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ABSTRACT OF THE DISSERTATION

Hypoelliptic heat kernel inequalities on Lie groups

by

Tai Alexis Melcher

Doctor of Philosophy in Mathematics

University of California San Diego, 2004

Professor Bruce Driver, Chair

We study the existence of gradient estimates for second order hypoelliptic heat

kernels on manifolds. It is now standard that such inequalities, in the elliptic case, are

equivalent to a lower bound on the Ricci tensor of the Riemannian metric. For hypoel-

liptic operators, the associated “Ricci curvature” takes on the value −∞ at points of

degeneration of the semi-Riemannian metric associated to the operator. For this reason,

many of the standard proofs for the elliptic theory no longer work in the hypoelliptic

setting.

This thesis gives recent results for hypoelliptic operators. Using Malliavin cal-

culus methods, we transfer the problem to one of determining certain infinite dimensional

estimates. We study the case where the underlying manifold is a Lie group and the hy-

poelliptic operators are invariant under left translations. In particular, we are able to

show that “Lp-type” gradient estimates hold for p ∈ (1,∞), and the p = 2 gradient

estimate implies a Poincaré estimate in this context. The case p = 1 (which would imply

a logarithmic Sobolev inequality) is still under investigation; however, in the special case

of the Heisenberg Lie group, we are able to determine several large classes of functions

for which the inequality holds.

ix



Chapter 1

Introduction

1.1 Background

Let Md be a manifold of dimension d. A second order differential operator L

is subelliptic if, given a chart x on M , one may write

L = aij(x)∂xi∂xj + bi(x)∂xi ,

where ∂xi = ∂
∂xi and (aij) is a real symmetric non-negative matrix. We observe here

the summation convention of summing over repeated upper and lower indices. In the

nondegenerate case, that is, (aij) > 0, L is said to be elliptic.

On a Riemannian manifoldM with metric g, a standard example of a subelliptic

operator is the Laplace-Beltrami operator ∆g. Given a chart x on M , ∆g may be written

as

L = ∆g =
1
√
g
∂xi

(√
ggij∂xj

)
,

where g = gijdx
idxj = g(∂xi , ∂xj )dxidxj ,

√
g =

√
det(gij), and (gij) is the inverse matrix

to the matrix (gij). It is well known that ∆g is in fact an elliptic operator. On a general

manifold M , given a set of smooth vector fields {X1, . . . , Xk} on M , the operator

L =
k∑

i=1

X2
i .

1
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is also subelliptic, which may be seen by writing the vector fields in local coordinates,

Xi = Xj
i ∂xj .

Notation 1.1. Let C∞
c (M) denote the set of smooth functions on M with compact

support. When M = Rn, let C∞
p (Rn) denote those functions f ∈ C∞(Rn) such that f

and all of its partial derivatives have at most polynomial growth.

For any subelliptic operator L, we may define

Γ1(f, h) :=
1
2
[L(fh)− fLh− hLf ],

for f, h ∈ C∞(M). By iterating this construction, we also have

Γ2(f, h) :=
1
2
[LΓ1(f, h)− Γ1(Lf, h)− Γ1(f, Lh)].

IfM is a Riemannian manifold and∇ := (X1, . . . , Xk), for {Xi}k
i=1 a collection of smooth

vector fields on M , then

Γ1(f, h) = (∇f,∇h).

In particular, along the diagonal f = h, we write

Γ1(f) := Γ1(f, f) =
1
2
Lf2 − fLf = |∇f |2. (1.1)

Similarly,

Γ2(f) := Γ2(f, f) =
1
2
LΓ1(f)− Γ1(f, Lf) =

1
2
L|∇f |2 − (∇f,∇Lf).

When L is the Laplace-Beltrami operator ∆g,

Γ2(f) = ‖∇2f‖2 + (Ric∇f,∇f), (1.2)

where ∇2 is the Hessian tensor, Ric is the Ricci tensor, and ‖ · ‖ is the Hilbert-Schmidt

norm in the Riemannian metric.

Over the last twenty years or more, a fairly complete and very beautiful theory

has been developed applying to elliptic operators on Riemannian manifolds. This theory
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relates properties of the solutions of elliptic and parabolic equations to properties of

the Riemannian geometry. These geometric properties are determined by the principal

symbol of the underlying elliptic operator. The following theorem is a typical example

of the type of result we have in mind here; see for example [4, 5, 6]. In particular, [35]

gives a nice survey of the progress made on the geometry of diffusion generators. We

include the proof of this theorem in the appendix to the thesis.

Theorem 1.2. Suppose (M, g) is a complete Riemannian manifold, and ∇ and ∆ are

the gradient and Laplace-Beltrami operators acting on C∞(M). We write et∆/2 to denote

the heat semigroup et∆̄/2, where ∆̄ is the self-adjoint extension of ∆|C∞
c (M) to L2(M,dV )

with dV volume measure on M . Let |v| :=
√
g (v, v) for all v ∈ TM, Ric denote the

Ricci curvature tensor, and k be a constant. Then the following are equivalent:

1. Ric(∇f,∇f) ≥ −2k|∇f |2, for all f ∈ C∞
c (M),

2. Γ2(f) ≥ −2kΓ1(f), for all f ∈ C∞
c (M),

3. |∇et∆/2f | ≤ ektet∆/2 |∇f | , for all f ∈ C∞
c (M) and t > 0,

4. |∇et∆/2f |2 ≤ e2ktet∆/2 |∇f |2, for all f ∈ C∞
c (M) and t > 0,

5. there is a function K(t) > 0 such that K(0) = 1, K̇(0) exists, and

|∇et∆/2f |2 ≤ K(t)et∆/2 |∇f |2 , (1.3)

for all f ∈ C∞
c (M) and t > 0.

Remark 1.3. This theorem leaves open the possibility that a function K(t) > 0 exists

such that the inequality (1.3) is satisfied for all f ∈ C∞
c (M) and t > 0, but K(0) > 1,

or K̇(0) = ∞ or does not exist, while at the same time there is no constant k such that

Ric(∇f,∇f) ≥ −2k|∇f |2, for all f ∈ C∞
c (M).

Note that the estimate in (3) implies that

|∇et∆/2f |p ≤ epktet∆/2|∇f |p, p ∈ [1,∞), (1.4)
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for all f ∈ C∞
c (M) and t > 0, by Hölder’s inequality. Estimates like (1)–(5) are also

equivalent to one parameter families of Poincaré and log Sobolev estimates for the heat

kernel. The latter has implications for hypercontractivity of an associated semigroup;

see Gross [23, 24].

As a simple illustration of this theorem, consider the manifold M = Rd with the

usual vector fields ∂x1 , . . . , ∂xd . Let ∇ and ∆ be the standard gradient and Laplacian,

∇ = (∂x1 , . . . , ∂xd) and ∆ = ∂2
x1 + . . .+ ∂2

xd .

On Rd, the Ricci curvature is 0, and the standard Laplacian is the Laplace-Beltrami

operator. Also, Γ2(f) = ‖∇2f‖2 ≥ 0. In this case et∆/2 is convolution by the well known

probability density

pt (x) :=
1

(2πt)d/2
e−

1
2t
|x|2Rd ,

and

∇et∆/2f = et∆/2∇f, (1.5)

for all f ∈ C1
c (Rd), as follows from basic properties of convolutions; more abstractly, this

follows from the commutativity of the Euclidean gradient and Laplacian. Equation (1.5)

and an application of Hölder’s inequality then imply that∣∣∣∇et∆/2f
∣∣∣p =

[
et∆/2 |∇f |

]p
≤ et∆/2|∇f |p,

for all f ∈ C1
c (Rd), where |∇f | :=

{∑d
i=1(∂xif)2

}1/2
.

This research program moves toward extending Theorem 1.2 to operators of

the form

L =
k∑

i=1

X2
i , (1.6)

where {Xi}k
i=1 is a set of smooth vector fields on M satisfying

TmM = span ({X(m) : X ∈ L}) , ∀ m ∈M, (HC)
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where L is the Lie algebra of vector fields generated by the collection {Xi}k
i=1. This

assumption is the Hörmander bracket condition, and we say that {Xi}k
i=1 is a Hörmander

set. Under this assumption, by a celebrated theorem of Hörmander, the operator L

given in Equation (1.6) is hypoelliptic. Recall that a subelliptic operator L is said to be

hypoelliptic if Lu ∈ C∞(Ω) implies that u ∈ C∞(Ω), for all distributions u ∈ C∞(Ω)′ on

any open set Ω ⊂o M .

However, L need not be elliptic. The principle symbol of L at ξ ∈ T ∗mM is

given by σL (ξ) =
∑k

i=1 [ξ (Xi)]
2 . By definition, the operator L is degenerate at points

m ∈ M where there exists 0 6= ξ ∈ T ∗mM such that σL (ξ) = 0. At points of degeneracy

of L, the Ricci tensor is not well defined and should be interpreted to take the value −∞
in some directions. Thus, there exist no lower bounds in the Ricci curvature in this case.

Γ1 and Γ2 are well defined for any subelliptic operator L; however, it can be shown that

inequalities analogous to that in item (2) of Theorem 1.2 also fail in the non-elliptic case.

Hence it is not possible to directly generalize Theorem 1.2 in this setting. Nevertheless

it is reasonable to ask if inequalities of the form (1.4) might still hold. More precisely,

we let ∇ = (X1, . . . , Xk) and address the following question: do functions Kp (t) < ∞
exist such that

|∇etL/2f |p ≤ Kp(t)etL/2 |∇f |p , p ∈ [1,∞),

for all f ∈ C∞
c (M) and t > 0?

Related results appear in Kusuoka and Stroock [34]. In particular, a special

case of Theorem 2.18 of that paper implies that, for all p ∈ (1,∞), there exist finite

constants Cp such that

|∇etL/2f |p ≤ Cpt
−p/2etL/2|f |p,

for all smooth, bounded functions f with bounded derivatives of all orders and all t > 0.

A similar result may be found in Picard [42].

Additionally, Auscher, Coulhon, Duong, and Hofmann [3] show that on a non-

compact connected Riemannian manifold satisfying certain spectral gap conditions, the
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Laplace-Beltrami operator satisfies

|∇et∆f |2 ≤ Ce−C′t∆|∇f |2

for some C,C ′ > 0, for all f ∈ C∞
c (M) such that f ,∇f ∈ L2(M,dV ), and t > 0. Their

methods may be adapted for the sum of squares of vectors fields satisfying the Hörmander

bracket condition (HC). In the case when the manifold is a Lie group, this is carried out

in Alexopoulos [2]. The papers [3, 11] also include some potential nice applications of

our own result.

1.2 Statement of results

Let G be a d-dimensional Lie group with Lie algebra g = Lie(G) and identity

element e. Suppose {Xi}k
i=1 ⊂ g is a Lie generating set; that is, there exists some m ∈ N

such that

span
{
Xi, [Xi1 , Xi2 ], [Xi1 , [Xi2 , Xi3 ]], . . . , [Xi1 , [· · · , [Xim−1 , Xim ] · · · ]] :

i, ir ∈ {1, . . . , k}, r ∈ {1, . . . ,m}
}

= g. (1.7)

Notation 1.4. Let Σ = Σ0 := {X1, . . . , Xk} and Σr be defined inductively by

Σr := {[Xi, V ] : V ∈ Σr−1, i = 1, . . . , k},

for all r ∈ N. Since {Xi}k
i=1 is a Lie generating set, there exists a finite m such that

span (∪m
r=0Σr) = g.

Let g0 := span(Σ0), and let {Yj}d−k
j=1 ⊂ ∪m

r=1Σr be a basis of g/g0. Define an inner

product 〈·, ·〉 on g by making {Xi}k
i=1 ∪ {Yj}d−k

j=1 an orthonormal set. Note then that

{Xi}k
i=1 is an orthonormal basis of g0. We may extend 〈·, ·〉 to a right invariant metric

on G by defining 〈·, ·〉g : TgG× TgG→ R as

〈v, w〉g :=
〈
Rg−1∗v,Rg−1∗w

〉
, for all v, w ∈ TgG.

The g subscript will be suppressed when there is no chance of confusion.
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Notation 1.5. Let Lg denote left translation by an element g ∈ G, and let Rg denote

right translation. Given an element X ∈ g, let X̃ denote the left invariant vector field on

G such that X̃(e) = X, where e is the identity of G. Recall that X̃ being left invariant

means that the vector field commutes with left translation in the following way:

X̃(f ◦ Lg) = (X̃f) ◦ Lg,

for all f ∈ C1(G). Similarly, let X̂ denote the right invariant vector field associated to

X.

Definition 1.6. The left invariant gradient on G is the operator on C1(G) defined by

∇ := (X̃1, . . . , X̃k).

The subLaplacian on G is the second-order operator acting on C2(G)

L :=
k∑

i=1

X̃2
i .

Remark 1.7. Since {Xi}k
i=1 is a Lie generating set, {X̃i}k

i=1 satisfies the Hörmander

condition (HC) and Hörmander’s theorem [26] implies that L is a hypoelliptic operator.

Let L2(G) denote the space of twice integrable functions on G with respect to

right invariant Haar measure. Note that for any X ∈ g, X̃ is formally skew-adjoint,

(X̃f1, f2)L2(G) =
∫ t

0
X̃f1(g)f2(g) dg =

∫ t

0

d

dε

∣∣∣∣
0

f1(geεX)f2(g) dg

=
d

dε

∣∣∣∣
0

∫ t

0
f1(geεX)f2(g) dg

=
d

dε

∣∣∣∣
0

∫ t

0
f1(g)f2(ge−εX) dg

=
∫ t

0

d

dε

∣∣∣∣
0

f1(g)f2(ge−εX) dg = −(f1, X̃f2)L2(G),

for all f1, f2 ∈ C∞
c (G). Thus,

(f1, Lf2)L2(G) = (Lf1, f2)L2(G),
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for all f1, f2 ∈ C∞
c (G), and L is a densely defined, symmetric operator on L2(G, dg). So

we may associate to L the symmetric bilinear form E0(f1, f2) := (−Lf1, f2)L2(G). Note

that E0 is positive, since

(−Lf, f)L2(G) =
k∑

i=1

(X̃if, X̃if)L2(G) = ‖∇f‖2
L2(G) ≥ 0,

for all f ∈ C∞
c (G). Thus, E0 is closable, and its minimal closure E is associated to a

self-adjoint operator L̄ which is an extension of L, called the Friedrichs extension of L.

Now we may define the following.

Definition 1.8. Let Pt denote the heat semigroup etL̄/2, where L̄ is the Friedrichs ex-

tension of L|C∞
c (G) to L2(G, dg) with dg right Haar measure on G. By the left invariance

of L and the satisfaction of the Hörmander condition, Pt admits a left convolution kernel

pt such that

Ptf(g) = f ∗ pt(g) =
∫

G
f(gh)pt(h) dh, (1.8)

for all f ∈ C∞
c (G), where gh is defined by the group operation of G and dh again denotes

right Haar measure on G. We will call pt the heat kernel of G.

Pt is a symmetric Markov semigroup. By Remark 1.7, L is a hypoelliptic

operator, and so pt is a smooth density on G. In the sequel, we will let L denote its own

Friedrichs extension. For the semigroup theory used here, see [13, 20, 41, 55].

Notation 1.9. Let Kp(t) be the best function such that

|∇Ptf |p ≤ Kp(t)Pt|∇f |p, p ∈ [1,∞), (Ip)

for all f ∈ C∞
c (G) and t > 0.

Note that in this context the inequality (Ip) could be equivalently written as

Γ1(Ptf)p/2 ≤ Kp(t)PtΓ1(f)p/2, p ∈ [1,∞),

for all f ∈ C∞
c (G) and t > 0.
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Theorem 1.10. Let G be a Lie group. Then for all p ∈ (1,∞), Kp(t) <∞ for all t > 0.

In particular, if G is a nilpotent Lie group, then there exists a constant Kp < ∞ such

that Kp(t) < Kp for all t > 0.

This statement is verified in Chapter 2 in the context of the real 3-dimensional

Heisenberg Lie group, before being treated in full generality in Chapter 4. We approach

this case first because the basic idea of the proof can be seen without the added geometric

complications appearing in the more general formulation. So for now taking G to be the

Heisenberg group, one could attempt to determine finite constants satisfying (Ip) on G

by proving bounds for the integral representation of Pt, Equation (1.8). In particular,

there is an explicit integral formula for pt(g) on the Heisenberg group, given in Equation

(2.5). However, our attempts at proving such bounds using this formula have been

unsuccessful.

The Heisenberg heat kernel pt(g) dg may also be realized as the distribution in t

of the Cartan rolling map on G, the process ξ satisfying Equation (2.20), the Stratonovich

differential equation
k∑

i=1

X̃i(ξt) ◦ dbit, with ξ0 = e,

where b1, . . . , bk are k independent real-value Brownian motions. Thus, applying the

heat semigroup Pt to a function f ∈ C∞
c (G) at the identity is equivalent to taking the

expectation of f(ξt); that is, Ptf(e) = E{f(ξt)}. Using this representation of Pt, we may

transform our finite dimensional problem to a problem on Wiener space. In a “lifting”

procedure described in Section 2.7, we are able to construct vector fields Xi on Wiener

space from the Heisenberg vector fields X̃i and the map ξ. Then we can apply Malliavin’s

probabilistic techniques on proving hypoellipticity to determine bounds of expressions

like E{Xi[f(ξt)]}. Section 2.5 reviews some infinite dimensional calculus on Wiener space

necessary for this argument.

Before proceeding with this proof, in Chapter 2 we show that the left invariance

of the vector fields leaves the inequality (Ip) invariant under group translation, a result
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which also holds in the general Lie group context. The Heisenberg group admits a family

of dilations adapted to its group structure. These dilations allow a scaling argument

which additionally proves that in this case the functions Kp(t) = Kp for all t > 0, for

some constant Kp. We prove that Kp ≥
√

2 when 1 ≤ p ≤ 2 and, in general, that Kp > 1.

Note that at t = 0 the inequality is an empty statement and certainly holds for constant

1. Unlike the elliptic case where the inequality holds with a continuous coefficient (see

Equation (1.4)), there is now a jump discontinuity in Kp (t) at t = 0. This discontinuity

at t = 0 should be a feature which persists in the general hypoelliptic setting, although

that is not verified in this thesis. Sections 2.6 to 2.8 give the proof of Theorem 1.10 in

the Heisenberg group, following the outline described above. Finally, Section 2.9.1 shows

that our method can not, without modification, be used to prove K1 < ∞. However,

Section 2.9.2 gives hope, giving several large classes of functions on the Heisenberg group

for which the estimate holds with p = 1.

Using the notation for calculus on Wiener space introduced in Section 2.5,

Chapter 3 begins the generalization of the argument made in the Heisenberg case to a

general Lie group G. Section 3.1.1 introduces the rolling map on G, the solution ξ to

the Stratonovich equation (3.3) analogous to the Heisenberg equation (2.20). Section

3.2 provides the additional proofs of existence and differentiability on the path space

over a group, not covered in the standard literature (which primarily addresses the case

of Euclidean space or compact manifolds). In particular, a large part of this chapter

is devoted to proving Theorem 3.2, which states that, for the solution ξt to Equation

(3.3) at fixed time t > 0, f(ξt) is smooth in some sense for reasonable functions f and

has derivatives in all Lp with respect to Wiener measure. Section 3.1.3 generalizes the

procedure of “lifting” vector fields given in Section 2.7 and, together with Section 3.1.2,

gives the results necessary for bounding expectations of the lifted vector fields.

Chapter 4 contains the proof of Theorem 1.10 in the most generality we have

been able to prove it in. In Section 4.1, using the results from Chapter 3, we show that

for a Lie group G, Kp(t) < ∞ for all t > 0, although we are not able to estimate the
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behavior of Kp with respect to t. In a generalization of the Heisenberg scaling argument

in Section 2.3, Section 4.2 addresses the special case of nilpotent and stratified groups.

When G is stratified, dilation arguments imply that the Kp are independent of the t

parameter. When G is nilpotent, we are able to prove that there is a constant Kp such

that Kp(t) < Kp for all t > 0, completing the proof of Theorem 1.10. This also allows

us to prove the following Poincaré estimate for the heat kernel measure in this context.

Theorem 1.11. Suppose G is a nilpotent Lie group with identity element e. Then

Ptf
2(e)− (Ptf)2(e) ≤ K2tPt|∇f |2(e),

for all f ∈ C∞
c (G) and t > 0, where K2 is the constant in Theorem 1.10 for p = 2.

Note that this theorem gives a slight improvement in the elliptic case, where

the estimate is known only to hold with coefficients of exponential growth.



Chapter 2

A special case: the Heisenberg

group

Let M = G be R3 equipped with the Heisenberg group multiplication given in

Equation (2.2). In this setting, we will take L = X̃2 + Ỹ 2, where X̃ and Ỹ are the vector

fields

X̃ := ∂x −
1
2
y∂z and Ỹ := ∂y +

1
2
x∂z. (2.1)

2.1 Realization of the Heisenberg Lie group

Recall that the real Heisenberg Lie algebra is g = span{X,Y, Z} where Z =

[X,Y ] and Z is in the center of g. Thus, g0 := span{X,Y } is a hypoelliptic subspace

of g; that is, the Lie algebra generated by g0 is g. The Heisenberg group G is the

simply connected real Lie group such that Lie(G) = g. Letting A = aX + bY + cZ and

A′ = a′X + b′Y + c′Z, we have by the Baker-Campbell-Hausdorff formula that

eAeA
′
= eA+A′+ 1

2
[A,A′].

Thus we may realize G as R3 with the following group multiplication

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b
′
, c+ c′ +

1
2
(ab′ − a′b)). (2.2)

12
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2.2 Differential operators on G

Let X = (1, 0, 0), Y = (0, 1, 0), and Z = (0, 0, 1) at the identity 0 ∈ G. We

extend these to left invariant vector fields on G in the standard way. For g = (a, b, c) ∈ G,

let Lg denote left translation by g, and compute as follows:

X̃(a, b, c) = L(a,b,c)∗X =
d

dt

∣∣∣∣
0

(a, b, c)(t, 0, 0)

=
d

dt

∣∣∣∣
0

(a+ t, b, c− 1
2
bt) = (1, 0,−1

2
b).

So if (x, y, z) are the standard coordinates on G = R3, for f ∈ C1(G),

(X̃f)(g) =
d

dt

∣∣∣∣
0

f(g · tX) =
∂f

∂x
(g)− 1

2
y
∂f

∂z
(g).

Performing similar computations for Y and Z, we then have

X̃ = ∂x −
1
2
y∂z, Ỹ = ∂y +

1
2
x∂z, and [X̃, Ỹ ] = Z̃ = ∂z, (2.3)

where ∂x = ∂
∂x , ∂y = ∂

∂y , and ∂z = ∂
∂z ; compare with Equation (2.1). Note then that

{X̃, Ỹ , Z̃} forms a basis for the tangent space at every point of G. This combined with

[X̃, Ỹ ] = Z̃ implies that {X̃, Ỹ } satisfies the Hörmander bracket condition (HC). In the

same manner one shows the right invariant vector fields associated to X, Y , and Z are

given by

X̂ = ∂x +
1
2
y∂z, Ŷ = ∂y −

1
2
x∂z, and [X̂, Ŷ ] = Ẑ = −∂z. (2.4)

Remark 2.1. The right invariant vector fields associated to X and Y may be expressed

as the following linear combinations,

X̂ = X̃ + yZ̃ and Ŷ = Ỹ − xZ̃.

Definition 2.2. The left invariant gradient on G = R3 is the operator

∇ = (X̃, Ỹ ).
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The subLaplacian is

L = X̃2 + Ỹ 2,

and we let Pt = etL/2 be the heat semigroup associated to L, as given in Definition 1.8.

Note that here

L = ∂2
x + ∂2

y + (x∂y − y∂x)∂z +
1
4
(x2 + y2)∂2

z ,

and it is easy to see that L is a positive, symmetric operator on C∞
c (G). Finally,

pt(g) = Ptδ0(g) = etL/2δ0(g) denotes the fundamental solution associated to L, so that

for f ∈ C∞
p (G),

Ptf(g) = pt ∗ f (g) :=
∫

G
f(gh)pt(h) dh

where dh denotes right Haar measure and gh is computed relative to the Heisenberg

group multiplication in Equation (2.2).

Remark 2.3. Since {X,Y } is a Lie generating set, Hörmander’s theorem [26] implies that

L is a hypoelliptic operator. Also Malliavin’s techniques show pt is a smooth positive

function on R3; see Section 2.6. In this simple setting, an explicit formula for pt(g) is

pt(g) =
1

8π2

∫
R

w

sinh
(

wt
2

) exp
(
−1

4
|~x|2w coth

(
wt

2

))
eiwz dw, (2.5)

where g = (x, y, z) ∈ G and ~x = (x, y); see for example [53]. This formula for the

heat kernel demonstrates the potential advantage of considering the infinite dimensional

Wiener space representation of pt(g) dg, since the Wiener space representation no longer

involves the oscillatory integral that appears in (2.5).

We will need the following straightforward results.

Lemma 2.4. By the left invariance of ∇ and Pt, the inequality (Ip) holds for all g ∈ G,

f ∈ C∞
p (G), and t > 0, if and only if,

|∇Ptf |p(0) ≤ Kp(t)Pt|∇f |p(0), (2.6)

for all f ∈ C∞
p (G) and t > 0.
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Proof. If (2.6) holds, then

|∇Ptf |p(g) = |(∇Ptf) ◦ Lg|p(0) = |∇(Ptf ◦ Lg)|p(0)

= |∇(Pt(f ◦ Lg))|p(0) ≤ KpPt|∇(f ◦ Lg)|p(0)

= KpPt|(∇f) ◦ Lg|p(0) = KpPt|∇f |p ◦ Lg(0)

= KpPt|∇f |p(g).

The converse is trivial.

Note that this result only depended on the left invariance of the ∇ and Pt, and

not the specific Heisenberg group structure. Thus, this result holds in general and will

be used later in the general Lie group context.

Lemma 2.5. For A ∈ g,

ÃPtf(0) = PtÂf(0),

for all f ∈ C∞
p (G) and t > 0. More generally,

ÂPtf = PtÂf,

from which the previous equation follows, since Â = Ã at 0.

Proof. If we ignore domain issues, then [Â, B̃] = 0 for all B ∈ g, so that [Â, L] = 0, and

thus we expect [Â, etL/2] = 0. Formally, we have

ÃPtf(0) =
d

dε

∣∣∣∣
0

Ptf(eεA) =
d

dε

∣∣∣∣
0

∫
G
f(eεAg)pt(g) dg

=
∫

G

d

dε

∣∣∣∣
0

f(eεAg)pt(g) dg

=
∫

G
Âf(g)pt(g) dg = PtÂf(0).

To differentiate under the integral, we have used the translation invariance of Haar

measure (which is Lebesgue measure on R3) and the heat kernel bound

pt(g) ≤ Ct−2e−ρ2(g)/Ct,

where ρ(g) ≥ C ′(|x|+ |y|+ |z|1/2) is the Carnot-Carathéodory distance on G, and C and

C ′ are some positive constants; see Theorem 5.4.3 in [51] and page 27 of [9].
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2.3 Scaling on G

So let r > 0 and g = (x, y, z), and define φr : G → G by φr(x, y, z) =

(rx, ry, r2z). Notice that

φr((a, b, c) · (x, y, z)) = φr((a+ x, b+ y, c+ z +
1
2
(ay − xb))

= φr((ra+ rx, rb+ ry, r2c+ r2z +
r2

2
(ay − xb))

= φr(a, b, c)φr(x, y, z).

Thus φr is a group isomorphism on G. (In fact, φr is a dilation on G with generator W

given by,

W (x, y, z) =
d

dr

∣∣∣∣
r=1

φr(x, y, z) = (x, y, 2z)(x,y,z)

= x∂x + y∂y + 2z∂z

= x

(
X̃ +

1
2
y∂z

)
+ y

(
Ỹ − 1

2
x∂z

)
+ 2z∂z = xX̃ + yỸ + 2zZ̃;

see Definition 4.8.) Using etX̃ (g) = g · (t, 0, 0) and

φr∗X̃ ◦ φ−1
r (g) =

d

dt

∣∣∣∣
0

φr(etX̃(φ−1
r (g))),

along with similar formulas involving Ỹ , one shows

φr∗X̃ ◦ φ−1
r = rX̃ and φr∗Ỹ ◦ φ−1

r = rỸ . (2.7)

The equations in (2.7) are equivalent to

X̃(f ◦ φr) = r(X̃f) ◦ φr and Ỹ (f ◦ φr) = r(Ỹ f) ◦ φr.

Therefore,

∇(f ◦ φr) = r(∇f) ◦ φr and (2.8)

L(f ◦ φr) = r2(Lf) ◦ φr.
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Also, from Equation (2.5), for g = (x, y, z),

pr2t(g) =
1

8π2

∫
R

w

sinh
(

wr2t
2

) exp
(
−1

4
|~x|2w coth

(
wr2t

2

))
eiwz dw

=
1

8π2

∫
R

w

r2 sinh
(

wt
2

) exp
(
− 1

4r2
|~x|2w coth

(
wt

2

))
eiwz/r2

r−2dw

= r−4(pt ◦ φr−1)(g) (2.9)

through the change of variables w 7→ r−2w. Thus,

Pt(f ◦ φr)(g) =
∫

G
(f ◦ φr)(gh)pt(h) dh =

∫
G
f(φr(g)φr(h))pt(h) dh

=
∫

G
f(φr(g)h)(pt ◦ φr−1)(h)r−4 dh =

∫
G
f(φr(g)h)pr2t(h) dh = (Pr2tf ◦ φr)(g);

that is,

Pt(f ◦ φr) = etL/2(f ◦ φr) = (er
2tL/2f) ◦ φr = (Pr2tf) ◦ φr. (2.10)

The above remarks lead to the following proposition.

Proposition 2.6. If Kp is the best constant such that

|∇P1f |p ≤ KpP1|∇f |p, (2.11)

for all f ∈ C∞
p (G), then Kp(t) = Kp for all t > 0, where Kp(t) is the function introduced

in Notation 1.9.

Proof. Fix t > 0. Then by Equations (2.8) and (2.10),

|∇Pt(f ◦ φt−1/2)|p = |∇[(P1f) ◦ φt−1/2 ]|p = |t−1/2(∇P1f) ◦ φt−1/2 |p

≤ Kpt
−p/2(P1|∇f |p) ◦ φt−1/2 = Kpt

−p/2Pt(|∇f |p ◦ φt−1/2)

= KpPt|∇(f ◦ φt−1/2)|p,

Replacing f by f ◦ φt1/2 in the above computations completes the proof. Moreover,

reversing the above argument shows that |∇Ptf |p ≤ KpPt|∇f |p implies that |∇P1f |p ≤
KpP1|∇f |p.
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2.4 The constant Kp > 1

Proposition 2.7. For p ∈ [1,∞), let Kp be the best constant such that

|∇Ptf |p ≤ KpPt|∇f |p (2.12)

for all f ∈ C∞
p (G) and t > 0. Then Kp > 1. In particular, K2 ≥ 2.

Proof. First consider the case p = 2k for some positive integer k, and suppose that the

constant K2k = 1. Then

|∇Ptf |2k ≤ Pt|∇f |2k,

for all t ≥ 0, and |∇f |2k = |∇P0f |2k = P0|∇f |2k = |∇f |2k, together would imply that

k|∇f |2(k−1)∇f · ∇Lf =
d

dt

∣∣∣∣
0

|∇Ptf |2k ≤ d

dt

∣∣∣∣
0

Pt|∇f |2k =
1
2
L|∇f |2k. (2.13)

We now show that the function f(x, y, z) = x+ yz violates this inequality. Note that

Lf = ∇ · ∇f =

 X̃

Ỹ

 · ∇f =

 X̃

Ỹ

 ·

1− 1
2y · y

z + 1
2x · y

 =
1
2
x,

∇Lf =
1
2

 1

0

 , ∇f · ∇Lf =
1
2

(
1− 1

2
y · y

)
, and |∇f |2 (0) = 1.

Hence, (
k|∇f |2(k−1)∇f · ∇Lf

)
(0) =

k

2
. (2.14)

On the other hand,

Lφ (g) = φ′ (g)Lg + φ′′ (g) |∇g|2 ,

and so setting φ (t) = tk and g = |∇f |2 gives

L|∇f |2k = k|∇f |2(k−1)L |∇f |2 + k (k − 1) |∇f |2(k−2)
∣∣∣∇ |∇f |2∣∣∣2 .

From the above,

∣∣∣∇ |∇f |2∣∣∣2 =

∣∣∣∣∣∣
 yz + 1

2xy
2 − 1

2y (2z + xy)

−2y + y3 + xz + 1
22x2y + 1

2x (2z + xy)

∣∣∣∣∣∣
2

,
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and hence ∣∣∣∇ |∇f |2∣∣∣2 (0) = 0,

while
(
L |∇f |2

)
(0) = −2. Therefore

1
2

(
L|∇f |2k

)
(0) = −k. (2.15)

Inserting the results of Equations (2.14) and (2.15) into Equation (2.13) would imply

that k
2 ≤ −k, which is absurd. Thus, K2k > 1 for any positive integer k.

For any p ∈ [1,∞), there is some integer k such that p ≤ 2k. Thus,

|∇Ptf |2k = (|∇Ptf |p)2k/p

≤ K2k/p
p (Pt|∇f |p)2k/p ≤ K2k/p

p Pt|∇f |2k.
(2.16)

Since K2k is the optimal constant for which (2.16) holds and K2k > 1,

1 < K2k ≤ K2k/p
p

implies that Kp > 1.

We now quantify this estimate this estimate for p = 2. Since

K2 = sup
F∈C∞

p (G)

|∇PtF |2

Pt|∇F |2
(0) ≥ |∇Ptf |2

Pt|∇f |2
(0) =: C(t),

where f(x, y, z) = x + yz, it follows that K2 ≥ supt>0C (t) . To finish the proof we

compute C (t) explicitly. Observe that Pt, when acting on polynomials, may be computed

using

Pt = etL/2 =
∞∑

n=1

1
n!

(
tL

2

)n

= I +
t

2
L+

1
2!
· t

2

4
L2 + · · · .

We then have

Ptf = f +
t

2
Lf = (x+ yz) +

t

2
x, ∇Ptf =

(1 + t
2

)
− 1

2y · y
z + 1

2x · y

 , and
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|∇Ptf |2 =
((

1 +
t

2

)
− 1

2
y2

)2

+
(
z +

1
2
xy

)2

=
(

1− y2 +
1
4
y4 + z2 + xyz +

1
4
x2y2

)
+
t

2
(
2− y2

)
+
t2

8
· 2.

Also, from before we have,

∇f =

1− 1
2y · y

z + 1
2x · y

 ,

and so

|∇f |2 =
(

1− 1
2
y2

)2

+
(
z +

1
2
xy

)2

= 1− y2 +
1
4
y4 + z2 + xyz +

1
4
x2y2,

L|∇f |2 =
(

1
2
y2 +

(
−2 + 3y2 +

1
2
x2

))
+ (x · x− y · y) +

1
4
r2 · 2 = −2 + 3y2 + 2x2,

L2|∇f |2 = 4 + 6 = 10.

Thus,

Pt|∇f |2 =
(

1− y2 +
1
4
y4 + z2 + xyz +

1
4
x2y2

)
+
t

2
(
−2 + 3y2 + 2x2

)
+
t2

8
· 10.

So evaluating at the identity, we have

Pt|∇f |2(0) = |∇f |2(0) +
t

2
L|∇f |2(0) +

t2

8
L2|∇f |2(0) = 1− t+

5
4
t2,

and also

|∇Ptf |2(0) = 1 + t+
1
4
t2.

We can find the maximum value of

C(t) =
1 + t+ 1

4 t
2

1− t+ 5
4 t

2

for t ≥ 0 by taking derivatives in t to show that C (t) takes on maximum value 2 at

t = 2
3 .



21

2.5 Review of calculus on Wiener space

This section contains a brief introduction to basic Wiener space definitions

and notions of differentiability. For a more complete exposition, we refer the reader to

[28, 29, 30, 32, 33, 38, 39, 40, 52, 53, 54] and references contained therein. In particular,

the first two chapters of Nualart [40] and Chapter V of Ikeda and Watanabe [30] are

cited often here.

Let (W (Rk),F , µ) denote classical k-dimensional Wiener space. That is, W =

W (Rk) is the Banach space of continuous paths ω : [0, 1] → Rk such that ω0 = 0,

equipped with the supremum norm

‖ω‖ = max
t∈[0,1]

|ωt|,

µ is standard Wiener measure, and F is the completion of the Borel σ-field on W with

respect to µ. By definition of µ, the process

bt(ω) = (b1t (ω), . . . , bkt (ω)) = ωt

is an Rk Brownian motion. For those ω ∈ W which are absolutely continuous, let

E(ω) :=
∫ 1

0
|ω̇s|2 ds

denote the energy of ω. The Cameron-Martin Hilbert space is the space of finite energy

paths,

H = H (Rk) := {ω ∈ W (Rk) : ω is absolutely continuous and E(ω) <∞},

equipped with the inner product

(h, k)H :=
∫ 1

0
ḣs · k̇s ds, for all h, k ∈ H .

Definition 2.8. Denote by S the class of smooth cylinder functionals; that is, random

variables F : W → R such that

F (ω) = f(ωt1 , . . . , ωtn), (2.17)
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for some n ≥ 1, 0 < t1 < · · · < tn ≤ 1, and function f ∈ C∞
p ((Rk)n) (see Notation 1.1).

For E be a real separable Hilbert space, let SE be the set of E-valued smooth cylinder

functions F : W → E of the form

F =
m∑

j=1

Fjej , (2.18)

for some m ≥ 1, ej ∈ E, and Fj ∈ S.

Definition 2.9. Fix h ∈ H . The directional derivative of a smooth cylinder functional

F ∈ S of the form (2.17) along h is given by

∂hF (ω) :=
d

dε

∣∣∣∣
0

F (ω + εh) =
n∑

i=1

∇if(ωt1 , . . . , ωtn) · hti , (2.19)

where ∇if is the gradient of f with respect to the ith variable.

The following integration by parts result is standard; see for example Theorem

8.2.2 of Hsu [27].

Proposition 2.10. Let F,G ∈ S and h ∈ H . Then

(∂hF,G)H = (F, ∂∗hG)H ,

where ∂∗h = −∂h +
∫ 1
0 ḣs · dbs.

Definition 2.11. The gradient of a smooth cylinder functional F ∈ S is the random

process DtF taking values in H such that (DF, h)H = ∂hF . It may be determined

that, for F of the form (2.17),

DtF =
n∑

i=1

∇if(ωt1 , . . . , ωtn)(ti ∧ t),

where s ∧ t = min{s, t}. For F ∈ SE of the form (2.18), we define the derivative DtF to

be the random process taking values in H ⊗ E given by

DtF :=
m∑

j=1

DtF ⊗ ej .
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Iterations of the derivative for smooth functionals F ∈ S are given by

Dk
t1,...,tk

F = Dt1 · · ·DtkF ∈ H ⊗k,

for k ∈ N. For F ∈ SE ,

DkF =
m∑

j=1

DkFj ⊗ ej ,

and these are measurable functions defined almost everywhere on [0, 1]k × W . The

operator D on SE is closable, and there exist closed extensions Dk to Lp(W ,H ⊗k⊗E);

see, for example [40], Theorem 8.28 of [27], or Theorem 8.5 of [30]. We will denote the

closure of the derivative operator also by D and the domain of Dk in Lp([0, 1]k ×W ) by

Dk,p, which is the completion of the family of smooth Wiener functionals S with respect

to the seminorm ‖ · ‖k,p,E on SE given by

‖F‖k,p,E :=

 k∑
j=0

E(‖DjF‖p
H ⊗j⊗E

)

1/p

,

for any p ≥ 1. Let

Dk,∞(E) :=
⋂
p>1

Dk,p(E) and D∞(E) :=
⋂
p>1

⋂
k≥1

Dk,p(E).

When E = R, we write Dk,p(R) = Dk,p, Dk,∞(R) = Dk,∞, and D∞(R) = D∞.

The operator ∂h on S is also closable, and there exists a closed extension of

∂h1 · · · ∂hk to Lp(µ). We will denote the closure of ∂h also by ∂h, with domain Dom(∂h).

We will denote by Gk,p the class of functions F ∈ Lp(µ) such that ∂h1 · · · ∂hjF ∈ Lp(µ),

for all h1, . . . , hj ∈ H , j = 1, . . . , k. The norm on Gk,p is given by

‖F‖Gk,p :=
k∑

j=0

(
E‖DjF‖p

(H ⊗j)∗

)1/p
,

where

‖DjF‖(H ⊗j)∗ = sup{|∂h1 · · · ∂hjF | : hi ∈ H , |hi|H ≤ 1}
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is the operator norm on the space of continuous linear functionals (H ⊗j)∗.

The following result follows from Proposition 5.4.6 and Corollary 5.4.7 of Bo-

gachev [10]. (Note well that here the space Dk,p corresponds to the space W k,p in that

text.)

Theorem 2.12. For all k ∈ N and p ∈ (1,∞), Dk,p ⊂ Gk,p. In particular, for k = 1,

D1,p = G1,p, for all p ∈ (1,∞).

Definition 2.13. Let D∗ denote the L2(µ)-adjoint of the derivative operator D, which

has domain in L2(W × [0, 1],H ) consisting of functions G such that

|E[(DF,G)H ]| ≤ C‖F‖L2(µ),

for all F ∈ D1,2, where C is a constant depending on G. For those functions G in the

domain of D∗, D∗G is the element of L2(µ) such that

E[FD∗G] = E[(DF,G)H ].

It is known that D is a continuous operator from D∞ to D∞(H ), and similarly,

D∗ is continuous from D∞(H ) to D∞; see for example Theorem V-8.1 and its corollary

in [30] .

Malliavin [31, 36, 37] introduced the notion of derivatives of Wiener functionals

and applied it to the regularity of probability laws induced by the solutions to stochastic

differential equations at fixed times. The notion of Sobolev spaces of Wiener functionals

was first introduced by Shigekawa [44] and Stroock [45, 46].

2.6 Heisenberg rolling map

For the rest of this chapter, let W = W (R2) and H = H (R2). Let ξ : [0, 1]×
W (R2) → G denote the solution to the Stratonovich stochastic differential equation

dξt = Lξt∗X ◦ db1t + Lξt∗Y ◦ db2t

= X̃(ξt) ◦ db1t + Ỹ (ξt) ◦ db2t

ξ0 = 0.

(2.20)
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Remark 2.14. Since X̃ and Ỹ have smooth coefficients with bounded partial derivatives,

Theorem 2.2.2 in Nualart [40] implies that ξi
t ∈ D∞, for i = 1, 2, 3 and all t ∈ [0, 1].

Because G is a nilpotent Lie group, we may determine an “explicit” solution of

(2.20),

dξt = X̃(ξ1t , ξ
2
t , ξ

3
t ) ◦ db1t + Ỹ (ξ1t , ξ

2
t , ξ

3
t ) ◦ db2t

=


1

0

−1
2ξ

2
t

 ◦ db1t +


0

1
1
2ξ

1
t

 ◦ db2t .

Thus,

dξ1t = db1t , dξ
2
t = db2t , and dξ3t = −1

2
ξ2t ◦ db1t +

1
2
ξ1t ◦ db2t ,

and one may verify directly that

ξt =
(
b1t , b

2
t ,

1
2

∫ t

0

[
b1s db

2
s − b2s db

1
s

])
(2.21)

satisfies the required equation. Note that the third component of ξ may be recognized

as Lévy’s stochastic area integral.

From Section 3.9 in Gı̄hman and Skorohod [21] and Theorem 1.22 in Bell [7],

the solution ξ is a time homogenous Markov process, and Pt = etL/2 with L = X̃2 + Ỹ 2

is the associated Markov diffusion semigroup to ξ; that is, νt := (ξt)∗µ = pt(g) dg is the

density of the transition probability of the diffusion process ξt, and

(Ptf)(0) = E[f(ξt)], (2.22)

for any f ∈ C∞(G), where the right hand side is expectation for ξt started at 0.

Theorem 2.15. The Malliavin covariance matrix of ξt,

σt =
(
(Dξi

t, Dξ
j
t )H

)
1≤i,j≤3

,

is invertible a.s. for t > 0, and

(detσ)−1 ∈ ∩p≥1L
p(µ) =: L∞−(µ).
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This statement follows from the proof of Theorem 2.3.3 in Nualart [40] and is

a special case of Theorem 3.5 in the Heisenberg setting, which will be proved in Section

3.1.2; however, we include the following self-contained proof.

Proof. From Equation (5.19) of the appendix, we have

detσ = t2
∫ t

0
|bs|2 ds− t

(∫ t

0
b1s ds

)2

− t

(∫ t

0
b2s ds

)2

.

Thus detσ(ω) = 0 if and only if ω = 0, since the Cauchy-Schwarz inequality implies that

detσ ≥ t2
∫ t

0
|bs|2 ds− t2

∫ t

0
(b1s)

2 ds− t2
∫ t

0
(b2s)

2 ds = 0,

with equality if and only if b1 = c1 and b2 = c2 for some constants c1 and c2. Since

b(0) = 0, then b1 = 0 and b2 = 0.

To simplify notation, we consider the quadratic form Q on one-dimensional

path space W ([0, T ],R) defined by

Q(ω) := T 2

∫ T

0
ω2

s ds− T

(∫ T

0
ωs ds

)2

. (2.23)

The argument is similar on W ([0, T ],R2). We need to show that∫
W

1
[Q(ω)]p

dµ(ω) <∞

for any p ≥ 1. First note that∫ ∞

0
e−λttp

dt

t
=

1
λp

∫ ∞

0
e−ttp

dt

t
=:

1
λp

Γ(p),

under the change of variables t 7→ t
λ . Letting λ = Q(ω) then yields

1
[Q(ω)]p

=
1

Γ(p)

∫ ∞

0
e−tQ(ω)tp−1 dt

Thus, ∫
W

1
[Q(ω)]p

dµ(ω) =
1

Γ(p)

∫ ∞

0
dt tp−1

∫
W
dµ(ω)e−tQ(ω).
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Define F (t) :=
∫
W e−tQ(ω) dµ(ω). To show that the above integral is finite for any p ≥ 1,

we must show that F (t) decays faster than any polynomial as t→∞.

Consider first the finite dimensional analogue. That is, for any a ∈ RN , consider

a quadratic form Q such that

Q(a) := Q̃a · a

for some Q̃ > 0 and dµ(a) = e−
1
2
a·a 1

(2π)N/2 da. Since Q̃ is compact (Q̃ is an operator

on a finite dimensional vector space), there exists an orthonormal basis of eigenvectors

u1, . . . , uN such that

Q̃ui = λiui, λi > 0.

In this basis, for any a ∈ RN , we may write a =
∑N

i=1 αiui, where αi = a · ui. Then

F (t) =
∫

RN

e−tQ̃a·ae−
1
2
a·a 1

(2π)N/2
da

=
∫

RN

e−t
∑N

i=1 λα2
i e−

1
2

∑N
i=1 α2

i

N∏
i=1

1√
2π

dαi

=
N∏

i=1

∫
R
e−

1
2
(1+2tλi)α

2
i

1√
2π

dαi

=
N∏

i=1

√
2π

1 + 2tλi
· 1√

2π
=

N∏
i=1

1√
1 + 2tλi

≤ CN t
−N/2.

Returning then to the infinite dimensional case, Lemma 2.16 below implies that,

for Q : H → R defined as in Equation (2.23),

Q(h) = (Q̃h, h)H (R),

where Q̃ : H (R) → H (R) is a positive compact operator. Thus, there exists an or-

thonormal basis of eigenvectors {hi}∞i=1 such that

Q̃hi = λihi, λi > 0 and
∞∑
i=1

λi <∞,
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and so, for any h ∈ H (R), we may write h =
∑∞

i=1(h, hi)H hi and

Q(h) = (Q̃h, h)H =

( ∞∑
i=1

(h, hi)H Q̃hi,
∞∑
i=1

(h, hi)H hi

)
H

=
∞∑
i=1

λi(h, hi)2H .

By Theorem 2.12 from Da Prato and Zabczyk [12], if {Ni}∞i=1 is a sequence of

independent, identically distributed normal random variables, and we define for N ∈ N

BN :=
N∑

i=1

Nihi,

then

lim
N→∞

∥∥∥∥∥BN −
∞∑
i=1

Nihi

∥∥∥∥∥
∞

= 0, a.s.,

and B :=
∑∞

i=1Nihi is Brownian motion. Then

Q(B) = lim
N→∞

Q(BN ) = lim
N→∞

N∑
i=1

λiN
2
i ,

and∫
W
e−tQ(ω)dµ(ω) = E

[
e−tQ(B)

]
= E

[
exp

(
−t lim

N→∞

N∑
i=1

λiN
2
i

)]
≤ E

[
exp

(
−t

N∑
i=1

λiN
2
i

)]
≤ CN t

−N/2,

for all N ∈ N.

Lemma 2.16. For Q̃ : H (R) → H (R) such that

(Q̃h, h)H (R) = Q(h) = T 2

∫ T

0
ω2

s ds− T

(∫ T

0
ωs ds

)2

,

Q̃ is a trace class operator, and so is compact.
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Proof. Let S be an orthonormal basis of H (R). Then

tr(Q̃) =
∑
h∈S

Q(h) =
∑
h∈S

[
T 2

∫ T

0
h2(s) ds− T

(∫ T

0
h(s) ds

)2
]

=
∑
h∈S

[
T 2

∫ T

0
h2(s) ds− T

∫ T

0

∫ T

0
h(r)h(s) dr ds

]

= T 2

∫ T

0
s ds− T

∫ T

0

∫ T

0
r ∧ s dr ds

= T 2 · 1
2
T 2 − T ·

(
1
2
Ts2 − 1

6
s3
) ∣∣∣∣T

0

=
1
6
T 4 <∞,

where in the third equality, we have used that for any orthonormal basis S of H (R),∑
h∈S

h(r)h(s) = r ∧ s.

Remark 2.17. By the general theory, Theorem 2.15 implies νt = Law(ξt) is a smooth

measure; see for example Theorem 2.12 and Remark 2.13 in Bell [7].

2.7 Lifted vector fields and their L2-adjoints

Given A ∈ g, let Ã = (Ã1, Ã2, Ã3) be the associated left invariant vector field on

G. In particular, we are interested in the vector fields X̃ = (1, 0,−1
2y) and Ỹ = (0, 1, 1

2x).

We define the “lifted vector field” A of Ã as

A = At :=
3∑

i,j=1

σ−1
ij Ã

j(ξt)Dξi
t ∈ H , (2.24)

acting on functions F ∈ D1,2 by

AF = (DF,A)H .
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Remark 2.18. Recall that D is a continuous operator from D∞ to D∞(H ). Thus,

Remark 2.14 implies that Ãj(ξt) ∈ D∞ and Dξi
t ∈ D∞(H ), for all t ∈ [0, 1]. So

σij ∈ D∞ for i, j = 1, 2, 3, and this along with Theorem 2.15 implies that σ−1
ij ∈ D∞.

Hence, A ∈ D∞(H ).

Proposition 2.19. For all f ∈ C∞
p (G),

A[f(ξt)] = (Ãf)(ξt).

Proof. For any function f ∈ C∞
p (G), f(ξt) ∈ D∞ and

D[f(ξt)] =
3∑

k=1

∂f

∂xk
(ξt)Dξk

t ;

see Proposition 1.2.3 from Nualart [40]. Then using Equation (2.24) and for the lifted

vector field A and the Malliavin matrix σ, we have

A[f(ξt)] = (Df(ξt),A)H

=
3∑

i,j,k=1

(
∂f

∂xk
(ξt)Dξk

t , σ
−1
ij Ã

j(ξt)Dξi
t

)
H

=
3∑

i,j,k=1

Ãj(ξt)
∂f

∂xk
(ξt)

(
Dξk

t , Dξ
i
t

)
H
σ−1

ij

=
3∑

j,k=1

Ãj(ξt)
∂f

∂xk
(ξt)δkj =

3∑
j=1

Ãj(ξt)
∂f

∂xj
(ξt) = (Ãf)(ξt)

as desired.

Definition 2.20. For a vector field A acting on functions of W , we will denote the

adjoint of A in the L2(µ) inner product by A∗, which has domain in L2(µ) consisting of

functions G such that

|E[(AF )G]| ≤ C‖F‖L2(µ),

for all F ∈ D1,2, for some constant C. For functions G in the domain of A∗,

E[F (A∗G)] = E[(AF )G],
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for all F ∈ D1,2.

Note that for any F ∈ D1,2,

E[AF ] = E[(DF,A)H ] = E[FD∗A].

Thus, we must have that A∗1 = D∗A a.s. Recall that D∗ is a continuous operator

from D∞(H ) into D∞. Thus, for A a vector field on W as defined in Equation (2.24),

Remark 2.18 implies that

D∗A =
3∑

i,j=1

D∗(σ−1
ij Ã

j(ξt)Dξi
t) ∈ D∞.

Thus we have the following proposition.

Proposition 2.21. Let Ã be a left invariant vector field on G with lifted vector field A

on W as defined by Equation (2.24). Then A∗1, where A∗ is the L2(µ)-adjoint of A, is

an element of D∞.

2.8 An Lp-type gradient estimate (p > 1) and a Poincaré

inequality

Theorem 2.22. For all p > 1,

|∇Ptf |p ≤ KpPt|∇f |p, (2.25)

for all f ∈ C∞
p (G) and t > 0, where

Kp := 2p/q + 2p( 1
q
+ 1

2
)
[
‖X∗ξ11‖2

Lq(µ) + ‖X∗ξ21‖2
Lq(µ)

]p/2
<∞, (2.26)

with X∗ the adjoint of the lifted vector field X as in Equation (2.24) with t = 1, and

q = p
p−1 .



32

Proof. By Proposition 2.6, we know the constants Kp are independent of t. Also, Lemma

2.4 states that the inequality is translation invariant. Thus, the proof is reduced to

verifying the inequality at the identity for t = 1; that is, we must find finite constants

Kp such that

|∇P1f |p(0) ≤ KpP1|∇f |p(0), (2.27)

for all f ∈ C∞
p (G). So applying Remark 2.1 and Lemma 4.2, consider

X̃P1f(0) = P1X̂f(0)

= P1(X̃ + yZ̃)f(0) = P1(X̃f)(0) + P1(yZ̃f)(0).

Similarly,

Ỹ P1f(0) = P1(Ỹ f)(0)− P1(xZ̃f)(0).

Thus,

|∇P1f |p(0) =

∣∣∣∣∣∣P1∇f + P1

 y

−x

 Z̃f

∣∣∣∣∣∣
p

(0)

≤

|P1∇f |+

∣∣∣∣∣∣P1

 y

−x

 Z̃f

∣∣∣∣∣∣
p

(0)

≤ 2p/q

|P1∇f |p(0) +

∣∣∣∣∣∣P1

 y

−x

 Z̃f

∣∣∣∣∣∣
p

(0)

 , (2.28)

where ∣∣∣∣∣∣P1

 y

−x

 Z̃f

∣∣∣∣∣∣
p

(0) = [|P1(yZ̃f)|2(0) + |P1(xZ̃f)|2(0)]p/2

and q = p
p−1 is the conjugate exponent to p. Expanding Z̃ in terms of the Lie bracket

gives Z̃ = X̃Ỹ − Ỹ X̃. So let F = (F 1, F 2, F 3) := ξ1, and using Equation (2.22), consider

P1(yZ̃f)(0) = P1(yX̃Ỹ f)(0)− P1(yỸ X̃f)(0)

= E[F 2(X̃Ỹ f)(F )]− E[F 2(Ỹ X̃f)(F )]

= E[F 2X((Ỹ f)(F ))]− E[F 2Y((X̃f)(F ))]

= E[X∗F 2 · (Ỹ f)(F )]− E[Y∗F 2 · (X̃f)(F )], (2.29)



33

where X and Y are the lifted vector fields of X̃ and Ỹ , as in Equation (2.24), with t = 1.

Hence,

|P1(yZ̃f)|2(0) ≤ (|E[X∗F 2(Ỹ f)(F )]|+ |E[Y∗F 2(X̃f)(F )]|)2

≤ 2(|E[X∗F 2(Ỹ f)(F )]|2 + |E[Y∗F 2(X̃f)(F )]|2)

≤ 2[(E|X∗F 2|q)2/q(P1|Ỹ f |p)2/p(0)

+ (E|Y∗F 2|q)2/q(P1|X̃f |p)2/p(0)]

by Hölder’s inequality. Similarly,

|P1(xZ̃f)|2(0) ≤ 2[(E|X∗F 1|q)2/q(P1|Ỹ f |p)2/p(0) + (E|Y∗F 1|q)2/q(P1|X̃f |p)2/p(0)].

Combining this with Equation (2.28), we have

|∇P1f |p(0) ≤ 2p/q

(
|P1∇f |p(0) +

[
2(E|X∗F 2|q)2/q(P1|Ỹ f |p)2/p(0)

+ 2(E|Y∗F 2|q)2/q(P1|X̃f |p)2/p(0)

+ 2(E|X∗F 1|q)2/q(P1|Ỹ f |p)2/p(0)

+2(E|Y∗F 1|q)2/q(P1|X̃f |p)2/p(0)
]p/2

)
≤ 2p/q

(
P1|∇f |p(0)

+ 2p/2
[
(P1|X̃f |p)2/p(0)[(E|Y∗F 1|q)2/q + (E|Y∗F 2|q)2/q]

+(P1|Ỹ f |p)2/p(0)[(E|X∗F 1|q)2/q + (E|X∗F 2|q)2/q
]p/2

)
,

where we use Hölder’s inequality and that p1(g) dg is a probability measure to get

|P1∇f |p(0) ≤ P1|∇f |p(0).

So let

Cp := (E|X∗F 1|q)2/q + (E|X∗F 2|q)2/q.

Note that Cp is a finite constant for all p > 1 by Hölder’s inequality, Remark 2.14, and

Proposition 2.21, since

A∗F = D∗(FA)
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for any vector field A on W and F ∈ D∞. By symmetry,

Cp = (E|Y∗F 1|q)2/q + (E|Y∗F 2|q)2/q.

Thus,

|∇P1f |p(0) ≤ 2p/qP1|∇f |p(0) + (2Cp)p/2[(P1|X̃f |p)2/p(0) + (P1|Ỹ f |p)2/p(0)]p/2

≤
(
2p/q + 2p( 1

q
+ 1

2
)
Cp/2

p

)
P1|∇f |p(0),

which proves Equation (2.27), and hence, the theorem.

Theorem 2.23 (Poincaré Inequality). Let K2 be given by Equation (2.26) with p = 2;

that is

K2 = 2 + 4
(
||X∗ξ11 ||2L2(µ) + ||X∗ξ21 ||2L2(µ)

)
<∞.

Let pt(g) dg be the hypoelliptic heat kernel. Then∫
R3

f2(g)pt(g) dg −
(∫

R3

f(g)pt(g) dg
)2

≤ K2t

∫
R3

|∇f |2(g)pt(g) dg, (2.30)

for all f ∈ C∞
p (G) and t > 0.

Proof. Let Ft(g) = (Ptf)(g). Then

d

dt
Pt−sF

2
s = Pt−s

(
−1

2
LF 2

s + FsLFs

)
= −Pt−s|∇Fs|2.

Integrating this equation on t implies that

Ptf
2 − (Ptf)2 =

∫ t

0
Pt−s|∇Fs|2 ds

=
∫ t

0
Pt−s|∇Psf |2 ds

≤
∫ t

0
K2Pt−sPs|∇f |2 ds = K2tPt|∇f |2,

wherein we have made use of Theorem 2.22. Evaluating the above at 0 gives the desired

result.
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2.9 The L1-type gradient estimate

2.9.1 Method fails for the p = 1 case

In this section, we show that the argument in the proof of Theorem 2.22 can

not be used to prove the inequality (2.25) for p = 1.

Proposition 2.24. Let F = (F 1, F 2, F 3) := ξ1. Then

‖X∗F 1‖L∞(µ) + ‖X∗F 2‖L∞(µ) = ∞.

Proof. Let σ (F ) denote the σ – algebra generated by F : W → G and pt(g) dg denote

the Heisenberg group heat kernel. Then for f ∈ C1
c

(
R3
)

E[X∗F 1f(F )] = E[F 1(X̃f)(F )] = P1(xX̃f)(0)

=
∫

G
xX̃f(g)p1(g) dg

= −
∫

G
f(g)X̃(xp1(g)) dg

= −
∫

G
f(g)(1 + xX̃ ln p1(g))p1(g) dg = −E[f(F )(1 + xX̃ ln p1)(F )],

where in the third line we have applied standard integration by parts. Consequently, we

have shown

E[X∗F 1|σ(F )] = −(1 + xX̃ ln p1)(F ).

By a similar computation one also shows

E[X∗F 2|σ(F )] = −(yX̃ ln p1)(F ).

Since conditional expectation is Lp-contractive and the law of F is absolutely continuous

relative to Lebesgue measure, it now follows that

‖X∗F 1‖L∞(µ) + ‖X∗F 2‖L∞(µ) ≥ ‖E[X∗F 1|σ(F )]‖L∞(µ) + ‖E[X∗F 2|σ(F )]‖L∞(µ)

= ‖1 + xX̃ ln p1‖L∞(R3,m) + ‖yX̃ ln p1‖L∞(R3,m)
,
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where m is Lebesgue measure. Hence, it suffices to show that either xX̃ ln p1 or yX̃ ln p1

is unbounded. We will show xX̃ ln p1 is unbounded by making use the formula for pt (g)

in Equation (2.5). Letting t = 1 in Equation (2.5) and making the change of variables

w 7→ 2w, we have

p1(g) =
1

2π2

∫
R

w

sinhw
exp

(
−1

2
|~x|2w cothw

)
e2iwz dw.

Then applying X̃ = ∂x − 1
2y∂z yields

X̃p1(g) = − 1
2π2

∫
R
(xw cothw + iyw)

w

sinhw
exp

(
−1

2
|~x|2w cothw

)
e2iwz dw.

Setting y = z = 0, we then have

X̃ ln p1(x, 0, 0) = −x
∫

R
w cothwdνx (w) ,

where

dνx(w) :=
1
zx

w

sinhw
exp

(
−1

2
x2w cothw

)
dw (2.31)

and zx is the normalizing constant

zx :=
∫

R

w

sinhw
exp

(
−1

2
x2w cothw

)
dw.

By Lemma 2.25 below,

lim
x→∞

∫
R
w cothw dνx(w) = 1,

and so

lim
x→∞

X̃ ln p1(x, 0, 0) = lim
x→∞

(
−x
∫

R
w cothw dνx(w)

)
= −∞.

Lemma 2.25. Let ψ(w) = w cothw − 1 and νx be as in Equation (2.31). Then

lim
x→∞

∫
ψ dνx = ψ(0) = 0. (2.32)
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Proof. Since ψ (0) = 0 and ψ is continuous, to prove Equation (2.32) it suffices to show

by the usual approximation of δ – function arguments that

lim
x→∞

∫
|w|≥ε

ψ(w) dνx(w) = 0

holds for every ε > 0. We begin by rewriting Equation (2.31) as

dνx(w) =
1
Zx

w

sinhw
exp

(
−1

2
x2ψ(w)

)
dw

where

Zx :=
∫

R

w

sinhw
exp

(
−1

2
x2ψ(w)

)
dw.

A glance at the graph of ψ will convince the reader that there are constants α, β > 0

(depending on ε > 0) such that α|w| ≤ ψ(w) ≤ β|w| for all |w| ≥ ε. (In fact, one could

take β = 1 independent of ε.) Thus∫
|w|≥ε

ψ(w)
w

sinhw
exp

(
−1

2
x2ψ(w)

)
dw ≤ 2

∫
w≥ε

βwe−αx2w/2 dw

=
4β
x2α

(
ε+

2
x2α

)
e−αx2ε/2,

where in the inequality we have also used that w
sinh w ≤ 1.

Now consider the constant Zx. We know that for w small, there exists a constant

γ > 0 such that ψ(w) ≤ γw2. So letting ϕ(w) = w
sinh w , we have

Zx ≥
∫
|w|≤ε

ϕ(w) exp
(
−1

2
x2ψ(w)

)
dw

≥
∫ ε

−ε
ϕ(w)e−γx2w2/2 dw =

1
x

∫ εx

−εx
ϕ
(w
x

)
e−γw2/2 dw,

where we have made the change of variables w 7→ w
x . So, by the dominated convergence

theorem,

lim inf
x→∞

(xZx) ≥ lim inf
x→∞

∫ εx

−εx
ϕ
(w
x

)
e−γw2/2 dw = ϕ(0)

∫ ∞

−∞
e−γw2/2 dw =

√
2π
γ
.
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Thus, Zx ≥ 1
2

√
2π
γ

1
x for x sufficiently large, and so

lim
x→∞

∫
|w|≥ε

ψ(w) dνx(w) = lim
x→∞

1
Zx

∫
|w|≥ε

ψ(w)
w

sinhw
exp

(
−1

2
x2ψ(w)

)
dw

≤ 2 lim
x→∞

4β
x2α

(
ε+ 2

x2α

)
e−αx2ε/2√

2π
γ

1
x

= 0

as desired.

2.9.2 Function classes for which the p = 1 inequality holds

Although we have not been able to adapt this method of proof to show the

p = 1 case, we have shown using ad hoc methods that several large classes of functions

on G do satisfy the p = 1 inequality.

Even and odd functions in z.

Proposition 2.26. Suppose f ∈ C∞
p (G) is an even or odd function in z on the Heisen-

berg group G. Then

|∇Ptf | ≤
√

2Pt|∇f |,

for all t > 0.

Proof. Suppose f ∈ C∞
p (G) is an even function on G. Let g = (x, y, z). Then

X̃Ptf(0) = Pt(X̂f)(0) =
∫

G

(
fx +

1
2
yfz

)
(g) pt(g) dg

=
∫

G

(
fx −

1
2
yfz

)
(g) pt(g) dg = Pt(X̃f)(0),

where the third equality follows from∫
R
fz(g) pt(g) dz = 0,

since fzpt is an odd function in z. Thus,

|X̃Ptf |(0) = |PtX̃f |(0) ≤ Pt|X̃f |(0).
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Similarly, it may be shown that Ỹ Ptf(0) = PtỸ f(0), which implies that

|Ỹ Ptf |(0) ≤ Pt|Ỹ f |(0).

Thus, for all f ∈ C∞
c (G) which are even in z,

|∇Ptf |(0) =
(
|X̃Ptf |2 + |Ỹ Ptf |2

)1/2
(0)

≤
(
(Pt|X̃f |)2 + (Pt|Ỹ f |)2

)1/2
(0) ≤ Pt|X̃f |(0) + Pt|Ỹ f |(0) ≤

√
2Pt|∇f |(0),

since (a+ b)1/2 ≤ a1/2 + b1/2.

Now suppose f ∈ C∞
p (G) is odd in z. As in the argument above, write

X̃Ptf(0) = Pt(X̂f)(0) =
∫

G

(
fx +

1
2
yfz

)
(g) pt(g) dg

=
∫

G

(
−fx +

1
2
yfz

)
(g) pt(g) dg = −Pt(X̃f)(0),

where in the third equality we have used that∫
R
fx(g) pt(g) dz = 0,

as fx is odd in z and pt is even in z. Thus,

|X̃Ptf |(0) = |PtX̃f |(0) ≤ Pt|X̃f |(0).

A parallel argument shows that |Ỹ Ptf |(0) ≤ Pt|Ỹ f |(0), and thus

|∇Ptf |(0) ≤
√

2Pt|∇f |(0)

for all f ∈ C∞
c (G) which are odd functions in z.

Functions f(x, y, z) = eiλzh(x, y).

Proposition 2.27. Suppose f(x, y, z) = eiλzh(x, y) for some h ∈ C∞
p (R2,C). Then

|∇Ptf | ≤ (
√

2 + 4)Pt|∇f |,

for all t > 0.
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Proof. In the case λ = 0, f = f(x, y) depends only on ~x = (x, y) and

Ptf = etL/2f = et∆/2f,

where ∆ is the standard two-dimensional Laplacian, and this reduces to the Gaussian

measure case, for which the inequality holds.

So suppose λ 6= 0, and let g = (x, y, z). For any function f ∈ C∞
p (G), the

computations in (2.28) imply that

|∇Ptf |(0) ≤ |Pt∇f |(0) +

∣∣∣∣∣∣
∫

G

 y

−x

 (Z̃f)(g)pt(g)dg

∣∣∣∣∣∣
≤ |Pt∇f |(0) +

∣∣∣∣∫
G
y(Z̃f)(g)pt(g)dg

∣∣∣∣+ ∣∣∣∣∫
G
x(Z̃f)(g)pt(g)dg

∣∣∣∣ . (2.33)

For f(x, y, z) = eiλzh(x, y), define the ratios

Λ1(f) :=

∣∣∣∫G yZ̃f(g)p2(g) dg
∣∣∣

P2|Ỹ f |(0)
and Λ2(f) :=

∣∣∣∫G xZ̃f(g)p2(g) dg
∣∣∣

P2|X̃f |(0)
.

For λ > 0 and h a real-valued function,

Λ1(f) =

∣∣∫
G yλe

iλzh(x, y)p2(g) dg
∣∣∫

G

∣∣gy(x, y) + i
2λxh(x, y)

∣∣ p2(g) dg
.

The numerator of this expression may be written as∫
G
yλeiλzh(x, y)p2(g) dg

=
1

8π2

∫
R
dx

∫
R
dy λyh(x, y)

∫
R
dz eiλz

∫
R
dw

w

sinhw
exp

(
−|~x|2w cothw

4

)
eiwz

=
1

8π2

∫
R2

λyh(x, y)
λ

sinhλ
exp

(
−|~x|2λ cothλ

4

)
dx dy

=
1

8π2

λ2

sinhλ

∫
R2

h(x, y)
−2

λ cothλ
∂y

[
exp

(
−|~x|2λ cothλ

4

)]
dx dy

=
1

8π2

−2λ
coshλ

∫
R2

hy(x, y) exp
(
−|~x|2λ cothλ

4

)
dx dy,
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where in the second equality we have evaluated the Fourier transform in w and the

inverse Fourier transform in −z. Thus,

Λ1(f) =
1

8π2

∣∣ 2λ
cosh λ

∫
R2 hy(x, y) exp

(
−|~x|2 λ coth λ

4

)
dx dy

∣∣∫
G

∣∣hy(x, y) + iλ
2 xh(x, y)

∣∣ p2(g) dg

≤
∣∣∣∣ 2λ
coshλ

∣∣∣∣ 1
8π2

∣∣∫
R2 hy(x, y) exp

(
−|~x|2 λ coth λ

4

)
dx dy

∣∣∫
G |hy(x, y)| p2(g) dg

=
∣∣∣∣ 2λ
coshλ

∣∣∣∣
∣∣∫

R2 hy(x, y) exp
(
−|~x|2 λ coth λ

4

)
dx dy

∣∣∫
R2 |hy(x, y)| e−

|~x|2
4 dx dy

≤
∣∣∣∣ 2λ
coshλ

∣∣∣∣
∫

R2 |hy(x, y)| exp
(
−|~x|2 λ coth λ

4

)
dx dy∫

R2 |hy(x, y)| e−
|~x|2
4 dx dy

≤
∣∣∣∣ 2λ
coshλ

∣∣∣∣ ≤ 2,

where in the second equality we have evaluated∫
R
p2(g) dz =

1
8π2

e−
|~x|2
4 ,

and in the penultimate inequality we have used that λ cothλ ≥ 1 and∣∣∣∣∣
∫

R2 h(x, y)ek|~x|
2
dx dy∫

R2 h(x, y)e|~x|
2 dx dy

∣∣∣∣∣ ≤ 1,

for any function h ∈ C∞
p (R2) and k ≥ 1. Thus it has been shown that∣∣∣∣∫

G
yZ̃f(g)p2(g) dg

∣∣∣∣ ≤ 2P2|Ỹ f |(0).

Similarly, one may show that Λ2(f) ≤ 2 by performing integration by parts in

the x variable and comparing with the appropriate denominator term. Thus,∣∣∣∣∫
G
xZ̃f(g)p2(g) dg

∣∣∣∣ ≤ 2P2|X̃f |(0).

Combining these inequalities with (2.33),

|∇P2f |(0) ≤ |P2∇f |(0) + 2(P2|Ỹ f |(0) + P2|X̃f |(0))

≤ P2|∇f |(0) + 2
√

2P2|∇f |(0) = (1 + 2
√

2)P2|∇f |(0),
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for all functions f(x, y, z) = eiλzg(x, y) where g is real valued. With obvious modifica-

tions to the statement and proof of Proposition 2.6, this is then sufficient proof that

|∇Ptf |(0) ≤ KPt|∇f |(0),

with K := 1 + 2
√

2, for all t > 0.

Clearly the previous argument holds when g is strictly imaginary. So consider

g = u+ iv for u, v real functions.

|∇Ptf |(x, y, z) = |∇Pte
iλz(u(x, y) + iv(x, y))|

≤ K(Pt|∇eiλzu(x, y)|+ Pt|∇eiλzv(x, y)|)

≤
√

2KPt|∇eiλz(u(x, y) + iv(x, y))| =
√

2KPt|∇f |(x, y, z)

as desired.

Radial functions f = f(r, z).

Proposition 2.28. Suppose f(x, y, z) = g(r, z) for some function g ∈ C∞
c (R2), where

r2 = x2 + y2. Then

|∇̂f | = |∇f |,

where ∇̂ = (X̂, Ŷ ) is the right invariant gradient on G. In particular, this implies that

|∇Ptf | ≤ Pt|∇f |,

for all t > 0.

Proof. For f(x, y, z) = g(r, z),

X̃f =
x

r
gr −

1
2
ygz and Ỹ f =

y

r
gr +

1
2
xgz.

Thus,

|∇f |2 =
(
x2

r2
g2
r −

xy

r
grgz +

1
4
y2g2

z

)
+
(
y2

r2
g2
r +

xy

r
grgz +

1
4
x2g2

z

)
= g2

r +
1
4
r2g2

z .
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Recall from Equation 2.4 that

X̂ = ∂x +
1
2
y∂z and Ŷ = ∂y −

1
2
x∂z.

Therefore,

X̂f =
x

r
gr +

1
2
ygz and Ŷ f =

y

r
gr −

1
2
xgz,

implies that

|∇̂f |2 =
(
x2

r2
g2
r +

xy

r
grgz +

1
4
y2g2

z

)
+
(
y2

r2
g2
r −

xy

r
grgz +

1
4
x2g2

z

)
= g2

r +
1
4
r2g2

z .

Hence, |∇̂f | = |∇f |, and it follows that

|∇Ptf |(0) = |Pt∇̂f |(0) ≤ Pt|∇̂f |(0) = Pt|∇f |(0).

2.9.3 A Green’s function inequality

Recall that for a negative linear operator L on a Banach space, the set ρ(L) of

all λ ∈ C such that λI +L is invertible is called the resolvent set of L, and the family of

bounded linear operators

{R(λ) := (λI + L)−1 : λ ∈ ρ(L)}

is called the resolvent of L; see for example [25, 41].

Proposition 2.29. If

|∇Ptf | ≤ KPt|∇f |, (2.34)

for all f ∈ C∞
c (G) and t > 0, then

|∇R(λ)mf | ≤ KR(Reλ)m|∇f |,

for all f ∈ C∞
c (G), Reλ > 0, and m ∈ N.
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Proof. For all m ∈ N and λ ∈ ρ(L),

R(λ)m =
1

(m− 1)!

∫ ∞

0
tm−1e−λtPtf dt;

see [41]. Suppose (2.34) holds. Then,

|∇R(λ)mf | =
∣∣∣∣∇ 1

(m− 1)!

∫ ∞

0
tm−1e−Re λte−iIm λtPtf dt

∣∣∣∣
≤ 1

(m− 1)!

∫ ∞

0
tm−1e−Re λt|∇Ptf | dt

≤ K

∫ ∞

0
tm−1e−Re λtPt|∇f | dt = R(Reλ)m|∇f |,

where we have also used the inequality (2.34) to justify differentiating through the inte-

gral.

It is shown in Folland [18] that, on the Heisenberg group, for λ = 0 and n = 1,

R(0)f = L−1f = f ∗ h, where

h(x, y, z) :=
C√

(x2 + y2)2 + 16z2
,

for C is a positive constant; that is, u = f ∗h is a solution to the equation Lu = f . Then

the following result then is a mild indication that the Heisenberg L1 gradient inequality

might hold.

Proposition 2.30. For any f ∈ C∞
c (G),

|∇(f ∗ h)| ≤ 9|∇f | ∗ h.

Proof. By the translation invariance of Haar measure, it is again sufficient to verify the

inequality at the identity. Considering ∇(f ∗ g)(0) componentwise,

X̃(f ∗ h)(0) = X̂(f ∗ h)(0) = ((X̂f) ∗ h)(0)

= (((X̃ +
1
2
yZ̃)f) ∗ h)(0) = ((X̃f) ∗ h)(0) +

1
2
((yZ̃f) ∗ h)(0). (2.35)
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Writing Z̃ as the commutator of X̃ and Ỹ and letting g = (x, y, z), the second term in

Equation (2.35) may be expanded as
1
2
((yZ̃f) ∗ h)(0) =

1
2

∫
G
yZ̃f(g)h(g) dg =

1
2

∫
G
y[X̃, Ỹ ]f(g)h(g) dg

=
1
2

∫
G
X̃Ỹ f(g)yh(g) dg − 1

2

∫
G
Ỹ X̃f(g)yh(g) dg

= −1
2

∫
G
Ỹ f(g)X̃(yh(g)) dg +

1
2

∫
G
X̃f(g)Ỹ (yh(g)) dg

= −1
2

∫
G
Ỹ f(g)

[
−2xy(x2 + y2) + 8xyz

(x2 + y2)2 + 16z2

]
h(g) dg

+
1
2

∫
G
X̃f(g)

[
1− 2y2(x2 + y2) + 8xyz

(x2 + y2)2 + 16z2

]
h(g) dg.

The following inequalities are trivially true.∣∣∣∣ 2xy(x2 + y2)
(x2 + y2)2 + 16z2

∣∣∣∣ ≤ 1,
∣∣∣∣ 8y2z

(x2 + y2)2 + 16z2

∣∣∣∣ ≤ 1,
∣∣∣∣ 2y2(x2 + y2)
(x2 + y2)2 + 16z2

∣∣∣∣ ≤ 2, and∣∣∣∣ 8xyz
(x2 + y2)2 + 16z2

∣∣∣∣ ≤ 1
2
.

Thus, |(yZ̃f) ∗ h|(0) ≤ 2(|Ỹ f | ∗ h)(0) + 7
2(|X̃f | ∗ h)(0). Combining this with Equation

(2.35), we have

|X̃(f ∗ h)|(0) ≤ 2(|Ỹ f | ∗ h)(0) +
9
2
(|X̃f | ∗ h)(0).

In a similar manner, one may determine that

|Ỹ (f ∗ h)|(0) ≤ 2(|X̃f | ∗ h)(0) +
9
2
(|Ỹ f | ∗ h)(0).

Hence,

|∇(f ∗ h)|2(0) = |X̃(f ∗ h)|2(0) + |Ỹ (f ∗ h)|2(0)

≤
[(

2|Ỹ f |+ 9
2
|X̃f |

)
∗ h
]2

(0) +
[(

2|X̃f |+ 9
2
|Ỹ f |

)
∗ h
]2

(0)

≤ 2
[
9
2
(|X̃f |+ |Ỹ f |) ∗ h

]2

(0)

≤ 2
[
9
2

(√
2
√
|X̃f |2 + |Ỹ f |2

)
∗ h
]2

(0) = (9|∇f | ∗ h)2(0),

as desired.



Chapter 3

Wiener calculus over G

We now return to the case of a general Lie group G with identity e and Lie

algebra Lie(G) = g, and suppose {Xi}k
i=1 ⊂ g is a Lie generating set, in the sense of

Equation (1.7). Recall that we have defined the inner product on g such that {Xi}k
i=1 is

an orthonormal basis of the hypoelliptic subspace g0 = span({Xi}k
i=1).

Notation 3.1. Let Ad : G → End(g) denote the adjoint representation of G with

differential ad := d(Ad) : g → End(g). That is, Ad(g) = Adg = Lg∗Rg−1∗, for all

g ∈ G, and ad(X) = adX = [X, ·], for all X ∈ g. For any function ϕ ∈ C1(G), define

∇̂ϕ, ∇̃ϕ : G→ g such that, for any g ∈ G and X ∈ g,〈
∇̂ϕ(g), X

〉
:= 〈dϕ(g), Rg∗X〉 = (X̂ϕ)(g)

and 〈
∇̃ϕ(g), X

〉
:= 〈dϕ(g), Lg∗X〉 = (X̃ϕ)(g).

Then, 〈
∇̃∇̂ϕ(g), X ⊗ Y

〉
=

d

ds

∣∣∣∣
0

d

dt

∣∣∣∣
0

ϕ
(
esXgetY

)
.

for all X,Y ∈ g, and similarly for ∇̂∇̃ϕ.
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We will use the following facts in the sequel:〈
∇̂ϕ(g), X

〉
=
〈
dϕ(g), Lg∗Lg−1∗Rg∗X

〉
=
〈
dϕ(g), Lg∗ Adg−1 X

〉
=
〈
∇̃ϕ(g),Adg−1 X

〉 (3.1)

and similarly 〈
∇̃ϕ(g), X

〉
=
〈
∇̂ϕ(g),Adg X

〉
. (3.2)

We will also use the notation developed in Section 2.5 for calculus on the path space

W (Rk).

3.1 The main theorems

3.1.1 The rolling map on G

Now suppose {b1t , . . . , bkt } are k independent real-valued Brownian motions.

Then

~bt := Xib
i
t :=

k∑
i=1

Xib
i
t

is a (g0, 〈·, ·〉) Brownian motion. In the sequel, we will always observe the convention of

summing over repeated upper and lower indices. Let ξ : [0, 1]×W (Rk) → G denote the

solution to the Stratonovich stochastic differential equation

dξt = ξt ◦ d~bt := Lξt∗ ◦ d~bt = Lξt∗Xi ◦ dbit = X̃i(ξt) ◦ dbit, with ξ0 = e. (3.3)

The solution ξ exists by the standard theory; see, for example, Theorem V-1.1 of [30].

Additionally, Remark V-10.3 of [30] implies that Pt = etL/2, with L =
∑k

i=1 X̃
2
i , is the

associated Markov diffusion semigroup to ξ, where Pt is as defined in Definition 1.8; that

is, νt := (ξt)∗µ = pt(g) dg is the density of the transition probability of the diffusion

process ξt, where dg here denotes right Haar measure, and

(Ptf)(0) = E[f(ξt)], (3.4)

for any f ∈ C∞
c (G), where the right hand side is expectation conditioned on ξ0 = e.
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Theorem 3.2. For any f ∈ C∞
c (G), f(ξt) ∈ D∞ for all t ∈ [0, 1]. In particular,

D[f(ξt)] ∈ H (Rk)⊗ Rk and

(D[f(ξt)])i =
〈
∇̂f(ξt),

∫ ·∧t

0
Adξτ Xi dτ

〉
, (3.5)

for i = 1, . . . , k, componentwise in H (Rk).

Notation 3.3. In the sequel, W = W (Rk) and H = H (Rk). For h = (h1, . . . , hk) ∈ H ,

let ~h := Xih
i ∈ g0. We also let ⋂

p>1

Lp(µ) =: L∞−(µ).

Proof. This proof goes through a series of convergence arguments for solutions to cutoff

versions of Equation (3.3). Let |g| denote the distance from a point g ∈ G to e with

respect to the right invariant metric. Let {ϕm}∞m=1 ⊂ C∞
c (G, [0, 1]) be a sequence of

functions, ϕm ↑ 1, such that ϕm(g) = 1 when |g| ≤ m and supm supg∈G |∇̃kϕm(g)| <∞
for k = 0, 1, 2, . . .; see Lemma 3.6 of Driver and Gross [16]. Let ψ ∈ C∞

c (End(g), [0, 1])

such that ψ = 1 in a neighborhood of I, and ψ(x) = 0 if |x| ≥ 2, where here | · | is

the distance from I with respect to any metric on End(g). Define v(g) := ψ(Adg) and

um(g) := ϕm(g)v(g). Let ηm : [0, 1]×W → G denote the solution to the equation

dηm = um(ηm)ηm ◦ d~b = um(ηm)X̃i(ηm) ◦ dbi,

with ηm
0 = e, and let η : [0, 1]×W → G denote the solution to

dη = v(η)η ◦ d~b = v(η)X̃i(η) ◦ dbi,

with η0 = e. By Lemma 3.19, these solutions exist for all time t, and by Proposition

3.23, for any f ∈ C∞
c (G),

lim
m→∞

E sup
τ≤1

|f(ηm
τ )− f(ητ )|p = 0, (3.6)

for all p ∈ (1,∞).
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Since the vector fields umX̃i have compact support, we may embed G as a

Euclidean submanifold in such a way that the embedded vector fields will be bounded

with bounded derivatives. Thus, by Theorem 2.1 of Taniguchi [47], for f ∈ C∞
c (G) and

t ∈ [0, 1], f(ηm
t ) ∈ D∞. Now let θm : [0, 1]×W → g be the solution to the equation

dθm =
〈
∇̂um(ηm), θm

〉
Adηm ◦d~b+ um(ηm) Adηm d~h,

with θm
0 = 0, and θt : W → g be the solution to

dθ =
〈
∇̂v(η), θ

〉
Adη ◦ d~b+ v(η) Adη d~h,

with θ0 = 0. In Proposition 3.25, we show that

lim
m→∞

E sup
τ≤1

|θm
τ − θτ |p = 0,

for all p ∈ (1,∞), and Proposition 3.20 implies that, for any h ∈ H ,

∂h[f(ηm
t )] =

〈
∇̂f(ηm

t ), θm
t

〉
.

It is then easily shown in Proposition 3.26 that these two facts give

lim
m→∞

E sup
τ≤t

∣∣∣∂h[f(ηm
τ )]−

〈
∇̂f(ητ ), θτ

〉∣∣∣p = 0, (3.7)

for all p ∈ (1,∞). Since ∂h is a closable operator, Equations (3.6) and (3.7) imply that

f(ηt) ∈ Dom(∂h), and ∂h[f(ηt)] =
〈
∇̂f(ηt), θt

〉
∈ L∞−(µ). It then follows from Theorem

2.12 that f(ηt) ∈ D1,∞.

Now set ψn(x) := ψ(n−1x) and vn(g) := ψn(Adg) = ψ(n−1 Adg). Let ξn :

[0, 1]×W → G denote the solution to

dξn = vn(ξn)ξn ◦ d~b = vn(ξn)X̃i(ξn) ◦ dbi,

with ξn
0 = e, and let ξ denote the solution to Equation (3.3). By the previous argument,

for any f ∈ C∞
c (G) and t ∈ [0, 1], f(ξn

t ) ∈ D1,∞, and

∂h[f(ξn
t )] =

〈
∇̂f(ξn

t ),Θn
t

〉
,
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where Θn
t : W → g satisfies the equation

dΘn =
〈
∇̂vn(ξn),Θn

〉
Adξn ◦d~b+ vn(ξn) Adξn d~h,

with Θn
0 = 0. In Theorem 3.28, we show that

lim
n→∞

E sup
τ≤1

|f(ξn
τ )− f(ξτ )|p = 0

and

lim
n→∞

E sup
τ≤1

∣∣∣∣Θn
τ −Rξτ∗

∫ τ

0
Adξ Xiḣ

i ds

∣∣∣∣p = 0,

for all p ∈ (1,∞). Thus, for any h ∈ H ,

lim
n→∞

E sup
τ≤1

∣∣∣∣∂hf(ξn
τ )−

〈
∇̂f(ξτ ),

∫ τ

0
Adξ Xiḣ

i ds

〉∣∣∣∣p = 0.

So f(ξt) ∈ Dom(∂h), and

∂hf(ξt) =
〈
∇̂f(ξt),

∫ t

0
Adξ Xiḣ

i ds

〉
∈ L∞−(µ). (3.8)

From this equality, we may then show that ‖f(ξt)‖G1,p < ∞, for all p ∈ (1,∞). (The

norm ‖ · ‖Gk,p was defined in Section 2.5.) It then follows from Theorem 2.12 that

f(ξt) ∈ D1,∞, and

Ds[f(ξt)]i =
〈
∇̂f(ξt),

∫ s∧t

0
Adξτ Xidτ

〉
,

componentwise in H .

Finally, by Proposition 3.15, W =
∫ ·
0 Adξτ dτ ∈ D∞(H (End(g))). Since D∞

is an algebra, this and Equation (3.5) are sufficient to show that f(ξt) ∈ D∞, for all

f ∈ C∞
c (G) and t ∈ [0, 1].

The supporting propositions and theorems cited in the above proof may be

found in Section 3.2.
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3.1.2 Covariance matrix of ξt

The Malliavin covariance matrix of ξ is the matrix σt(ω) := ξ′t(ω)ξ′t(ω)∗ :

Tξt(ω)G→ Tξt(ω)G, where ξ′t(ω) : H → Tξt(ω)G is the Frechet derivative given by

ξ′t(ω)h :=
d

dε

∣∣∣∣
0

ξt(ω + εh),

for all h ∈ H , and its adjoint ξ′t(ω)∗ : Tξt(ω) → H is computed relative to the Cameron-

Martin inner product on H and the chosen metric on G.

Notation 3.4. In the following, let Ad
†
ξt

denote the adjoint of Adξt as an operator on

g, and let P : g → g0 be orthogonal projection onto the hypoelliptic subspace g0.

Theorem 3.5. The Malliavin covariance matrix of ξ is

σt := ξ′t(ω)ξ′t(ω)∗ = Rξt∗

(∫ t

0
Adξs P Ad†ξs

ds

)
Rtr

ξt∗, (3.9)

Let σ̄t =
∫ t
0 Adξs P Ad†ξs

ds, and ∆t := det σ̄t. Then ∆t > 0 a.e., and so σ̄t is invertible

a.e. for t > 0. Moreover,

∆−1
t ∈ L∞−(µ).

Proof. We now compute ξ′t(ω)∗ : Tξt(ω)G → H , the adjoint in ξ′t(ω) with respect to

the Cameron-Martin inner product and the right invariant metric on TG. By Equation

(3.8), for any X ∈ g,(
ξ′t(ω)∗(Rξt∗X), h

)
H

=
〈
Rξt∗X, ξ

′
t(ω)h

〉
=
〈
Rξt∗X,Rξt∗

∫ t

0
Adξs ḣs ds

〉
=
〈
X,

∫ t

0
Adξs ḣs ds

〉
=
∫ t

0

〈
Ad

†
ξs
X,Xi

〉
ḣi

sds,

where the penultimate equality follows from the right invariance of the metric on G. It

then follows that

k̇i
s =

d

ds

[
ξ′t(ω)∗(Rξt∗X)

]i
s

= 1s≤t

〈
Ad†ξs

X,Xi

〉
, (3.10)
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as an element (k1, . . . , kk) of the Cameron-Martin space H . Combining Equations (3.8)

and (3.10) for k := Xik
i, we have

ξ′t(ω)ξ′t(ω)∗(Rξt∗X) =
k∑

i=1

Rξt∗

∫ t

0
Adξs Xi

〈
Ad†ξs

X,Xi

〉
ds

= Rξt∗

∫ t

0
Adξs P Ad†ξs

Xds,

and Equation (3.9) follows from the above.

The proof that ∆t > 0 and ∆−1
t ∈ L∞−(µ) is by now standard and relies on

satisfaction of the Hörmander bracket condition, Lie({X̃i}k
i=1) = g; see, for example, the

proof of Theorem 8.6 in Driver [15]. For completeness, we have included the adapted

proof in the appendix.

Remark 3.6. By the general theory, Theorem 3.5 implies νt = Law(ξt) is a smooth

measure; see for example Remark V-10.3 of [30].

3.1.3 Lifted vector fields and their L2-adjoints

Throughout this section, t ∈ [0, 1] will be fixed.

Definition 3.7. Given X ∈ g, let X̃ be the associated left invariant vector field on G.

Define the “lifted vector field” X of X̃ as

X = Xt := ξ′t(ω)∗
[
ξ′t(ω)ξ′t(ω)∗

]−1
X̃(ξt) = ξ′t(ω)∗σ−1

t X̃(ξt) ∈ H , (3.11)

acting on functions F ∈ D1,2 by

XF = (DF,X)H .

Proposition 3.8. For any X ∈ g, X ∈ D∞(H ), and

X[f(ξt)] = (X̃f)(ξt),

for any f ∈ C∞(G),



53

Proof. Combining Equations (3.9) and (3.10), we have that

d

ds
Xi

s = 1s≤t

〈
Ad†ξs

(∫ t

0
Adξr P Ad†ξr

dr

)−1

Adξt X,Xi

〉
.

Thus, we may rewrite Equation (3.11) explicitly as

Xi =
∫ ·∧t

0

〈
Ad†ξs

(∫ t

0
Adξr P Ad†ξr

dr

)−1

Adξt X,Xi

〉
ds

=

〈(∫ ·∧t

0
Ad†ξs

ds

)(∫ t

0
Adξs P Ad†ξs

ds

)−1

Adξt X,Xi

〉
. (3.12)

By Proposition 3.15, W =
∫ ·
0 Adξτ dτ ∈ D∞(H (End(g))). Note that W †

t = Ad†ξt
: W →

End(g) satisfies the differential equation

dW †
t = ad†Xi

W †
t ◦ dbit, with W †

0 = I,

which is linear with smooth coefficients. Then by a similar argument to that in Propo-

sition 3.15, we may show that

W
† :=

∫ ·

0
Ad†ξτ

dτ ∈ D∞(H (End(g))),

for all t ∈ [0, 1]. Also, Theorem 3.5 implies that

σ̄−1
t =

(∫ t

0
Adξr P Ad†ξr

dr

)−1

exists and is in L∞−(µ) componentwise. Thus the Equation (3.12 implies that X ∈
D∞(H ), since D∞(H ) is an algebra.

For f ∈ C∞(G) and (h1, . . . , hk) ∈ H , by Equation (3.53),

∂h[f(ξt)] = (D[f(ξt)], h)H =
〈
∇̂f(ξt),

∫ t

0
Adξs Xiḣ

i
s ds

〉
,
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and so

X[f(ξt)] = (D[f(ξt)],X)H

=

〈
∇̂f(ξt),

∫ t

0
Adξs Xi

〈
Ad†ξs

(∫ t

0
Adξr P Ad†ξr

dr

)−1

Adξt X,Xi

〉
ds

〉

=

〈
∇̂f(ξt),

∫ t

0
Adξs P Ad†ξs

(∫ t

0
Adξr P Ad†ξr

dr

)−1

Adξt X ds

〉
=
〈
∇̂f(ξt),Adξt X

〉
=
〈
∇̃f(ξt),Adξ−1

t
Adξt X

〉
= (X̃f)(ξt),

where we have used Equation (3.1) in the penultimate equality.

Definition 3.9. For a vector field X acting on functions of W , we will denote the adjoint

of X in the L2(µ) inner product by X∗, which has domain in L2(µ) consisting of functions

G such that for all F ∈ D1,2,

E[(XF )G] ≤ c‖F‖L2(µ)

for some constant c. For functions G in the domain of X∗,

E[F (X∗G)] = E[(XF )G] (3.13)

for all F ∈ D1,2.

Note that for any lifted vector field X acting on function F ∈ D1,2 as defined

in Definition 3.7,

E[XF ] = E[(DF,X)H ] = E[FD∗X].

Thus, we must have that X∗ = X∗1 = D∗X a.s. Recall that D∗ is a continuous operator

from D∞(H ) into D∞; see for example Theorem V-8.1 and its corollary in [30]. Thus,

for X a vector field on W as defined in Equation (3.11), Proposition 3.8 implies that

D∗X ∈ D∞. We have then proven the following proposition.
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Proposition 3.10. Let X̃ be a left invariant vector field on G. Then for the vector field

on W defined by

X = ξ′t(ω)∗[ξ′t(ω)ξ′t(ω)∗]−1X̃(ξt(ω)),

X∗ ∈ D∞, where X∗ is the L2(µ)-adjoint of X.

This completes the main results of this chapter, and if desired the reader may

now continue to Chapter 4 and skip the next technical section which gives details of the

proof of Theorem 3.2.

3.2 Results needed in the proof of Theorem 3.2

To prove Theorem 3.2, we will repeatedly use the following standard proposi-

tion; see for example Driver [15].

Proposition 3.11. Suppose p ∈ [2,∞), αt is a predictable Rd–valued process, At is a

predictable Hom(g0,Rd)–valued process, and

Yt :=
∫ t

0
Aτ d~bτ +

∫ t

0
ατ dτ =

∫ t

0
AτXi db

i
τ +

∫ t

0
ατ dτ, (3.14)

where {b1, . . . , bk} are k independent real Brownian motions. Then

E sup
τ≤t

|Yτ |p ≤ Cp

{
E
(∫ t

0
|Aτ |2 dτ

)p/2

+ E
(∫ t

0
|ατ | dτ

)p
}
, (3.15)

where

|A|2 = tr(AA∗) =
n∑

i=1

(AA∗)ii =
∑
i,j

AijAij = tr(A∗A).

Notation 3.12. Here and in the sequel, we will let δn denote constants such that

limn→∞ δn = 0. Also, we will write f . g, if there is a positive constant C so that

f ≤ Cg.

This section is divided into two parts. Section 3.2.1 gives convergence results

in a matrix group setting which are necessary to resolve certain convergence issues on

the Lie group. These Lie group issues are addressed in Section 3.2.2.
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3.2.1 Matrix group computations

In this section, let M = End(g) and Ai = adXi ∈M , for i = 1, . . . , k. Further,

let B := Ai b
i = adXi b

i = ad~b
, where {bi}k

i=1 is a set of independent real-valued Brownian

motions, and let H := Ai h
i = adXi h

i, where h = (h1, . . . , hk) is a fixed element of

H (Rk).

Proposition 3.13. Let W : [0, 1] × W → M denote the solution to the Stratonovich

differential equations

dW = W ◦ dB = W dB +
1
2

k∑
i=1

WA2
i dt, with W0 = I, (3.16)

and let W s : [0, 1]2 ×W →M denote the solution to the equation

dW s = W s (◦dB + sdH) , with W s
0 = I. (3.17)

Then

lim
s↓0

E sup
τ≤1

|W s
τ −Wτ |p = 0,

for all p ∈ (1,∞).

Proof. Writing Equation (3.17) in Itô form gives

dW s = W sdB +
1
2

k∑
i=1

W sA2
i dt+ sW sdH.

Then by Proposition 3.11, for any s ∈ [0, 1],

E sup
τ≤1

|W s
τ |p . 1 + E

(∫ t

0
|W s

τ |2 dτ
)p/2

+ E
(∫ t

0
|W s

τ | dτ
)p

. 1 + E
∫ t

0
|W s

τ |p dτ,

for all t ∈ [0, 1]. An application of Gronwall’s inequality then shows that

E sup
τ≤1

|W s
τ |p ≤ CeC ,
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where these constants are independent of s; that is, there exists some finite constant Cp

such that

sup
s∈[0,1]

(
E sup

τ≤1
|W s

τ |p
)
≤ Cp,

for all p ∈ (1,∞).

Now let εs := W s −W . Then from Equation (3.16), εs satisfies

dεs = (W s −W )dB +
1
2

k∑
i=1

(W s −W )A2
i dt+ sW sdH

= εsdB +
1
2

k∑
i=1

εsA2
i dt+ sW sdH.

Then applying Proposition 3.11, we have

E sup
τ≤1

|εsτ |p .
∫ t

0
|εs|pdτ + δs,

for all t ∈ [0, 1], where

δs =
k∑

i=1

∫ t

0
sp
∣∣∣W sḣi

∣∣∣p dτ → 0,

as s ↓ 0, by the dominated convergence theorem. Thus, by Gronwall’s inequality,

E sup
τ≤1

|W s
τ −Wτ |p = E sup

τ≤1
|εsτ |p ≤ δse

C → 0,

as s ↓ 0, for all p ∈ (1,∞).

Proposition 3.14. Let W be the solution to Equation (3.16) and W s be the solution to

Equation (3.17). Then Wt ∈ D∞(End(g)), for all t ∈ [0, 1], and ∂hW : [0, 1]×W → M

solves the equation

∂hWt =
(∫ t

0
Wτ ḢW

−1
τ dτ

)
Wt. (3.18)

Furthermore,

lim
s↓0

E sup
τ≤1

∣∣∣∣W s
τ −Wτ

s
− ∂hWτ

∣∣∣∣p = 0,

for all p ∈ (1,∞).
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Proof. Note that W = Adξ satisfies the Stratonovich stochastic differential equation

dAdξ = Adξ ◦ addb = Adξ adXi ◦dbi, (3.19)

a linear differential equation with smooth coefficients. Then by Theorem V-10.1 of Ikeda

and Watanabe [30], Wt = Adξt ∈ D∞(End(g)) componentwise with respect to some

basis.

Now let Ψ : [0, 1]×W →M denote the solution to the equation

dΨ = ΨW ◦ dB +WdH = ΨWdB +
1
2

k∑
i=1

ΨA2
i dt+WdH,

with Ψ0 = 0. Let εs :=
(

W s−W
s −Ψ

)
. Then we have that

dεs =
(
W s −W

s
−Ψ

)
dB +

1
2

k∑
i=1

(
W s −W

s
−Ψ

)
A2

i dt+ (W s −W )dH

= εsdB +
1
2

k∑
i=1

εsA2
i dt+ (W s −W )dH.

By Proposition 3.11, this implies that

E sup
τ≤t

|εsτ |p .
∫ t

0
|εs|pdτ + δs,

for all t ∈ [0, 1], where

δs =
k∑

i=1

∫ t

0

∣∣∣(W s −W )ḣi
∣∣∣p dτ → 0,

as s ↓ 0, by Proposition 3.13 and the dominated convergence theorem. An application

of Gronwall’s inequality then gives

E sup
τ≤1

∣∣∣∣W s
τ −Wτ

s
−Ψτ

∣∣∣∣p = E sup
τ≤1

|εsτ |p ≤ δse
C → 0,

as s ↓ 0, for all p ∈ (1,∞).
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By Theorem VIII.2B of Elworthy [17], there exists a modification of W s
t so that

the mapping s 7→ W s
t is smooth. Let F ∈ S be a smooth cylinder function on W . By

the above convergence, we have that

d

ds

∣∣∣∣
0

E [W s
t F ] = E[ΨtF ].

Consider also

d

ds

∣∣∣∣
0

E [W s
t F ] =

∫
d

ds

∣∣∣∣
0

Wt(b+ sh)F (b) dµ(b)

=
∫
Wt(b)

d

ds

∣∣∣∣
0

F (b− sh) dµ(b− sh)

=
∫
Wt(b)

[
−∂hF (b) +

(∫ 1

0
ḣs · dbs

)
F (b)

]
dµ(b) = E[Wt∂

∗
hF ];

where the third equality follows from differentiating the shifted measure (see for example

Theorem 8.1.1 of Hsu [27]), and the final equality follows from Proposition 2.10. This

then implies that E[ΨtF ] = E[Wt∂
∗
hF ], and so ∂hWt = Ψt. Thus, ∂hW satisfies the

differential equation

d(∂hW ) = ∂hW ◦ dB +WdH,

with ∂hW0 = 0. Equation (3.18) then follows from an application of Duhamel’s principle.

Proposition 3.15. Let W be the solution to Equation (3.16). For W : [0, 1] × W →
End(g) given by

W t :=
∫ t

0
Wτ dτ,

we have W ∈ D∞(H (End(g))).

Proof. Let V = W−1 : [0, 1]×W → End(g). By differentiating the identity WtW
−1
t = I,

one may verify that V satisfies the differential equation

dV = − ◦ dB V = −AiV ◦ dbi, with V0 = I.



60

Let V s
t : [0, 1]2 ×W → End(g) denote the solution to the equation

dV s
t = −(◦dB + sdH)V s

t = −AiV
s
t ◦ dbit − sAiV

s
t ḣ

i
tdt, with V s

0 = I. (3.20)

By the same arguments as in Propositions 3.13 and 3.14, we may determine that

lim
s↓0

E sup
τ≤1

|V s
τ − Vτ |p = 0, (3.21)

∂hVt = −Vt

∫ t

0
V −1

τ ḢVτ dτ = −Vt

∫ t

0
Wτ ḢVτ dτ, (3.22)

and

lim
s↓0

E sup
τ≤1

∣∣∣∣V s
τ − Vτ

s
− ∂hVτ

∣∣∣∣p = 0, (3.23)

for all p ∈ (1,∞). From the proof of Proposition 3.13, we know that there exists a finite

constant Cp such that

sup
s∈[0,1]

(
sup
τ≤1

E|W s
τ |p
)
≤ Cp,

for all p ∈ (1,∞). We may similarly show that

sup
s∈[0,1]

(
sup
τ≤1

E|V s
τ |p
)
≤ Cp,

for all p ∈ (1,∞).

Now let Ws,t := VsWt. Note that W−1
s,t = Wt,s, and Ws,tWt,u = Ws,u. By the

above bounds on W and V , there exist finite constants Cp such that

sup
τ1,τ2≤t

E|Wτ1,τ2 |p ≤ Cp, (3.24)

for all p ∈ (1,∞). Using this notation and Equation (3.18) we may write

∂hWt =
(∫ t

0
WτAiW

−1
τ ḣi

τ dτ

)
Wt

=
∫
{0≤τ≤t}

WτAiWτ,tḣ
i
τ dτ,

(3.25)
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and so, for t1 ≤ t and α1 = 1 . . . , k,

[Dt1Wt]α1 =
∫
{0≤τ≤t1}

WτAα1Wτ,t dτ, (3.26)

where, for F ∈ End(g), F =
∑k

i=1 F
i ⊗Ai. For t1 > t, Dt1Wt = 0.

Let r ∈ N. For {t1, . . . , tr} ⊂ [0, 1] and multi-index α = (α1, . . . , αr) ⊂
{1, . . . , k}r, let Dr,α

tr,...,t1
Wt denote the αth component of Dr

tr,...,t1Wt; that is,

Dr,α
tr,...,t1

Wt := [Dtr [· · · [Dt2 [Dt1Wt]α1 ]α2 · · · ]αr .

We will now show that the following properties hold for any integer r ≥ 1:

(P1) For any p ∈ (1,∞) and multi-index α, Wt ∈ Dr,p(End(g)) and

sup
{t1,...,tr}∈[0,1]

E|Dr,α
tr,...,t1

Wt|p <∞.

(P2) Let T := min{t1, . . . , tr}. If T ≤ t, then the rth derivative of Wt satisfies the linear

differential equation

Dr,α
tr,...,t1

Wt =
∫

[0,T ]r
WT1AJ1WT1,T2AJ2 · · ·WTr−1,TrAJrWTr,t dτr · · · dτ1, (3.27)

where Ti denotes the ith smallest element of the set {τ1, . . . , τr}, and Ji denotes the index

corresponding to Ti (that is, Ji :=
∑r

l=1 1{Ti=τl}αl). If T > t, then Dr
t1,...,trWt = 0.

By Equation (3.26), the above holds for r = 1. Now assume that these prop-

eraties hold up to and including order r. Note that Equations (3.22) and (3.25) imply

that

∂hWs,t = (∂hVs)Wt + Vs(∂hWt)

= −Vs

(∫ s

0
WτAiVτ ḣ

i
τ dτ

)
Wt + Vs

(∫ t

0
WτAiVτ ḣ

i
τ dτ

)
Wt

=
∫
{s≤τ≤t}

Ws,τAiWτ,tḣ
i
τ dτ.
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Let W s denote the solution to Equation (3.17), and V s denote the solution to (3.20).

Then, for W s
τ1,τ2 = V s

τ1W
s
τ2 ,∣∣∣∣W s

τ1,τ2 −Wτ1,τ2

s
− ∂hWτ1,τ2

∣∣∣∣
=
∣∣∣∣V s

τ1

W s
τ2 −Wτ2

s
− Vτ1(∂hWτ2) +

V s
τ1 − Vτ1

s
Wτ2 − (∂hVτ1)Wτ2

∣∣∣∣
≤
∣∣V s

τ1 − Vτ1

∣∣ ∣∣∣∣W s
τ2 −Wτ2

s

∣∣∣∣+ |Vτ1 |
∣∣∣∣W s

τ2 −Wτ2

s
− (∂hWτ2)

∣∣∣∣
+
∣∣∣∣V s

τ1 − Vτ1

s
− (∂hVτ1)

∣∣∣∣ |Wτ2 | ,

and thus Proposition 3.14 and Equations (3.21) and (3.23) imply that

lim
s↓0

sup
τ1,τ2≤t

E
∣∣∣∣W s

τ1,τ2 −Wτ1,τ2

s
− ∂hWτ1,τ2

∣∣∣∣p = 0.

So for a1, a2, b1, b2 ∈ [0, 1], we have

lim
s↓0

E
∣∣∣∣ ∫ b2

a2

∫ b1

a1

W s
τ1,τ2 −Wτ1,τ2

s
dτ1 dτ2 −

∫ b2

a2

∫ b1

a1

∂hWτ1,τ2 dτ1 dτ2

∣∣∣∣p
≤ lim

s↓0
E
∫ b2

a2

∫ b1

a1

∣∣∣∣W s
τ1,τ2 −Wτ1,τ2

s
− ∂hWτ1,τ2

∣∣∣∣p dτ1 dτ2
= E

∫ b2

a2

∫ b1

a1

lim
s↓0

∣∣∣∣W s
τ1,τ2 −Wτ1,τ2

s
− ∂hWτ1,τ2

∣∣∣∣p dτ1 dτ2 = 0,

by dominated convergence. Thus,

∂h

(∫ b2

a2

∫ b1

a1

Wτ1,τ2 dτ1 dτ2

)
=
∫ b2

a2

∫ b1

a1

(∂hWτ1,τ2) dτ1 dτ2.
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Performing similar estimates, we may then show that

∂hD
r,α
tr,...,t1

=
∫

[0,T ]r

[
(∂hWT1)AJ1WT1,T2AJ2 · · ·WTr−1,TrAJrWTr,t

+WT1AJ1(∂hWT1,T2)AJ2 · · ·WTr−1,TrAJrWTr,t

+ · · ·+WT1AJ1WT1,T2AJ2 · · · (∂hWTr−1,Tr)AJrWTr,t

+WT1AJ1WT1,T2AJ2 · · ·WTr−1,TrAJr(∂hWTr,t)
]
dτr · · · dτ1

=
∫

[0,T ]r

[ ∫
{0≤τr+1≤T1}

Wτr+1Aαr+1Wτr+1,T1AJ1WT1,T2AJ2 · · ·WTr−1,TrAJrWTr,t

+
∫
{T1≤τr+1≤T2}

WT1AJ1WT1,τr+1Aαr+1Wτr+1,T2AJ2 · · ·WTr−1,TrAJrWTr,t

+ · · ·+
∫
{Tr−1≤τr+1≤Tr}

WT1AJ1WT1,T2AJ2 · · ·WTr−1,τr+1Aαr+1Wτr+1,TrAJrWTr,t

+
∫
{Tr≤τr+1≤t}

WT1AJ1WT1,T2AJ2 · · ·WTr−1,TrAJrWTr,τr+1Aαr+1Wτr+1,t

]
× ḣαr+1

τr+1
dτr+1 dτr · · · dτ1,

which implies exactly that (P2) holds for r + 1, since

{0 ≤ τr+1 ≤ T1}, {T1 ≤ τr+1 ≤ T2}, · · · , {Tr−1 ≤ τr+1 ≤ Tr}, {Tr ≤ τr+1 ≤ t}

partitions the set [0, t]. Clearly, this also implies that, for all tr+1 ∈ [0, 1] and αr+1 =

1, . . . , k, [Dtr+1D
r,α
tr,...,t1

]αr+1 ∈ Lp(µ) for all p ∈ (1,∞), by Equation (3.24), and so

Wt ∈ Dr+1,p(End(g)).

Now, for W t =
∫ t
0 Wτ dτ , the above arguments imply that

∂hW t =
∫ t

0
∂hWτ dτ =

∫ t

0

∫
{0≤τ1≤τ}

Wτ1Aα1Wτ1,τ ḣ
α1
τ1 dτ1 dτ

and, for t1 ≤ t and α1 = 1, . . . , k,

[Dt1W t]α1 =
∫ t

0

∫
{0≤τ1≤τ∧t1}

Wτ1Aα1Wτ1,τ dτ1 dτ.
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Let r ∈ N. For any {t1, . . . , tr} ⊂ [0, 1] and multindex α = (α1, . . . , αr), let Dr,α
t1,...,trW t

be the αth component of Dr
t1,...,trW t; that is,

Dr,α
tr,...,t1

W t := [Dtr [· · · [Dt2 [Dt1W t]α1 ]α2 ] · · · ]αr .

Then working as above, we may show that

Dr,α
tr,...,t1

W t =
∫ t

0

∫
[0,T∧τ ]r

WT1AJ1WT1,T2AJ2 · · ·WTr−1,TrAJrWTr,τ dτr · · · dτ1 dτ

=
∫ t

0
Dr,α

tr,...,t1
Wτ dτ,

and since Wτ satisfies (P1) for all τ ∈ [0, t], we have W ∈ Dr,p(H (End(g))), for all r ∈ N

and p ∈ (1,∞).

Proposition 3.16. Let ψ ∈ C∞
c (M) such that ψ = 1 near I and ψ(x) = 0 if |x| ≥ 2,

where | · | is the distance from I with respect to any metric on M . For any n ∈ N, define

ψn(x) := ψ(x/n), and, for any A ∈M , define 〈ψ′(x), A〉 := d
dt

∣∣
0
ψ(x+tA). Let W denote

the solution to Equation (3.16), and let Wn : [0, 1]×W →M denote the solution to the

Stratonovich differential equation

dWn = ψn(Wn)Wn ◦ dB, with W0 = I. (3.28)

Then

lim
n→∞

E sup
τ≤1

|Wn
τ −Wτ |p = 0,

for all p ∈ (1,∞).

Remark 3.17. Notice that ψ′n(x) = n−1ψ′(x/n), and therefore∣∣ψ′n(x)
∣∣ |x| ≤ n−1C2n = 2C,

where C is a bound on ψ′. Similarly, we may show∣∣ψ′′n(x)
∣∣ |x|2 ≤ C,

where C is determined by a bound on ψ′′. These bounds will be used repeatedly in the

sequel without further mention.
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Proof. Equation (3.28) in Itô form is

dWn = ψn(Wn)WndB (3.29)

+
1
2
[〈
ψ′n(Wn), ψn(Wn)WndB

〉
Wn + ψn(Wn)ψn(Wn)Wn dB

]
dB

= ψn(Wn)WndB (3.30)

+
1
2

k∑
i=1

[
ψn(Wn)

〈
ψ′n(Wn),WnAi

〉
WnAi + ψ2

n(Wn)WnA2
i

]
dt. (3.31)

By Proposition 3.11, Equation (3.31) implies that

E sup
τ≤t

|Wn
τ |p . 1 + E

(∫ t

0
|Wn|2 dτ

)p/2

+ E
(∫ t

0
|Wn| dτ

)p

. 1 + E
∫ t

0
|Wn|p dτ,

for all t ∈ [0, 1]. An application of Gronwall’s inequality then shows that

E sup
τ≤1

|Wn
τ |p ≤ CeC ,

where these constants are independent of n. Thus, there exists some finite constants Cp

so that

sup
n∈N

(
E sup

τ≤1
|Wn

τ |p
)
≤ Cp, (3.32)

for all p ∈ (1,∞).

Now let εn := Wn −W (so Wn = W + εn). Then we have

dεn = [ψn(Wn)Wn −W ] dB

+
1
2

k∑
i=1

[
ψn(Wn)

〈
ψ′n(Wn),WnAi

〉
WnAi +

(
ψ2

n(Wn)Wn −W
)
A2

i

]
dt. (3.33)

Applying Proposition 3.11 to each term in Equation (3.33), we may bound E|εn|p. For
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the first term,

E
∣∣∣∣ ∫ t

0
[ψn(Wn)Wn−W ] dB

∣∣∣∣p = E
∣∣∣∣∫ t

0
[ψn(Wn)(εn +W )−W ] dB

∣∣∣∣p
. E

∫ t

0
|ψn(Wn)εn + (ψn(Wn)− 1)W |p dτ

. E
∫ t

0
|ψn(Wn)|p|εn|p dτ + E

∫ t

0
|ψn(Wn)− 1|p|W |p dτ.

Similarly, for the second term,

E
∣∣∣∣ ∫ t

0
ψn(Wn)〈ψ′n(Wn),WnAi〉WnAi dτ

∣∣∣∣p
= E

∣∣∣∣ ∫ t

0
ψn(Wn)〈ψ′n(Wn),WnAi〉(εn +W )Ai dτ

∣∣∣∣p
. E

∫ t

0

[
|ψn(Wn)||ψ′n(Wn)||Wn||εn +W |

]p
dτ

. E
∫ t

0

[
|ψ′n(Wn)||Wn|

]p |εn|p dτ + E
∫ t

0

[
|ψ′n(Wn)||Wn||W |

]p
dτ.

And finally,

E
∣∣∣∣ ∫ t

0
[ψ2

n(Wn)Wn −W ]A2
i dτ

∣∣∣∣p = E
∣∣∣∣ ∫ t

0
[ψ2

n(Wn)(εn +W )−W ]A2
i dτ

∣∣∣∣p
. E

∫ t

0

∣∣ψ2
n(Wn)(εn +W )−W

∣∣p dτ
. E

∫ t

0
|ψ2

n(Wn)|p|εn|p dτ + E
∫ t

0
|ψ2

n(Wn)− 1|p|W |p dτ.

Bringing all of this together together, we have

E sup
τ≤t

|εnτ |p ≤ CE
∫ t

0
|εn|p dτ + δn,

for all t ∈ [0, 1], where (up to constant multiple)

δn = E
∫ t

0
|ψn(Wn)− 1|p|W |p dτ

+ E
∫ t

0

[
|ψ′n(Wn)||Wn||W |

]p
dτ + E

∫ t

0
|ψ2

n(Wn)− 1|p|W |p dτ.
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Since |ψ′n(Wn)||Wn| and |W | remain bounded, the dominated convergence theorem im-

plies that limn→∞ δn = 0. Thus, by Gronwall again, we have

E sup
τ≤1

|Wn
τ −Wτ |p = E sup

τ≤1
|εnτ |p ≤ δne

C → 0,

as n→∞.

Proposition 3.18. Let W be the solution to Equation (3.16), and let Wn be the solution

to Equation (3.28). Then Wn ∈ Dom(∂h) and

lim
n→∞

E sup
τ≤1

|∂hW
n
τ − ∂hWτ |p = 0,

for all p ∈ (1,∞).

Proof. As in Proposition 3.14, we may show that ∂hW
n satisfies the Itô equation

d(∂hW
n) =

[〈
ψ′n(Wn), ∂hW

n
〉
Wn + ψn(Wn)(∂hW

n)
]
dB + ψn(Wn)WndH

+
1
2

k∑
i=1



〈ψ′n(Wn), ∂hW
n〉 〈ψ′n(Wn),WnAi〉WnAi

+ψn(Wn) 〈ψ′′n (Wn) , ∂hW
n ⊗WnAi〉WnAi

+ψn(Wn) 〈ψ′n(Wn), (∂hW
n)Ai〉WnAi

+ψn(Wn) 〈ψ′n(Wn),WnAi〉 (∂hW
n)Ai

+2ψn(Wn) 〈ψ′n(Wn), ∂hW
n〉WnA2

i + ψ2
n(Wn)(∂hW

n)A2
i


dt.

Recall also that

d(∂hW ) = (∂hW )dB +WdH +
1
2
(∂hW )A2

i dt.

Let εn := ∂hW
n − ∂hW . Then

dεn =
[〈
ψ′n(Wn), ∂hW

n
〉
Wn + (ψn(Wn)(∂hW

n)− (∂hW ))
]
dB

+ [ψn(Wn)Wn −W ] dH

+
1
2

k∑
i=1



〈ψ′n(Wn), ∂hW
n〉 〈ψ′n(Wn),WnAi〉WnAi

+ψn(Wn) 〈ψ′′n(Wn), ∂hW
n ⊗WnAi〉WnAi

+ψn(Wn) 〈ψ′n(Wn), (∂hW
n)Ai〉WnAi

+ψn (Wn) 〈ψ′n(Wn),WnAi〉 (∂hW
n)Ai

+2ψn(Wn) 〈ψ′n(Wn), ∂hW
n〉WnA2

i +
[
ψ2

n(Wn)∂hW
n − ∂hW

]
A2

i


dt.
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That is,

dεn =
〈
ψ′n(Wn), ∂hW

n
〉
WndB+[ψn(Wn)(∂hW

n)−(∂hW )]dB+[ψn(Wn)Wn−W ]dH

+
1
2

k∑
i=1

[
Γn(∂hW

n) + [ψ2
n(Wn)∂hW

n − ∂hW ]A2
i

]
dt, (3.34)

where

Γn(A) =
k∑

i=1

[〈
ψ′n(Wn), A

〉 〈
ψ′n(Wn),WnAi

〉
WnAi

+ ψn(Wn)
〈
ψ′′n(Wn), A⊗WnAi

〉
WnAi + ψn(Wn)

〈
ψ′n(Wn), AAi

〉
WnAi

+ψn(Wn)
〈
ψ′n(Wn),WnAi

〉
AAi + 2ψn(Wn)

〈
ψ′n(Wn), A

〉
WnA2

i

]
satisfies the bound

|Γn| . |ψ′′n(Wn)||Wn|2 + |ψ′n(Wn)||Wn|+ |ψ′n(Wn)|2|Wn|2. (3.35)

Again using Proposition (3.11), we may work through (3.34) term by term to bound

E|εn|p:
For the first term in the sum,

E
∣∣∣∣∫ t

0

〈
ψ′n(Wn), ∂hW

n
〉
Wn dB

∣∣∣∣p . E
∫ t

0

∣∣〈ψ′n(Wn), εn + ∂hW
〉
Wn

∣∣p dτ
. E

∫ t

0
|εn|pdτ + E

∫ t

0

[
|ψ′n(Wn)||∂hW ||Wn|

]p
dτ.

Considering the second term, we have

E
∣∣∣∣ ∫ t

0
[ψn(Wn)∂hW

n − ∂hW ] dB
∣∣∣∣p . E

∫ t

0
|ψn(Wn)(εn + ∂hW )− ∂hW |p dτ

. E
∫ t

0
|εn|pdτ + E

∫ t

0
|ψn(Wn)− 1|p|∂hW |p dτ.

For the third term, note that

E
∣∣∣∣∫ t

0
[ψn(Wn)Wn −W ] dH

∣∣∣∣p = C‖H‖p
H E sup

τ≤1
|ψn(Wn

τ )Wn
τ −Wτ |p
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and

E sup
τ≤1

|ψn(Wn
τ )Wn

τ −Wτ |p = E sup
τ≤1

|ψn(Wn
t )(Wt + (Wn

t −Wt))−Wt|p

≤ E sup
τ≤1

(|ψn(Wn
τ )− 1|p|Wτ |p + |ψn(Wn

τ )|n|Wn
τ −Wτ |p) → 0,

as n → ∞, by Proposition 3.16 and dominated convergence. Using the bound in (3.35)

on the fourth term, we have

E
∣∣∣∣ ∫ t

0
Γn(∂hW

n) dτ
∣∣∣∣p = E

∣∣∣∣∫ t

0
Γn(εn + ∂hW ) dτ

∣∣∣∣p
. E

∫ t

0
|εn|p dτ

+ E
∫ t

0

(
|ψ′′n(Wn)||Wn|2 + |ψ′n(Wn)||Wn|+

∣∣ψ′n(Wn)
∣∣2 |Wn|2

)p
|∂hW |p dτ.

Finally, for the last term,

E
∣∣∣∣∫ t

0

[
ψ2

n(Wn)∂hW
n − ∂hW

]
A2

i dτ

∣∣∣∣p . E
∫ t

0

∣∣ψ2
n(Wn)(εn + ∂hW )− ∂hW

∣∣p dτ
. E

∫ t

0
|εn|pdτ + E

∫ t

0
|ψ2

n(Wn)− 1|p|∂hW |p dτ.

Putting this all together shows

E sup
τ≤t

|εnt |p ≤ CE
∫ t

0
|εn|pdτ + δn,

for all t ∈ [0, 1], where

δn = E
∫ t

0
|ψ′n(Wn)|p|∂hW |p|Wn|pdτ + E

∫ t

0
|ψn(Wn)− 1|p|∂hW |pdτ

+ E
∣∣∣∣∫ t

0
[ψn(Wn)Wn −W ] dH

∣∣∣∣p
+ E

∫ t

0

(
|ψ′′n(Wn)||Wn|2 + |ψ′n(Wn)||Wn|+

∣∣ψ′n(Wn)
∣∣2 |Wn|2

)p
|∂hW |p dτ

+ E
∫ t

0
|ψ2

n(Wn)− 1|p|∂hW |p dτ.
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Again using Remark 3.17, limn→∞ δn = 0, by the dominated convergence theorem. Thus,

another application of Gronwall’s inequality shows that

E sup
τ≤1

|∂hW
n
τ − ∂hWτ |p = E sup

τ≤1
|εnτ |

p ≤ δne
C → 0,

as n→∞.

3.2.2 Lie group computations

Lemma 3.19. Let u ∈ C1(G) such that u and X̃u are bounded for all X ∈ g0. Then

the solution η : [0, 1]×W (Rk) → G to the stochastic differential equation

dη = u(η)η ◦ d~b := u(η)Lη∗ ◦ d~b = u(η)X̃i(η) ◦ dbi, with η0 = e

exists for all time; that is, η has no explosion.

Proof. Let ζ be the life-time of η and ϕ ∈ C∞
c (G). Then on {t < ζ},

dϕ(η) = u(η)X̃iϕ(η) ◦ dbi = u(η)
〈
∇̃ϕ(η), Xi

〉
◦ dbi = u (η)

〈
∇̃ϕ(η), ◦d~b

〉
= u(η)

〈
∇̃ϕ(η), d~b

〉
+

1
2
d
[
u(η)

〈
∇̃ϕ(η), ·

〉]
d~b

= u(η)
〈
∇̃ϕ(η), d~b

〉
+

1
2

〈
∇̃
[
u(η)

〈
∇̃ϕ(η), ·

〉]
, d~b
〉
d~b

= u(η)
〈
∇̃ϕ(η), d~b

〉
+

1
2

[〈
∇̃u(η), d~b

〉〈
∇̃ϕ(η), d~b

〉
+ u(η)

〈
∇̃2ϕ(η), d~b⊗ d~b

〉]
= u(η)

〈
∇̃ϕ(η), d~b

〉
+

1
2

k∑
i=1

[〈
∇̃u(η), Xi

〉〈
∇̃ϕ(η), Xi

〉
+ u(η)

〈
∇̃2ϕ(η), Xi ⊗Xi

〉]
dt. (3.36)

Let |g| denote the distance from a point g ∈ G to e with respect to the right

invariant metric. Let {ϕm}∞m=1 ⊂ C∞
c (G, [0, 1]) be a sequence of functions, ϕm ↑ 1, such

that ϕm(g) = 1 when |g| ≤ m and supm supg∈G |∇̃kϕm(g)| < ∞ for k = 0, 1, 2, . . .; see

Lemma 3.6 of Driver and Gross [16]. Also, let {Kn}∞n=1 be a sequence of nested compact

sets in G, such that Kn ↑ G, and take τn to be the exit time from Kn,

τn := inf{t > 0 : ηt /∈ Kn}.
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Let ηn
t := ηt∧τn . Then from Equation (3.36) (using the convention that ϕm(ηt) = 0,

∇̃ϕm(ηt) = 0, and ∇̃2ϕm(ηt) = 0 on {t > ζ}) we have

ϕm(ηn
t ) = 1 +

∫ t∧τn

0
u(η)

〈
∇̃ϕm(η), d~b

〉
+

1
2

k∑
i=1

∫ t∧τn

0

[〈
∇̃u(η), Xi

〉〈
∇̃ϕm(η), Xi

〉
+ u(η)

〈
∇̃2ϕm(η), Xi ⊗Xi

〉]
dτ.

Taking the expectation of this equation then gives

E [ϕm(ηn
t )] = 1 +

1
2
δm,

where

δm :=
k∑

i=1

E
∫ t∧τn

0

[〈
∇̃u(η), Xi

〉〈
∇̃ϕm(η), Xi

〉
+ u(η)

〈
∇̃2ϕm(η), Xi ⊗Xi

〉]
dτ.

Now by construction of the ϕm and τm and the assumptions on u, there is a constant

M <∞ such that

1{τ≤t∧τm}

∣∣∣〈∇̃u(ητ ), Xi

〉〈
∇̃ϕm(ητ ), Xi

〉
+ u(ητ )

〈
∇̃2ϕm(ητ ), Xi ⊗Xi

〉∣∣∣ ≤M.

Moreover, limm→∞

∣∣∣∇̃ϕm

∣∣∣ = 0 = limm→∞

∣∣∣∇̃2ϕm

∣∣∣. So it follows by the dominated

convergence theorem that limm→∞ δm = 0, and we have proved

1 = lim
m→∞

E [ϕm(ηn
t )] = E

[
lim

m→∞
ϕm(ηn

t )
]

= E1{t∧τn<ζ} = P (t ∧ τn < ζ),

for all n = 1, 2, . . . . Thus, 1 = limn→∞ P (t∧τn < ζ) = P (t < ζ), and so ζ = ∞ µ-a.s.

Now let u ∈ C∞
c (G), and suppose η : [0, 1] × W (Rk) → G is a solution to the

stochastic differential equation

dη = u(η)η ◦ d~b := u(η)Lη∗ ◦ d~b = u(η)X̃i(η) ◦ dbi. (3.37)

Since the vector fields uX̃i have compact support, we may embed G as a Euclidean sub-

manifold in a “nice” way so that the embedded vector fields are bounded with bounded

derivatives. Then Theorem 2.1 of Taniguchi [47] implies that, for any f ∈ C∞
c (G), we

have f(ηt) ∈ D∞.
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Proposition 3.20. Fix h ∈ H , and let η be the solution to Equation (3.37). Then, for

f ∈ C∞
c (G),

∂hf(ηt) =
〈
∇̂f(ηt), θt

〉
,

where θt : W → g solves

θt =
∫ t

0

(〈
∇̂u(η), θ

〉
Adη ◦d~b+ u(η) Adη d~h

)
, (3.38)

where d~h = Xiḣ
idt; writing the above in Itô form gives

θt =
∫ t

0

(〈
∇̂u(η), θ

〉
Adη d~b+ u(η) Adη d~h+

1
2

k∑
i=1

〈
∇̃∇̂u(η), Xi ⊗ θ

〉
Adη Xi dτ

)
.

(3.39)

Proof. Let ηs
t := ηt(·+sh) : [0, 1]2×W → G. Then ηs

t satisfies the Stratonovich equation

in t,

dηs
t = u(ηs

t )Lηs
t ∗

(
◦d~bt + sd~ht

)
. (3.40)

By Corollary 4.3 of Driver [14], there exists a modification of ηs
t so that the mapping

s 7→ ηs
t is smooth in the sense that, for any function f ∈ C∞

c (G), s 7→ f(ηs
t ) is smooth,

and, furthermore, for any one-form ϑ acting on Tηs
t
G,

∂

∂s

∣∣∣∣
0

∫ t

0
ϑ(dηs

τ ) =
∫ t

0
dϑ

(
∂

∂s

∣∣∣∣
0

ηs
τ , dητ

)
+ ϑ

(
∂

∂s

∣∣∣∣
0

ηs
τ

) ∣∣∣∣t
τ=0

. (3.41)

Let ϑ be the g-valued one-form such that ϑ(X̂) = X, for all X ∈ g. Since ϑ is

right invariant, the two-form dϑ satisfies the identity

dϑ = ϑ ∧ ϑ (3.42)

where ϑ ∧ ϑ(X,Y ) := [ϑ(X), ϑ(Y )] for any X,Y ∈ g; see for example [1]. Let θt :=

ϑ
(

∂
∂s

∣∣
0
ηs

t

)
, so that ∂

∂s

∣∣
0
ηs

t = Rηt∗θt. Thus,

∂

∂s

∣∣∣∣
0

Adηs
t

= dAd(θt) Adηt = adθt Adηt .
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By Equation (3.41), we then have

θt = ϑ

(
∂

∂s

∣∣∣∣
0

ηs
t

)
=

∂

∂s

∣∣∣∣
0

∫ t

0
ϑ(dηs

τ )−
∫ t

0

[
ϑ

(
∂

∂s

∣∣∣∣
0

ηs
t

)
, ϑ (dητ )

]
=

∂

∂s

∣∣∣∣
0

∫ t

0
u(ηs

t ) Adηs
t

(
◦d~bτ + sd~hτ

)
−
∫ t

0

[
θτ , u(ηt) Adηt ◦d~bτ

]
=
∫ t

0

(〈
∇̂u(ητ ), θτ

〉
Adητ ◦d~bτ + u(ητ ) adθτ Adητ ◦d~bτ + u(ηt) Adηt d

~hτ

)
−
∫ t

0

[
θτ , u(ηt) Adηt ◦d~bτ

]
=
∫ t

0

(〈
∇̂u(ητ ), θτ

〉
Adητ ◦d~bτ + u(ητ ) Adητ d

~hτ

)
,

and for any f ∈ C∞
c (G),

∂hf(ηt) =
∂

∂s

∣∣∣∣
0

f(ηs
t ) =

〈
∇̂f(ηt), ϑ

(
∂

∂s

∣∣∣∣
0

ηs
t

)〉
=
〈
∇̂f(ηt), θt

〉
.

Now, to write this equation in Itô form, first note that

dAdη = u(η) Adη ◦ ad
d~b

= u(η) Adη ad
d~b

+
1
2

[〈
∇̃u(η), d~b

〉
Adη +u2(η) Adη ad

d~b

]
· ad

d~b

= u(η) Adη ad
d~b

+
1
2

k∑
i=1

[〈
∇̃u(η), Xi

〉
Adη adXi +u2(η) Adη ad2

Xi

]
dt, (3.43)

where ad
d~b

= adXi db
i. This then implies

d

[〈
∇̂u(η), θ

〉
Adη

]
· d~b =

[〈
∇̃∇̂u(η), d~b⊗ θ

〉
Adη +

〈
∇̂u(η), θ

〉
u(η) Adη ad

d~b

]
d~b

=
k∑

i=1

[〈
∇̃∇̂u(η), Xi ⊗ θ

〉
Adη +

〈
∇̂u(η), θ

〉
u(η) Adη adXi

]
Xi dt

=
k∑

i=1

〈
∇̃∇̂u(η), Xi ⊗ θ

〉
Adη Xi dt,
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wherein we have used adX X = [X,X] = 0. Therefore,〈
∇̂u(η), θ

〉
Adη ◦d~b =

〈
∇̂u(η), θ

〉
Adη d~b+

1
2
d
[〈
∇̂u(η), θ

〉
Adη

]
· d~b

=
〈
∇̂u(η), θ

〉
Adη d~b+

1
2

k∑
i=1

〈
∇̃∇̂u(η), Xi ⊗ θ

〉
Adη Xi dt,

and θ satisfies the Itô differential equation

dθ =
〈
∇̂u(η), θ

〉
Adη d~b+ u(η) Adη d~h+

1
2

k∑
i=1

〈
∇̃∇̂v(η), Xi ⊗ θ

〉
Adη Xi dt. (3.44)

Notation 3.21. Let us now fix ψ ∈ C∞
c (End(g)) with〈

ψ′(x), A
〉

:=
d

dt

∣∣∣∣
0

ψ(x+ tA),

for any A ∈ End(g). Let |g| denote the distance from a point g ∈ G to e with respect

to the right invariant metric, and let {ϕm}∞m=1 ∈ C∞
c (G) be chosen so that ϕm ↑ 1

as m → ∞ such that ϕm(g) = 1 when |g| ≤ m and supm supg∈G |∇̂kϕm(g)| < ∞ for

k = 0, 1, 2, . . .. Take v(g) := ψ(Adg) and um(g) := ϕm(g)v(g).

Remark 3.22. For um = ϕmv, we have the derivative formulae

∇̂um = ∇̂v · ϕm + v · ∇̂ϕm

and

∇̃∇̂um = ∇̃
[
∇̂v · ϕm + v · ∇̂ϕm

]
= ∇̃∇̂v · ϕm + ∇̃v ⊗ ∇̂ϕm + ∇̃ϕm ⊗ ∇̂v + v · ∇̃∇̂ϕm.

Proposition 3.23. Let ηm : [0, 1]×W → G denote the solution to the equation

dηm = um(ηm)ηm ◦ d~b = ϕm(ηm)v(ηm)ηm ◦ d~b

= ϕm(ηm)ψ(Adηm)ηm ◦ d~b, with ηm
0 = e,

(3.45)
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and η : [0, 1]×W → G denote the solution to

dη = v(η)η ◦ d~b = ψ(Adη)η ◦ d~b, with η0 = e. (3.46)

Then for all f ∈ C∞
c (G),

lim
m→∞

E sup
τ≤1

|f(ηm
τ )− f(ητ )|p = 0,

for all p ∈ (1,∞).

Proof. By Lemma 3.19, Equation (3.45) has a global solution. Notice also that X̃v(η) =

〈ψ′(Adη), adX〉 is bounded, so that Equation(3.46) also has a global solution. Then by

Equation (3.36),

df(ηm) = um(ηm)
〈
∇̃f(ηm), d~b

〉
+

1
2

k∑
i=1

[〈
∇̃um(ηm), Xi

〉〈
∇̃f(ηm), Xi

〉
+ um(ηm)

〈
∇̃2f(ηm), Xi ⊗Xi

〉]
dt,

and similarly,

df(η) = v(η)
〈
∇̃f(η), d~b

〉
+

1
2

k∑
i=1

[〈
∇̃v(η), Xi

〉〈
∇̃f(η), Xi

〉
+ v(η)

〈
∇̃2f(η), Xi ⊗Xi

〉]
dt.

Thus,

d[f(ηm)− f(η)] = um(ηm)
〈
∇̃f(ηm), d~b

〉
− v(η)

〈
∇̃f(η), d~b

〉
+

1
2

k∑
i=1

[〈
∇̃um(ηm), Xi

〉〈
∇̃f(ηm), Xi

〉
−
〈
∇̃v(η), Xi

〉〈
∇̃f(η), Xi

〉
+um(ηm)

〈
∇̃2f(ηm), Xi ⊗Xi

〉
− v(η)

〈
∇̃2f(η), Xi ⊗Xi

〉]
dt.
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We bound this expression by applying Proposition 3.11 to each term. For the first term,

note that um → v boundedly, as m→∞, and this implies that

E
∣∣∣∣ ∫ t

0

[
um(ηm)

〈
∇̃f(ηm), d~b

〉
− v(η)

〈
∇̃f(η), d~b

〉]∣∣∣∣p
.

k∑
i=1

E
∫ t

0

∣∣∣um(ηm)
〈
∇̃f(ηm), Xi

〉
− v(η)

〈
∇̃f(η), Xi

〉∣∣∣p dτ
. ‖∇̃f‖∞E

∫ t

0
|um(ηm)− v(η)|p dτ → 0,

as m → ∞, by the dominated convergence theorem. Similarly, for the second term,

∇̃um → ∇̃v boundedly, as m→∞, implies that

E
∣∣∣∣ ∫ t

0

[〈
∇̃um(ηm), Xi

〉〈
∇̃f(ηm), Xi

〉
−
〈
∇̃v(η), Xi

〉〈
∇̃f(η), Xi

〉]
dτ

∣∣∣∣p
. E

∫ t

0

∣∣∣〈∇̃um(ηm), Xi

〉〈
∇̃f(ηm), Xi

〉
−
〈
∇̃v(η), Xi

〉〈
∇̃f(η), Xi

〉∣∣∣p dτ
. ‖∇̃f‖∞E

∫ t

0

∣∣∣∇̃um(ηm)− ∇̃v(η)
∣∣∣p dτ → 0,

as m→∞, by the dominated convergence theorem. Finally,

E
∣∣∣∣ ∫ t

0

[
um(ηm)

〈
∇̃2f(ηm), Xi ⊗Xi

〉
− v(η)

〈
∇̃2f(η), Xi ⊗Xi

〉]
dτ

∣∣∣∣p
= E

∫ t

0

∣∣∣um(ηm)
〈
∇̃2f(ηm), Xi ⊗Xi

〉
− v(η)

〈
∇̃2f(η), Xi ⊗Xi

〉∣∣∣p dτ
. ‖∇̃2f‖∞E

∫ t

0
|um(ηm)− v(η)|p dτ → 0,

as m→∞, again by dominated convergence. Thus,

lim
m→∞

E sup
τ≤1

|f(ηm
τ )− f(ητ )|p = 0,

as desired.

Proposition 3.24. Let Um
t = Adηm

t
: W → End(g) and Ut = Adηt : W → End(g),

which satisfy the stochastic differential equations

dUm = um(ηm)Um ◦ ad
d~b

= ϕm(ηm)ψ(Um)Um ◦ ad
d~b
, with Um

0 = I, (3.47)
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and

dU = v(η)U ◦ ad
d~b

= ψ(U)U ◦ ad
d~b
, with U0 = I, (3.48)

where ad
d~b

= adXi db
i. Then

lim
m→∞

E sup
τ≤1

|Um
τ − Uτ |p = 0,

for all p ∈ (1,∞).

Proof. From Equation (3.43), we may rewrite(3.47) and (3.48) in Itô form as

dUm = um(ηm)Um ad
d~b

+
1
2

k∑
i=1

[〈
∇̃um(ηm), Xi

〉
Um adXi +u2

m(ηm)Um ad2
Xi

]
dt

= ϕm(ηm)ψ(Um)Um ad
d~b

+
1
2

k∑
i=1

[〈
∇̃ϕm(ηm), Xi

〉
ψ(Um)Um adXi

+ ϕm(ηm)ψ(Um)
〈
ψ′(Um), Um adXi

〉
Um adXi +ϕ2

m(ηm)ψ2(Um)Um ad2
Xi

]
dt

and

dU = v(η)U ad
d~b

+
1
2

k∑
i=1

[〈
∇̃v(η), Xi

〉
U adXi +v2(η)U ad2

Xi

]
dt

= ψ(U)U ad
d~b

+
1
2

k∑
i=1

[
ψ(U)

〈
ψ′(U), U adXi

〉
U adXi +ψ2(U)U ad2

Xi

]
dt.

Let εm := Um − U . Then by the above,

dεm = (ϕm(ηm)ψ(Um)Um − ψ(U)U) ad
d~b

+
1
2

k∑
i=1

[〈
∇̃ϕm(ηm), Xi

〉
ψ(Um)Um adXi

+
(
ϕm(ηm)ψ(Um)

〈
ψ′(Um), Um adXi

〉
Um − ψ(U)

〈
ψ′(U), U adXi

〉
U
)
adXi

+
(
ϕ2

m(ηm)ψ2(Um)Um − ψ2(U)U
)
ad2

Xi

]
dt. (3.49)

Again applying Proposition 3.11, we work term by term to bound the above expression.

Note first that, since ψ has compact support, U and Um always remain in a fixed
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compact subset of End(g). Thus,

E
∣∣∣∣ ∫ t

0
[ϕm(ηm)ψ(Um)Um − ψ(U)U ] ad

d~b

∣∣∣∣p
. E

∫ t

0
|ϕm(ηm)ψ(Um)Um − ψ(U)U |p dτ

. E
∫ t

0
|ψ(Um)Um − ψ(U)U |p dτ + E

∫ t

0
|ϕm(ηm)− 1|p|ψ(Um)|p dτ

. E
∫ t

0
|εm|p dτ + δm,

wherein we have applied the mean value inequality to x 7→ ψ(x)x to learn

|ψ(Um)Um − ψ(U)U | ≤ C(ψ)|Um − U | = C|εm|,

and

δm = E
∫ t

0
|ϕm(ηm)− 1|p|ψ(Um)|p dτ → 0,

as m → ∞, by the dominated convergence theorem. Similarly, for the last term of the

sum in (3.49),

E
∣∣∣∣ ∫ t

0

(
ϕ2

m(gn)ψ2(Um)Um − ψ2(U)U
)
ad2

Xi
dτ

∣∣∣∣p
. E

∫ t

0

∣∣ψ2(Um)Um − ψ2(U)U
∣∣p dτ + E

∫ t

0
|ϕ2

m(ηm)− 1|p|ψ(Um)|2p dτ

. E
∫ t

0
|εm|p dτ + δm,

where the mean value inequality has now been applied to the function x 7→ ψ2(x)x, and

δm = E
∫ t

0
|ϕ2

m(ηm)− 1|p|ψ(Um)|2p dτ → 0,

as m→∞. For the second term,

E
∣∣∣∣ ∫ t

0

〈
∇̃ϕm(ηm), Xi

〉
ψ(Um)Um adXi dτ

∣∣∣∣p . E
∫ t

0

∣∣∣〈∇̃ϕm(ηm), Xi

〉
ψ(Um)Um

∣∣∣p dτ
= E

∫ t

0

∣∣∣〈∇̃ϕm(ηm), Xi

〉
ψ(Um)(εm + U)

∣∣∣p dτ
. E

∫ t

0
|εm|p dτ + δm,
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where

δm = E
∫ t

0

∣∣∣〈∇̃ϕm(ηm), Xi

〉
ψ(Um)U

∣∣∣p dτ → 0,

as m→∞, since limm→∞ |∇̃ϕm| = 0. Finally, for the the third term, note first that

ϕm(gn)〈ψ′(Um), Um adXi〉Um

= ϕm(ηm)
〈
ψ′(Um), Um adXi

〉
(εm + U)

= ϕm(ηm)
〈
ψ′(Um), Um adXi

〉
εm + ϕm(ηm)

〈
ψ′(Um), (εm + U) adXi

〉
U

= ϕm(ηm)
〈
ψ′(Um), Um adXi

〉
εm + ϕm(ηm)

〈
ψ′(Um), εm adXi

〉
U

+ ϕm(ηm)
〈
ψ′(Um), U adXi

〉
U.

Thus,

E
∣∣∣∣ ∫ t

0
(ϕm(ηm)ψ(Um)

〈
ψ′(Um), Um adXi

〉
Um − ψ(U)

〈
ψ′(U), U adXi

〉
U) adXi dτ

∣∣∣∣p
. E

∫ t

0

∣∣ϕm(ηm)
〈
ψ′(Um), Um adXi

〉
εm + ϕm(ηm)

〈
ψ′(Um), εm adXi

〉
U

+ϕm(ηm)
〈
ψ′(Um), U adXi

〉
U −

〈
ψ′(U), U adXi

〉
U
∣∣p dτ

. E
∫ t

0
|εm|p dτ + δm,

where

δm = E
∫ t

0
|ϕm(ηm)

〈
ψ′(Um), U adXi

〉
−
〈
ψ′(U), U adXi

〉
|p|U |p dτ → 0,

as m→∞, since ϕm(ηm)ψ′(Um) → ψ′(U) boundedly. These bounds then imply that

E sup
τ≤t

|εmτ |p ≤ C

∫ t

0
|εm|p dτ + δm,

for all t ∈ [0, 1]. Thus, by Gronwall’s inequality, we have

E sup
τ≤1

|Um
τ − Uτ |p = E sup

τ≤1
|εmτ |p ≤ δme

C → 0,

as m→∞.
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Proposition 3.25. Let θm
t : W → g be as in Equation (3.38) with u replaced by um;

that is,

θm
t =

∫ t

0

(〈
∇̂um(ηm), θ

〉
Adηm ◦d~b+ um(ηm) Adηm d~h

)
. (3.50)

Then

lim
m→∞

E sup
τ≤1

|θm
τ − θτ |p = 0,

for all p ∈ (1,∞), where θt : W → g is the solution to

θt =
∫ t

0

(〈
∇̂v(η), θ

〉
Adη ◦ d~b+ v(η) Adη d~h

)
(3.51)

Proof. Let Um
t = Adηm

t
and Ut = Adηt . We rewrite Equation (3.50) in Itô form as

dθm =
〈
∇̂um(ηm), θm

〉
Umd~b+ um(ηm)Umd~h+

1
2

k∑
i=1

〈
∇̃∇̂um (ηm) , Xi ⊗ θm

〉
UmXi dt.

Note that, formally, θ is the solution to Equation (3.38) with u replaced by v (although

v is not a function with compact support), and we may rewrite Equation (3.51) in Itô

form as

dθ =
〈
∇̂v(η), θ

〉
Adη d~b+ v(η) Adη d~h+

1
2

k∑
i=1

〈
∇̃∇̂v(η), Xi ⊗ θ

〉
Adη Xi dt,

=
〈
∇̂v(η), θ

〉
U d~b+ v(η)U d~h+

1
2

k∑
i=1

〈
∇̃∇̂v(η), Xi ⊗ θ

〉
UXi dt.

Let εm := θm − θ (so that θm = εm + θ). Then

dεm =
[〈
∇̂um(ηm), θm

〉
Um −

〈
∇̂v(η), θ

〉
U
]
d~b+ [um(ηm)Um − v(η)U ] d~h

+
1
2

k∑
i=1

[〈
∇̃∇̂um(ηm), Xi ⊗ θm

〉
Um −

〈
∇̃∇̂v(η), Xi ⊗ θ

〉
U
]
Xi dt.

Considering the first term of this expression, we have〈
∇̂um(ηm), θm

〉
Um−

〈
∇̂v(η), θ

〉
U

=
〈
∇̂um(ηm), θ + εm

〉
Um −

〈
∇̂v(η), θ

〉
U

=
〈
∇̂um(ηm), εm

〉
Um +

〈
∇̂um(ηm), θ

〉
Um −

〈
∇̂v(η), θ

〉
U.
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Using again the U and Um remain in a fixed compact subset of End(g) and the fact that

∇̂u(η
m) → ∇̂v(η) boundedly, we have

E
∣∣∣∣∫ t

0

[〈
∇̂um(ηm), θm

〉
Um −

〈
∇̂v(η), θ

〉
U
]
d~b

∣∣∣∣p . E
∫ t

0
|εm|p dτ + δm,

where

δm = E
∫ t

0

∣∣∣〈∇̂um(ηm), θ
〉
Um −

〈
∇̂v(η), θ

〉
U
∣∣∣ dτ → 0,

as m→∞. The second term converges to 0 since

E
∣∣∣∣∫ t

0
[um(ηm)Um − v(η)U ] d~h

∣∣∣∣p = E
∣∣∣∣∫ t

0
[ϕm(ηm)v(ηm)Um − v(η)U ] d~h

∣∣∣∣p → 0,

as m→∞, by the dominated convergence theorem. For the third term, note that∣∣∣[〈∇̃∇̂um(ηm), Xi ⊗ (θ + εm)
〉
Um −

〈
∇̃∇̂v(η), Xi ⊗ θ

〉
U
]
Xi

∣∣∣
. |εm|+

∣∣∣[〈∇̃∇̂um(ηm), Xi ⊗ θ
〉
Um −

〈
∇̃∇̂v(η), Xi ⊗ θ

〉
U
]
Xi

∣∣∣ ,
and so

E
∣∣∣∣∫ t

0

[〈
∇̃∇̂um(ηm), Xi ⊗ θm

〉
Um −

〈
∇̃∇̂v(η), Xi ⊗ θ

〉
U
]
Xi dτ

∣∣∣∣p
. E

∫ t

0
|εm|p dτ + δm,

where

δm = E
∣∣∣∣∫ t

0

[〈
∇̃∇̂um(ηm), Xi ⊗ θ

〉
Um −

〈
∇̃∇̂v(η), Xi ⊗ θ

〉
U
]
Xi dτ

∣∣∣∣p → 0,

as m → ∞, where we have used that ∇̃∇̂um(ηm) → ∇̃∇̂v(η) boundedly to apply the

dominated convergence theorem.

Putting these bounds together then shows

E sup
τ≤t

|εmτ |p ≤ CE
∫ t

0
|εm|p dτ + δm,

for all t ∈ [0, 1], and again applying Gronwall’s inequality gives

E sup
τ≤1

|θm
τ − θτ |p = E sup

τ≤1
|εmτ |p ≤ δme

C → 0,

as m→∞, finishes the proof.
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Proposition 3.26. Let ηm be the solution to Equation (3.45) and θm be the solution to

Equation (3.50). Then, for any h ∈ H , f ∈ C∞
c (G), and t ∈ [0, 1],

∂hf(ηm
t ) =

〈
∇̂f(ηm

t ), θm
t

〉
.

Furthermore, for η the solution to (3.46) and θ the solution to (3.51),

lim
m→∞

E
∣∣∣∂hf(ηm

t )−
〈
∇̂f(ηt), θt

〉∣∣∣p = 0,

for all p ∈ (1,∞).

Proof. The first claim follows immediately from Proposition 3.20. Now note that∣∣∂hf(ηm)−
〈
∇̂f(η), θ

〉 ∣∣ = ∣∣∣〈∇̂f(ηm), θm
〉
−
〈
∇̂f(η), θ

〉∣∣∣
≤
∣∣∣〈∇̂f(ηm), θm

〉
−
〈
∇̂f(ηm), θ

〉∣∣∣+ ∣∣∣〈∇̂f(ηm), θ
〉
−
〈
∇̂f(η), θ

〉∣∣∣
≤ |∇̂f ||θm − θ|+ |∇̂f(ηm)− ∇̂f(η)||θ|.

Thus,

lim
m→∞

E
∣∣∣∂hf(ηm)−

〈
∇̂f(η), θ

〉∣∣∣p ≤ lim
m→∞

E
[
|∇̂f ||θm − θ|+ |∇̂f(ηm)− ∇̂f(η)||θ|

]p
= 0,

by Propositions 3.23 and 3.25 and the dominated convergence theorem.

Corollary 3.27. For any h ∈ H , f ∈ C∞
c (G), and t ∈ [0, 1], f(ηt) ∈ Dom(∂h) and

∂hf(ηt) =
〈
∇̂f(ηt), θt

〉
∈ L∞−(µ).

This corollary follows from ∂h being a closed operator (we are thinking here

that ∂h = ∂h). Now we are able to remove the cutoff functions and prove the primary

result of this section.

Theorem 3.28. Let ξ : [0, 1] × W → G denote the solution to Equation (3.3), and let

Θ : W → g be the solution to

Θt :=
∫ t

0
Adξ d~h =

∫ t

0
Adξ Xiḣ

i dτ. (3.52)
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Then, for any f ∈ C∞
c (G) and t ∈ [0, 1], f(ξt) ∈ D1,∞, and for any h ∈ H ,

∂h[f(ξt)] =
∫ t

0

〈
∇̂f(ξt),Adξτ Xi

〉
ḣi

τ dτ. (3.53)

Thus,

(D[f(ξt)])i =
∫ ·∧t

0

〈
∇̂f(ξt),Adξτ Xi

〉
dτ,

componentwise in H .

Proof. Let ψ ∈ C∞
c (End(g), [0, 1]) be chosen so that ψ = 1 near I and ψ(x) = 0 if

|x| ≥ 2, where | · | is the distance from I with respect to any metric on End(g). Define

vn(x) := ψ(n−1 Adx), and let ξn : [0, 1] × W → G be the solution to the Stratonovich

equation

dξn = vn(ξn)ξn ◦ d~b, with ξn
0 = e.

By Lemma 3.19, ξn exists for all time t ∈ [0, 1]. Noting that vn → 1 and ∇̃vn → 0

boundedly as n → ∞, by an argument identical to that in Proposition 3.23, we may

show that, for all f ∈ C∞
c (G),

lim
n→∞

E sup
τ≤1

|f(ξn
τ )− f(ξτ )|p = 0,

for all p ∈ (1,∞). Note that this convergence implies that f(ξt) ∈ L∞−(µ).

Now let Θn
t : W → g denote the solution to the Itô equation

dΘn =
〈
∇̂vn (ξn) ,Θn

〉
Adξn d~b+ vn(ξn) Adξn d~h

+
1
2

k∑
i=1

〈
∇̃∇̂vn(ξn), Xi ⊗Θn

〉
Adξn Xi dt, (3.54)

with Θn
0 = 0. We will now show that

lim
n→∞

E sup
τ≤1

|Θn
τ −Θτ |p = 0, (3.55)

for all p ∈ (1,∞). So let Wn = Adξn and W = Adξ. Then Wn,W : W → End(g) satisfy

the equations

dWn = vn(ξn)Wn ◦ ad
d~b
, with Wn

0 = I,
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and

dW = W ◦ ad
d~b
, with W0 = I.

Rewriting Equation (3.54), Θn solves

dΘn =
〈
∇̂vn (ξn) ,Θn

〉
Wnd~b+ vn(ξn)Wn d~h+

1
2

k∑
i=1

〈
∇̃∇̂vn(ξn), Xi ⊗Θn

〉
WnXi dt,

and Equation (3.52) implies that

dΘ = W d~h.

Thus, for εn := Θn −Θ,

dεn =
〈
∇̂vn (ξn) ,Θn

〉
Wnd~b+ (vn(ξn)Wn −W )d~h

+
1
2

k∑
i=1

〈
∇̃∇̂vn(ξn), Xi ⊗Θn

〉
WnXi dt. (3.56)

Since W and Wn are the solutions to Equations (3.16) and (3.28), which have smooth,

bounded coefficients, Theorem V-10.1 of Ikeda and Watanabe [30] implies that W and

Wn are (componentwise) in the domain D∞. By Propositions 3.16 and 3.18,

lim
n→∞

E sup
τ≤1

|Wn
τ −Wτ |p (3.57)

and

lim
n→∞

E sup
τ≤1

|∂hW
n
τ − ∂hWτ |p, (3.58)

for all p ∈ (1,∞). Furthermore,

∂hW
n = ∂h Adξn = adΘn Adξn = adΘn Wn.

This then implies that〈
∇̂vn(ξn),Θn

〉
=

d

dt

∣∣∣∣
0

ψ(n−1 AdetΘnξn)

=
1
n

〈
ψ′(n−1 Adξn), adΘn Adξn

〉
=

1
n

〈
ψ′(n−1Wn), ∂hW

n
〉
.
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Thus, for the first term of Equation (3.56),

E
∣∣∣∣ ∫ t

0

〈
∇̂vn(ξn),Θn

〉
Wn d~b

∣∣∣∣p . E
∫ t

0

1
n

∣∣〈ψ′(n−1Wn), ∂hW
n
〉
Wn

∣∣p dτ
. E

∫ t

0

(
1
n

∣∣ψ′(n−1Wn)
∣∣ |Wn|

)p

|∂hW
n|p dτ

. E
∫ t

0

(
1
n

∣∣ψ′(n−1Wn)
∣∣ |Wn|

)p

|∂hW |p dτ

+ E
∫ t

0

(
1
n

∣∣ψ′(n−1Wn)
∣∣ |Wn|

)p

|∂hW
n − ∂hW |p dτ → 0,

as n→∞, by the dominated convergence theorem. Similarly,〈
∇̃∇̂vn(ξn), Xi ⊗Θn

〉
=

1
n2

〈
ψ′′(n−1Wn),Wn adXi ⊗ adΘn Adξn

〉
=

1
n2

〈
ψ′′(n−1Wn),Wn adXi ⊗∂hW

n
〉
,

so that

E
∣∣∣∣ ∫ t

0

〈
∇̃∇̂vn(ξn),Xi ⊗Θn

〉
WnXi dτ

∣∣∣∣p
= E

∣∣∣∣ ∫ t

0

1
n2

〈
ψ′′(n−1Wn),Wn adXi ⊗∂hW

n
〉
WnXi

∣∣∣∣p dτ
. E

∫ t

0

(
1
n2

∣∣ψ′′(n−1Wn)
∣∣ |Wn|2

)p

|∂hW
n|p dτ

. E
∫ t

0

(
1
n2

∣∣ψ′′(n−1Wn)
∣∣ |Wn|2

)p

|∂hW |p dτ

+ E
∫ t

0

(
1
n2

∣∣ψ′′(n−1Wn)
∣∣ |Wn|2

)p

|∂hW
n − ∂hW |p dτ → 0,

as n→∞, again by dominated convergence. Finally,

E
∣∣∣∣ ∫ t

0
(vn(ξn)Wn −W ) d~h

∣∣∣∣p
. E

∫ t

0
|vn(ξn)− 1|p|W |p d~h+ E

∫ t

0
|vn(ξn)|p |Wn −W |p d~h→ 0

as n → ∞, by the dominated convergence theorem. Thus, Proposition 3.11 completes

the proof of Equation (3.55).
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Now, by Corollary 3.27, for any f ∈ C∞
c (G) and t ∈ [0, 1], ∂h[f(ξn

t )] ∈ L∞−(µ),

and

∂h[f(ξn
t )] =

〈
∇̂f(ξn

t ),Θn
t

〉
.

Thus, by the same argument as in Proposition 3.26, Equation (3.55) implies that

lim
n→∞

E
∣∣∣∂hf(ξn

t )−
〈
∇̂f(ξt),Θt

〉∣∣∣p = 0,

for all p ∈ (1,∞). Since ∂h is a closed operator, this and f(ξt) ∈ L∞−(µ) imply that

f(ξt) ∈ Dom(∂h) and

∂h[f(ξt)] =
〈
∇̂f(ξt),Θt

〉
=
〈
∇̂f(ξt),

∫ t

0
Adξ Xiḣ

i dτ

〉
∈ L∞−(µ).

In particular, for any h ∈ H such that ‖h‖H = 1,

E|∂h[f(ξt)]|p ≤ ‖∇̂f‖∞E
∣∣∣∣∫ t

0
Adξ Xiḣ

i dτ

∣∣∣∣p ≤ ‖∇̂f‖∞
k∑

i=1

E
∫ t

0
|Adξ Xi|p dτ.

By the proof of Proposition 3.13,

E sup
τ≤1

|Adξτ |p ≤ C,

for some finite constant C, and thus ‖f(ξt)‖G1,p <∞ for all p ∈ (1,∞), where

‖F‖G1,p = ‖F‖Lp(µ) +

(
E sup
‖h‖H =1

|∂hF |p
)1/p

;

see Section 2.5. Then by Theorem 2.12, f(ξt) ∈ D1,∞, and

E[f(ξt)D∗h] = E[∂h[f(ξt)]] = E
[∫ t

0

〈
∇̂f(ξt),Adξ Xi

〉
ḣi dτ

]
,

implies that

(Ds[f(ξt)])i =
〈
∇̂f(ξt),

∫ s∧t

0
Adξ Xi dτ

〉
,

componentwise in H .
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Lie group inequalities

Again, let G be a Lie group with identity e and Lie algebra Lie(G) = g, and

suppose {Xi}k
i=1 ⊂ g is a Lie generating set, in the sense of Equation (1.7). We have the

gradient ∇ = (X̃1, . . . , X̃k) and the subLaplacian L =
∑k

i=1 X̃
2
i as operators on smooth

functions of G with compact support. Let L also denote the self-adjoint extension of the

subLaplacian and Pt = etL/2 be the heat semigroup as in Definition 1.8.

We recall the following lemmas, proved in Chapter 2 in the Heisenberg context

(Lemmas 2.4 and 2.5). The proofs are identical in the general Lie group case.

Lemma 4.1. By the left invariance of ∇ and Pt, the inequality (Ip) holds for all g ∈ G,

f ∈ C∞
c (G), and t > 0, if and only if,

|∇Ptf |p(e) ≤ Kp(t)Pt|∇f |p(e), (4.1)

for all f ∈ C∞
p (G) and t > 0, where e ∈ G is the identity element.

Lemma 4.2. For X ∈ g,

X̃Ptf(e) = PtX̂f(e).

for all f ∈ C∞
c (G). More generally,

X̂Ptf = PtX̂f,

87
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from which the previous equation follows, since X̂ = X̃ at e.

(The proof of this statement is slightly easier than its analogue Lemma 2.5,

since working with functions with compact support – versus functions with polynomial

growth – requires only the invariance of Haar measure to justify passing the derivative

through the integral.)

4.1 An Lp-type gradient estimate (p > 1)

Notation 4.3. For each r ∈ {1, . . . ,m}, let Λr = Λk,r be the set of multi-indices

α = (α0, α1, . . . , αr), with αl ∈ {1, . . . , k} for l ∈ {0, . . . , r}. For any α ∈ Λr, define

α′ := (α1, . . . , αr) and

α := (αr, . . . , α0) = α reversed .

We define the order of α by |α| := r + 1. Let

Xα = [Xαr , [· · · , [Xα1 , Xα0 ] · · · ]] = adXαr
· · · adXα1

Xα0 and

Xα = Xαr · · ·Xα0 .

When |α| = 1, that is, α = (α0), then Xα = Xα0 = Xα. For each α ∈ Λr, there exist

εβ,α ∈ {−1, 0, 1} such that

Xα =
∑
β∈Λr

εβ,αX
β.

For example, returning the Heisenberg group case and letting X1 = X, X2 = Y ,

and X3 = Z, with commutation relations given as in Section 2.1, we have

X(1,2) = [X1, X2] = X3, X(1,2) = X(2,1) = [X2, X1] = −X3, and X(1,2)′ = X(2) = X2.

Proposition 4.4. For each i = 1, . . . , k, X̂i may be written as a linear combination,

X̂i =
m∑

r=0

∑
α∈Λr

ci,αX̃
α, (4.2)
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with coefficients ci,α : G → R (some of these are 0) such that ci,α(ξt) ∈ D∞, for all

t ∈ [0, 1].

Proof. Recall from Notation 1.4 that we defined

Σr = {[Xi1 , [· · · , [Xir−1 , Xir ] · · · ] : il ∈ {1, . . . , k}, l ∈ {1, . . . , r}} = {Xα : α ∈ Λr},

for r = 0, . . . ,m. Recall also from Notation 1.4 that we have an orthonormal basis

{Xi, Yj : i ∈ {1, . . . , k}, j ∈ {1, . . . , d − k}} of g, where d = dim(G) and, for each

j ∈ {1, . . . , d − k}, Yj = Xα(j) ∈ Σr(j) for some α(j) ∈ Λr(j), r(j) ∈ {1, . . . ,m}. Thus,

for any g ∈ G and X ∈ g,

X̂(g) = Rg∗X = Lg∗Lg−1∗Rg∗X = Lg∗ Adg−1 X

= Lg∗

 k∑
i=1

〈
Adg−1 X,Xi

〉
Xi +

d−k∑
j=1

〈
Adg−1 X,Yj

〉
Yj


= Lg∗

 k∑
i=1

〈
Adg−1 X,Xi

〉
Xi +

d−k∑
j=1

∑
α∈Λr(j)

εα,α(j)

〈
Adg−1 X,Yj

〉
Xα


=

k∑
i=1

〈
Adg−1 X,Xi

〉
X̃i +

d−k∑
j=1

∑
α∈Λr(j)

εα,α(j)

〈
Adg−1 X,Yj

〉
X̃α

where εα,α(j) ∈ {−1, 0, 1}. So, for each l = 1, . . . , k,

X̂l(g) =
k∑

i=1

〈
Adg−1 Xl, Xi

〉
X̃i(g) +

d−k∑
j=1

∑
α∈Λr(j)

εα,α(j)

〈
Adg−1 Xl, Yj

〉
X̃α(g)

=
m∑

r=0

∑
α∈Λr

cl,αX̃
α(g),

where

cl,α(g) =
〈
Adg−1 Xl, Xi

〉
, when r = 0 and α = (i),

and

cl,α(g) = ε
〈
Adg−1 Xl, Yj

〉
, ε ∈ {−1, 0, 1}, when r ∈ {1, . . . ,m}.
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Now recall that Adξt ∈ D∞(End(g)) by Proposition 3.14, and u : End(g) → R

given by u(W ) = 〈WX,Y 〉 is a smooth function for any fixed X,Y ∈ g. Thus, u(Adξt) ∈
D∞ for all t ∈ [0, 1]. Since cl,α(ξt) = εu(Adξt), with X = Xl and Y = Xi or Yj , this

implies that cl,α(ξt) ∈ D∞, for all α ∈ Λr and l ∈ {1, . . . , k}.

Theorem 4.5. Let G be a Lie group with Lie algebra g, and suppose {X1, . . . , Xk} ⊂ g is

a Lie generating set. Then, for all p ∈ (1,∞), Kp(t) <∞, where Kp(t) are the functions

defined in Notation 1.9; that is, Kp(t) is the best function so that

|∇Ptf |p ≤ Kp(t)Pt|∇f |p,

for all f ∈ C∞
c (G) and t > 0.

Proof. Lemma 4.1 implies that the inequality (Ip) is translation invariant on groups.

Thus, we need only determine finite Kp(t) such that the inequality holds at the identity.

Using Lemma 4.2 and Equation (4.2), we have

|∇Ptf |2(e) =
k∑

i=1

|X̃iPtf |2(e) =
k∑

i=1

|PtX̂if |2(e) ≤ C
k∑

i=1

m∑
r=0

∑
α∈Λr

|Ptci,αX̃
αf |2(e),

for a constant C = C(k,m). Recall that Equation (3.4) implies that, for any f ∈ C∞
c (G),

Ptf(e) = E[f(ξt)], where ξ is the solution to the Stratonovich equation (3.3). Thus, for

any α ∈ Λr,

|PtcX̃
αf |(e) ≤ E|c(ξt)(X̃αf)(ξt)| = E|c(ξt)Xα′ [(X̃α0f)(ξt)]|

= E
∣∣∣(Xα′

)∗
[c(ξt)](X̃α0f)(ξt)

∣∣∣
≤
(
E
∣∣∣(Xα′

)∗
[c(ξt)]

∣∣∣q)1/q (
E|(X̃α0f)(ξt)|p

)1/p

=
(
E
∣∣∣(Xα′

)∗
[c(ξt)]

∣∣∣q)1/q (
Pt|X̃α0f |p(e)

)1/p
,

by Hölder’s inequality, where q is the conjugate exponent to p, Xα is the lifted vector

field on W of the vector field X̃α, as defined in Equation (3.11), and (Xα)∗ = X∗
αr
· · ·X∗

α0
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(so
(
Xα′

)∗
= X∗

α1
· · ·X∗

αr
). Thus,

|∇Ptf |p(e) ≤ C

[
k∑

i=1

m∑
r=0

∑
α∈Λr

(
E
∣∣∣(Xα′

)∗
[ci,α(ξt)]

∣∣∣q)2/q (
Pt|X̃α0f |p(e)

)2/p
]p/2

≤ C

[
k∑

i=1

m∑
r=0

∑
α∈Λr

(
E
∣∣∣(Xα′

)∗
[ci,α(ξt)]

∣∣∣q)p/q
]
Pt|∇f |p(e),

where C = C(k,m, p) and q = p−1
p . Thus, the inequality (Ip) holds with

Cp(t) = C(k,m, p)
k∑

i=1

m∑
r=0

∑
α∈Λr

(
E
∣∣∣(Xα′

)∗
[ci,α(ξt)]

∣∣∣q)p/q

. (4.3)

Propositions 3.10 and 4.4 imply that
(
Xα′

)∗
[ci,α(ξt)] ∈ L∞−(µ), for all i = 1, . . . , k and

α ∈ Λr. Therefore, Kp(t) ≤ Cp(t) <∞ for all t > 0 and p ∈ (1,∞).

It is important to note that there is currently no good control over the behavior

of the functions Cp in Equation (4.3) with respect to t. In fact, from certain scaling

arguments, it is expected that Cp(t) →∞ and t→ 0; see for example [8, 33]. However,

we do not claim these are the best constants for which the inequality holds.

4.2 A Poincaré inequality

The following result is a direct corollary to Theorem 4.5. The proof is com-

pletely analogous to the proof of Theorem 2.23.

Theorem 4.6 (Poincaré Inequality). Let K2(t) be the best function for which Equa-

tion Ip holds for p = 2, and let pt(g) dg be the hypoelliptic heat kernel. Then∫
G
f2(g)pt(g) dg −

(∫
G
f(g)pt(g) dg

)2

≤ Λ(t)
∫

G
|∇f |2(g)pt(g) dg, (4.4)

for all f ∈ C∞
c (G) and t > 0, where

Λ(t) =
∫ t

0
K2(s) ds.
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Proof. Let Ft(g) = (Ptf)(g). Then

d

dt
Pt−sF

2
s = Pt−s

(
−1

2
LF 2

s + FsLFs

)
= −Pt−s|∇Fs|2.

Integrating this equation on t implies that

Ptf
2 − (Ptf)2 =

∫ t

0
Pt−s|∇Fs|2 ds

=
∫ t

0
Pt−s|∇Psf |2 ds

≤
∫ t

0
K2(s)Pt−sPs|∇f |2 ds =

(∫ t

0
K2(s) ds

)
· Pt|∇f |2

wherein we have made use of Theorem 4.5. Evaluating the above at e ∈ G gives the

desired result.

This Poincaré inequality is less useful in the general Lie group case because

nothing is known about the integrability of Kp(t). However, in the next two sections,

we will carry out a generalization of the argument that was made in Section 2.3. That

is, we will show that when G is a nilpotent Lie group, Kp(t) is a bounded function for

all p ∈ (1,∞). In particular, when p = 2, this implies the Poincaré inequality holds with

Λ(t) <∞, for all t > 0.

4.2.1 Stratified nilpotent Lie groups

Definition 4.7. A Lie algebra g is said to be nilpotent if adX is a nilpotent endomorphism

of g for all X ∈ g, that is, if there exists m ∈ N such that

adY1 · · · adYm−1 Ym = [Y1, [· · · , [Ym−1, Ym] · · · ] = 0,

for any Y1, . . . , Ym ∈ g. We say that g is nilpotent of step m. A Lie group G is nilpotent

if g = Lie(G) is a nilpotent Lie algebra.

Definition 4.8. A family of dilations on a Lie algebra g is a family of algebra automor-

phisms {Φr}r>0 on g of the form Φr = exp(W log r), where W is a diagonalizable linear

operator on g with positive eigenvalues.
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Definition 4.9. A stratified group G is a simply connected nilpotent group for which

there exists a subset of the Lie algebra V1 ⊂ g, such that g = ⊕m
j=1Vj with Vj+1 = [V1, Vj ],

for j = 1, . . . ,m− 1, and Vm+1 = [V1, Vm] = {0}.

For a general exposition on nilpotent Lie groups and dilations, see [19, 22] and

references contained therein. If G is a stratified Lie group, a natural family of dilations

may be defined on g by setting Φr(X) = rjX, for all X ∈ Vj . The generator W of this

dilation acts on parts of the vector space decomposition by WVj = jVj , for each j =

1, . . . ,m. The automorphism Φr induces a group dilation φr via the exponential maps,

φr = exp ◦Φr ◦ exp−1. Since G is a simply connected nilpotent group, the exponential

map is in fact a global diffeomorphism on g, and exp−1 exists everywhere on G; see for

example Theorem 3.6.2 of Varadarajan [49]. Then for each X ∈ V1,

X̃(f ◦ φr)(g) =
d

dε

∣∣∣∣
0

(f ◦ φr)(geεX) =
d

dε

∣∣∣∣
0

f(φr(g)φr(eεX))

=
d

dε

∣∣∣∣
0

f(φr(g)erεX) =
d

dε

∣∣∣∣
0

rf(φr(g)eεX) = r(X̃f ◦ φr)(g), (4.5)

for all f ∈ C1(G), where in the second equality we have used that φr is a homomorphism.

Let {Xi}k
i=1 ⊂ V1 be a basis of V1, and consider the operators ∇ = (X̃1, . . . , X̃k) and

L =
∑k

i=1. Equation (4.5) implies that

∇(f ◦ φr) = r(∇f) ◦ φr,

and we have the following proposition.

Proposition 4.10. Let L denote the self-adjoint extension of
∑k

i=1 X̃
2
i , and Pt = etL/2

be as in Definition 1.8. Then

L(f ◦ φr) = r2(Lf) ◦ φr

and

Pt(f ◦ φr) = etL/2(f ◦ φr) =
(
er

2tL/2f
)
◦ φr = Pr2t ◦ φr,

for any f ∈ C∞
c (G).
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Proof. Let E0(f, h) :=
∑k

i=1(X̃if, X̃ih)L2(G) be a Dirichlet form associated to L. Recall

from Chapter 1 that E0 has a closed extension E . By definition,

f1 ∈ C∞
c (G) and Lf1 = h ⇐⇒ E(f1, f2) = (h, f2), ∀f2 ∈ Dom(E).

Now note that

E0(f ◦ φr, f ◦ φr) =
k∑

i=1

∫
G
|X̃i(f ◦ φr)|2(g) dg

=
k∑

i=1

r2
∫
|(X̃if) ◦ φr|2(g) dg

=
k∑

i=1

r2
∫
|X̃if |2(g)J(r−1) dg = r2J(r−1)E0(f, f),

where J(r) is the Jacobian of the transformation φr,

J(r) =
m∏

j=1

(rj)dj

with dj = dim(Vj). Thus, J(r−1) = J(r)−1. So f ∈ Dom(E) implies that f ◦ φr ∈
Dom(E), and, in general, E(f◦φr, h◦φr) = r2J(r−1)E(f, h), for f, h ∈ Dom(E). Replacing

h here by h ◦ φr−1 gives

E(f ◦ φr, h) = r2J(r−1)E(f, h ◦ φr−1)

= r2J(r−1)(Lf, h ◦ φr−1)L2(G)

= r2J(r−1)J(r)(Lf ◦ φr, h)L2(G) = r2(Lf ◦ φr, h)L2(G),

implies that if f ∈ Dom(L), then f ◦ φr ∈ Dom(L) and L(f ◦ φr) = r2Lf ◦ φr.

Now, for r > 0, let Ur : L2(G) → L2(G) be the unitary operator given by

Urf = 1√
J(r−1)

f ◦ φr. Then

LUr = r2UrL = Ur(r2L)

as operators, and thus U−1
r LUr = r2L. Then we have that

U−1
r etL/2Ur = etU

−1
r LUr/2 = er

2tL/2,
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from which it follows that

r2etL/2(f ◦ φr) = etL/2Urf = Ure
r2tL/2f = r2(er

2tL/2f) ◦ φr.

Given these equations, an argument identical to the proof of Proposition 2.6

proves the following proposition.

Proposition 4.11. Suppose G is a stratified Lie group with vector space decomposition

⊕m
j=1Vj. Let {Xi}k

i=1 ⊂ V1, ∇, and L be as above, and let p ∈ (1,∞). If Kp is the best

constant such that

|∇P1f |p ≤ KpP1|∇f |p,

for all f ∈ C∞
c (G), then Kp(t) = Kp for all t > 0, where Kp(t) is the function defined

in Notation 1.9.

4.2.2 Nilpotent Lie groups

Now let G be a general nilpotent Lie group. Because not all nilpotent Lie groups

admit dilations, we can not show that the functions Kp(t) should be scale invariant in

this context. However, by covering G with a group which has a family of dilations

adapted to its structure, we may show that there exists some constant Kp < ∞ for

which Kp(t) < Kp for all t > 0.

Definition 4.12. Let L = L(k,m) be the free nilpotent Lie algebra of step m with k

generators {ei}k
i=1. Then L is the unique (up to isomorphism) nilpotent Lie algebra of

rank m such that, for every nilpotent Lie algebra g of rank m and map Π̃ : {e1, . . . , ek} →
g, there exists a unique homomorphism Π : L → g which extends Π̃. Let N = N (k,m)

be the free nilpotent Lie group of rank m with k generators, which is the simply connected

group of L(k,m).

The Lie algebra L(k,m) admits a vector space decomposition by setting V1 =

span{e1, . . . , ek}. Thus, N is a stratified Lie group with Hörmander set {ei}k
i=1 ⊂ L;
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for definitions and further details, see [51]. Let ∇L = (ẽ1, . . . , ẽk), L =
∑k

i=1 ẽ
2
i , and

Pt = etL /2. Theorem 4.5 and Proposition 4.11 imply that, for all p ∈ (1,∞), there exist

constants KL
p <∞ such that

|∇LPtf |p ≤ KL
p Pt|∇Lf |p, (4.6)

for all f ∈ C∞
c (N ) and t > 0.

Proposition 4.13. Let G be a nilpotent group of step m with Hörmander set {Xi}k
i=1.

Then Kp(t) ≤ KL
p for all t > 0, where Kp(t) is the function defined in Notation 1.9.

Proof. By definition of L = L(k,m), there exists a unique Lie algebra homomorphism

Π : L → g such that Π(ei) = Xi. Then Π induces a group homomorphism π : N → G

via the exponential maps,

π = expG ◦Π ◦ exp−1
N .

Again, because N is a simply connected nilpotent Lie group, the exponential map on L
is a global diffeomorphism. Note that dπ = Π,

L(k,m) Π−−−−→ g

expN

y yexpG

N (k,m) −−−−→
π

G

and the vector fields X̃i and ẽi are π-related; that is,

ẽα(f ◦ π) = (X̃αf) ◦ π,

for any multi-index α ∈ Λr and f ∈ C∞
c (G). Since π is a Lie group homomorphism,

f ◦ π ∈ C∞
c (N ), and thus,

|∇Ptf |p(e) = |∇LPt(f ◦ π)|p(eN ) ≤ KL
p Pt|∇L(f ◦ π)|p(eN ) = KL

p Pt|∇f |p(e),

where eN is the identity element of N . Since Kp(t) is the best constant for which

|∇Ptf |p(e) ≤ Kp(t)Pt|∇f |p(e)

holds, the above implies that Kp(t) ≤ KL
p for all t > 0.
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This method of lifting the vector fields to a free nilpotent Lie algebra was

learned from [50, 51]. A generalization of this procedure may be found in [43].

Remark 4.14. Note that the above argument is independent of the minimality of the

Hörmander set {Xi}k
i=1. So suppose that the collection {Xi}k

i=1 spans the Lie algebra

g. Since G is a nilpotent Lie group (and thus unimodular) it is then well known that

the operator L =
∑k

i=1 X̃
2
i is in fact the Laplace-Beltrami operator on the Riemannian

manifold (G, 〈·, ·〉). Then by Theorem 1.2,

|∇Ptf |p ≤ epktPt|∇f |p,

where −k is a lower bound on the Ricci curvature. Proposition 4.13 improves this result

for large t by implying that there exists a Kp <∞ independent of t such that

|∇Ptf |p ≤ KpPt|∇f |p,

for all f ∈ C∞
p (G) and t > 0. Thus, we have the following corollary.

Corollary 4.15. Let G be a nilpotent Lie group of step m and {Xi}k
i=1 ⊂ g such that

{Xi}k
i=1 spans the Lie algebra g. Then, for Kp(t) as in Notation 1.9,

Kp(t) ≤ min{KL
p , e

pkt},

where KL
p is the best constant so that (Ip) holds on L(k,m) and −k is a lower bound on

the Ricci curvature associated to the Riemannian metric determined by L =
∑k

i=1 X̃
2
i .

Corollary 4.16 (Poincaré Inequality for nilpotent Lie groups). Suppose G is a

nilpotent Lie group, and let K2 be a finite constant for which the inequality (Ip) holds

for p = 2. Then the inequality (4.4) holds with Λ(t) = K2t, for all t > 0.



Chapter 5

Appendix

5.1 Proof of Theorem 1.2

Proof. Comparing Equations (1.1) and (1.2), it is clear that a lower bound on the Ricci

curvature immediately gives

Γ2(f) = |∇2f |2 + (Ric∇f,∇f) ≥ (Ric∇f,∇f) ≥ −2k|∇f |2 = Γ1(f),

and so (1) implies (2). For the converse, let m ∈ M , v ∈ TmM , and let f ∈ C∞(M)

such that f(expm(w)) = (v, w), for all w ∈ TmM in a neighborhood of 0 ∈ TmM . Since

f(expm(tw)) = tv · w, it follows that

df(wm) =
d

dt

∣∣∣∣
0

f(expm(tw)) = (v, w)

and

∇2f(wm, wm) =
d2

dt2

∣∣∣∣
0

f(expm(tw)) = 0.

Thus, (∇2f)m = 0, ∇f(m) = v, and so

−2k|v|2 = −2kΓ1(f) ≤ Γ2(f) = (Ric v, v);

that is, (2) implies (1).

98
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An application of the Cauchy-Schwarz inequality shows that (3) implies (4),

and (5) is a trivial consequence of (4). Assuming (5) holds, differentiating the inequality

|∇Ptf |2 ≤ K(t)Pt|∇f |2

at t = 0, implies that

2(∇f, 1
2
∇Lf) =

d

dt

∣∣∣∣
0

|∇Ptf |2

≤ d

dt

∣∣∣∣
0

K(t)Pt|∇f |2 = K̇(0)|∇f |2 +
1
2
L|∇f |2.

Hence,

Γ2(f) =
1
2
L|∇f |2 − (∇f,∇Lf) ≥ K̇(0)|∇f |2 = K̇(0)Γ1(f),

and thus (2) follows with k = 1
2K̇(0).

Finally, to verify that (1) implies (3), we may use the Feynman-Kac formula,

et∆/2f(x) = E[Qt//
−1
t f(Bx

t )],

where Bx
t is Brownian motion on M such that Bx

0 = x, //t is parallel translation, and

Qt satisfies
d

dt
Qt = −Ric//t

Qt = 0 with Q0 = Id;

see for example Theorem 7.2.1 of [27]. Thus,

∇et∆/2f(x) = E[Qt//
−1
t ∇f(Bx

t )].

So if Ric ≥ −kg, then |Qt| ≤ ekt, and hence

|∇et∆/2f |(x) ≤ E
∣∣Qt//

−1
t ∇f(Bx

t )
∣∣

≤ ektE
∣∣//−1

t ∇f(Bx
t )
∣∣ = ektE |∇f(Bx

t )| = ektet∆/2|∇f |(x),

and the proof is complete.
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5.2 Proof of Theorem 3.5

Notation 5.1. Let S := {v ∈ g : 〈v, v〉 = 1}, that is, S is the unit sphere in g.

Proof. To show σ̄−1
t ∈ L∞− (µ), it suffices to show that

µ

(
inf
v∈S

〈σ̄tv, v〉 < ε

)
= O(ε∞−).

To verify this claim, notice that λ0 := infv∈S〈σ̄tv, v〉 is the smallest eigenvalue of σ̄t.

Since det σ̄t is the product of the eigenvalues of σ̄t it follows that ∆t := det σ̄t ≥ λn
0 and

so {det σ̄t < εn} ⊂ {λ0 < ε} and hence

µ (det σ̄t < εn) ≤ µ (λ0 < ε) = O(ε∞−).

By replacing ε by ε1/n above this implies µ (∆t < ε) = O(ε∞−). From this estimate it

then follows that

E
[
∆−q

t

]
= E

∫ ∞

∆t

qτ−q−1dτ = qE
∫ ∞

0
1∆t≤τ τ

−q−1dτ

= q

∫ ∞

0
µ(∆t ≤ τ) τ−q−1dτ = q

∫ ∞

0
O(τp) τ−q−1dτ

which is seen to be finite by taking p ≥ q + 1.

More generally, if T is any stopping time with T ≤ t, since 〈σ̄T v, v〉 ≤ 〈σ̄tv, v〉
for all v ∈ S, it suffices to prove

µ

(
inf
v∈S

〈σ̄T v, v〉 < ε

)
= O(ε∞−). (5.1)

According to Lemma 5.2 and Proposition 5.3 below, Equation (5.1) holds with

T = Tδ := inf {t > 0 : max {|Adξt −Ig| , |ξt|} > δ} (5.2)

provided δ > 0 is chosen sufficiently small.

The rest of this section is now devoted to the proof of Lemma 5.2 and Propo-

sition 5.3 below. In what follows we will make repeated use of the identity,

〈σ̄T v, v〉 =
k∑

i=1

∫ T

0
〈Adξτ Xi, v〉2 dτ. (5.3)
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To prove this, recall that {Xi}k
i=1 is an orthonormal basis of g0. Thus,

P Ad†ξτ
v =

k∑
i=1

〈
Ad†ξτ

v,Xi

〉
Xi =

k∑
i=1

〈Adξτ Xi, v〉Xi

so that 〈
Adξτ P Ad†ξτ

v, v
〉

=
k∑

i=1

〈Adξτ 〈Adξτ Xi, v〉Xi, v〉 =
k∑

i=1

〈Adξτ Xi, v〉2

which upon integrating in τ gives Equation (5.3).

Lemma 5.2 (Compactness Argument). Let Tδ be as in Equation (5.2), and suppose

for all v ∈ S there exists i ∈ {1, . . . , k} and an open neighborhood N ⊂o S of v such that

sup
u∈N

µ

(∫ Tδ

0
〈Adξτ Xi, u〉2 dτ < ε

)
= O

(
ε∞−) , (5.4)

then Equation (5.1) holds provided δ > 0 is sufficiently small.

Proof. By compactness of S, it follows from Equation (5.4) that

sup
u∈S

µ

(∫ Tδ

0
〈Adξτ Xi, u〉2 dτ < ε

)
= O

(
ε∞−) . (5.5)

For w ∈ g, let ∂w denote the directional derivative acting on functions f (v) with v ∈ g.

For all v, w ∈ Rn with |v| ≤ 1 and |w| ≤ 1 (using Equation (5.3)),

|∂w 〈σ̄Tδ
v, v〉| ≤ 2

k∑
i=1

∫ Tδ

0
|〈Adξτ Xi, v〉 〈Adξτ Xi, w〉| dτ

≤ 2
k∑

i=1

∫ Tδ

0
|Adξτ Xi|2Hom(Rn,g) dτ.

Thus, by choosing δ > 0 in Equation (5.2) sufficiently small, we may assume there is a

non-random constant θ <∞ such that

sup
|v|,|w|≤1

|∂w 〈σ̄Tδ
v, v〉| ≤ θ <∞.
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With this choice of δ, if v, w ∈ S satisfy |v − w| < θ/ε, then

|〈σ̄Tδ
v, v〉 − 〈σ̄Tδ

w,w〉| < ε. (5.6)

There exists D < ∞ such that ,for any ε > 0, there is an open cover of S with at most

D · (θ/ε)n balls of the form B(vj , ε/θ). From Equation (5.6), for any v ∈ S there exists

j such that v ∈ B(vj , ε/θ) ∩ S and

|〈σ̄Tδ
v, v〉 − 〈σ̄Tδ

vj , vj〉| < ε.

So if infv∈S 〈σ̄Tδ
v, v〉 < ε, then minj 〈σ̄Tδ

vj , vj〉 < 2ε; that is,{
inf
v∈S

〈σ̄Tδ
v, v〉 < ε

}
⊂
{

min
j
〈σ̄Tδ

vj , vj〉 < 2ε
}
⊂
⋃
j

{〈σ̄Tδ
vj , vj〉 < 2ε} .

Therefore,

µ

(
inf
v∈S

〈σ̄Tδ
v, v〉 < ε

)
≤
∑

j

µ (〈σ̄Tδ
vj , vj〉 < 2ε)

≤ D · (θ/ε)n · sup
v∈S

µ (〈σ̄Tδ
v, v〉 < 2ε) ≤ D · (θ/ε)nO(ε∞−) = O(ε∞−).

Recall from Equation (3.19), that for any X ∈ g,

dAdξs X = Adξs ◦ addbs X = Adξs adXi X ◦ dbis = Adξs [Xi, X] ◦ dbis,

which may be rewritten in Itô form as

d[Adξs X] = Adξs [Xi, X] dbis +
1
2

Adξs ad2
Xi
X ds. (5.7)

This gives the first hint that Hörmander’s condition is relevant to showing ∆−1
t ∈

L∞−(µ), or equivalently that σ̄−1
t ∈ L∞−(µ).

Proposition 5.3. Let Tδ be as in Equation (5.2). If Hörmander’s restricted bracket

condition holds and v ∈ S is given, there exists i ∈ {1, . . . , k} and an open neighborhood

U ⊂o S of v such that

sup
u∈U

µ

(∫ Tδ

0
〈Adξτ Xi, u〉2 dτ ≤ ε

)
= O

(
ε∞−) .
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Proof. Hörmander’s condition implies that there exist m ∈ N and β > 0 such that
m∑

r=0

1
|Σr|

∑
V ∈Σr

V V tr ≥ 3βI.

Equivalently, for all v ∈ S,

3β ≤
m∑

r=0

1
|Σr|

∑
V ∈Σr

〈V, v〉2 ≤ max
V ∈Σr

r∈{0,...,m}

〈V, v〉2 .

By choosing δ > 0 in Equation (5.2) sufficiently small we may assume that

max
V ∈Σr

r∈{0,...,m}

inf
τ≤Tδ

〈Adξτ V, v〉
2 ≥ 2β, for all v ∈ S.

Fix a v ∈ S and V ∈ ∪m
r=0Σr such that

inf
τ≤Tδ

〈Adξτ V, v〉
2 ≥ 2β,

and choose an open neighborhood U ⊂ S of v such that

inf
τ≤Tδ

〈Adξτ V, u〉
2 ≥ β, for all u ∈ U.

Then, by Equation (8.19) of Driver [15], µ(Tδ ≤ τ) = O(τ∞−), and so

sup
u∈U

µ

(∫ Tδ

0
〈Adξτ V, u〉

2 dτ ≤ ε

)
≤ µ

(∫ Tδ

0
βdt ≤ ε

)
= µ (Tδ ≤ ε/β) = O

(
ε∞−) .

(5.8)

Write V = adXir
· · · adXi2

Xi1 with r ≤ m. When r = 1, Equation (5.8) becomes

sup
u∈U

µ (〈σ̄Tδ
u, u〉 ≤ ε) ≤ sup

u∈U
µ

(∫ Tδ

0
〈Adξτ Xi1 , u〉

2 dt ≤ ε

)
= O

(
ε∞−) ,

and we are done. So now suppose r > 1. Set

Vj = adXij
. . . adXi2

Xi1 for j = 1, 2, . . . , r,

so that Vr = V . We will now show by (decreasing) induction on j that

sup
u∈U

µ

(∫ Tδ

0
〈Adξτ Vj , u〉2 dt ≤ ε

)
= O

(
ε∞−) . (5.9)
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From Equation (5.7), we have

d [Adξτ Vj−1] = Adξτ

k∑
i=1

[Xi, Vj−1] dbiτ +
1
2

Adξτ

k∑
i=1

ad2
Xi
Vj−1 dτ

which upon integrating in τ gives

〈Adξt Vj−1, u〉 = 〈Vj−1, u〉+
∫ t

0
〈Adξτ [Xi, Vj−1], u〉 dBi

τ +
1
2

∫ t

0

〈
Adξτ ad2

Xi
Vj−1, u

〉
dτ.

Applying Proposition 5.4 of the appendix with T = Tδ,

Yt := 〈Adξt Vj−1, u〉 , y = 〈Vj−1, u〉 ,

Mt :=
∫ t

0
〈Adξτ [Xi, Vj−1], u〉 dbiτ , and

At :=
1
2

∫ t

0

〈
Adξτ ad2

Xi
Vj−1, u

〉
dτ,

implies that

sup
u∈U

µ (Ω1 (u) ∩ Ω2 (u)) = O
(
ε∞−) , (5.10)

where

Ω1(u) :=
{∫ Tδ

0
〈Adξτ Vj−1, u〉2 dt < εq

}
,

Ω2 (u) :=

{∫ Tδ

0

k∑
i=1

〈Adξτ [Xi, Vj−1], u〉2 dτ ≥ ε

}
,

and q > 4. Since

sup
u∈U

µ ([Ω2 (u)]c) = sup
u∈U

µ

(∫ Tδ

0

k∑
i=1

〈Adξτ [Xi, Vj−1], u〉2 dτ < ε

)

≤ sup
u∈U

µ

(∫ Tδ

0
〈Adξτ Vj , u〉2 dτ < ε

)
,

we may apply the induction hypothesis to learn

sup
u∈U

µ ([Ω2 (u)]c) = O
(
ε∞−) . (5.11)
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It now follows from Equations (5.10) and (5.11) that

sup
u∈U

µ(Ω1 (u)) ≤ sup
u∈U

µ(Ω1 (u) ∩ Ω2 (u)) + sup
u∈U

µ(Ω1 (u) ∩ [Ω2 (u)]c)

≤ sup
u∈U

µ(Ω1 (u) ∩ Ω2 (u)) + sup
u∈U

µ([Ω2 (u)]c)

= O
(
ε∞−)+O

(
ε∞−) = O

(
ε∞−) ,

that is,

sup
u∈U

µ

(∫ Tδ

0
〈Adξτ Vj−1, u〉2 dt < εq

)
= O

(
ε∞−) .

Replacing ε by ε1/q in the previous equation and using O
((
ε1/q

)∞−)
= O (ε∞−), com-

pletes the induction argument and hence the proof.

The following proposition is contained in the appendix to [15] and is included

here for completeness.

Proposition 5.4 (A martingale inequality). Let T be a stopping time bounded by

t0 <∞, and let Y = y+M +A, where M is a continuous martingale and A is a process

of bounded variation such that M0 = A0 = 0. Further assume that, on the set {t ≤ T},
〈M〉t and |A|t are absolutely continuous functions and there exist finite positive constants

c1 and c2 such that
d〈M〉t
dt

≤ c1 and
d |A|t
dt

≤ c2.

Then, for all ν > 0 and q > ν + 4, there exist constants c = c(t0, q, ν, c1, c2) > 0 and

ε0 = ε0(t0, q, ν, c1, c2) > 0 such that

P

(∫ T

0
Y 2

t dt < εq, 〈Y 〉T = 〈M〉T ≥ ε

)
≤ 2 exp

(
− 1

2cεν

)
= O

(
ε−∞

)
(5.12)

for all ε ∈ (0, ε0].

5.3 Spectral decomposition of the Heisenberg heat kernel

In this section, we choose our notation to correspond to that in Thangavelu

[48]; any uncited assertions in this section may be found in this text. Let G denote the
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3-dimensional Heisenberg Lie group, and let g = (z, t) ∈ G. Then for any k = 0, 1, 2, . . .,

let

Lk(t) :=
1
k!

(
∂

∂x

)k ∣∣∣∣
x=0

e−tx/(1−x)

1− x

and

eλk(z, t) := eiλtLk

(
1
2
|λ||z|2

)
e−

1
4
|λ||z|2 .

The functions Lk are Laguerre polynomials of type 0, and the following identity is easy

to verify,
∞∑

k=0

Lk(t)xk =
e−tx/(1−x)

1− x
. (5.13)

The functions eλk are eigenfunctions of L with corresponding eigenvalues (2k+1)|λ|; since

L is left invariant, this implies that for any f ∈ C∞
c (G)

L(f ∗ eλk) = f ∗ Leλk = (2k + 1)|λ|(f ∗ eλk). (5.14)

Using these definitions, we have the following proposition.

Proposition 5.5. The Heisenberg heat kernel may be written as the eigenfunction ex-

pansion,

pτ (z, t) =
∞∑

k=0

∫
R
e−τ(2k+1)|λ|eλk(z, t) dµ(λ),

where dµ(λ) = (2π)−2|λ|dλ is Plancherel measure for G.

Proof. Theorem 2.1.1 of Thangavelu [48] states that, for any f ∈ L2(G), we have the

expansion

f(z, t) =
∞∑

k=0

∫
R
f ∗ eλk(z, t) dµ(λ). (5.15)

For each k = 0, 1, 2, . . .,∫
R
f ∗ eλk(z, t) dµ(λ) = f ∗

∫
R
eλk(z, t) dµ(λ),
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where the right hand side should be interpreted in the principal value sense; see Section

2.2 of [48]. Additionally, since f, eλk ∈ L2(G) and eλk is summable in k, then
∞∑

k=0

f ∗
∫

R
eλk dµ(λ) = f ∗

∞∑
k=0

∫
R
eλkdµ(λ).

Then, by Equation (5.14) and the fact that
{
e−τ(2k+1)|λ|}∞

k=0
⊂ L2(dµ) is summable in

k,

e−τL/2f = e−τL/2

(
f ∗

∞∑
k=0

∫
R
eλk dµ(λ)

)
= f ∗

∞∑
k=0

∫
R
e−τ(2k+1)|λ|eλk dµ(λ),

and thus we may write the heat kernel of Pτ = eτL/2 as

pτ (z, t) =
∞∑

k=0

∫
R
e−τ(2k+1)|λ|eλk(z, t) dµ(λ),

as desired.

We would like to reassure ourselves that this decomposition is equivalent to the

expression we already have for the Heisenberg heat kernel in Equation (2.5). Thus, using

the definitions of Lk and eλk given at the beginning of this section, we have

pτ (z, t) =
∞∑

k=0

∫
R
e−τ(2k+1)|λ|eλk(z, t) dµ(λ)

=
1

4π2

∞∑
k=0

∫
R
eiλte−τ(2k+1)|λ|e−

1
4
|λ||z|2Lk

(
1
2
|λ||z|2

)
|λ| dλ

=
1

4π2

∫
R
eiλte−τ |λ|e−

1
4
|λ||z|2 |λ|

×

[ ∞∑
k=0

(
e−2τ |λ|)k
k!

(
∂

∂x

)k ∣∣∣∣
x=0

e−
1
2
|λ||z|2x/(1−x)

1− x

]
dλ

=
1

4π2

∫
R
eiλte−τ |λ|e−

1
4
|λ||z|2 |λ|

exp
(
−1

2 |λ||z|
2 e−2τ |λ|

1−e−2τ |λ|

)
1− e−2τ |λ| dλ

=
1

4π2

∫
R
eiλt |λ|

eτ |λ| − e−τ |λ| exp

(
−1

2
|λ||z|2

(
1
2

+
e−τ |λ|

eτ |λ| − e−τ |λ|

))
dλ

=
1

8π2

∫
R

λ

sinh τλ
exp

(
−1

4
|λ||z|2 coth τλ

)
eiλt dλ,
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where we have applied the identity in Equation (5.13). Thus the expressions are equiv-

alent, and we are satisfied.

5.4 Covariance matrix of ξt on the Heisenberg group

In this section, we explicitly compute the Malliavin covariance matrix of ξ in

the Heisenberg case,

σt := ξ′t(b)ξ
′
t(b)

∗ : R3 → R3,

where the adjoint here is taken relative to the Cameron-Martin and Euclidean metrics.

Using Equation (2.21), we calculate ξ
′
t(b) : TbW ∼= H → Tξt(b)G

∼= R3 as follows.

ξ′t(b)h = ∂hξt(b) =
d

dε

∣∣∣∣
0

ξt(b+ εh)

=
d

dε

∣∣∣∣
0


b1t + εh1

t

b2t + εh2
t

1
2

∫ t
0

[
(b1s + εh1

s)(db
2
s + εdh2

s)− (b2s + εh2
s)(db

1
s + εdh1

s)
]


=


h1

t

h2
t

1
2

∫ t
0

[
h1

s db
2
s + b1s dh

2
s − h2

s db
1
s − b2s dh

1
s

]


=


∫ t
0 ḣ

1
s ds∫ t

0 ḣ
2
s ds∫ t

0

[(
1
2b

2
t − b2s

)
ḣ1

s −
(

1
2b

1
t − b1s

)
ḣ2

s

]
ds

 ,

(5.16)

by integration by parts. To determine the action of the adjoint ξ′t(b)
∗ : R3 → H on an

element a ∈ R3, fix h ∈ H, and consider the following computations.

(ξ′t(b)
∗a, h)H = a · ξ′t(b)h

= a1

∫ t

0
ḣ1

s ds+ a2

∫ t

0
ḣ2

s ds+ a3

∫ t

0

[(
1
2
b2t − b2s

)
ḣ1

s −
(

1
2
b1t − b1s

)
ḣ2

s

]
ds

=
∫ t

0

[(
a1 +

1
2
a3b

2
t − a3b

2
s

)
ḣ1

s +
(
a2 −

1
2
a3b

1
t + a3b

1
s

)
ḣ2

s

]
ds.

(5.17)
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By definition of the Cameron-Martin inner product,

(ξ′t(b)
∗a, h)H =

∫ 1

0

d

ds

[
ξ′t(w)∗a

]
s
· ḣs ds,

and so Equation (5.17) then implies

d

ds

[
ξ′t(b)

∗a
]
s

=

a1 + 1
2a3b

2
t − a3b

2
s

a2 − 1
2a3b

1
t + a3b

1
s

 . (5.18)

Use (5.16) to write the vector ξ′t(b)ξ
′
t(b)

∗a ∈ R3 componentwise:

[ξ′t(b)ξ
′
t(b)

∗a]1 =
∫ t

0

(
a1 +

1
2
a3b

2
t − a3b

2
s

)
ds = a1t+

1
2
a3tb

2
t − a3b2t ,

[ξ′t(b)ξ
′
t(b)

∗a]2 =
∫ t

0

(
a2 −

1
2
a3b

1
t + a3b

1
s

)
ds = a2t−

1
2
a3tb

1
t + a3b1t , and

[ξt′(b)ξ′t(b)
∗a]3

=
∫ t

0

[(
1
2
b2t − b2s

)(
a1 +

1
2
a3b

2
t − a3b

2
s

)
−
(

1
2
b1t − b1s

)(
a2 −

1
2
a3b

1
t + a3b

1
s

)]
ds

= a1

(
1
2
tb2t − b2t

)
− a2

(
1
2
tb1t − b1t

)
+ a3

(
1
4
t
(
(b1t )

2 + (b2t )
2
)
− b1t b

1
t − b2t b

2
t +

∫ t

0

(
(b1s)

2 + (b2s)
2
)
ds

)
,

where bi =
∫ t
0 b

i
s ds for i = 1, 2. So the Malliavin covariance matrix may be written as

ξ′t(b)ξ
′
t(b)

∗ =


t 0 1

2 tb
2
t − b2t

0 t −1
2 tb

1
t + b1t

1
2 tb

2
t − b2t −1

2 tb
1
t + b1t Ξ(t, b)

 , (5.19)

where

Ξ(t, b) =
1
4
t|b|2 − b1t b

1
t − b2t b

2
t + ‖b‖2

2,

with |bt|2 = (b1t )
2 + (b2t )

2 and ‖b‖2 =
(∫ t

0 |bs|
2 ds

)1/2
the norm in L2([0, t]).
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Alternately, we may use the more general formula (3.9) for the Malliavin co-

variance matrix to determine σt in the Heisenberg case. For g = (x, y, z) ∈ G and

(a, b, c) ∈ R3,

Adg(a, b, c) = (x, y, z)(a, b, c)(x, y, z)−1

= (x+ a, y + b, z + c+
1
2
(xb− ay))(−x,−y,−z) = (a, b, c+ xb− ay).

Thus, for X,Y, Z ∈ g ∼= R3,

Adξt X = (1, 0,−b2t ),Adξt Y = (0, 1, b1t ), and Adξt Z = (0, 0, 1)

implies that

Adξt =


1 0 0

0 1 0

−b2t b1t 1

 .

(Equivalently, Adg = Rg−1∗Lg∗, and so, from Equations (2.3) and (2.4),

Adξt = Rξ−1
t ∗Lξt∗ =


1 0 0

0 1 0

−1
2b

2
t

1
2b

1
t 1




1 0 0

0 1 0

−1
2b

2
t

1
2b

1
t 1

 =


1 0 0

0 1 0

−b2t b1t 1

 .)

Thus,

Adξs P Ad†ξs
=


1 0 0

0 1 0

−b2s b1s 1




1 0 0

0 1 0

0 0 0




1 0 −b2s
0 1 b1s

0 0 1

 =


1 0 −b2s
0 1 b1s

−b2s b1s |bs|2

 ,
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and combining this with Equation (3.9) gives

ξ′t(b)ξ
′
t(b)

∗ = Rξt∗

(∫ t

0
Adξs P Ad†ξs

ds

)
Rtr

ξt∗

=


1 0 0

0 1 0
1
2b

2
t −1

2b
1
t 1




t 0 −b2t
0 t b1t

−b2t b1t ‖b‖2
2




1 0 1
2b

2
t

0 1 −1
2b

1
t

0 0 1



=


t 0 1

2 tb
2
t − b2t

0 t −1
2 tb

1
t + b1t

1
2 tb

2
t − b2t −1

2 tb
1
t + b1t Ξ(t, b)

 ,

as in Equation (5.19).

The determinant of the covariance matrix may be determined from these com-

putations,

detσt = t2
[
1
4
t|bt|2 −

1
2
b1t b

1
t −

1
2
b1t b

1
t + ‖b‖2

2

]
− t

(
−1

2
tb1t + b1t

)2

− t

(
−1

2
tb2t + b2t

)2

= t2‖b‖2
2 − t(b1t )

2 − t(b2t )
2.

Writing |bt|2 = (b1t )
2 + (b2t )

2 and ∆ = detσ,

∆t = t2 ‖b‖2
2 − t

∣∣bt∣∣2 .
Proposition 5.6. Let Bs = 1√

t
bts. Then

∆t = detσt = t4

(∫ 1

0
|Bs|2 ds−

∣∣∣∣∫ 1

0
Bs ds

∣∣∣∣2
)
.

Proof. Note that

‖b‖2
2 =

∫ t

0
|br|2 dr = t

∫ 1

0
|bts|2 ds = t2

∫ 1

0

∣∣∣∣ 1√
t
bts

∣∣∣∣2 ds = t2
∫ 1

0
|Bs|2 ds,

and for i = 1, 2

bit =
∫ t

0
bir dr = t

∫ 1

0
bits ds = t3/2

∫ 1

0

1√
t
bits ds = t3/2

∫ 1

0
Bi

s ds.
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Thus,

t2 ‖b‖2
2 − t

∣∣bt∣∣2 = t4

(∫ 1

0
|Bs|2 ds−

∣∣∣∣∫ 1

0
Bs ds

∣∣∣∣2
)
.

5.5 Heisenberg lifted vector fields

Here we compute the lift of the Heisenberg vector fields,

X̃ = ∂x −
1
2
y∂x, Ỹ = ∂y +

1
2
x∂z, and Z̃ = ∂z.

For now, let A = (a1, a2, a3) be any element of g. Then

Ã(ξt) = Lξt∗A =
(
a1, a2, a3 +

1
2
(a2b

1
t − a1b

2
t )
)

is an element of TξtG
∼= R3. The inverse of the matrix σ may be computed directly from

Equation (5.19), so that for t > 0

[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
11

= ∆−1
t

(
t‖b‖2

2 − (b1t )
2 − tb2t b

2
t +

1
4
(b2t )

2

)
[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
12

= ∆−1
t

(
−b1t b2t +

1
2
tb2t b

1
t +

1
2
tb1t b

2
t −

1
4
t2b1t b

2
t

)
[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
13

= ∆−1
t

(
tb2t −

1
2
t2b2t

)
[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
21

= ∆−1
t

(
−b1t b2t +

1
2
tb2t b

1
t +

1
2
tb1t b

2
t −

1
4
t2b1t b

2
t

)
[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
22

= ∆−1
t

(
t‖b‖2

2 − (b2t )
2 − tb1t b

1
t +

1
4
(b1t )

2

)
[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
23

= ∆−1
t

(
−tb1t +

1
2
t2b1t

)
[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
31

= ∆−1
t

(
tb2t −

1
2
t2b2t

)
[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
32

= ∆−1
t

(
−tb1t +

1
2
t2b1t

)
[(
ξ′t(b)ξ

′
t(b)

∗)−1
]
33

= ∆−1
t t2.
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Thus, writing ξ′t(b)ξ
′
t(b)

∗Ã(ξt) componentwise,[
(ξ′t(b)ξ

′
t(b)

∗)−1Ã(ξt)
]
1

= a1

(
t‖b‖2

2 − (b1t )
2 − tb2t b

2 +
1
4
(b2t )

2

)
+ a2

(
−b1t b2t +

1
2
tb2t b

1
t +

1
2
tb1t b

2
t −

1
4
t2b1t b

2
t

)
+
(
a3 +

1
2
(a2b

1
t − a1b

2
t )
)(

tb2t −
1
2
t2b2t

)
= a1

(
t‖b‖2

2 − (b1t )
2 − 3

2
tb2t b

2
t +

1
4
(1 + t2)(b2t )

2

)
+ a2

(
−b1t b2t +

1
2
tb2t b

1
t + tb1t b

2 − 1
2
t2b1t b

2
t

)
+ a3

(
tb2t −

1
2
t2b2t

)
[
(ξt′(b)ξ′t(b)

∗)−1Ã(ξt)
]
2

= a1

(
−b1t b2t +

1
2
tb2t b

1
t +

1
2
tb1t b

2
t −

1
4
t2b1t b

2
t

)
+ a2

(
t‖b‖2

2 − b
2
2 − tb1t b

1
t +

1
4
(b1t )

2

)
+
(
a3 +

1
2
(a2b

1
t − a1b

2
t )
)(

−tb1t +
1
2
t2b1t

)
= a1

(
−b1t b2t + tb2t b

1
t +

1
2
tb1t b

2
t −

1
2
t2b1t b

2
t

)
+ a2

(
t‖b‖2

2 − (b2t )
2 − 3

2
tb1t b

1
t +

1
4
(1 + t2)(b1t )

2

)
+ a3

(
−tb1t +

1
2
t2b1t

)
[
(ξ′t(b)ξ

′
t(b)

∗)−1Ã(ξt)
]
3

= a1

(
tb2t −

1
2
t2b2t

)
+ a2

(
−tb1t +

1
2
t2b1t

)
+
(
a3 +

1
2
(a2b

1
t − a1b

2
t )
)
t2

= a1(tb2t − t2b2t )− a2(tb1t − t2b1t ) + a3t
2.

Equation (5.18) implies that

[
ξ′t(w)∗a

]
s

=

a1s+ 1
2a3sb

2
t − a3

∫ s
0 b

2
r dr

a2s− 1
2a3sb

1
t + a3

∫ s
0 b

1
r dr

 ,

for any a ∈ R3, and so

[ξ′t(b)
∗]s =

s 0 1
2sb

2
t − b2s

0 s −1
2sb

1
t + b1s
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Thus, for 0 < s ≤ t,

A1
s =

[
ξ′t(b)

∗(ξ′t(b)ξ
′
t(b)

∗)−1Ã(ξt)
]
1

= ∆−1
t

[
a1s

(
t‖b‖2

2 − (b1t )
2 − 3

2
tb2t b

2 +
1
4
(1 + t2)(b2t )

2

)
+ a2s

(
−b1t b2t +

1
2
tb2t b

1
t + tb1t b

2
t −

1
2
t2b1t b

2
t

)
+ a3s

(
tb2t −

1
2
t2b2t

)
+
(

1
2
sb2t − b2s

)(
a1

(
tb2t − t2b2t

)
− a2

(
tb1 − t2b1t

)
+ a3t

2
)]

A2
s =

[
ξ′t(b)

∗(ξ′t(b)ξ
′
t(b)

∗)−1Ã(ξt)
]
2

= ∆−1
t

[
a1s

(
−b1b2t + tb2t b

1
t +

1
2
tb1t b

2
t −

1
2
t2b1t b

2
t

)
+ a2s

(
t‖b‖2

2 − (b2t )
2 − 3

2
tb1t b

1
t +

1
4
(1 + t2)(b1t )

2

)
+ a3s

(
−tb1t +

1
2
t2b1t

)
+
(
−1

2
sb1t + b1s

)(
a1

(
tb2t − t2b2t

)
− a2

(
tb1 − t2b1t

)
+ a3t

2
)]
.

Thus, Xs = (X1
s,X

2
s), where X1 and X2 are the quadratic expressions in b

X1
s = ∆−1

t

[
s

(
t‖b‖2

2 − (b1t )
2 − 3

2
tb2t b

2
t +

1
4
(1 + t2)(b2t )

2

)
+
(

1
2
sb2t − b2s

)(
tb2t − t2b2t

)]
and

X2
s = ∆−1

t

[
s

(
−b1t b2t + tb2t b

1
t +

1
2
tb1t b

2 − 1
2
t2b1t b

2
t

)
+
(
−1

2
sb1t + b1s

)(
tb2t − t2b2t

)]
.

Also, Ys = (Y1
s ,Y

2
s), where

Y1
s = ∆−1

t

[
s

(
−b1t b2t +

1
2
tb2t b

1
t + tb1t b

2 − 1
2
t2b1t b

2
t

)
+
(

1
2
sb2t − b2s

)(
tb1t − t2b1t

)]
and

Y2
s = ∆−1

t

[
s

(
t‖b‖2

2 − (b2t )
2 − 3

2
tb1t b

1
t +

1
4
(1 + t2)(b1t )

2

)
+
(
−1

2
sb1t + b1s

)(
tb1t − t2b1t

)]
,
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and Zs = (Z1
s,Z

2
s) where

Z1
s = ∆−1

t

[
s

(
tb2t −

1
2
t2b2t

)
+
(

1
2
sb2t − b2s

)
t2
]

and

Z2
s = ∆−1

t

[
s

(
−tb1t +

1
2
t2b1t

)
+
(
−1

2
sb1t + b1s

)
t2
]
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