found in [4] and the fact that Rf = f |H0(G),

||f ||2L2(νt)
= ||F ||2L2(νt)

= ||αF ||2J0
T (g#(P))

= ||αf ||2J0
T (H(g)) = ||αRf ||2J0

T (H(g)).



41

Before proving Corollary 4.13, which extends this result to any f ∈ HT , we

need the following theorem.

Proposition 4.12. Suppose {fn}∞n=1 ∈ HFC∞(W)∩L2(νT ) with fn → f ∈ HT . Then

for all h1, h2, ..., hk ∈ H(g) and g ∈ H(G),(
h̃1h̃2 · · · h̃kRfn

)
(g) →

(
h̃1h̃2 · · · h̃kRf

)
(g).

Proof. Pick g ∈ H(G), and h1, h2, ..., hk ∈ H(g). Define a sequence of functions Fn :

Ck → C by

Fn(ξ1, ξ2, ..., ξk) = Rfn(g · eξ1h1 · eξ2h2 · · · eξkhk).

Similarly, define F : Ck → C by

F (ξ1, ξ2, ..., ξk) = Rf(g · eξ1h1 · eξ2h2 · · · eξkhk).

Then by Remark 4.4, ∀ξ1, ξ2, ..., ξk ∈ C,

Fn(ξ1, ξ2, ..., ξk) → F (ξ1, ξ2, ..., ξk)

uniformly in a neighborhood of the origin. Furthermore, F and Fn are holomorphic.

Notice that (
h̃1h̃2 · · · h̃kRfn

)
(g) = (

dk

ξ1ξ2 · · · ξk
Fn)(0, 0, ..., 0),

and (
h̃1h̃2 · · · h̃kRf

)
(g) = (

dk

ξ1ξ2 · · · ξk
F )(0, 0, ..., 0).

Repeated use of Cauchy’s integral formula gives(
h̃1h̃2 · · · h̃kRfn

)
(g) =

(
1

2πi

)k ∮
|ξ1|=R

· · ·
∮
|ξk|=R

Fn(ξ1, ξ2, ..., ξk)
ξ1ξ2 · · · ξk

dξkdξk−1 · · · dξ1,



42

for R>0. The locally uniform convergence allows us to use the DCT to conclude

lim
n→∞

(
h̃1h̃2 · · · h̃kRfn

)
(g)

= lim
n→∞

(
1

2πi

)k ∮
|ξ1|=R

· · ·
∮
|ξk|=R

Fn(ξ1, ξ2, ..., ξk)
ξ1ξ2 · · · ξk

dξkdξk−1 · · · dξ1

=
(

1
2πi

)k ∮
|ξ1|=R

· · ·
∮
|ξk|=R

lim
n→∞

Fn(ξ1, ξ2, ..., ξk)
ξ1ξ2 · · · ξk

dξkdξk−1 · · · dξ1

=
(

1
2πi

)k ∮
|ξ1|=R

· · ·
∮
|ξk|=R

F (ξ1, ξ2, ..., ξk)
ξ1ξ2 · · · ξk

dξkdξk−1 · · · dξ1

=
(
h̃1h̃2 · · · h̃kRf

)
(g).

Corollary 4.13. The Taylor map described in Definition 4.9 is an isometry, i.e. for all

f ∈ HT ,

||f ||2L2(νT ) = ||αRf ||2J0
T (H(g)).

Proof. Let {fn}∞n=1 ⊂ HFC∞(W) ∩ L2(νT ) such that fn → f . By Theorem 4.11,

{αRfn}∞n=1 ⊂ J0
T (H(g)) is Cauchy, and hence converges to some α̂ ∈ J0

T (H(g)). It

remains to show that α̂ = αRf . That is, for any h1, h2, ..., hk ∈ H(g),

〈α̂, h1 ⊗ h2 ⊗ · · · ⊗ hk〉 = 〈αRf , h1 ⊗ h2 ⊗ · · · ⊗ hk〉.

By Proposition 4.12,

〈α̂, h1 ⊗ h2 ⊗ · · · ⊗ hk〉 = lim
n→∞

〈αRfn , h1 ⊗ h2 ⊗ · · · ⊗ hk〉

= lim
n→∞

(
h̃1h̃2 · · · h̃kRfn

)
(e)

=
(
h̃1h̃2 · · · h̃kRf

)
(e)

= 〈αRf , h1 ⊗ h2 ⊗ · · · ⊗ hk〉.

Corollary 4.14. Since the Taylor map, (1 − D)−1
e R : HT → J0

T (H(g)) is injective, it

necessarily follows that R:HT → H(H(G)) is injective.
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Surjectivity

In this chapter, we prove the surjectivity of the Taylor map when G is a stratified

nilpotent Lie group. We also present a motivating example where G is the complex

Heisenberg group.

5.1 Introduction

Let g is a d-dimensional step r complex stratified nilpotent Lie algebra. This

means that there is a sequence of nonzero subspaces Vi for i = 1, .., r such that

g = ⊕r
i=1Vi,

with [V1, Vj ] ⊂ Vj+1 for j = 1, ..., r− 1 and [V1, Vr] = {0}. It follows that [Vi, Vj ] ⊂ Vi+j ,

with the convention that Vs = {0} for s > r. This gives a decomposition of H(g),

H(g) = ⊕r
i=1H(Vi),

with [H(V1),H(Vj)] ⊂ H(Vj+1) for j = 1, ..., r−1 and [H(V1),H(Vr)] = {0}. Therefore,

H(g) is a step r complex stratified nilpotent Lie algebra as well. We will furthermore

assume that the subspaces {Vi}r
i=1 are orthogonal with respect to our inner product ( ,

)g.

Our goal is to show that given α ∈ J0
T (H(g)), there exists a function ũα ∈ HT

such that (1 − D)−1
e Rũα = α. Of primary importance will be that finite rank tensors

43
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are dense in J0
T (H(g)) when H(g) is stratified nilpotent. This was orignially proven in

[6], and is included in section 6.2 of the appendix for completeness. The Taylor map

will be show to be onto α ∈ J0
T (H(g)) of finite rank, and the following theorem states

that this is sufficient.

Theorem 5.1. Let J ⊂ J0
T (H(g)) be a dense subset. If for every α ∈ J there exists a

function ũα ∈ HT such that (1−D)−1
e Rũα = α, then the result holds for all α ∈ J0

T (H(g)).

Proof. Let α ∈ J0
T (H(g)), and pick a sequence {αn}∞n=1 ⊂ J such that αn → α as

n →∞. For each αn, there exists a ũαn ∈ HT such that (1−D)−1
e Rũαn = αn. Recall

by Corollary 4.13 that the Taylor map (1 − D)−1
e R : HT → J0

T (H(g)) is an isometry.

Since αn → α in J0
T (H(g)), {αn}∞n=1 is Cauchy, and therefore so is {ũαn}∞n=1 in HT .

HT is closed and hence there exists a ũα ∈ HT such that ũαn → ũα. Finally, since the

Taylor map is continuous,

α = lim
n→∞

αn = lim
n→∞

(1−D)−1
e Rũαn = (1−D)−1

e Rũα.

Remark 5.2. For the remainder of this chapter, it will be assumed that α ∈ J0
T (H(g)) is

of finite rank.

Given α ∈ J0
T (H(g)), we wish to construct a converging sequence of approxi-

mating cylinder function. We first construct a holomorphic function with α as its set of

derivatives at the identity. The following theorem is motivated by results in [3] and is

the subject of section 5.3.

Theorem 5.3. Let g be a stratified Lie algebra and α ∈ J0
T (H(g)) be of finite rank. For

every g ∈ H(G) define

uα(g) :=
∞∑

n=0

〈α, g⊗n〉/n!

Then uα is a holomorphic function on H(G) satisfying (1−D)−1
e uα = α.

Let P = {0 = s0 < · · · < sn < sn+1 = 1} be a partition of [0, 1].

Definition 5.4. Let HP(G) ={h ∈ H(G)|h′′ ≡ 0 on [0, 1]\P}. Similarly, define HP(g)

={h ∈ H(g)|h′′ ≡ 0 on [0, 1]\P}.
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Remark 5.5. Note in the above definitions, HP(g) is a subspace of H(g), but not a Lie

subalgebra. Furthermore, HP(G) is not a subgroup of H(G).

Definition 5.6. Let P̃P : W(G) → HP(G) be defined so that P̃P(g) and g agree at all

partition points of P and g′′ ≡ 0 on [0, 1]\P. In a similar manner, define PP : W(g) →
HP(g).

Remark 5.7. PP defined above restricted to H(g) is orthogonal projection onto the

subspace HP(g).

In order to constuct ũα, we will construct a converging sequence of cylinder

functions which we will show are Cauchy in L2(νT ). Our candidate cylinder functions

are defined below.

Remark 5.8. Given a partition P, FP ≡ uα ◦ P̃P defines a cylinder function.

Our first goal will be to estimate ||FP ||2L2(νt)
when α is of finite rank. Let SC

be an orthonormal basis for H(g). Then

||FP ||2L2(νt)
=

∞∑
n=0

Tn

n!

 ∑
h1,...hn∈SC

|(h̃1 · · · h̃nFP)(e)|2
 , (5.1)

where e is the zero path, i.e. the path e ∈ H (G) such that e(t) = 0 for all t ∈ [0, 1].

Definition 5.9. Given a partition P, let α(P) ≡ (1−D)−1
e (FP).

Notation 5.10. For a function u ∈ C∞(W(G)), g ∈ W(G), and h1, h2, ...hn ∈ H (g) ,

denote

〈Dnu (g) , h1 ⊗ h2 ⊗ · · · ⊗ hn〉 := (h̃1h̃2 · · · h̃nu)(g). (5.2)

Remark 5.11. Using the above notation,

||FP ||2L2(νt)
=

∞∑
n=0

Tn

n!

 ∑
h1,...hn∈SC

|〈α(P), h1 ⊗ h2 ⊗ · · · ⊗ hn〉|2
 .

The following theorem summarizes the main result of this chapter.

Theorem 5.12. Let {Pk}∞k=1 be a sequence of refining partitions and α ∈ J0
T (H(g)) of

finite rank. Then for every n > 0, there exists a function RPk
n : H (g)n → T (H (g)) such

that

〈α(Pk), h1 ⊗ h2 ⊗ · · · ⊗ hn〉 = 〈α, PPk
h1 ⊗ PPk

h2 ⊗ · · · ⊗ PPk
hn + RPk

n (h1, ..., hn)〉
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with the property that ∑
h1,...hn∈SC

|〈α, RPk
n (h1, ..., hn)〉|2 → 0 as k →∞.

In particular,

||α− α(Pk)||J0
T (H(g)) → 0 as k →∞.

5.2 An example: the complex Heisenberg group

We present a proof of the surjectivity of the Taylor map in the simplest non-

trivial case. The methods of this section will resemble, and perhaps motivate, those

used in the general case to come. In the event that a proposition is more clearly stated

or proved in the general case, we will refer the reader to the corresponding proposition

in the sequel.

Let G denote the complex Heisenberg Lie group. We may realize G as C3 with

the following group multiplication:

(a, b, c) · (a′, b′, c′) = (a + a′, b + b′, c + c′ +
1
2
(ab′ − a′b)).

Note that the origin acts as the identity, and (a, b, c)−1 = (−a,−b,−c). Then g ≡TeG

is the complex Heisenberg Lie algebra, which again can be thought of as C3 with a

bracket operation. If we let X = (1, 0, 0), Y = (0, 1, 0), and Z = (0, 0, 1), then g =

span{X, Y, Z}, where [X, Y ] = Z and Z is in the center of g. Throughout this paper,

we will use coordinate notation for both elements of the group and elements of the Lie

algebra. The standard inner product on C3,

((z1, z2, z3), (w1, w2, w3)) = z1w1 + z2w2 + z3w3,

will be our given Hermitian inner product.

Remark 5.13. If we set V1 = span{X, Y } and V2 = span{Z}, then g = V1

⊥
⊕ V2. Since

[V1, V1] = V2 and [V1, V2] = [V2, V2] = 0, we see that g is a step 2 stratified nilpotent Lie

algebra.
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We intend to show that for fixed T > 0 and α ∈ J0
T (H(g)), there exists a ũα ∈

HT such that Rũα = uα where uα ∈ H(H(G)) with (1−D)−1
e uα = α. We assume that α

is of finite rank, i.e. there exists an N > 0 such that
∑∞

n=0〈αn, v(n)〉 =
∑N

n=0〈αn, v(n)〉
for all v(n) ∈ H(g)⊗n. By Theorem 5.1, the result will follow for all α ∈ J0

T (H(g)).

5.2.1 Construction of uα

There is an obvious identification between G and g in this example, and an

easy calculation shows that for all t ≥ 0,

et(a,b,c) = t(a, b, c).

This relationship holds pointwise for elements of the path group, and so for g ∈ H(g),

eg = g ∈ H(G). Using the BCH formula, we have for A,B ∈ g,

A ·B ≡ eA · eB

= A + B +
1
2
[A,B],

where we are identifying g and G as elements of C3.

The following Proposition show that elements of the Lie algebra and the path

group can be thought of interchangably.

Lemma 5.14. Suppose g ∈ W(C3). Then g ∈ H(g) iff g ∈ H(G).

Proof. Suppose g = (g1, g2, g3) ∈ H(g), i.e. ||g′||L2([0,1]) < ∞. Note that

||g′||2L2([0,1]) = ||g′1||2L2([0,1]) + ||g′2||2L2([0,1]) + ||g′3||2L2([0,1]),

so in particular, ||g′i||2L2([0,1]) < ∞ for i = 1, 2, 3. Also, for all s ∈ [0, 1],

|gi(s)| = |
∫ s

0
g′i(r)dr|

≤
∫ 1

0

∣∣g′i(r)∣∣ dr

= ||g′i||L1([0,1])

≤ ||g′i||L2([0,1]). (5.3)
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This implies that

||gi||L2([0,1]) =
∫ 1

0
|gi(s)|ds

≤
∫ 1

0
||g′i||L2([0,1])ds

= ||g′i||L2([0,1]). (5.4)

Observe the relationship

Lg−1(s)∗g
′ (s) =

d

dε
|ε=0(−g(s)) · g(s + ε)

= (g′1(s), g
′
2(s), g

′
3(s)−

1
2
g1(s)g′2(s) +

1
2
g2(s)g′1(s)). (5.5)

Then considering g as an element of W(G) we calculate the energy:

E (g) =
∫ 1

0
|Lg−1(s)∗g

′ (s) |2ds

=
∫ 1

0
|(g′1(s), g′2(s), g′3(s)−

1
2
(g1(s)g′2(s)− g2(s)g′1(s)))|2ds

≤ 9
∫ 1

0

(
|g′(s)|2 +

1
4
|g1(s)|2|g′2(s)|2 +

1
4
|g2(s)|2|g′1(s)|2

)
ds

≤ 9||g′||2L2([0,1]) +
9
2
||g′1||2L2([0,1])||g

′
2||2L2([0,1])

< ∞.

So g ∈ H(G).

Now suppose g ∈ H(G), i.e. E(g) < ∞. Using Eq. (5.5), we see that since

E(g)2 = ||g′1||2L2([0,1]) + ||g′1||2L2([0,1]) + ||g′3 −
1
2
(g1g

′
2 − g2g

′
1)||2L2([0,1]),

we have that ||g′1||L2([0,1]), ||g′2||L2([0,1]), and ||g′3 − 1
2(g1g

′
2 − g2g

′
1)||2L2([0,1]) are finite. So

it is sufficient to show that ||g′3||L2([0,1]) < ∞. Note that

||g′3||L2([0,1]) ≤ ||g′3 −
1
2
(g1g

′
2 − g2g

′
1)||L2([0,1])

+
1
2

∣∣∣∣g1g
′
2 − g2g

′
1

∣∣∣∣
L2([0,1])

.
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By Eq. (5.4), ∣∣∣∣g1g
′
2 − g2g

′
1

∣∣∣∣
L2([0,1])

≤
∣∣∣∣g1g

′
2

∣∣∣∣
L2([0,1])

+
∣∣∣∣g2g

′
1

∣∣∣∣
L2([0,1])

≤ 2||g′1||L2([0,1])||g′2||L2([0,1])

< ∞.

Therefore, ||g′3||L2([0,1]) < ∞.

Throughout the paper, we will make use of the above relationship, often with-

out comment.

Theorem 5.15. For every α ∈ J0
T of finite rank, define

uα(g) :=
∞∑

n=0

〈α, g⊗n〉/n!

Then uα ∈ H(H(G)) such that (1−D)−1
e uα = α.

This theorem is restated and proved in the general case in Theorem 5.43.

5.2.2 Cylinder Function Approximations

Let P = {0 = s0 < s1 < · · · < sn < sn+1 = 1} be a partition of [0, 1]. In

order to constuct ũα ∈ HT such that (1 −D)−1
e Rũα = α, we will construct a sequence

of cylinder functions which we will show are Cauchy in L2(νT ). Our candidate cylinder

functions are defined below.

Remark 5.16. Given a partition P, FP := uα ◦PP defines a cylinder function, where PP

is defined as in Definition 5.6.

Our first goal will be to estimate ||FP ||2L2(νT ) when α is of finite rank. Let SC

be an orthonormal basis for H(g). Then

||FP ||2L2(νT ) =
∞∑

n=0

Tn

n!

 ∑
h1,...hn∈SC

|(h̃1 · · · h̃nFP)(e)|2
 , (5.6)

What follows is a rewriting of the above in terms of derivatives of uα at the zero path.
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Remark 5.17. It is not difficult to check that sums like (5.6) above are basis indepen-

dent. In the sequel, our calculations will be rewritings of such sums, and hence be basis

independent as well.

Definition 5.18. Given a partition P, let α(P) ≡ (1−D)−1
e (FP).

Notation 5.19. For a function u ∈ C∞(W(G)), g ∈ W(G), and h1, h2, ...hn ∈ H (g) ,

denote

(h̃1h̃2 · · · h̃nu)(g) ≡ 〈Dnu (g) , h1 ⊗ h2 ⊗ · · · ⊗ hn〉. (5.7)

Lets first consider single derivatives of FP . A quick calculation yields

(h̃FP)(g) =
d

dt
|t=0FP(g · th) =

d

dt
|t=0uα(PP(g · th)),

so if we set

hP(g) = LPP (g)−1∗
d

dt
|t=0PP(g · th),

then we have

(h̃FP)(g) = 〈Duα(PP(g)), hP(g)〉. (5.8)

Notation 5.20. For the remainder of this section, upper indices will be used to denote

coordinate functions.

Let g = (g1, g2, g3) and h = (h1, h2, h3). Then

hP(g)

=
d

dt
|0PP(−g) · PP(g · th)

=
d

dt
|0(−PPg) · (PPg + tPPh + (0, 0,

t

2
PP(g1h2 − g2h1))

=
d

dt
|0(tPPh +

t

2
(0, 0, PP(g1h2 − g2h1)− (PPg1)(PPh2) + (PPg2)(PPh1)))

= PPh +
1
2
(PP [g, h]− [PPg, PPh]).

Notation 5.21. Let RP(g, h) = 1
2(PP [g, h]− [PPg, PPh]). Therefore,

hP(g) = PPh + RP(g, h).
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Remark 5.22. If we let δi = si+1 − si and δig
j = gj(si+1) − gj(si) for i = 0, 1, ..., n − 1

and j = 1, 2, 3, then a calculation reveals that

RP(g, h)(s) =
n−1∑
i=0

1(si,si+1](s)(0, 0,
1
2
(δig

1δih
2 − δig

2δih
1)(

(s− si)
δi

− (s− si)2

δ2
i

)). (5.9)

Proposition 5.57 gives the equivalent statement in the general case.

Remark 5.23. Note that RP(e, h) ≡ 0, and since RP(g, h) is zero except in the third

component, we have [RP(g, h), k] ≡ 0 for all k ∈ H(g).

The above allows us to characterize the first derivatives of FP at the zero path

in terms of α,

(h̃FP)(e) = 〈Duα(PP(e)), hP(e)〉

= 〈Duα(PP(e)), PPh + RP(e, h)〉

= 〈Duα(e), PPh〉

= 〈α, PPh〉,

or in other words,

〈α(P), h〉 = 〈α, PPh〉. (5.10)

We wish to obtain the analagous result for higher order derivatives. We’ll do the

computation for second order derivatives, and the result for higher order derivatives will

follow by similar computations. First, a claim with a simple proof:

Claim 5.24. d
dt |t=0RP(g · tk, h) := RP(k̃(g), h) = RP(k, h).

For all g ∈ W(G) and h, k ∈ H(g),

(k̃h̃FP)(g) =
d

dt
|t=0

(
˜(PPh + RP(g · tk, h)uα

)
(PP(g · tk))

=
(

˜(PPk + RP(g, k) ˜(PPh + RP(g, h)uα

)
(PP(g))

+
(

˜RP(k, h)uα

)
(PP(g))

= 〈D2uα(PP(g)), (PPk + RP(g, k)⊗ (PPh + RP(g, h)〉

+ 〈Duα(PP(g)), RP(k, h)〉.
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Therefore,

(k̃h̃FP)(e) := 〈α2(P), k ⊗ h〉 = 〈α2, PPk ⊗ PPh〉+ 〈α1, RP(k, h)〉.

The general expression is best expressed using the following notation. Given

h1, h2, ..., hk ∈ H(g), let Ωh1...hk
:= {(hi, hj)|i < j}. Also, let θh1h2...hk

≡ PPh1 ⊗
PPh2 ⊗ · · · ⊗ PPhk, and if x ∈ Ωh1...hk

with x = (hi, hj) then let θh1h2...hk
/{x} =

PPh1 ⊗ PPh2 ⊗ · · · ⊗ P̂Phi ⊗ · · · ⊗ P̂Phj ⊗ · · · ⊗ PPhk, where the hat denotes omission.

Then we have that

(h̃1 · · · h̃kFP)(e)

= 〈α(P), h1 ⊗ · · · ⊗ hk〉

= 〈α, θh1...hk
〉+

∑
x1∈Ωh1...hk

〈α, (θh1h2...hk
/{x1})⊗RP(x1)〉

+
∑

x1,x2∈Ωh1...hk

〈α, (θh1...hk
/{x1, x2})⊗RP(x1)⊗RP(x2)〉+ ...

+
∑

x1,...,xb k
2c∈Ωh1...hk

〈α, (θh1...hk
/{x1, ..., xb k

2c})⊗
b k

2c
i=1 RP(xi))〉. (5.11)

Remark 5.25. In the above, we have pushed all the RP terms to the right. This allowed

by Remark 5.23.

For example, given h1, h2, h3, h4 ∈ H(g), we have that

(h̃1h̃2h̃3h̃4FP)(e) = 〈α, PPh1 ⊗ PPh2 ⊗ PPh3 ⊗ PPh4〉

+ 〈α, PPh3 ⊗ PPh4 ⊗RP(h1, h2)〉

+ 〈α, PPh2 ⊗ PPh4 ⊗RP(h1, h3)〉

+ 〈α, PPh2 ⊗ PPh3 ⊗RP(h1, h4)〉

+ 〈α, PPh1 ⊗ PPh4 ⊗RP(h2, h3)〉

+ 〈α, PPh1 ⊗ PPh3 ⊗RP(h2, h4)〉

+ 〈α, PPh1 ⊗ PPh2 ⊗RP(h3, h4)〉

+ 〈α,RP(h1, h2)⊗RP(h3, h4)〉

+ 〈α,RP(h1, h3)⊗RP(h2, h4)〉

+ 〈α,RP(h1, h4)⊗RP(h2, h3)〉.
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5.2.3 L2(νT ) Estimates

The goal of this section is to show that for any partition P, the cylinder function

FP is in L2(νT ). The following proposition is proven in the general case in Proposition

5.80 of the sequel.

Proposition 5.26. Given α ∈ T (H(g))∗T , and h1, h2, ...hk ∈ S0 , βh1h2...hk
∈ (H(g)∗)⊗n

given by βh1h2...hk
= α ◦ Lh1⊗···⊗hk

satisfies

〈α, h1 ⊗ · · · ⊗ hk ⊗ η〉 = 〈βh1h2..hk
, η〉, (5.12)

for any η ∈ H(g)⊗n, and furthermore,∑
h1,h2,...,hk∈S0

||βh1h2..hk
||2(H(g)∗)⊗n = ||αn+k||2(H(g)∗)⊗k < ∞. (5.13)

Section 1 of the appendix concerns the reproducing kernel for path spaces. For

calculations in this specific case, the follow proposition is sufficient. A proof can be

found in Proposition 6.3.

Proposition 5.27. For i, j = 1, 2, ...dim(G), we have
∑

h∈SC
hi (s) hj (t) = δij(s ∧ t).

Proposition 5.28. For every partition P,
∑

h,k∈SC
||RP(h, k)||2 = 1

6 .

Proof. A quick calculation using Remark 5.22 reveals that

||RP(h, k)||2 = C̃

n−1∑
i=0

|δih
1δik

2 − δih
2δik

1|2

δi
,

where

C̃ =
1
4

∫ 1

0
(1− 2t)2dt =

1
12

.

Then ∑
h,k∈SC

||RP(h, k)||2 =
1
12

n−1∑
i=0

∑
h,k∈SC

|δih
1δik

2 − δih
2δik

1|2

δi
.
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Multiplying out the expression on the right gives∑
h,k∈SC

|δih
1δik

2 − δih
2δik

1|2

δi
=

∑
h,k∈SC

.
|δih

1|2|δik
2|2

δi

−
∑

h,k∈SC

δih
1δik

2δih2δik1

δi

−
∑

h,k∈SC

δih
2δik

1δih1δik2

δi

+
∑

h,k∈SC

|δih
2|2|δik

1|2

δi
.

Using Proposition 5.27, we get that the first and last terms in the above are each δi,

while the middle terms are zero. Hence,

∑
h,k∈SC

||RP(h, k)||2 =
1
12

n−1∑
i=0

2δi =
1
6
.

We are now able to show that our cylinder functions FP are square integrable

for every partition P. Note that using our notation from before,

||FP ||2L2(νT ) =
∞∑

n=0

Tn

n!

 ∑
h1,...hn∈SC

|〈α(P), h1 ⊗ h2 ⊗ · · · ⊗ hn〉|2
 . (5.14)

Our assumption that α is of finite rank, along with (5.11) allow us to rewrite the expres-

sion as

||FP ||2L2(νT )

=
N∑

k=0

T k

k!

∑
h1,...hk∈SC

b k
2c∑

j=0

∑
x1,...,xj∈Ωh1,...,hk

|〈α, (θh1...,hk
/{x1, ..., xj})⊗j

i=1 RP(xi)〉|2.

(5.15)

The important point is that now the right hand side only involves a finite number of

sums over our basis elements, each of which can be controlled. So in order to show that

||FP ||2L2(νT ) is finite, it suffices to pick a “typical” term from the right hand side and
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show that it is finite. The following should be enough to convince the reader that a

typical term in line (5.15) is finite without any of the cumbersome notation the general

case would require. Consider∑
h1,...hk∈SC

|〈α, PPh1 ⊗ · · · ⊗ PPhk−4 ⊗RP(hk−3, hk−2)⊗RP(hk−1, hk)〉|2. (5.16)

Recall that PP is orthogonal projection onto the subspace HP(g), so if we first choose

an orthonormal basis SPC for HP(g), then extend this to an orthonormal basis for SC, we

get that the above (5.16) is equal to∑
h2,...hk∈SC

∑
h1∈SPC

|〈α, h1 ⊗ PPh2 ⊗ · · · ⊗ PPhk−4 ⊗RP(hk−3, hk−2)⊗RP(hk−1, hk)〉|2

≤
∑

h1,...hk∈SC

|〈α, h1 ⊗ PPh2 ⊗ · · · ⊗ PPhk−4 ⊗RP(hk−3, hk−2)⊗RP(hk−1, hk)〉|2.

We can repeat this procedure and in this manner change all of the PPhi terms into

hi. Finally, we use Proposition 5.26 in combination with Proposition 5.28 to bound the

whole term.∑
h1,...hk∈SC

|〈α, PPh1 · · · ⊗ PPhk−4 ⊗RP(hk−3, hk−2)⊗RP(hk−1, hk)〉|2

≤
∑

h1,...hk∈SC

|〈α, h1 · · · ⊗ hk−4 ⊗RP(hk−3, hk−2)⊗RP(hk−1, hk)〉|2

=
∑

h1,...hk∈SC

|〈βh1...hk−4
, RP(hk−3, hk−2)⊗RP(hk−1, hk)〉|2

≤
∑

h1,...hk∈SC

||βh1...hk−4
||2(H(g)∗)⊗k−4 ||RP(hk−3, hk−2)||2H(g)||RP(hk−1, hk)||2H(g)

=

 ∑
h1,...hk−4∈SC

||βh1...hk−4
||2(H(g)∗)⊗k−4

 ∑
hk−3,hk−2∈SC

||RP(hk−3, hk−2)||2H(g)


×

 ∑
hk−1,hk∈SC

||RP(hk−1, hk)||2H(g)


= ||αk−4||2(H(g)∗)⊗k−4

(
1
6

)2

. (5.17)

Remark 5.29. Note that the bound in (5.17) of the above is independent of our partition

P.
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Since Eq. (5.15) involves only a finite number of sums like those in Eq. (5.16),

each of which is bounded independent of partition by calculations similar to Eq. (5.17),

we have now shown that FP ∈ L2(νT ), and ||FP ||L2(νT ) is bounded independent of

partition.

5.2.4 Convergence of FP

In this section, we’ll show ||α− α(Pn)||2J0
T (H(g) → 0 as n → 0, where {Pn}∞n=1

is a sequence of refining partitions. This will imply that FPn is L2(νT )−Cauchy, hence

the limiting function ũα is in HT . We first require the following proposition, which is

true for any sequence of partitions with |P| → 0.

Proposition 5.30. Given α ∈ H(g)∗,∑
h,k∈S0

|〈α, RP(h, k)〉|2 → 0 as |P| → 0.

Proof. For all v ∈ H(g), there exists an α̃ ∈ H(g) such that 〈α, v〉 = (v, α̃)H(g). Suppose

α̃(s) = (x (s) , y(s), z(s)), and RP(h1, h2)3 represents the third component of RP(h1, h2).

Then

〈α, RP(h, k)〉 = (RP(h, k), α̃)H(g) =
∫ 1

0
RP(h, k)′3(s)z′(s)ds.

Summing over our orthonormal basis we get

∑
h,k∈SC

|〈α, RP(h, k)〉|2 =
∑

h,k∈SC

∫ 1

0
RP(h, k)′3(s)z′(s)ds

∫ 1

0
RP(h, k)′3(t)z

′(t)dt

=
∫

[0,1]2
z′(s)z′(t)

∑
h,k∈SC

RP(h, k)′3(s)RP(h, k)′3(t)dsdt, (5.18)

where the second equality is justified by Fubini’s theorem and Proposition 5.28.

Define

GP(s, t) :=
∑

h,k∈S0

(
RP(h, k)′3(s)RP(h, k)′3(t)

)
. (5.19)

It will be shown that ||GP ||L2([0,1]2) → 0 as |P| → 0. Note that by Eq. (5.9),

|GP(s, t)| =
∑

h,k∈SC

n−1∑
i,j=0

1
δiδj

(δih
1δik

2 − δih
2δik

1)(δjh1δjk2 − δjh2δjk1)Kij
P (s, t), (5.20)
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Where

Kij
P (s, t) := 1(si,si+1](s)1(sj ,sj+1](t)

1
4
(1− 2(s− si)

δi
)(1− 2(t− sj)

δj
).

By computations similar to those in Proposition 5.28,∑
h,k∈SC

(δih
1δik

2 − δih
2δik

1)(δjh1δjk2 − δjh2δjk1) = 2δijδiδj ,

where δij is the Kronecker delta. Therefore, Eq. (5.20) reduces to

|GP(s, t)| =
n−1∑
i=0

2Kii
P(s, t).

Hence the function GP has support only on the set {(s, t)|si ≤ s, t ≤ si+1 for some

i = 0, .., n − 1}, and since GP is bounded independent of partition, we have that

||GP ||L2([0,1]2) → 0 as |P| → 0. Also,

||z′ ⊗ z′||L2([0,1]2) =

(∫
[0,1]2

|z′(s)z′(t)|2dsdt

)1/2

=
(∫ 1

0
|z′(s)|2ds

∫ 1

0
|z′(t)|2dt

)1/2

≤ ||α̃||2H(g) < ∞. (5.21)

In summary, ∑
h,k∈SC

|〈α, RP(h, k)〉|2 =
∑

h,k∈SC

|(RP(h, k), α̃)H(g)|2

=
∫

[0,1]2
z′(s)z′(t)GP(s, t)dsdt

= (z′ ⊗ z′, GP)L2([0,1]2)

≤ ||z′ ⊗ z′||L2([0,1]2)||GP ||L2([0,1]2). (5.22)

The result follows from taking the limit |P| → 0.

The above proposition forms the basis of the more general result:

Proposition 5.31. Given α ∈ (H(g)⊗m)∗,∑
h1,h2,...h2m∈S0

|〈α, RP(h1, h2)⊗ · · · ⊗RP(h2m−1, h2m)〉|2 → 0

as |P| → 0.
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Proof. For α ∈ (H(g)⊗m)∗, define

φP(α) :=
√ ∑

h1,h2,...h2m∈SC

|〈α, RP(h1, h2)⊗ · · · ⊗RP(h2m−1, h2m)〉|2.

Then φP is a seminorm on (H(g)⊗m)∗ . Using Proposition 5.28, we can see that

φP(α)2 ≤ ||α||2(H(g)⊗m)∗

∑
h1,h2,...h2m∈SC

||RP(h1, h2)⊗ · · · ⊗RP(h2m−1, h2m)||2H(g)⊗m

≤ ||α||2(H(g)⊗m)∗

(
1
6

)m

,

or equivalently that

φP(α) ≤ ||α||(H(g)⊗m)∗

(
1
6

)m
2

. (5.23)

Suppose α = (·, k1 ⊗ · · · ⊗ km)H(g)⊗m . Then

φP(α)2 =
∑

h1,h2,...h2m∈SC

|(RP(h1, h2)⊗ · · · ⊗RP(h2m−1, h2m), k1 ⊗ · · · ⊗ km)H(g)⊗m |2

≤
∑

h1,h2,...h2m∈SC

|(RP(h1, h2), k1)|2H(g) × · · · × |(RP(h2m−1, h2m), km)|2H(g)

=
(
||k1||2H(g) ||GP ||L2([0,1]2)

)
× · · · ×

(
||km||2H(g) ||GP ||L2([0,1]2)

)
= ||GP ||mL2([0,1]2)

m∏
i=1

||ki||2H(g) ,

where GP is as given in Eq. (5.19). The proof of Proposition 5.30 tells us that

||GP ||L2([0,1]2) → 0 as |P| → 0. Therefore, φP(α) → 0 as |P| → 0. Furthermore,

the same is true for all finite linear combinations of such indecomposable α. Therefore,

φP(α) → 0 as |P| → 0 for all α of finite rank.

For α, β ∈ (H(g)⊗m)∗,

φP(α) ≤ φP(α− β) + φP(β)

≤
(

1
6

)m
2

||α− β||(H(g)⊗m)∗ + φP(β).
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Let ε > 0 and choose β ∈ (H(g)⊗m)∗ finite rank such that ||α− β||(H(g)⊗m)∗ < ε. Then

lim
|P|→0

φP(α) ≤ lim
|P|→0

(
1
6

)m
2

||α− β||(H(g)⊗m)∗ + lim
|P|→0

φP(β)

=
(

1
6

)m
2

||α− β||(H(g)⊗m)∗

<

(
1
6

)m
2

ε.

Our choice of ε was arbitrary. Therefore, φP(α) → 0 as |P| → 0.

Proposition 5.32.∑
h1,...,hk+n∈SC

|〈α, PPh1 ⊗ · · · ⊗ PPhk ⊗RP(hk+1, hk+2)⊗ · · · ⊗RP(hk+n−1, hk+n)〉|2 → 0

as |P| → 0, for any integer k and even integer n > 0.

Proof. By choosing a basis for HP(g), then extending it to a basis SC for H(g), we get

lim
|P|→0

∑
h1,...,hk+n∈SC

|〈α, PPh1 ⊗ · · · ⊗ PPhk ⊗RP(hk+1, hk+2)⊗ · · · ⊗RP(hk+n−1, hk+n)〉|2

≤ lim
|P|→0

∑
h1,...,hk+n∈SC

|〈α, h1 ⊗ · · · ⊗ hk ⊗RP(hk+1, hk+2)⊗ · · · ⊗RP(hk+n−1, hk+n)〉|2

= lim
|P|→0

∑
h1,...,hk+n∈SC

|〈βh1...hk
, RP(hk+1, hk+2)⊗ · · · ⊗RP(hk+n−1, hk+n)〉|2,

Where βh1...hk
comes from Proposition 5.26. Let

JP :=
∑

h1,...,hk+n∈SC

|〈βh1...hk
, RP(hk+1, hk+2)⊗ · · · ⊗RP(hk+n−1, hk+n)〉|2.

Notice that by Eq. (5.13) and Proposition 5.28,

|JP | ≤
∑

h1,...,hk+n∈SC

||βh1...hk
||2(H(g)∗)⊗n ||RP(hk+1, hk+2)||2H(g) · · · ||RP(hk+n−1, hk+n)||2H(g)

≤ ||αn+k||2(H(g)∗)⊗k

(
1
6

)n

< ∞.
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Therefore,

lim
|P|→0

JP

=
∑

h1,...,hk∈SC

lim
|P|→0

∑
hk+1,...,hk+n∈SC

|〈βh1...hk
, RP(hk+1, hk+2)⊗ · · · ⊗RP(hk+n−1, hk+n)〉|2

= 0,

by Proposition 5.31.

For the remainder of this section, we restrict ourselves to refining partitions.

That is, a sequence of partitions {Pn}∞n=1 such that Pn ⊂ Pn+1 for all n > 0. The

following two results are shown in the general case in Lemma 5.85 and Proposition 5.88.

Lemma 5.33. Let {Pn}∞n=1 be a sequence of refining partitions. Then ∪∞n=1HPn(g) is

dense in H(g).

Remark 5.34. Since PPn is orthogonal projection onto the subspace HPn(g) and HPn(g) ⊂
HPn+1(g), the above lemma implies that for h ∈ H(g),

lim
n→∞

||h− PPnh||H(g) = 0.

Proposition 5.35. Let {Pn}∞n=1 be a sequence of refining partitions. Then for h1, ..., hk ∈
SC,

||h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk||2H(g)⊗k ≤ k2
k∑

j=1

||hj − PPnhj ||2H(g). (5.24)

In addition, for α ∈ T (H(g))∗T ,∑
h1,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉|2 < k3||αk||2J0
T (H(g)). (5.25)

We are now set to prove

Proposition 5.36. Let {Pn}∞n=1 be a sequence of refining partitions and α ∈ J0
T (H(g))

of finite rank. Then

lim
n→∞

||α− α(Pn)||2J0
T (H(g)) = 0 .
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Proof. Again, the fact that α is of finite degree is essential to this proposition. Assume

α has rank N. Let SC be a basis for H(g) adapted to our sequence of partitions in

the following sense. First construct an orthonormal basis for HP1(g), then extend

inductively, i.e. given an orthonormal basis for HPi(g), extend to an orthonormal basis

for HPi+1(g) for all i > 0. Lemma 5.33 guarantees we can construct a basis SC for H(g)

in this manner. Using this basis, we calculate

||α− α(Pn)||2J0
T (H(g)

=
∞∑

k=0

T k

k!

∑
h1,h2,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk〉 − 〈α(Pn), h1 ⊗ · · · ⊗ hk〉|2

=
N∑

k=0

T k

k!

∑
h1,...,hk∈SC

∣∣∣∣∣∣ 〈α, h1 ⊗ · · · ⊗ hk〉−∑b k
2c

j=0

∑
x1,...,xj∈Ωh1,...,hk

〈α, (θh1,...,hk
/{x1, ..., xj})⊗j

i=1 RPn(xi)〉

∣∣∣∣∣∣
2

Now for any 1 ≤ k ≤ N ,

∑
h1,...,hk∈SC

∣∣∣∣∣∣ 〈α, h1 ⊗ · · · ⊗ hk〉−∑b k
2c

j=0

∑
x1,...,xj∈Ωh1,...,hk

〈α, (θh1,...,hk
/{x1, ..., xj})⊗j

i=1 RPn(xi)〉

∣∣∣∣∣∣
2

≤ Ck

∑
h1,...,hk∈SC

 |〈α, h1 ⊗ · · · ⊗ hk〉 − 〈α, PPnh1 ⊗ · · · ⊗ PPnhk〉|2 +∑b k
2c

j=1

∑
x1,...,xj∈Ωh1,...,hk

|〈α, (θh1,...,hk
/{x1, ..., xj})⊗j

i=1 RPn(xi)〉|2


(5.26)

for a constant Ck which only depends on k. Calculations like Eq. (5.17) show that 5.26

is bounded independent of partition. Since every term in 5.26 involving RPn goes to

zero as n →∞ by Proposition 5.32, we get

lim
n→∞

N∑
k=1

∑
h1,...,hk∈SC

∣∣∣∣∣∣ 〈α, h1 ⊗ · · · ⊗ hk〉−∑b k
2c

j=1

∑
x1,...,xj∈Ωh1,...,hk

〈α, (θh1,...,hk
/{x1, ..., xj} ⊗j

i=1 RPn(xi)〉

∣∣∣∣∣∣
2

≤ C(N)
N∑

k=1

lim
n→∞

∑
h1,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk〉 − 〈α, PPnh1 ⊗ · · · ⊗ PPnhk〉|2 , (5.27)

where C(N) =
∑N

k=1 Ck < ∞. Eq. (5.25) of Proposition 5.35 allows us to use the

Dominated Convergence Theorem with dominating function 4|〈α, h1⊗· · ·⊗hk〉|2. That
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is

lim
n→∞

∑
h1,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk〉 − 〈α, PPnh1 ⊗ · · · ⊗ PPnhk〉|2

=
∑

h1,...,hk∈SC

lim
n→∞

|〈α, h1 ⊗ · · · ⊗ hk〉 − 〈α, PPnh1 ⊗ · · · ⊗ PPnhk〉|2

≤ k2
∑

h1,...,hk∈SC

lim
n→∞

 k∑
j=1

||hj − PPnhj ||2H(g)


= 0,

where we have used Eq. (5.24) in conjunction with Remark 5.34.

Therefore,

lim
n→0

||α− α(Pn)||2J0
T (H(g) = 0.

Definition 5.37. Define ũα ∈ HT as ũα = L2(νT )− limn→0 FPn .

It remains to be seen that Rũα = uα. This, however, is a short and straight-

forward calculation given results already obtained in the general case. For g ∈ H (G) ,

Rũα(g) = lim
n→0

RFPn(g)

= lim
n→0

FPn(g)

= lim
n→0

uα(πPng)

= uα(g).

5.3 Construction of uα

We now return to the case where G is a general simply connected step r nilpo-

tent complex Lie group. In choosing a basis {Xi}d
i=1 for g, we are able to realize G as Cd

under exponential coordinates with a multiplication law given by the Baker-Campbell-
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Hausdorff formula. Furthermore, since eA = A as vectors in Cd,

A ·B = eA · eB

= eΓ(A,B)

= Γ(A,B), (5.28)

where Γ(A,B) is given by the BCH formula. That is if we define

Ik ≡
{

(m,n) ∈ Z2k
+ |m + n > 0

}
,

where m + n > 0 means that mi + ni > 0 for all i = 1, ..., k, and set m! = m1! · · ·mk!

and |m| = m1 + · · ·+ mk, then

Γ(A,B) = A + B

+
∞∑

k=1

(−1)k+1

k(k + 1)

∑
(m,n)∈Ik

1
m!n!(|n|+ 1)

admk
A adnk

B · · · adm1
A adn1

B B. (5.29)

Though adn1
B B = 0 if n1 > 0, it will be notationally convenient to include the term.

In our case, Eq. (5.29) only contains a finite number of terms, since if |m| + |n| ≥ r,

admk
A adnk

B · · · adm1
A adn1

B B = 0 for any A,B ∈ g. Also notice that (m,n) ∈ Ik implies that

|m|+ |n| ≥ k. Therefore, a more efficient writing of Eq. (5.29) for our purposes is

Γ(A,B) = A + B

+
r−1∑
k=1

(−1)k+1

k(k + 1)

∑
(m,n)∈Ik

|m|+|n|<r

1
m!n!(|n|+ 1)

admk
A adnk

B · · · adm1
A adn1

B B. (5.30)

The gist of Eq. (5.28) is that we can consider g and G interchangably as the vector

space Cd with two operations, [ , ], the Lie bracket which comes from g, and group

multiplication ·, which is a linear combination and composition of [ , ] operations.

Remark 5.38. Using exponential coordinates, the identity and inverses are given by 0

and −g respectively, i.e.

0 · g = g · 0 = g

and

g · (−g) = (−g) · g = 0

for all g ∈ G.
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The pointwise application of the above gives us the same relations on the

path space, namely W(g) and W(G) are considered interchangeably as the vector space

W
(
Cd
)

with operations [ , ] and ·.

Proposition 5.39. Suppose g ∈ W(Cd). Then g ∈ H(G) iff g ∈ H(g).

Proof. First observe two important facts. For all s ∈ [0, 1], we have

||g(s)||g =
∥∥∥∥∫ s

0
g′(r)dr

∥∥∥∥
g

≤
∫ 1

0
||g′(r)||gdr

= ||g′||L1([0,1])

≤ ||g′||L2([0,1])

= ||g||H(g). (5.31)

We also calculate the Maurer-Cartan form,

Lg−1(s)∗g
′ (s) =

d

dε
|ε=0(−g(s)) · g(s + ε)

=
d

dε
|ε=0Γ(−g(s), g(s + ε))

= g′(s) +
r−1∑
i=1

Λi(g (s) , g′ (s)), (5.32)

where

Λi(g (s) , g′ (s)) ≡
i∑

k=1

(−1)k+1

k(k + 1)

∑
(m,n)∈Ik

|m|+|n|=i

(−1)|m|

m!n!(|n|+ 1)
adi

g(s)g
′(s).

Notice that Λi(g (s) , g′ (s)) is a constant times adi
g(s) (g′(s)) . Also notice that since

||adAB||g ≤ C||A||g||B||g for some constant C, ||Λi(g (s) , g′ (s))||g ≤ Ci||g(s)||i||g′(s)||
for some constant Ci.

First suppose g ∈ H(g). Then ||g||H(g) = ||g′||L2([0,1]) < ∞. Considering g as
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an element of W(G), we calculate

E (g) :=
∫ 1

0
||Lg−1(s)∗g

′ (s) ||2gds

=
∫ 1

0
||g′(s) +

r−1∑
i=1

Λi(g (s) , g′ (s))||2gds

≤ r2

(∫ 1

0

∣∣∣∣g′(s)∣∣∣∣2
g
ds +

r−1∑
i−1

∫ 1

0

∣∣∣∣Λi(g (s) , g′ (s)
∣∣∣∣2

g
ds

)

≤ r2

(∣∣∣∣g′∣∣∣∣2
L2([0,1])

+
r−1∑
i=1

C2
i

∫ 1

0
||g(s)||2i

g

∣∣∣∣g′(s)∣∣∣∣2
g
ds

)

≤ r2

(∣∣∣∣g′∣∣∣∣2
L2([0,1])

+
r−1∑
i=1

C2
i

∣∣∣∣g′∣∣∣∣2i+2

L2([0,1])

)
(5.33)

= poly(||g||H(g)) (5.34)

< ∞,

where in line (5.33) we have used Eq. (5.31).

Now suppose g ∈ H(G). Considering g ∈ W(g), we write g = (g1, g2, ..., gr)

where gi ∈ W(Vi). The fact that g ∈ H(G), tells us that E(g) < ∞, or in other words

r∑
i=1

||
(
Lg−1(·)∗g

′ (·)
)
i
||2L2([0,1]) < ∞.

In particular,
∣∣∣∣∣∣(Lg−1(·)∗g

′ (·)
)
i

∣∣∣∣∣∣2
L2([0,1])

< ∞ for all i = 1, ..., r. We wish to show that

for all i = 1, ..., r, ||g′i||L2([0,1]) < ∞. First note that Λi(g(s), g′(s)) ∈ ⊕r
j=i+1W(Vj), i.e.

it is identically zero in the first i coordinates. This being the case, then (5.32) tells us

that ∣∣∣∣g′1∣∣∣∣2L2([0,1])
= ||

(
Lg−1(·)∗g

′ (·)
)
1
||2L2([0,1]) < ∞.

Now for the second coordinate, we have

(
Lg−1(s)∗g

′ (s)
)
2

= g′2(s) + Λ1(g(s), g′(s))2.
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Therefore,

∣∣∣∣g′2∣∣∣∣2L2([0,1])
=
∫ 1

0
||
(
Lg−1(s)∗g

′ (s)
)
2
+ Λ1(g(s), g′(s))2||2gds

≤ 4
(
||
(
Lg−1(·)∗g

′ (·)
)
2
||2L2([0,1]) + C2

1

∫ 1

0
||g1(s)||2g

∣∣∣∣g′1(s)∣∣∣∣2g ds

)
≤ 4

(
||
(
Lg−1(·)∗g

′ (·)
)
2
||2L2([0,1]) + C2

1

∣∣∣∣g′1∣∣∣∣4L2([0,1])

)
< ∞,

where we have used Eq. (5.31) restricted to the first coordinate. In this manner, we

can inductively get ||g′i||L2([0,1]) < ∞ for all i = 1, ..., r.

We now have an expression for the product on H(G). That is, using the above

proposition and Eq. (5.30), we have for all g, h ∈ H(G),

g · h = Γ(g, h)

= g + h

+
r−1∑
k=1

(−1)k+1

k(k + 1)

∑
(m,n)∈Ik

|m|+|n|<r

1
m!n!(|n|+ 1)

admk
g adnk

h · · · adm1
g adn1

h h, (5.35)

where (g · h) (s) = g(s) · h(s) and (adgh)(s) = adg(s)h(s) for all s ∈ [0, 1]. The following

characterizations of Eq. (5.35) will be useful in the sequel.

Remark 5.40. Notice that

g · h = g + h +
r−1∑
l=0

Cladl
gh +

r−1∑
l=2

Ql(g, h), (5.36)

for some constants C1, ..., Cr−1 and functions Ql(g, h) which satisfy Ql(g, zh) = zlQ(g, h)

for z ∈ C, and for fixed g, ||Ql(g, h)||g ≤ Cl(g)||h||lg.
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Definition 5.41. For h ∈ H(g) and g ∈ H(G), we’ll denote

h̃(g) :=
d

dt
|t=0

(
g · eth

)
=

d

dt
|t=0 (g · th)

=
d

dt
|t=0

(
g + th + t

r−1∑
l=0

Cladl
gh +

r−1∑
l=2

tlQ(g, h)

)

= h +
r−1∑
l=0

Cladl
gh,

where we are using the notation as in Remark 5.40.

Remark 5.42. Observe that

g · h = g + h̃(g) +
r−1∑
l=2

Ql(g, h).

Given α ∈ J0
T , we would like to construct a holomorphic function uα on H(G)

such that (1 − D)−1
e uα = α. Recall from Chapter 4 that we require that for every

g ∈ H(G), the map h ∈ H(g) → uα(g · eh) is Frechét differentiable at h = 0 and

that this Frechét derivative is complex linear and continuous in H(g)∗ as a function of

g. The following theorem is motivated by results from [3], specifically Remark 5.6 and

Proposition 6.2.

Theorem 5.43. Given α ∈ J0
T (H(g)) of rank N , for every g ∈ H(G) define

uα(g) :=
N∑

n=0

〈α, g⊗n〉/n!

In defining uα, we are using the identification between H(G) and H(g) exhibited in

Proposition 5.39. Then uα is a holomorphic function on H(G) satisfying (1−D)−1
e uα =

α.

Proof. For 0 < n ≤ N , define fn : H(G) → C by

fn(g) =
1
n!
〈α, g⊗n〉
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Since finite sums of holomorphic functions are holomorphic, showing that fn is holomor-

phic is sufficient to prove that uα is holomorphic.

For h ∈ H(g) and g ∈ H(G), define

(dfn)g h :=
1
n!
〈α,

n−1∑
k=0

g⊗k ⊗ h̃(g)⊗ g⊗n−k−1〉,

where h̃(g) is given by Definition 5.41. That is

h̃(g) = h +
r−1∑
l=0

Cladl
gh.

Notice that h̃(g) is complex linear in h and continuous in g.

To see that (dfn)g is the Frechét derivative of fn at g ∈ H(G), we first observe

that, using the same notation as Remark 5.40,

(g · h)⊗n = (g + h̃(g) +
r−1∑
l=2

Ql(g, h))⊗n

= g⊗n +
n−1∑
k=0

g⊗k ⊗ h̃(g)⊗ g⊗n−k−1 + Rn(g, h),

where Rn(g, h) is a sum of tensors each containing at least one Ql(g, h), for some l ≥ 2.

Therefore, ||Rn(g, h)||H(g)⊗n ≤ Cg||h||2H(g) for an appropriate constant Cg. Therefore

lim
h→0

|fn(g · h)− fn(g)− (dfn)g h|
||h||H(g)

≤ lim
h→0

||α||(H(g)∗)⊗n ||(g · h)⊗n − g⊗n −
∑n−1

k=0 g⊗k ⊗ h̃(g)⊗ g⊗n−k−1〉||
n!||h||H(g)

= lim
h→0

||α||(H(g)∗)⊗n ||Rn(g, h)||H(g)⊗n

n!||h||H(g)

≤ lim
h→0

||α||(H(g)∗)⊗nCg||h||2H(g)

n!||h||H(g)

= 0.

This proves that fn is holomorphic, and therefore so is uα.

To see that (1−D)−1
e uα = α, observe that for h ∈ H(g),

uα(eth) = uα(th) =
∞∑

n=0

tn

n!
〈α, h⊗n〉.
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Then

k times︷ ︸︸ ︷
h̃h̃ · · · h̃uα(e) =

d

dt1
|t1=0 · · ·

d

dtk
|tk=0uα(etkh · etk−1h · · · et1h)

=
d

dt1
|t1=0 · · ·

d

dtk
|tk=0uα(e(tk+tk−1+···+t1)h)

=
d

dt1
|t1=0 · · ·

d

dtk
|tk=0

∞∑
n=0

(tk + · · ·+ t1)n

n!
〈α, h⊗n〉

= 〈α, h⊗k〉.

Polarization then gives the result for symmetric tensors. The fact that α ∈ J0
T and the

Burkhoff-Witt theorem gives that for h1, h2, ..., hk ∈ H(g),

h̃1h̃2...h̃kuα(e) = 〈α, h1 ⊗ h2 ⊗ · · · ⊗ hk〉.

5.4 Derivatives of FP

Our goal in this section is to characterize the derivatives of FP in terms of our

given α. Notice that since FP = uα ◦ P̃P , given h ∈ H (g) and g ∈ W(G),

(h̃FP)(g) =
d

dt
|t=0FP(g · eth)

=
d

dt
|t=0uα(P̃P(g · eth)).

Setting

hP(g) ≡ LP̃P (g)−1∗
d

dt
|t=0P̃P(g · eth)

=
d

dt
|t=0(−P̃P(g) · P̃P(g · eth))

then

(h̃FP)(g) = 〈Duα(P̃P(g)), hP(g)〉,

and in particular

(h̃FP)(e) = 〈α, hP(e)〉
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since P̃P(e) = e.

In our case, the identification of W(G) and W(g) via the exponential map

greatly simplifies the calculation. Using the fact that as functions on W(Cd), P̃P ≡ PP ,

we have that

hP(g) =
d

dt
|t=0(−P̃P(g) · P̃P(g · eth))

=
d

dt
|t=0(−PP(g) · PP(g · th)).

PP is a linear function from H (g) to H (g). We now wish to work out hP(g) in more

detail. We first perform the calculations with PP replaced by P : H (g) → H (g) a

general bounded linear function. In particular, we are interested in the quantity

d

dt
|t=0(−P (g)) · P (g · th),

since replacing P with PP gives us our desired hP(g).

Notice that by calculations similar to those in Remark 5.40, we have that

g · th = g + t
r−1∑
l=0

Cladl
gh + O(t2), (5.37)

for constants Cl. Therefore,

P (g · th) = P (g) + t
r−1∑
l=0

ClP (adl
gh) + O(t2). (5.38)

Proposition 5.44. For any bounded linear function P : H (g) → H (g), there exist

constants Cl,m independent of P , for 0 < l ≤ m ≤ r, such that

d

dt
|t=0(−P (g)) · P (g · th) =

r−1∑
m=0

m∑
l=0

Cl,madl
P (g)P (adl−m

g h),

with the property that C0,0 = 1 and for all m ≥ 1,
∑m

l=0 Cl,m = 0.

Proof. For notational convenience, we’ll set

Λ(g, h) =
r−1∑
l=0

ClP (adl
gh),
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so that Eq. (5.38) becomes

P (g · th) = P (g) + tΛ(g, h) + O(t2).

In addition, let

Nk =
(−1)k+1

k(k + 1)
,

and for m,n ∈ Zk
+,

Mm,n =
1

m!n!(|n|+ 1)
.

With this notation, the simplified BCH formula, Eq. (5.30), becomes

Γ(A,B) = A + B +
r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

Mm,nadmk
A adnk

B · · · adm1
A adn1

B B.

Also, in the following computation we will often throw out terms of order greater than t

from one equality to the next with the knowledge that we will be evaluating the derivative

at zero, and hence they will not contribute. Using the BCH formula and the notation
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defined before,

d

dt
|t=0(−P (g)) · P (g · th)

=
d

dt
|t=0(−P (g)) · (P (g) + tΛ(g, h) + O(t2))

=
d

dt
|t=0tΛ(g, h)

+
d

dt
|t=0

r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

Mm,nadmk

−P (g) · · · adm1

−P (g)adn1

P (g)+tΛ(g,h) (P (g) + tΛ (g, h))

= Λ(g, h)

+
d

dt
|t=0

r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

Mm,nadmk

−P (g)adnk

P (g)+tΛ(g,h) · · · adm1

−P (g)adn1

P (g)+tΛ(g,h)P (g)

+
d

dt
|t=0t

r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

Mm,nadmk

−P (g)adnk

P (g)+tΛ(g,h) · · · adm1

−P (g)adn1

P (g)+tΛ(g,h)Λ (g, h)

= Λ(g, h) +
d

dt
|t=0t

r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

n1=1

Mm,nadmk

−P (g)adnk

P (g) · · · adm1

−P (g)adn1

Λ(g,h)P (g)

+
d

dt
|t=0t

r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

Mm,nadmk

−P (g)adnk

P (g) · · · adm1

−P (g)adn1

P (g)Λ (g, h)

= Λ(g, h)−
r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

n1=1

Mm,nadmk

−P (g)adnk

P (g) · · · adm1

−P (g)adn1

P (g)Λ (g, h)

+
r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

Mm,nadmk

−P (g)adnk

P (g) · · · adm1

−P (g)adn1

P (g)Λ (g, h)
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= Λ(g, h) +
r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

n1 6=1

Mm,nadmk

−P (g)adnk

P (g) · · · adm1

−P (g)adn1

P (g)Λ (g, h)

= Λ(g, h) +
r−1∑
k=1

Nk

∑
(m,n)∈Ik

|m|+|n|<r

n1 6=1

(−1)|m|Mm,nad
|m|+|n|
P (g) Λ (g, h)

= Λ(g, h) +
r−1∑
q=1


r−1∑
k=1

Nk

∑
(m,n)∈Ik

n1 6=1

|m|+|n|=q

(−1)|m|Mm,n

 adq
P (g)Λ (g, h) .

Setting

Kq =


r−1∑
k=1

Nk

∑
(m,n)∈Ik

n1 6=1

|m|+|n|=q

(−1)|m|Mm,n

 ,

we get

d

dt
|t=0(−P (g)) · P (g · th)

= Λ(g, h) +
r−1∑
q=1

Kqadq
P (g) (Λ (g, h))

=
r−1∑
l=0

ClP (adl
gh) +

r−1∑
q=1

Kqadq
P (g)

(
r−1∑
l=0

ClP (adl
gh)

)

=
r−1∑
l=0

ClP (adl
gh) +

r−1∑
q=1

r−1∑
l=0

KqCladq
P (g)P (adl

gh)

=
r−1∑
l=0

ClP (adl
gh) +

r−1∑
q+l=1
q>0

KqCladq
P (g)P (adl

gh)

≡
r−1∑
m=0

m∑
l=0

Cl,madl
P (g)P (adl−m

g h).
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Now to see the relation among the constants, note that we have made no as-

sumptions as to the nature of our linear function P . In particular, we could set P to be

the indentity function and we would get

h =
d

dt
|t=0(−g) · (g · th)

=
r−1∑
m=0

m∑
l=0

Cl,madl
gadl=m

g h

= C0,0h +
r−1∑
m=1

(
m∑

l=0

Cl,m

)
adm

g h.

We also have made no additional assumptions on our Lie algebra, so if there is a step

r stratified nilpotent Lie algebra in which there exists a g and h such that {adm
g h}r−1

m=0

are linearly independent, then we necessarily have that C0,0 = 1 and
∑m

l=0 Cl,m = 0 for

m > 0.

Let V be a finite dimensional vector space, and consider the truncated tensor

algebra T (r) ≡ ⊕r
i=1V

⊗i. For v, w ∈ T (r), the product [v, w] = v⊗w−w⊗ v, along with

the convention that we elminate products of length greater than r, defines a Lie bracket

on T (r). It then follows that for any v, w ∈ V with v, w 6= 0, adm
v w ∈ V ⊗(m+1) and

hence the set {adm
v w}r−1

m=0 are linearly independent.

Remark 5.45. Since for m > 0,
∑m

l=0 Cl,m = 0 in the above Proposition, we can rewrite

d

dt
|t=0(−P (g)) · P (g · th) =

r−1∑
m=0

m∑
l=0

Cl,madl
P (g)P (adl−m

g h)

=
r−1∑
m=0

m−1∑
l=0

C̃l,m

(
adl

P (g)P (adl−m
g h)− adl+1

P (g)P (adl−m−1
g h)

)
,

where C̃l,m =
∑l

j=0 Cj,m.

Proof. Let m > 0. Then for sequences {ai}l
i=0 and {bi}l

i=0, if we set A−1 = 0 and

Al :=
l∑

k=0

ak,
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for 0 < l ≤ m, then

m∑
l=0

albl =
m∑

l=0

(Al −Al−1)bl

=
m∑

l=0

Albl −
m−1∑
l=0

Albl+1

=
m−1∑
l=0

Al(bl − bl+1) + Ambm.

Our result follows from the above by setting al = Cl,m and bl = adl
P (g)P (adl−m

g h). It

then follows that Al = C̃l,m. Notice that since
∑m

l=0 Cl,m = 0,

Am =
m∑

l=0

al =
m∑

l=0

Cl,m = 0.

Substituting PP for P in the previous calculation gives

hP(g) =
r−1∑
m=0

m−1∑
l=0

C̃l,m

(
adl

PP(g)PP(adl−m
g h)− adl+1

PP (g)PP(adl−m−1
g h)

)
(5.39)

= PPh +
r−1∑
m=1

m−1∑
l=0

C̃l,m

(
adl

PP(g)PP(adl−m
g h)− adl+1

PP (g)PP(adl−m−1
g h)

)
. (5.40)

Definition 5.46. For 1 ≤ k < j ≤ r and h1, ..., hj ∈ H(g), define RP
j,k : H(g)j → H(g)

by

RP
j,k(h1, ..., hj) ≡ adPP (h1) · · · adPP (hk−1)

(
PP(adhk

· · · adhj−1
hj

)
)

− adPP (h1) · · · adPP (hk)

(
PP(adhk+1

· · · adhj−1
hj

)
).

Observe that RP
j,k is a multilinear function.

Using this definition, we can then write

hP(g) = PPh +
∑

1≤k<j≤r

C̃j,kR
P
j,k(

j−1 times︷ ︸︸ ︷
g, ..., g, h), (5.41)

where the constants C̃j,k are given by Remark 5.45.
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Example 5.47. Suppose that g is a step 3 stratified Lie algebra. Then

g · h = g + h +
1
2
[g, h] +

1
12

([g, [g, h]]− [h, [g, h]])

and therefore

PP(g · th) = PPg + tPPh +
t

2
PP [g, h] +

t

12
PP [g, [g, h]]− t2

12
PP [h, [g, h]].

Calculating hP(g) yields

hP(g) =
d

dt
|t=0PP(−g) · PP(g · th)

=
d

dt
|t=0(−PPg) · (PPg + tPPh +

t

2
PP [g, h] +

t

12
PP [g, [g, h]]− t2

12
PP [h, [g, h]])

=
d

dt
|t=0


tPPh + t

2PP [g, h] + t
12PP [g, [g, h]]− t2

12PP [h, [g, h]]

−1
2 [PPg, PPg + tPPh + t

2PP [g, h]] + 1
12 [PPg, [PPg, PPg + tPPh]]

+ 1
12 [PPg + tPPh, [PPg, PPg + tPPh]]


= PPh +

1
2
PP [g, h] +

1
12

PP [g, [g, h]]− 1
2
[PPg, PPh]

− 1
4
[PPg, PP [g, h]] +

1
12

[PPg, [PPg, PPh]] +
1
12

[PPg, [PPg, PPh]]

= PPh +
1
2

(PP [g, h]− [PPg, PPh]) +
1
12

(PP [g, [g, h]]− [PPg, PP [g, h]])

− 1
6

([PPg, PP [g, h]]− [PPg, [PPg, PPh]])

= PPh +
1
2
RP

2,1(g, h) +
1
12

RP
3,1(g, g, h)− 1

6
RP

3,2(g, g, h).

Notation 5.48. For notational convenience, we will continue using e to denote the identity

path in W(G), while 0 will be used to denote the identity path in W(g).

Remark 5.49. Notice that if any one of h1, ..., hj is 0, then RP
j,k(h1, ..., hj) ≡ 0.

Recall that our goal is to analyze derivatives of FP at the identity path. Then

Remark 5.49 imples that

(h̃FP)(e) = 〈α, hP(e)〉

= 〈α, PPh +
∑

1≤k<j≤r

C̃j,kR
P
j,k(e, ..., e, h)〉

= 〈α, PPh〉. (5.42)

Now we consider the second order case.
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Notation 5.50. Suppose R is a function defined on H(g)j . For k ∈ H(g), denote

(k̃(i)R)(g1, ..., gj) ≡
d

dt
|t=0R(g1, ..., gi−1, gi · tk, gi+1, ..., gj).

Note that if R is multilinear, then

(k̃(i)R)(g1, ..., gj) =
d

dt
|t=0R(g1, ..., gi−1, gi +

r∑
l=0

Cladl
gi

h + O(t2), gi+1, ..., gj)

=
r−1∑
l=0

ClR(g1, ..., gi−1, adl
gi

h, gi+1, ..., gj). (5.43)

The notation above allows us to write

d

dt
|t=0hP(g · tk) =

d

dt
|t=0PPh +

∑
1≤k<j≤r

C̃j,kR
P
j,k(g · tk, ..., g · tk, h)

=
∑

1≤k<j≤r

j−1∑
i=1

C̃j,kk̃
(i)RP

j,k(g, ..., g, h).

Since RP
j,k is multilinear, Eq. (5.43) gives

k̃(i)RP
j,k(g, ..., g, h) =

r−1∑
l=0

ClR
P
j,k(g1, ..., gi−1, adl

gi
k, gi+1, ..., gj)

=
r−j−1∑

l=0

ClR
P
j,k(g1, ..., gi−1, adl

gi
k, gi+1, ..., gj).

Therefore

(k̃h̃FP)(g) =
d

dt
|t=0(h̃P(g · tk)uα)(PP(g · tk))

= (k̃P(g)h̃P(g)uα)(PP(g)) + (
d

dt
|t=0h̃P(g · tk)uα)(PP(g))

= (k̃P(g)h̃P(g)uα)(PP(g))

+

 ∑
1≤k<j≤r

j−1∑
i=1

C̃j,kk̃
(i)RP

j,k(g, ..., g, h)

uα

 (PP(g))

= 〈D2uα(PP(g))), kP(g)⊗ hP(g)〉

+
∑

1≤k<j≤r

j−1∑
i=1

C̃j,k〈Duα(PP(g))), k̃(i)RP
j,k(g, ..., g, h)〉.
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In particular,

(k̃h̃FP)(e) = 〈D2uα(e), PPk ⊗ PPh〉+ C̃2,1〈Duα(e), RP
2,1(k, h)〉

= 〈α, PPk ⊗ PPh + C̃2,1R
P
2,1(k, h)〉.

For higher order derivatives, it is not difficult to see that the result of evaluating deriva-

tives of FP at the identity yields α acting on a sum of tensor products of terms like PPh

and RP
j,k,with arguents possibly nested brackets. This is summarized in the following

theorem.

Theorem 5.51. Let P a partition of [0, 1], and FP defined as in Remark 5.8. Then for

any h1, h2, ..., hk ∈ H(g),(
h̃1h̃2 · · · h̃kFP

)
(e) = 〈α(P), h1 ⊗ h2 ⊗ · · · ⊗ hk〉

= 〈α, PPh1 ⊗ PPh2 ⊗ · · · ⊗ PPhk + RP
k (h1, ..., hk)〉,

where RP
k ∈ T (H(g)) is a sum of tensor products determined by iteration of the product

rule and differentiation as in Notation 5.50.

The above theorem is really a summary of the notation that we have built up

over the past section. The truth of Theorem 5.51 can best be seen using examples. The

following continuation of Example 5.47 should provide insight into the general case.

Example 5.52. Again, let g be a step 3 stratified Lie algebra. Recall from Example 5.47

that

hP(g) = PPh +
1
2
RP

2,1(g, h) +
1
12

RP
3,1(g, g, h)− 1

6
RP

3,2(g, g, h).

Also note that since

g · tk = g + tk +
t

2
[g, k] +

t

12
[g, [g, k]] + O(t2),

the following compuations are justified:

k̃(1)RP
2,1(g, h) = RP

2,1(k, h) + RP
2,1([g, k], h)

k̃(1)RP
3,1(g, g, h) = RP

3,1(k, g, h)

k̃(2)RP
3,1(g, g, h) = RP

3,1(g, k, h)

k̃(1)RP
3,2(g, g, h) = RP

3,2(k, g, h)

k̃(2)RP
3,2(g, g, h) = RP

3,2(g, k, h)
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Now computing the first derivative, we see that

(h̃FP)(g) = 〈α, hP(g)〉

= 〈α, PPh +
1
2
RP

2,1(g, h) +
1
12

RP
3,1(g, g, h)− 1

6
RP

3,2(g, g, h)〉,

and so

(h̃FP)(e) = 〈α, PPh +
1
2
RP

2,1(e, h) +
1
12

RP
3,1(e, e, h)− 1

6
RP

3,2(e, e, h)〉

= 〈α, PPh〉.

For the second derivatives,

(k̃h̃FP)(g) = 〈D2uα(PP(g))), kP(g)⊗ hP(g)〉

+
∑

1≤k<j≤3

j−1∑
i=1

C̃j,k〈Duα(PP(g))), k̃(i)RP
j,k(g, ..., g, h)〉

= 〈α, kP(g)⊗ hP(g)〉+
1
2
〈α, k̃(1)RP

2,1(g, h)〉+
1
12
〈α, k̃(1)RP

3,1(g, g, h)〉

+
1
12
〈α, k̃(2)RP

3,1(g, g, h)〉 − 1
6
〈α, k̃(1)RP

3,2(g, g, h)〉 − 1
6
〈α, k̃(2)RP

3,2(g, g, h)〉

= 〈α, kP(g)⊗ hP(g)〉+
1
2
〈α, RP

2,1(k, h) + RP
2,1([g, k], h)〉

+
1
12
〈α, RP

3,1(k, g, h) + RP
3,1(g, k, h)〉 − 1

6
〈α, RP

3,2(k, g, h) + RP
3,2(g, k, h)〉.

Therefore

(k̃h̃FP)(e) = 〈α, PPk ⊗ PPh〉+
1
2
〈α, RP

2,1(k, h)〉.

For the third derivatives, we get the following expression (the calculation is carried out

in section 3 of the appendix).

(l̃k̃h̃FP)(e) = 〈α, PP l ⊗ PPk ⊗ PPh〉

+ 〈α, PPk ⊗ 1
2
RP

2,1(l, h)〉+ 〈α,
1
2
RP

2,1(l, k)⊗ PPh〉

+ 〈α, PP l ⊗ 1
2
RP

2,1(k, h)〉+ 〈α,
1
2
RP

2,1([l, k], h)〉

+ 〈α,
1
12

RP
3,1(k, l, h)〉+ 〈α,

1
12

RP
3,1(l, k, h)〉

− 〈α,
1
6
RP

3,2(l, k, h)〉 − 〈α,
1
6
RP

3,2(k, l, h)〉.
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5.5 Increments and Multilinear Functions on H(g)

The terms RP
j,k as defined in Definition 5.46 are multilinear functions on H(g).

While the structure of our remainder terms can get quite complicated, the fact that they

are multilinear allows us to estimate sums over an orthonormal basis.

Notation 5.53. Given a partition P = {0 = s0 < s1 < ... < sn < sn+1 = 1}, we’ll let δi

denote the increment function for i = 0, ..., n − 1. That is, if V is a vector space, and

T : [0, 1] → V is a path, then

δiT := T (si+1)− T (si) .

In the case that T is the identity function on [0, 1], we omit the T in the notation, i.e.

δi := si+1 − si.

Remark 5.54. The notation above will be used often in the following contexts. If

h ∈ H(g), then

δih := h(si+1)− h (si) .

If h1, ..., hk ∈ H(g), then (h1, ..., hk) ∈ H(g)k, and

δi(h1, ..., hk) := (h1 (si+1) , ..., hk (si+1))− (h1 (si) , ..., hk (si)).

Finally, if h1, ..., hk ∈ H(g) and T is a multilinear function on gk, then

δiT (h1, ..., hk) := T (h1 (si+1) , ..., hk (si+1))− T (h1 (si) , ..., hk (si)).

Notation 5.55. For a given partition P = {0 = s0 < s1 < ... < sn < sn+1 = 1}, let

ti(t) := 1(si,si+1](t)
(

t− si

δi

)
.

In the sequel, we will often omit the t in the notation, that is ti(t) = ti.

Remark 5.56. Notice that
d

dt
ti(t) = 1(si,si+1](t)

1
δi

.
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With this notation, for h ∈ H(g), we have

PPh =
n−1∑
i=0

(
h (si) 1(si,si+1] + (δih) ti

)
.

Proposition 5.57. For any g, h ∈ H (g) and any partition P,

PP [g, h]− [PPg, PPh] =
n−1∑
i=0

[δig, δih](ti − t2i ),

or in other words,

PP (adgh)− adPPg (PPh) =
n−1∑
i=0

adδig (δih) (ti − t2i ).

Proof. It suffices to show the result on an individual partition increment. Consider the

interval (si, si+1]. Then on (si, si+1],

PP [g, h]− [PPg, PPh] = [g (si) , h(si)] + δi[g, h]ti − [g (si) + δigti, h (si) + δihti]

= [g (si) , h(si)] + δi[g, h]ti − [g (si) , h(si)]

− [δig, h (si)]ti − [g (si) , δih]ti − [δig, δih]t2i

= (δi[g, h]− [δig, h (si)]− [g (si) , δih]) ti − [δig, δih]t2i

= [δig, δih](ti − t2i ).

In particular, Proposition 5.57 lets us rewrite our remainder terms.

RP
j,k(h1, ..., hj) = adPP (h1) · · · adPP (hk−1)PP(adhk

· · · adhj−1
hj)

− adPP (h1) · · · adPP (hk)PP(adhk+1
· · · adhj−1

hj)

=
n−1∑
i=0

adPP (h1) · · · adPP (hk−1)adδihk

(
δi(adhk+1

· · · adhj−1
hj)
)
(ti − t2i ),

or in bracket notation

RP
j,k(h1, ..., hj) =

n−1∑
i=0

[PPh1, [..., [PPhk−1, [δihk, δi[hk+1, [..., [hj−1,hj ]] · · · ](ti − t2i ). (5.44)
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As we saw in the previous section, the more general remainder term is of the

form

RP
j,k(B1, B2, ..., Bj)(h1, ..., hp), (5.45)

where Bi are multilinear functions coming from nested brackets. It is to be understood

in writing (5.45) that there exist p1, ..., pj > 0 such that
∑j

i=1 pi = p and Bi : H(g)pi →
H(g), in which case

RP
j,k(B1, B2, ..., Bj)(h1, ..., hp)

≡ RP
j,k(B1(h1, ..., hp1), B2(hp1+1, ..., hp1+p2), ..., Bj(hp−pj+1, ..., hp)). (5.46)

We will see that the structure and domain of the Bi terms are not important for our

calculations. Therefore Eq. (5.45) is useful shorthand. We will often further shorten

the expression in the following manner:

RP
j,k(B1, B2, ..., Bj)(h) := RP

j,k(B1, B2, ..., Bj)(h1, ..., hp). (5.47)

The meaning of h should be clear from context.

From Eq. (5.44),

RP
j,k(B1, ..., Bj)(h1, ..., hp)

:=
n−1∑
i=0

[PPB1, [..., [PPBk−1, [δiBk, δi[Bk+1, [..., [Bj−1,Bj ]] · · · ](h1, ..., hp)(ti − t2i ).

We will see that a futher rewriting of the above is useful. First some more notation.

Notation 5.58. Let S(C) denote a basis for H(C), and XC denote a basis for the

complex inner product space (g,( , )g).

Remark 5.59. If S(C) = {ui}∞i=1, and XC = {Aj}d
j=1, then {uiAj}i=∞,j=d

i,j=1 forms a basis

for (H(g), ( , )H(g)).

Notation 5.60. For integers k ≥ l ≥ 0, let Ωl
k denote the set of subsets of size l of the

integers 1, 2, ..., k. That is

Ωl
k := {ω ∈ 2{1,2,...,k}|#(ω) = l}.
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Notation 5.61. Suppose u1, ..., uk ∈ H(C) and ω ∈ Ωl
k. Then

δω
i (u1 · · ·uk) :=

∏
j∈ω

δiurl

∏
j /∈ω

upq(si).

Similarly, if h1, ..., hk ∈ H(g), then

δω
i (h1, ..., hk) ≡ (ĥ1, ..., ĥk)

where

ĥj =

 δihj if j ∈ ω

hj(si) otherwise
.

Example 5.62. Suppose ω = {1, 3, 4} ∈ Ω3
5. Then

δω
i (u1 · · ·u5) = (δiu1) (δiu3) (δiu4) (u2 (si)) (u5 (si))

and

δω
i (h1, ..., h5) = (δih1, h2 (si) , δih3, δih4, h5 (si)).

Observe that if T is a bilinear function on g2. Then

δiT (h1, h2) = T (h1(si+1), h2(si+1))− T (h1(si), h2(si))

= T (h1(si+1), h2(si))− T (h1(si), h2(si)) + T (h1(si), h2(si+1))

− T (h1(si), h2(si)) + T (h1(si+1), h2(si+1))− T (h1(si+1), h2(si))

− T (h1(si), h2(si+1)) + T (h1(si), h2(si))

= T (h1(si+1), h2(si))− T (h1(si), h2(si)) + T (h1(si), h2(si+1))

− T (h1(si), h2(si)) + T (h1(si+1)− h1(si), h2(si+1)− h2(si))

= T (δih1, h2(si)) + T (h1 (si) , δih2) + T (δih1, δih2)

=
2∑

l=1

∑
ω∈Ωl

2

T (δω
i (h1, h2)).

This suggests the following Proposition.

Proposition 5.63 (Product Rule). Suppose T be a multilinear function on gk. Then

δiT (h1, ..., hk) =
k∑

l=1

∑
ω∈Ωl

k

T (δω
i (h1, ..., hk)) .
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Proof. For k = 1, the result is trivial. For k = 2, the result follows by the above

calculation. Now suppose it is true for all multilinear functions on gk. Then if T is a

multilinear function on gk+1,

δiT (h1, ..., hk+1)

= T (h1 (si+1) , ..., hk+1 (si+1))− T (h1 (si) , ..., hk+1 (si))

= T (h1 (si+1) , ..., hk (si+1) , hk+1 (si+1))− T (h1 (si+1) , ..., hk (si+1) , hk+1 (si))

− T (h1 (si) , ..., hk (si) , hk+1 (si+1)) + T (h1 (si) , ..., hk (si) , hk+1 (si))

+ T (h1 (si+1) , ..., hk (si+1) , hk+1 (si))− T (h1 (si) , ..., hk (si) , hk+1 (si))

= T (δi(h1, ..., hk), δihk+1) + T (δi(h1, ..., hk), hk+1(si))

= T (
k∑

l=1

∑
ω∈Ωl

k

(δω
i (h1, ..., hk)) , δihk+1) + T (

k∑
l=1

∑
ω∈Ωl

k

(δω
i (h1, ..., hk)) , hk+1(si))

=
k∑

l=1

∑
ω∈Ωl

k

T ((δω
i (h1, ..., hk)) , δihk+1) +

k∑
l=1

∑
ω∈Ωl

k

T ((δω
i (h1, ..., hk)) , hk+1(si))

=
k+1∑
l=1

∑
{ω∈Ωl

k+1|k+1∈ω}

T (δω
i (h1, ..., hk+1)) +

k+1∑
l=1

∑
{ω∈Ωl

k+1|k+1/∈ω}

T (δω
i (h1, ..., hk+1))

=
k+1∑
l=1

∑
ω∈Ωl

k+1

T (δω
i (h1, ..., hk+1)).

Remark 5.64. Letting T be the identity map on gk, the above Proposition tells us that

δi(h1, ..., hk) =
k∑

l=1

∑
ω∈Ωl

n

δω
i (h1, ..., hk).

Furthermore, if T : Ck → C by T (z1, ..., zk) = z1 · · · zk, then we get

δi(u1 · · ·uk) =
k∑

l=1

∑
ω∈Ωl

k

δω
i (u1 · · ·uk)

for u1, ..., uk ∈ H(C).

The following proposition is a summary of results that can be found in section

1 of the appendix.
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Proposition 5.65. Suppose P ={0 = s0 < s1 < · · · < sn < sn+1 = 1} is a partition of

[0, 1]. For any s, t ∈ [0, 1] and any 1 ≤ i, j ≤ n,

1.
∑

u∈S(C) u (s)u (t) = s ∧ t

2.
∑

u∈S(C) |δiu|2 = K(δi, δi) = δi

3.
∑

u∈S(C) (δiu) u(sj) = δj>iδi

4.
∑

u∈S(C) (δiu) (δju) = δijδi

where δij denotes the Kronecker delta and

δj>i =

 δi if j > i

0 if j ≤ i
.

Proposition 5.66. Suppose ω ∈ Ωl
n, and θ ∈ Ωm

n , with n ≥ 2 and l,m ≥ 1. Then∑
u1,...,un∈S(C)

δω
i (u1 · · ·un)δθ

j (u1 · · ·un) = δijδωθ (δi)
l (si)

n−l ,

where δωθ = 1 if ω = θ and 0 otherwise.

Proof. First suppose ω 6= θ. If ω ∩ θ 6= ∅, then WLOG there exists elements p ∈ ω with

p /∈ θ, and q ∈ ω ∩ θ. WLOG, say p = 1 and q = 2. Then∑
u1,...,un∈S(C)

δω
i (u1 · · ·un)δθ

j (u1 · · ·un)

=

 ∑
u1∈S(C)

(δiu1)
(
u1 (sj)

) ∑
u2∈S(C)

(δiu2)
(
δju2

)× · · ·

· · · ×

 ∑
u3,...,un∈S(C)

δ
ω\{1,2}
i (u3 · · ·un)δθ\{2}

j (u3 · · ·un)


= (δj>iδi) (δijδi)

 ∑
u3,...,un∈S(C)

δ
ω\{1,2}
i (u3 · · ·un)δθ\{2}

j (u3 · · ·un)


= 0,
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since δj>iδij = 0. If ω∩θ = ∅, then there exist elements p, q such that p ∈ ω, p /∈ θ, q /∈ ω,

and q ∈ θ. WLOG, say p = 1 and q = 2. Then∑
u1,...,un∈S(C)

δω
i (u1 · · ·un)δθ

j (u1 · · ·un)

=

 ∑
u1∈S(C)

(δiu1)
(
u1 (sj)

) ∑
u2∈S(C)

(u2 (si))
(
δju2

)× · · ·

· · · ×

 ∑
u3,...,un∈S(C)

δ
ω\{1}
i (u3 · · ·un)δθ\{2}

j (u3 · · ·un)


= (δj>iδi) (δi>jδj)

 ∑
u3,...,un∈S(C)

δ
ω\{1}
i (u3 · · ·un)δθ\{2}

j (u3 · · ·un)


= 0,

since δj>iδi>j = 0. Now we assume that ω = θ. Then∑
u1,...,un∈S(C)

δω
i (u1 · · ·un)δθ

j (u1 · · ·un)

=
∏
p∈ω

 ∑
up∈S(C)

(δiup)
(
δjup

) ∏
q∈ωc

 ∑
uq∈S(C)

(uq (si))
(
uq (sj)

)
= δij (δi)

l (si)
n−l .

Corollary 5.67.
∑

u1,...,un∈S(C) δi(u1 · · ·un)δj(u1 · · ·un) = δij
∑n

l=1

(
n
l

)
(δi)

l (si)
n−l .
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Proof. ∑
u1,...,un∈S(C)

δi(u1 · · ·un)δj(u1 · · ·un)

=
∑

u1,...,un∈S(C)

 n∑
l=1

∑
ω∈Ωl

n

δω
i (u1 · · ·un)

 n∑
m=1

∑
θ∈Ωm

n

δθ
j (u1 · · ·un)


=

n∑
l,m=1

∑
ω∈Ωl

n

∑
θ∈Ωm

n

 ∑
u1,...,un∈S(C)

δω
i (u1 · · ·un)δθ

j (u1 · · ·un)


=

n∑
l,m=1

∑
ω∈Ωl

n

∑
θ∈Ωm

n

δijδωθ (δi)
l (si)

n−l

= δij

n∑
l=1

∑
ω∈Ωl

n

(δi)
l (si)

n−l

= δij

n∑
l=1

(
n

l

)
(δi)

l (si)
n−l

= δij(sn
i+1 − sn

i ).

Remark 5.68. Notice that if hj = ujAj for uj ∈ S(C) and Aj ∈ XC, then

δω
i T (h1, ..., hn) = δω

i (u1 · · ·un)T (A1, ..., An)

and

δiT (h1, ..., hn) = δi(u1 · · ·un)T (A1, ..., An).

Notation 5.69. If T1 and T2 are g−valued multilinear functions on gn, then define

Cn(T1, T2) ∈ g⊗ g by

Cn(T1, T2) :=
∑

A1,...,An∈XC

T1(A1, ..., An)⊗ T2(A1, ..., An).

Corollary 5.70. Suppose ω ∈ Ωl
n, and θ ∈ Ωm

n , with n ≥ 2 and l, m ≥ 1. Let T1 and

T2 be g−valued multilinear functions on gn. Then∑
h1,...,hn∈SC

T1(δω
i (h1, ..., hn))⊗ T2(δθ

j (h1, ..., hn))

= δijδωθ (δi)
l (si)

n−l Cn(T1, T2)
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Proof. ∑
h1,...,hn∈SC

T1(δω
i (h1, ..., hn))⊗ T2(δθ

j (h1, ..., hn))

=
∑

A1,...,An∈XC

∑
u1,...,un∈S(C)

δω
i (u1 · · ·un)δθ

j (u1 · · ·un)T1(A1, ..., An)⊗ T2(A1, ..., An)

= δijδωθ (δi)
l (si)

n−l
∑

A1,...,An∈XC

T1(A1, ..., An)⊗ T2(A1, ..., An)

= δijδωθ (δi)
l (si)

n−l Cn(T1, T2).

Corollary 5.71. Let T1 and T2 be g−valued multilinear functions on gn. Then∑
h1,...,hn∈SC

δiT1(h1, ..., hn)⊗ δjT2(h1, ..., hn)

= δij

n∑
l=1

(
n

l

)
(δi)

l (si)
n−l Cn(T1, T2)

= δijCn(T1, T2)(sn
i+1 − sn

i ).

Proof. ∑
h1,...,hn∈SC

δiT1(h1, ..., hn)⊗ δjT2(h1, ..., hn)

=
∑

h1,...,hn∈SC

 n∑
l=1

∑
ω∈Ωl

n

T1(δω
i (h1, ..., hn))

⊗

 n∑
m=1

∑
θ∈Ωm

n

T2(δθ
j (h1, ..., hn))


=

n∑
l=1

∑
ω∈Ωl

n

n∑
m=1

∑
θ∈Ωm

n

 ∑
h1,...,hn∈SC

T1(δω
i (h1, ..., hn))⊗ T2(δθ

j (h1, ..., hn))


=

n∑
l=1

∑
ω∈Ωl

n

n∑
m=1

∑
θ∈Ωm

n

δijδωθ (δi)
l (si)

n−l
∑

A1,...,An∈XC

T1(A1, ..., An)⊗ T2(A1, ..., An)

= δij

n∑
l=1

∑
ω∈Ωl

n

(δi)
l (si)

n−l Cn(T1, T2)

= δij

n∑
l=1

(
n

l

)
(δi)

l (si)
n−l Cn(T1, T2).
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Remark 5.72. Using the bilinear map h⊗k ∈ g⊗ g → (h, k)g , it is clear that for ω ∈ Ωl
n

and θ ∈ Ωm
n ∑

h1,...,hn∈SC

(
T1(δω

i (h1, ..., hn)), T2(δθ
j (h1, ..., hn))

)
g

= δijδωθ (δi)
l (si)

n−l C̃n(T1, T2)

where

C̃n(T1, T2) :=
∑

A1,...,An∈XC

(T1(A1, ..., An), T2(A1, ..., An))g .

In particular,∑
h1,...,hn∈SC

||T (δω
i (h1, ..., hn))||2g = (δi)

l (si)
n−l

∑
A1,...,An∈XC

||T (A1, ..., An)||2g

= C̃n(T, T ) (δi)
l (si)

n−l .

5.6 Remainder Estimates

In general, we can write

RP
j,k(B1, ..., Bj)(h1, ..., hp) =

n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

δω
i T (h1, ..., hp)fω(ti), (5.48)

where T : gp → g is a mulitlinear function and fω(ti) is a polynomial, possibly zero, in

ti depending on ω, where ti is defined in Notation 5.55. Refer to Eq. (5.46) for the

meaning of the left hand side, while Notation 5.61 indicates the meaning of the right

hand side.

Example 5.73. For r ≥ 6, the following remainder term appears in a sixth order derivative
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of FP evaluated at the identity path.

RP
3,2([h1, [h2, h3]], [h4, h5], h6)

=
n−1∑
i=0

[PP [h1, [h2, h3]], [δi[h4, h5], δih6](ti − t2i )

=
n−1∑
i=0

 [[h1(si), [h2(si), h3(si)]], [δi[h4, h5], δih6](ti − t2i )

+[δi[h1, [h2, h3]], [δi[h4, h5], δih6](t2i − t3i )


=

n−1∑
i=0

 [[h1(si), [h2(si), h3(si)]], [
∑2

l=1

∑
ω∈Ωl

2
δω
i [h4, h5], δih6](ti − t2i )

+[
∑3

l=1

∑
ω∈Ωl

3
δω
i [h1, [h2, h3]], [

∑2
l=1

∑
ω∈Ωl

2
δω
i [h4, h5], δih6](t2i − t3i )


=

n−1∑
i=0

6∑
l=2

∑
ω∈Ωl

6

δω
i [[h1, [h2, h3]], [h4, h5], h6]fω(ti),

where

fω(ti) =


0 if ω ∩ {6} = ∅ or ω ∩ {4, 5} = ∅

ti − t2i if ω ∩ {1, 2, 3} = ∅, ω ∩ {6} 6= ∅, and ω ∩ {4, 5} 6= ∅
t2i − t3i if ω ∩ {1, 2, 3} 6= ∅, ω ∩ {6} 6= ∅, and ω ∩ {4, 5} 6= ∅

Proposition 5.74. Suppose f ∈ H(C) and A ∈ g. Then fA ∈ H(g) and

||fA||2H(g) = ||f ||2H(C)||A||
2
g.

Proof. The proof is a straightforward calculation.

||fA||2H(g) =
∫ 1

0
||f ′(t)A||2gdt

=
∫ 1

0
|f ′(t)|2||A||2gdt

= ||A||2g
∫ 1

0
|f ′(t)|2dt

= ||f ||2H(C)||A||
2
g.

Proposition 5.75. Suppose 1 ≤ k < j ≤ r, and for 1 ≤ i ≤ j, Bi : gpi → g be

multilinear functions such that
∑j

i=1 pi = p. Let {Pn}∞n=1 be a sequence of refining



91

partitions with #(Pn) = n. Then

lim sup
n→∞

∑
h∈(SC)p

||RPn
j,k (B1, ..., Bj)(h)||2H(g) < ∞.

Proof. By Eq. (5.48), we can write

RPn
j,k (B1, ..., Bj)(h) =

n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

δω
i T (h)fω(ti),

where T : gp → g is a mulitlinear function and, for each ω ∈ Ωl
p, fω(ti) is a polynomial,

possibly zero, in ti. Notice that

||RPn
j,k (B1, ..., Bj)(h)||2H(g) = ||

n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

δω
i T (h)fω(ti)||2H(g)

=
n−1∑
i=0

||
p∑

l=2

∑
ω∈Ωl

p

δω
i T (h)fω(ti)||2H(g)

≤ C(p)
n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

||δω
i T (h)fω(ti)||2H(g)

= C(p)
n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

||δω
i T (h)||2g||fω(ti)||2H(C).

Furthermore,

||fω(ti)||2H(C) =
∫ si+1

si

| d
dt

fω(ti)|2dt

=
∫ si+1

si

| d
dt

fω(
t− si

δi
)|2dt

=
1
δ2
i

∫ si+1

si

|f ′ω(
t− si

δi
)|2dt

=
1
δi

∫ 1

0

∣∣f ′ω(u)
∣∣2 du

=
C (ω)

δi
,

where C (ω) is an appropriate constant. By Remark 5.72,
∑

h∈(SC)p

∑p
l=2

∑
ω∈Ωl

p
||δω

i T (h)||2g
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is O(δ2
i ). Therefore,

lim sup
n→∞

∑
h∈(SC)p

||RPn
j,k (B1, ..., Bj)(h)||2H(g)

≤ lim sup
n→∞

∑
h∈(SC)p

C(p)
n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

||δω
i T (h)||2g||fω(ti)||2H(C)

≤ lim sup
n→∞

C̃(p)
n−1∑
i=0

1
δi

 ∑
h∈(SC)p

p∑
l=2

∑
ω∈Ωl

p

||δω
i T (h)||2g


= lim sup

n→∞
C̃(p)

n−1∑
i=0

1
δi

O(δ2
i )

= lim sup
n→∞

C̃(p)
n−1∑
i=0

O(δi)

< ∞.

Proposition 5.76. Suppose 1 ≤ k < j ≤ r, and for 1 ≤ i ≤ j, Bi : H(g)pi → H(g)

be bounded multilinear functions such that
∑j

i=1 pj = p. Let {Pn}∞n=1 be a sequence of

refining partitions with |Pn| = n. Define a function GPn
j,k (B1, ..., Bj) : [0, 1]2 → g⊗2 by

GPn
j,k (B1, ..., Bj)(u, t)

≡
∑

h∈(SC)p

d

du
RPn

j,k (B1, ..., Bj)(h)(u)⊗ d

dt
RPn

j,k (B1, ..., Bj)(h)(t).

Then ||GPn
j,k (B1, ..., Bj)||L2([0,1]2;g⊗2) → 0 as n → 0.

Proof. Again by Eq. (5.48), we can write

d

dt
RPn

j,k (B1, ..., Bj)(h)(t) =
d

dt

n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

δω
i T (h)fω(ti(t))

=
n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

δω
i T (h)

1(si,si+1](t)
δi

f ′ω(ti(t)).
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So

GPn
j,k (B1, ..., Bj)(u, t)

=
n−1∑
i,j=0

∑
h∈(SC)p


(∑p

l=2

∑
ω∈Ωl

p
δω
i T (h)

1(si,si+1](u)

δi
f ′ω(ti(u))

)
⊗
(∑p

l′=2

∑
θ∈Ωl′

p
δθ
j T (h)

1(sj ,sj+1](t)

δj
f ′θ(tj(t))

)


=
n−1∑
i,j=0

p∑
l,l′=2

∑
ω∈Ωl

p

θ∈Ωl′
p

1(si,si+1](u)1(sj ,sj+1](t)
f ′ω(ti(u))f ′θ(tj(t))

δiδj

 ∑
h∈(SC)p

δω
i T (h)⊗ δθ

j T (h)



=


n−1∑
i,j=0

p∑
l,l′=2

∑
ω∈Ωl

p

θ∈Ωl′
p

1(si,si+1](u)1(sj ,sj+1](t)
f ′ω(ti(u))f ′θ(tj(t))

δiδj


×

δijδωθ (δi)
l (si)

p−l
∑

A1,...,Ap∈XC

T (A1, ..., Ap)⊗ T (A1, ..., Ap)



=
n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

1(si,si+1](u)1(si,si+1](t)
f ′ω(ti(u))f ′ω(ti(t))

δ2
i

(δi)
l (si)

p−l Cp(T, T )

=
n−1∑
i=0

p∑
l=2

∑
ω∈Ωl

p

1(si,si+1](u)1(si,si+1](t)f
′
ω(ti(u))f ′ω(ti(t)) (δi)

l−2 (si)
p−l Cp(T, T ),

where Cp(T, T ) ∈ g⊗ g is defined as in Notation 5.69. So GPn
j,k (B1, ..., Bj) has support

concentrated near the diagonal, on the set {(u, t) ∈ [0, 1]2|si ≤ u, t ≤ si+1 for some

i = 0, ..., n − 1}, which is going to zero in measure as n → ∞. Also note that our

functions fω are polynomials, and hence are bounded on [0, 1] by some constant. For

some i = 0, ..., n− 1 and (u, t) ∈ [0, 1]2 such that si ≤ u, t ≤ si+1, we have

||GPn
j,k (B1, ..., Bj)(u, t)||g⊗g = ||

p∑
l=2

∑
ω∈Ωl

p

f ′ω(ui)f ′ω(ti) (δi)
l−2 (si)

p−l Cp(T, T )||g⊗g

≤ C(p)C̃2|| (δi)
l−2 (si)

p−l Cp(T, T )||g⊗g

≤ C(p)C̃2||Cp(T, T )||g⊗g

< ∞.
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So GPn
j,k (B1, ..., Bj)(u, t) is pointwise bounded independent of partition with measure of

the support going to zero as n → ∞. Therefore, ||GPn
j,k (B1, ..., Bj)||L2([0,1]2) → 0 as

n → 0.

Corollary 5.77. Suppose 1 ≤ k < j ≤ r, and for 1 ≤ i ≤ j, Bi : H(g)pi → H(g) be

linear functions such that
∑j

i=1 pi = p. Let {Pn}∞n=1 be a sequence of refining partitions

with |Pn| = n. Given α ∈ T (H(g))∗T , then∑
h∈(SC)p

|〈α, RPn
j,k (B1, ..., Bj)(h)〉|2 → 0 as n →∞.

Proof. For all α ∈ H(g)∗, there exists an α̃ ∈ H(g), such that 〈α, v〉 = (v, α̃)H(g) for all

v ∈ H(g). Then

〈α, RPn
j,k (B1, ..., Bj)(h)〉 =

(
RPn

j,k (B1, ..., Bj)(h), α̃
)

H(g)

=
∫ 1

0

(
RPn

j,k (B1, ..., Bj)(h), α̃′(t)
)

g
dt.

In particular,∑
h∈(SC)p

|〈α, RPn
j,k (B1, ..., Bj)(h)〉|2

=
∑

h∈(SC)p

∫ 1

0

(
RPn

j,k (B1, ..., Bj)(h)′(t), α̃′(t)
)

g
dt

∫ 1

0

(
RPn

j,k (B1, ..., Bj)(h)′(u), α̃′(u)
)

g
du

=
∫

[0,1]2

∑
h∈(SC)p

RPn
j,k (B1, ..., Bj)(h)′(t)⊗RPn

j,k (B1, ..., Bj)(h)′(u), α̃′(u)⊗ α̃′(u))g⊗2dt⊗ du

(5.49)

= (GPn
j,k (B1, ..., Bj), α̃′ ⊗ α̃′)L2([0,1]2,g⊗2),

Where line (5.49) is justified by Fubini’s theorem and Proposition 5.75. By Cauchy-

Schwartz,∑
h∈(SC)p

|〈α, RPn
j,k (B1, ..., Bj)(h)〉|2 =

∑
h∈(SC)p

|
(
RPn

j,k (B1, ..., Bj)(h), α̃
)

H(g)
|2

≤ ||α̃′ ⊗ α̃′||L2([0,1]2,g⊗2)

∣∣∣∣GP
j,k(B1, ..., Bj)

∣∣∣∣
L2([0,1]2,g⊗2)

.
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We’ve shown in the above proposition that ||GPn
j,k (B1, ..., Bj)||L2([0,1]2,g⊗2) → 0 as n → 0.

Our result will be proven if we can show ||α̃′⊗ α̃′||L2([0,1]2,g⊗2) < ∞. An easy calculation

yields

||α̃′ ⊗ α̃′||L2([0,1]2,g⊗2) =

(∫
[0,1]2

||α̃′(t)⊗ α̃′(u)||2g⊗2dt⊗ du

)1/2

=

(∫
[0,1]2

||α̃′(t)||2g||α̃′(u)||2gdt⊗ du

)1/2

=
∫ 1

0
||α̃′(t)||2gdt

= ||α̃||2H(g)

< ∞.

We wish to extend the result of Corollary 5.77 to arbitrary tensor products of

remainder terms. The existing notation, unfortunately, is becoming cumbersome, so we

introduce some more.

Notation 5.78. Suppose 1 ≤ kl < jl ≤ r for l = 1, 2, ..., q. Furthermore, for each l,

suppose for 1 ≤ i ≤ jl, Bl
i : H(g)pl

i → H(g) be linear functions such that
∑q

l=1

∑jl
i=1 pj =

p. Let P be a partition of [0, 1]. Then we will use

RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)

to denote

RPn
j1,k1

(B1
1 , ..., B1

j1)(h1, ..., hp1
j1

)⊗ · · · ⊗RPn
jq ,kq

(Bq
1, ..., B

q
jq

)(hp−pq
jq

+1, ..., hp), (5.50)

where in line (5.50) we are using the notation from Eq. (5.45).

Proposition 5.79. Assume the same setup as in Notation 5.78 above. Let {Pn}∞n=1 be

a sequence of refining partitions. Given α ∈ T (H(g))∗T , then∑
h∈(SC)p

|〈α, RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)〉|2 → 0 as n →∞.
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Proof. For α ∈ (H(g)⊗q)∗, define

φP(α) :=
√ ∑

h∈(SC)p

|〈α, RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)〉|2.

Then φP is a seminorm on (H(g)⊗q)∗ . Using Proposition 5.75, we can say that

φP(α)2 ≤ ||α||2(H(g)⊗q)∗

∑
h∈(SC)p

||RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)||2H(g)⊗q

≤ ||α||2(H(g)⊗q)∗

 ∑
h∈(SC)

p1
j1

||RPn
j1,k1

(B1)(h)||2H(g)

× · · ·

· · · ×

 ∑
h∈(SC)

p
q
jq

||RPn
jq ,kq

(Bq)(h)||2H(g)


≤ C2||α||2(H(g)⊗q)∗ ,

for some C2 < ∞. Equivalently,

φP(α) ≤ C||α||(H(g)⊗q)∗ . (5.51)

Suppose α = (·, k1 ⊗ · · · ⊗ kq)H(g)⊗q . Then

φP(α)2 =
∑

h∈(SC)p

|(RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h), k1 ⊗ · · · ⊗ kq)H(g)⊗q |2

≤
∑

h∈(SC)p

|(RPn
j1,k1

(B1), k1)|2H(g) × · · · × |(RPn
jq ,kq

(Bq), km)|2H(g)

=
(
||k1||2H(g) ||G

Pn
j1,k1

(B1)||L2([0,1]2)

)
× · · · ×

(
||km||2H(g) ||G

Pn
jq ,kq

(Bq)||L2([0,1]2)

)
,

where GPn
ji,ki

(Bi) is as given in Proposition 5.76. Proposition 5.76 also tells us that

||GPn
ji,ki

(Bi)||L2([0,1]2) → 0 as |P| → 0 for i = 1, ..., q. Therefore, φP(α) → 0 as |P| → 0.

Furthermore, the same is true for all finite linear combinations of such α. Therefore,

φP(α) → 0 as |P| → 0 for all α of finite rank.

For α, β ∈ (H(g)⊗q)∗,

φP(α) ≤ φP(α− β) + φP(β)

≤ C||α− β||(H(g)⊗q)∗ + φP(β).
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Let ε > 0 and choose β ∈ (H(g)⊗q)∗ finite rank such that ||α− β||(H(g)⊗q)∗ < ε. Then

lim
|P|→0

φP(α) ≤ lim
|P|→0

C||α− β||(H(g)⊗q)∗ + lim
|P|→0

φP(β)

= C||α− β||(H(g)⊗q)∗

< Cε.

Our choice of ε was arbitrary. Therefore, φP(α) → 0 as |P| → 0 .

The typical remainder term is a tensor product of PPhi and RP
j,k terms. Adding

the PPhi terms doesnt not effect the results. First a proposition.

Proposition 5.80. Given α ∈ T (H(g))∗T and h1, h2, ...hk ∈ SC , there exists βh1h2...hk
∈

(H(g)∗)⊗n which satisfies

〈α, h1 ⊗ · · · ⊗ hk ⊗ η〉 = 〈βh1h2..hk
, η〉, (5.52)

for any η ∈ H(g)⊗n, and furthermore,∑
h1,h2,...,hk∈SC

||βh1h2..hk
||2(H(g)∗)⊗n = ||αn+k||2(H(g)∗)⊗(n+k) < ∞. (5.53)

Proof. Since α ∈ T (H(g))∗T , we can write

αn+k =
∑

h1,h2,...,hn+k∈SC

ah1h2...hn+k
(·, h1 ⊗ · · · ⊗ hn+k)H(g)⊗n+k ,

for some square summable ah1h2...hn+k
∈ C, i.e.∑

h1,h2,...,hn+k∈SC

|ah1h2...hn+k
|2 < ∞.

Set

〈βh1h2...hk
, ·〉 =

∑
hk+1,...,hn+k∈SC

ah1h2...hn+k
(·, hk+1 ⊗ · · · ⊗ hn+k)H(g)⊗n .

Then it is clear that (5.52) is satisfied. It then follows that∑
h1,h2,...,hk∈SC

||βh1h2..hk
||2(H(g)∗)⊗n =

∑
h1,h2,...,hn+k∈SC

|ah1h2...hn+k
|2

= ||αn+k||2(H(g)∗)⊗(n+k)

< ∞.
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Remark 5.81. The above proposition remains true if the h1, h2, ...hk terms of our tensor

product are in any position, not just the beginning of our tensor product.

Proposition 5.82. Again, we assume the same setup as Notation 5.78. Let {Pn}∞n=1

be a sequence of refining partitions with #(Pn) = n. Given α ∈ T (H(g))∗T and q > 0,

then as n →∞∑
h1,...,hq∈SC

h∈(SC)p

|〈α, PPnh1 ⊗ · · · ⊗ PPnhq ⊗RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)〉|2 → 0.

Proof. First notice that for any partition P, we can first select a basis SPC for HP(g),

and then extend it to a basis SC for H(g). Then it follows that∑
h1,...,hq∈SC

h∈(SC)p

|〈α, PPh1 ⊗ · · · ⊗ PPhq ⊗RP
j1,k1

(B1)⊗ · · · ⊗RP
jq ,kq

(Bq)(h)〉|2

≤
∑

h1,...,hq∈SC

h∈(SC)p

|〈α, h1 ⊗ · · · ⊗ hq ⊗RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)〉|2.

It follows that

lim
n→∞

∑
h1,...,hq∈SC

h∈(SC)p

|〈α, PPnh1 ⊗ · · · ⊗ PPnhq ⊗RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)〉|2

≤ lim
n→∞

∑
h1,...,hq∈SC

h∈(SC)p

|〈α, h1 ⊗ · · · ⊗ hq ⊗RPn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)〉|2

= lim
n→∞

∑
h1,...,hq∈SC

h∈(SC)p

|〈βh1···hq , R
Pn
j1,k1

(B1)⊗ · · · ⊗RPn
jq ,kq

(Bq)(h)〉|2 (5.54)

= 0.

In line (5.54) we have used Proposition 5.80. We are able to move the limit inside by

the DCT, which is justified by Eq. (5.53) and Proposition 5.75.

Remark 5.83. Again, for the above proposition, the PPh terms need not occur at the

beginning of the tensor product.
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Remark 5.84. For all k > 0 and any partition P, RP
k is defined by the following expression

〈α(P), h1 ⊗ h2 ⊗ · · · ⊗ hk〉 = 〈α, PPh1 ⊗ PPh2 ⊗ · · · ⊗ PPhk + RP
k (h1, ..., hk)〉.

Since we have shown that RP
k consists of a finite sum of terms like those in Proposition

5.82, we have shown that for a refining sequence of partitions {Pn}∞n=1,∑
h1,...,hk∈SC

|〈α, RPn
k (h1, ..., hk)〉| → 0 as n →∞.

Lemma 5.85. Let {Pn}∞n=1 be a sequence of refining partitions. Then ∪∞n=1HPn(g) is

dense in H(g).

Proof. Recall from Proposition 2.12 that

HP(g)⊥ = Nul(πP∗e) = {h ∈ H(g)|h|P ≡ 0}.

Now suppose that h ∈ H(g) with h ⊥ ∪∞n=1HPn(g). Then h ∈ HPn(g)⊥ for all n, which

imples that h|Pn ≡ 0 for all n. Therefore, h|∪∞n=1Pn ≡ 0, and since h is continuous, we

necessarily have that h ≡ 0.

Corollary 5.86. Since PPn is orthogonal projection onto the subspace HPn(g) and

HPn(g) ⊂ HPn+1(g) for all n = 1, 2., ..., the above lemma implies that for h ∈ H(g),

lim
n→∞

||h− PPnh||H(g) = 0.

Remark 5.87. If {Pn}∞n=1 is a sequence of refining partitions, then Corollary 5.86 allows

us to construct an orthonormal basis for H(g) adapted to our sequence of partitions in

the following sense. After first constructing an orthonormal basis SP1
C for HP1(g), extend

this basis inductively from HPi(g) to HPi+1(g) for i = 1, 2, ... Then SC = ∪∞n=1S
Pn
C is an

orthonormal basis for H(g).

Proposition 5.88. Let {Pn}∞n=1 be a sequence of refining partitions. Then for h1, ..., hk ∈
SC,

||h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk||2H(g)⊗k ≤ k2
k∑

j=1

||hj − PPnhj ||2H(g). (5.55)

In addition, for α ∈ T (H(g))∗T ,∑
h1,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉|2 < k3||αk||2J0
T (H(g)). (5.56)
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Proof. To see Eq. (5.55), notice that we can rewrite

h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk (5.57)

= (h1 − PPnh1)⊗ h2 ⊗ · · · ⊗ hk

+ PPnh1 ⊗ (h2 − PPnh2)⊗ h3 ⊗ · · · ⊗ hk + · · ·

· · ·+ PPnh1 ⊗ PPnh2 ⊗ · · · ⊗ (hk − PPnhk),

where the RHS is a sum of k terms. Since ||PPnhj ||2H(g) ≤ ||hj |||2H(g) ≤ 1, the result

easily follows using the relation ||
∑k

j=1 aj ||2 ≤ k2
∑k

j=1 ||aj ||2.
For Eq. (5.56), we choose a basis SC adapted to our sequence of partition as

in Remark 5.87. Then for every n > 0 and h ∈ SC, PPnh = h if h ∈ HPn(g) and 0

otherwise. Similarly, h − PPnh = 0 if h ∈ HPn(g) and h otherwise. Therefore, using

Eq. (5.57),∑
h1,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉|2

=
∑

h1,...,hk∈SC

∣∣∣∣∣∣∣∣
〈α, (h1 − PPnh1)⊗ h2 ⊗ · · · ⊗ hk〉

+〈α, PPnh1 ⊗ (h2 − PPnh2)⊗ h3 ⊗ · · · ⊗ hk〉+ · · ·
· · ·+ 〈α, PPnh1 ⊗ PPnh2 ⊗ · · · ⊗ (hk − PPnhk)〉

∣∣∣∣∣∣∣∣
2

≤ k2
∑

h1,...,hk∈SC


|〈α, (h1 − PPnh1)⊗ h2 ⊗ · · · ⊗ hk〉|2

+|〈α, PPnh1 ⊗ (h2 − PPnh2)⊗ h3 ⊗ · · · ⊗ hk〉|2 + · · ·
· · ·+ |〈α, PPnh1 ⊗ PPnh2 ⊗ · · · ⊗ (hk − PPnhk)〉|2


≤ k3

∑
h1,...,hk∈SC

|〈α, h1 ⊗ h2 ⊗ · · · ⊗ hk〉|2

= k3||αk||2J0
T (H(g)).

Corollary 5.89. Let {Pn}∞n=1 be a sequence of refining partitions and α ∈ T (H(g))∗T .

Then for any h1, ..., hk ∈ SC,

lim
n→∞

|〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉|2 = 0.
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Proof. This follows easily from Eq. (5.55) and Corollary 5.86. Specifically,

lim
n→∞

|〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉|2

≤ lim
n→∞

||αk||2J0
T (H(g))||h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk||2H(g)⊗k

≤ lim
n→∞

k2||αk||2J0
T (H(g))

k∑
j=1

||hj − PPnhj ||2H(g)

= k2||αk||2J0
T (H(g))

k∑
j=1

lim
n→∞

||hj − PPnhj ||2H(g)

= 0.

We are now set to prove the main theorem of the chapter.

Theorem 5.90. Let {Pn}∞n=1 be a sequence of refining partitions. Then

lim
n→∞

||α− α(Pn)||J0
T (H(g)) → 0 as n →∞.

Proof. The fact that α is of finite rank is essential to this result. We assume that α is

of rank N . Choose SC to be an orthonormal basis for H(g) adapted to {Pn}∞n=1 as in

Remark 5.87. Then

lim
n→∞

||α− α(Pn)||2J0
T (H(g))

= lim
n→∞

∞∑
k=0

∑
hi,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk〉 − 〈α(Pn), h1 ⊗ · · · ⊗ hk〉|2

= lim
n→∞

N∑
k=0

∑
hi,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉 − 〈α, Rk(hi, ..., hk)〉|2

≤ lim
n→∞

4
N∑

k=0

∑
hi,...,hk∈SC

 |〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉|2

+|〈α, RPn
k (hi, ..., hk)〉|2

 .

We have shown already in Remark 5.84 that

lim
n→∞

∑
hi,...,hk∈SC

|〈α, RPn
k (hi, ..., hk)〉|2 = 0.
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Therefore, there is some finite constant CN such that

lim
n→∞

||α− α(Pn)||2J0
T (H(g))

≤ lim
n→∞

CN

N∑
k=0

∑
hi,...,hk∈SC

|〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉|2

= CN

N∑
k=0

∑
hi,...,hk∈SC

lim
n→∞

|〈α, h1 ⊗ · · · ⊗ hk − PPnh1 ⊗ · · · ⊗ PPnhk〉|2

= 0,

by Corollary 5.89.

The argument is now complete. We present a brief summary to end.

Given α ∈ J0
T (H(g)), we wish to find an f ∈ HT such that (1 −D)−1

e Rf = α.

By Theorem 5.1 and Theorem 6.15 of the appendix, it suffices to assume that α is of

finite rank. Under this assumption, we then constructed a function uα ∈ H(H(G))

in Theorem 5.43 such that (1 − D)−1
e uα = α. Given a refining sequence of partitions

{Pn}∞n=1, we construct a sequence of cylinder functions {FPn}∞n=1 ⊂ HFC∞(W)∩L2(νT )

such that

(1−D)−1
e RFPn = (1−D)−1

e FPn = α(Pn).

We have shown in Theorem 5.90 that α(Pn) → α. Since the Taylor map is an isometry,

there is a function f ∈ HT such that FPn → f . Finally, since the Taylor map is

continuous,

(1−D)−1
e Rf = lim

n→∞
(1−D)−1

e RFPn = lim
n→∞

α(Pn) = α.
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Appendix

6.1 Reproducing Kernels

The following is a summary of the properties of the reproducing kernels on path

spaces, which form the basis of many of our calculations in the previous sections. Given

a continuous function h : [0, 1] → R, define

〈h, h〉H(R) ≡


∫ 1
0 |h

′(s)|2ds, if h is absolutely continuous

∞, if otherwise
.

Define the real Cameron-Martin space,

H(R) = {h ∈ C([0, 1]; R)|h(0) = 0 and 〈h, h〉H(R) < ∞}.

Then equipped with the inner product

〈h, k〉H(R) ≡
∫ 1

0
h′(s)k′(s)ds,

H(R) is a Hilbert space.

Similarly, for a continuous function h : [0, 1] → C, we define

(h, h)H(C) ≡


∫ 1
0 |h

′(s)|2ds, if h is absolutely continuous

∞, if otherwise
,

103
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and the complex Cameron-Martin space

H(C) = {h ∈ C([0, 1]; C)|h(0) = 0 and (h, h)H(C) < ∞},

where

(h, h)H(C) ≡
∫ 1

0
h′(s)k′(s)ds.

Notation 6.1. We will use S(R) and S(C) to denote orthonormal bases of H(R) and

H(C) respectively.

Remark 6.2. It is easy to check that if {uj}∞j=1 is an orthonormal basis for H(R), then

{ 1√
2
(uj + iuk)}∞j,k=1 is an orthonormal basis for H(C).

Proposition 6.3. For any s, t ∈ [0, 1],∑
u∈S(R)

u (s) u(t) =
∑

u∈S(C)

u (s) u (t) = s ∧ t. (6.1)

Proof. By the Fundamental Theorem of Calculus,

u(s) =
∫ 1

0
1τ≤su

′(τ)dτ. (6.2)

Let κs ∈ H(R) be given by κs(·) = s ∧ ·. If u ∈ H(R), then line (6.2) is equivalent to

u(s) = 〈u, κs〉H(R),

and so ∑
u∈S(R)

u (s) u(t) =
∑

u∈S(R)

〈u, κs〉H(R)〈κt, u〉H(R)

= 〈κt, κs〉H(R)

=
∫ 1

0
1[0,t](τ)1[0,s](τ)dτ

= s ∧ t. (6.3)
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To prove the results on the complex Cameron-Martin space, one simply repeats

the above calculations after using Remark 6.2 to notice that∑
u∈S(C)

u (s) u(t) =
1
2

∑
u,v∈S(R)

(u(s) + iv(s))(u(t)− iv(t))

=
1
2

 ∑
u∈S(R)

u(s)u(t) +
∑

v∈S(R)

v(s)v(t) + i
∑

u,v∈S(R)

(u(t)v(s)− u(s)v(t))


=

∑
u∈S(R)

u(s)u(t).

Notation 6.4. We will let K(s, t) ≡ s ∧ t denote the reproducing kernel of H(R) and

H(C). That is ∑
u∈S(R)

u (s) u (t) =
∑

u∈S(C)

u (s)u (t) = K(s, t).

Remark 6.5. Since in the proof of Proposition 6.3 κs(·) = K(s, ·), by line (6.3) we have

the relationship

〈K(s, ·),K(t, ·)〉H(R) = (K(s, ·),K(t, ·))H(C) = K(s, t).

Corollary 6.6. For all s ∈ [0, 1],∑
u∈S(R)

|u(s)|2 =
∑

u∈S(C)

|u(s)|2 = K(s, s) = s.

Notation 6.7. Suppose P = {0 = s0 < s1 < · · · < sn < sn+1 = 1} is a partition of

[0, 1]. Then for i = 1, 2, ..., n

δi := si+1 − si

and, for u ∈ H(R) or H(C), let

δiu := u(si+1)− u(si).

Corollary 6.8. Suppose P is a partition of [0, 1]. Then∑
u∈S(R)

|δiu|2 =
∑

u∈S(C)

|δiu|2 = K(δi, δi) = δi.
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Proof. The proof is a straightforward use of Proposition 6.3. For example,∑
u∈S(R)

|δiu|2 =
∑

u∈S(R)

(u(si+1)− u(si))(u(si+1)− u(si))

=
∑

u∈S(R)

|u(si+1)|2 − u(si+1)u(si)− u(si)u(si+1) + |u(si)|2

= K(si+1, si+1)−K(si+1, si)−K(si, si+1) + K(si, si)

= si+1 − si − si + si

= δi.

Corollary 6.9. Suppose P = {0 = s0 < s1 < · · · < sn < sn+1 = 1} is a partition of

[0, 1]. Then for 1 ≤ i, j ≤ n,∑
u∈S(R)

(δiu) u(sj) =
∑

u∈S(C)

(δiu) u(sj) = δj>iδi

where .δj>i = 1 if j > i and 0 otherwise.

Proof. Again, we only show the proof in the real cases.∑
u∈S(R)

(δiu) u(sj) =
∑

u∈S(R)

u(si+1)u(sj)− u(si)u(sj)

= K(si+1, sj)−K(si, sj)

= si+1 ∧ sj − si ∧ sj

=

 δi if j > i

0 if j ≤ i

= δj>iδi.

Corollary 6.10. Suppose P = {0 = s0 < s1 < · · · < sn < sn+1 = 1} is a partition of

[0, 1]. Then for 1 ≤ i, j ≤ n,∑
u∈S(R)

(δiu) (δju) =
∑

u∈S(C)

(δiu) (δju) = δijδi

where δij denotes the Dirac delta function.
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Proof. This is an application of Corollary 6.9.∑
u∈S(R)

(δiu) (δju) =
∑

u∈S(R)

(δiu) (u(sj+1)− u(sj))

= δj+1>iδi − δj>iδi

= δijδi.

We deal mostly with path spaces on a Lie algebra g. Refer to Chapter 1 for

the definition of H(g).

Proposition 6.11. Suppose {ui}∞i=1 is an orthonormal basis for H(R) and {Ai}2d
i=1 is an

orthonormal basis for (g, 〈 , 〉g). Then {uiAj}∞,d
i,j=1 is an orthonormal basis for (H(g), 〈

, 〉H(g)). Similarly, if {ui}∞i=1 is an orthonormal basis for H(C) and {Ai}d
i=1 is an

orthonormal basis for (g, ( , )g). Then {uiAj}∞,2d
i,j=1 is an orthonormal basis for (H(g), (

, )H(g)).

Proof. The proof is a straightforward calculation. In the real case,

〈uiAj , ukAl〉H(g) =
∫ 1

0
〈u′i(s)Aj , u

′
k(s)Al〉gds

=
∫ 1

0
u′i(s)u

′
k(s)〈Aj , Al〉gds

= 〈Aj , Al〉g
∫ 1

0
u′i(s)u

′
k(s)ds

= 〈Aj , Al〉g〈ui, uk〉H(R)

= δjlδik.

Proposition 6.12. For any s, t ∈ [0, 1],∑
h∈SR

h(s)⊗ h(t) = K(s, t)
∑

A∈XR

A⊗A,

∑
h∈SC

h(s)⊗ h(t) = K(s, t)
∑

A∈XC

A⊗A,

where XR (XC) is an orthonormal basis for the real (complex) inner product space (g,〈 ,

〉g) ((g,( , )g)).
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Proof. We use Proposition 6.11 to write SR = {uiAj}∞,d
i,j=1 where {ui}∞i=1 = S(R) is an

orthonormal basis for H(R) and {Ai}d
i=1 = XR is an orthonormal basis for (g, 〈 , 〉g).

Then ∑
h∈SR

h(s)⊗ h(t) =
∑

u∈S(R)

∑
A∈XR

u(s)A⊗ u(t)A

=
∑

u∈S(R)

u(s)u(t)
∑

A∈XR

A⊗A

= K(s, t)
∑

A∈XR

A⊗A.

6.2 Density of Finite Rank Tensors

The theorem below is reproduced from [6] in the context of path spaces and is

essential to our proofs of surjectivity. We suppose that g is a step r complex stratified

nilpotent Lie algebra. Recall that this means that there is a sequence of nonzero subspaces

Vi for i = 1, .., r such that

g = ⊕r
i=1Vi,

with [V1, Vj ] ⊂ Vj+1 for j = 1, ..., r− 1 and [V1, Vr] = {0}. It follows that [Vi, Vj ] ⊂ Vi+j ,

with the convention that Vs = {0} for s > r. In our case, we assume that these subspaces

are orthogonal. This gives an orthogonal decomposition of H(g),

H(g) = ⊕r
i=1H(Vi),

with [H(V1),H(Vj)] ⊂ H(Vj+1) for j = 1, ..., r − 1 and [H(V1),H(Vr)] = {0}.

Definition 6.13. For λ ∈ C, define δλ : H(g) →H(g) by

δλ(h1 + h2 + · · ·+ hr) =
r∑

i=1

λihi

for hi ∈ H(Vi).

Proposition 6.14. For λ 6= 0, δλ is an Lie algebra automorphism.
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Proof. Let λ 6= 0. δλ is certainly a bijective linear map, so we only need to show it is

a Lie algebra homomorphism. Let h =
∑r

i=1 hi and k =
∑r

i=1 ki with hi, ki ∈ H(Vi).

Then

[δλh, δλk] =

 r∑
i=1

λihi,
r∑

j=1

λjkj


=

r∑
i,j=1

λi+j [hi, kj ]

=
r∑

i=1

λi

 i−j∑
j=1

[hj , ki−j ]


= δλ

 i−j∑
j=1

[hj , ki−j ]


= δλ[h, k].

Theorem 6.15. Suppose g is complex stratified nilpotent Lie algebra. Then the finite

rank tensors in J0
t (H(g)) are dense in J0

t (H(g)) for each t > 0.

Proof. Let Γθ : T (H(g)) → T (H(g)) be the automorphism induced by the automorphism

δeiθ on H(g). Then for any h, k ∈ H(g), we have

Γθ(h⊗ k − k ⊗ h− [h, k]) = (δeiθh)⊗ (δeiθk)− (δeiθk)⊗ (δeiθh)− δeiθ [h, k],

and so Γθ takes J(H(g)) into and onto J(H(g)). If we let Γ′θ denote the transpose, then

for any α ∈ J0(H(g)) and v ∈ J(H(g)),

0 = 〈α, Γθv〉 = 〈Γ′θα, v〉.

Therefore, Γ′θ takes J0(H(g)) into itself. To see that Γ′θ is onto J0(H(g)), note that for

any α ∈ J0(H(g)), if we define β ∈ J0(H(g)) by 〈β, v〉 = 〈α, Γ−θv〉 for all v ∈ T (H(g)),

then it is easy to check that α = Γ′θβ. In addition, θ → δeiθh is continuous for any norm

on H(g) and therefore so is θ → Γθ and θ → Γ′θ.
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For every n ∈ Z+, let

Fn(θ) =
1

2πn

n−1∑
k=0

k∑
l=−k

eilθ =
1

2πn

sin2(nθ/2)
sin2(θ/2)

denote Fejer’s kernel. Then ∫ π

−π
Fn(θ)dθ = 1 (6.4)

for all n, and if φ is continuous on [−π, π], then

lim
n→∞

∫ π

−π
Fn(θ)φ(θ)dθ = φ(0). (6.5)

In addition, if m ∈ Z+ with m > n, then one can show that∫ π

−π
Fn(θ)eimθdθ = 0. (6.6)

Consider β = h1 ⊗ h2 ⊗ · · · ⊗ hk ∈ H(g)⊗k, where hp ∈ H(Vjp) for p = 1, ..., k,

where 1 ≤ jp ≤ r. Then

Γθβ = (eij1θh1)⊗ (eij2θh2)⊗ · · · ⊗ (eijkθhk)

=
(
eiθ
Pk

p=1 jp

)
β.

If k > n, then
∑k

p=1 jp > n as well, and by Eq. (6.6),∫ π

−π
Fn(θ)Γθβdθ = 0.

Any element of H(g)⊗k can be written as a sum of elements like β, and so in fact∫ π

−π
Fn(θ)Γθβdθ = 0 for all β ∈ H(g)⊗k with k > n.

Consequently, ∫ π

−π
Fn(θ)Γ′θαdθ = 0 for all α ∈ (H(g)∗)⊗k with k > n. (6.7)

Since for all αk ∈ (H(g)∗)⊗k, |Γ′θαk|(H(g)∗)⊗k = |αk|(H(g)∗)⊗k , it follows that for

each α ∈ J0
T (H(g)), Γ′θα ∈ J0

T (H(g)) and ||Γ′θα||t = ||α||t. Hence θ → Γ′θ is strongly

continuous in J0
T (H(g)). For α ∈ J0

T (H(g)). Define

γn :=
∫ π

−π
Fn(θ)Γ′θαdθ.
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Then γn ∈ J0
T (H(g)) for all n > 0 and by Eq. (6.7), it is zero in all ranks greater than

n. Therefore

lim
n→∞

||γn − α||t = lim
n→∞

∣∣∣∣∣∣∣∣∫ π

−π
Fn(θ)(Γ′θα− α)dθ

∣∣∣∣∣∣∣∣
t

≤ lim
n→∞

∫ π

−π
Fn(θ)||Γ′θα− α||tdθ

= 0

by Eq. (6.5).
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6.3 A Continuation of Example 5.52

The following is a continuation of Example 5.52.

(l̃k̃h̃FP)(g) =
d

dt
|t=0(k̃h̃FP)(g · tl)

=
d

dt
|t=0〈D2uα(PP(g · tl))), kP(g · tl)⊗ hP(g · tl)〉

+
d

dt
|t=0

∑
1≤k<j≤3

j−1∑
i=1

C̃j,k〈Duα(PP(g · tl))), k̃(i)RP
j,k(g · tl, ..., g · tl, h)〉

=
d

dt
|t=0〈D2uα(PP(g · tl)), kP(g)⊗ hP(g)〉

+
d

dt
|t=0〈D2uα(PP(g)), kP(g)⊗ hP(g · tl)〉

+
d

dt
|t=0〈D2uα(PP(g)), kP(g · tl)⊗ hP(g)〉

+
d

dt
|t=0〈Duα(PP(g · tl)), 1

2
RP

2,1(k, h) +
1
2
RP

2,1([g, k], h)〉

+
d

dt
|t=0〈Duα(PP(g · tl)), 1

12
RP

3,1(k, g, h) +
1
12

RP
3,1(g, k, h)〉

+
d

dt
|t=0〈Duα(PP(g · tl)),−1

6
RP

3,2(g, k, h)− 1
6
RP

3,2(k, g, h)〉

+
d

dt
|t=0〈Duα(PP(g)),

1
2
RP

2,1([g · tl, k], h)〉

+
d

dt
|t=0〈Duα(PP(g)),

1
12

RP
3,1(k, g · tl, h)〉

+
d

dt
|t=0〈Duα(PP(g)),

1
12

RP
3,1(g · tl, k, h)〉

− d

dt
|t=0〈Duα(PP(g)),

1
6
RP

3,2(g · tl, k, h)〉

− d

dt
|t=0〈Duα(PP(g)),

1
6
RP

3,2(k, g · tl, h)〉
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= 〈D3uα(PP(g)), lP(g)⊗ kP(g)⊗ hP(g)〉

+
∑

1≤k<j≤3

j−1∑
i=1

〈D2uα(PP(g)), kP(g)⊗ C̃j,k l̃
(i)RP

j,k(g, ..., g, h)〉

+
∑

1≤k<j≤3

j−1∑
i=1

〈D2uα(PP(g)), C̃j,k l̃
(i)RP

j,k(g, ..., g, k)⊗ hP(g)〉

+ 〈D2uα(PP(g)), lP(g)⊗
(

1
2
RP

2,1(k, h) +
1
2
RP

2,1([g, k], h)
)
〉

+ 〈D2uα(PP(g)), lP(g)⊗
(

1
12

RP
3,1(k, g, h) +

1
12

RP
3,1(g, k, h)

)
〉

+ 〈D2uα(PP(g)), lP(g)⊗
(
−1

6
RP

3,2(g, k, h)− 1
6
RP

3,2(k, g, h)
)
〉

+ 〈Duα(PP(g)),
1
2
RP

2,1([l, k], h)〉+ 〈Duα(PP(g)),
1
12

RP
3,1(k, l, h)〉

+ 〈Duα(PP(g)),
1
12

RP
3,1(l, k, h)〉 − 〈Duα(PP(g)),

1
6
RP

3,2(l, k, h)〉

− 〈Duα(PP(g)),
1
6
RP

3,2(k, l, h)〉.

Therefore,

(l̃k̃h̃FP)(e) = 〈α, PP l ⊗ PPk ⊗ PPh〉

+ 〈α, PPk ⊗ 1
2
RP

2,1(l, h)〉+ 〈α,
1
2
RP

2,1(l, k)⊗ PPh〉

+ 〈α, PP l ⊗ 1
2
RP

2,1(k, h)〉+ 〈α,
1
2
RP

2,1([l, k], h)〉

+ 〈α,
1
12

RP
3,1(k, l, h)〉+ 〈α,

1
12

RP
3,1(l, k, h)〉

− 〈α,
1
6
RP

3,2(l, k, h)〉 − 〈α,
1
6
RP

3,2(k, l, h)〉.
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