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ABSTRACT

Following work of Tataru [Tataru, D. (1998). Local and global results for wave
maps I. Comm. Partial Differential Equations 23(9–10):1781–1793; Tataru, D.
(1999). On the equation &u ¼ jHuj2 in 5þ 1 dimensions. Math. Res. Lett. 6

(5–6):469–485], we solve the division problem for wave equations with generic
quadratic non-linearities in high dimensions. Specifically, we show that non-linear
wave equations which can be written as systems involving equations of the form

&f ¼ f;Hf and&f ¼ jHfj2 are well-posed with scattering in ð6þ 1Þ and higher
dimensions if the Cauchy data are small in the scale invariant ‘1 Besov space _BBsc;1.
This paper is the first in a series of works where we discuss the global regularity

properties of general non-linear wave equations for all dimensions 4 � n.
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1. INTRODUCTION

In this paper, our aim is to give a more or less complete description of the global
regularity properties of generic homogeneous quadratic semi-linear wave equations
on ð6þ 1Þ and higher dimensional Minkowski space. The equations we will consider
are all of the form:

&f ¼ Nðf;DfÞ: ð1Þ

Here & :¼ �@2
t þ Dx denotes the standard wave operator on Rnþ1, and N is a

smooth function of f and its first partial derivatives, which we denote by Df. For
all of the nonlinearities we study here, N will be assumed to be at least quadratic
in nature, that is:

NðX; Y Þ ¼ OðjðX; Y Þj2Þ; ðX; Y Þ � 0:

The homogeneity condition we require N to satisfy is that there exist a (vector) s
such that:

Nðlsf; lsþ1
DfÞ ¼ lsþ2Nðf;DfÞ; ð2Þ

where we use multiindex notation for vector N. The condition (2) implies that
solutions to the system (1) are invariant (again solutions) if one performs the scale
transformations:

fð�Þff lsfðl�Þ: ð3Þ

The general class of equations which falls under this description contains virtually all
massless non-linear field theories on Minkowski space, including the Yang Mills
equations (YM), the wave–maps equations (WM), and the Maxwell–Dirac equations
(MD). We list the schematics for these systems, respectively, as:

&A ¼ ADAþ A3; ðYMÞ
&f ¼ jDfj2; ðWMÞ
&u ¼ ADu; ðMDÞ
&A ¼ jDuj2:

The various values of s for these equations are (respectively) s ¼ 1, s ¼ 0, and
s ¼ ð12 ; 1Þ. For a more complete introduction to these equations, see for instance
the works Foschi and Klainerman (2000) and Bournaveas (1996). For the purposes
of this paper, will will only be concerned with the structure of these equations at the
level of the generic schematics (YM)–(MD).

The central problem we will be concerned with is that of giving a precise
description of the regularity assumptions needed in order to guarantee that the
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Cauchy problem for the system (1) is globally well posed with scattering (GWPS).
That is, given initial data:

fð0Þ ¼ f ; @tfð0Þ ¼ g; ð4Þ

we wish to describe how much smoothness and decay ðf ; gÞ needs to possess in order
for there to exist a unique global solution to the system (1) with this given initial
data. We also wish to show that the solutions we construct depend continuously
on the initial data, and are asymptotic to solutions of the linear part of (1). We will
describe shortly in what sense we will require these notions to hold.

Our main motivation here is to be able to prove global well-posedness for non-
linear wave equations of the form (1) in a context where the initial data may not be
very smooth, and furthermore does not possess enough decay at space-like infinity
to be in L2. Also, we would like to understand how this can be done in situations
where the equations being considered contain no special structure in the non-
linearity. For instance, this is of interest in discussing the problem of small data
global well-posedness for the Maxwell–Klein–Gordon and Yang–Mills equations
with the Lorentz gauge enforced instead of the more regular Coulomb gauge. This
provides a significant point of departure from earlier works on the global existence
theory of non-linear wave equations, which for the general case requires precise
control on the initial data in certain weighted Sobolev spaces (see Klainerman, 1985),
or else requires the non-linearity to have some specific algebraic structure (perhaps
coming from a gauge transformation) which allows one to exploit ‘‘null form’’
identities or apply standard Strichartz estimates directly to the equation being
considered (see Tao, 2001; Tataru, 1998).

From the point of view of homogeneity, we are lead directly to considerations of
the low regularity properties of Eq. (1) as follows: By a simple scaling argumenta: one
can see that the most efficient L2 based regularity assumption possible on the initial
data, involves sc ¼ n

2 � s derivatives. Again, by scale invariance and looking at unit
frequency initial data,b one can see that if we are to impose only an L2 smallness con-
dition on the initial data which contains no physical space weights, then sc ¼ n

2 � s is
in fact the largest amount of derivatives we may work with. This leads us to consider
the question of GWPS for initial data in the homogeneous Besov spaces _BBsc;p, for
various values of p. In this work, we will concentrate solely on the case p ¼ 1. This
is the strongest scale and translation invariant control on the initial data possible,
and will be crucial for the kind of non-linearities we work with here. In fact, it does
not seem possible to push any type of global regularity for equations of the type (1)
which contain derivatives in the non-linearity down to the scale invariant Sobolev
space _HHsc ¼ _BBsc;2 unless the equations under consideration possess a great deal of
special structure in the non-linearity. This has been done for the wave-maps

aIn conjunction with finite time blowup for large data. This phenomena is known to happen
for higher dimensional equations with derivative non-linearities even in the presence of
positive conserved quantities (see e.g., Cazenave et al., 1998).
bThat is initial data sets where the Fourier transform is supported in the unit frequency

annulus fx�� 12 < jxj < 2g.

Global Regularity for NLWE 1507

4_LPDE29_09&10_R3_102804



ORDER                        REPRINTS

equations (see Tao, 2001) and more recently for the Maxwell–Klein–Gordon
equations in ð6þ 1Þ and higher dimensions with the help of the Coulomb gauge
(see Rodnianski, preprint). Both of these results depend crucially on the fact that
the underlying gauge group of the equations is compact.

In recent years, there has been much progress in our understanding of the low
regularity local theory for general non-linear wave equations of the form (1). In
the lower dimensional setting, i.e., when n ¼ 2; 3; 4, it is known from counterexam-
ples of Lindblad (see Lindblad, 1996) that there is ill posedness for initial data in
the Sobolev space Hs0 , where s0 � sc þ 5�n

4 . Intimately connected with this phenom-
ena is the failure of certain space-time estimates for the linear wave equation known
as Strichartz estimates. Specifically, one does not have anything close to an L2ðL4Þ
estimate in these dimensions. Such an estimate obviously plays a crucial role (via
Duhamel’s principle) in the quadratic theory. However, using the Strichartz esti-
mates available in these dimensions along with Picard iteration in certain function
spaces, one can show that the Lindblad counterexamples are sharp in that there
is local well-posedness for initial data in the spaces Hs when sc þ 5�n

4 < s (see for
example Klainerman and Selberg, 2002).

In the higher dimensional setting, i.e., when the number of spatial dimensions is
n ¼ 5 or greater, one does have access to Strichartz estimates at the level of L2ðL4Þ
(see Keel and Tao, 1998), and it is possible to push the local theory down to HscþE,
where 0 < E is arbitrary (see Tataru, 1999).

In all dimensions, the single most important factor which determines the local
theory as well as the range of validity for Strichartz estimates is the existence of free
waves which are highly concentrated along null directions in Minkowski space.
These waves, known as Knapp counterexamples, resemble a single beam of light
which remains coherent for a long period of time before dispersing. For a special
class of non-linearities, known as ‘‘null structures’’, interactions between these
coherent beams are effectively canceled, and one gains an improvement in the local
theory of equations whose nonlinearities have this form (see for example Klainerman
and Machedon, 1993; Klainerman and Selberg, 2002).

In both high and low dimensional settings, the analysis of certain null structures,
specifically non-linearities containing the Q0 null from,c has led to the proof that the
wave–maps model equationsd are well posed in the scale invariant ‘1 Besov space _BB

n
2;1

(see Tataru, 1998, 2001). While the proof of this result is quite simple for high dimen-
sions, it relies in an essential way on the structure of the Q0 null form. In fact, there is
no direct way to extend the proof of this result to include the less regular nonlinea-
rities of the form fHf, or for that matter the Qij null forms,e which show up in the
equations of gauge field theory. However, the high dimensional non-linear interac-
tion of coherent waves is quite weak (e.g., giving the desired range of validity for
Strichartz estimates), and one would expect that it is possible to prove local well
posedness for quadratic equations with initial data in the scale invariant ‘1 Besov

cThis is defined by the equation Q0ðf;cÞ ¼ @af@ac.
dNot the rough schematic we have listed here, but rather equations of the form
&f ¼ GðfÞQ0ðf;fÞ.
eThese are defined by Qijðf;cÞ ¼ @if@jc� @jf@ic.
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space without resorting to any additional structure in the nonlinearity. For n ¼ 5
dimensions, it may be that this is not quite possible, although we provide no convin-
cing evidence except for the fact that there is no obvious way to add over our loca-
lized estimates in that dimension in order to obtain a full set of estimates that works
in all of space–time Fourier space. In fact, every estimate we prove here leads to a
logarithmic divergence in the distance to the cone in Fourier space for the case of
ð5þ 1Þ dimensions, so in this sense our argument breaks down completely in that
regime. However, for n ¼ 6 and higher dimensions we will prove that in fact no null
structure is needed for there to be well posedness in _BBsc;1. This leads to the statement
of our main result which is as follows:

Theorem 1.1 (Global Well Posedness). Let 6 � n be the number of spatial dimen-
sions. For any of the generic equations listed above: YM, WM, or MD, let ðf ; gÞ be a
(possibly vector valued) initial data set. Let sc ¼ n

2 � s be the corresponding L2

scaling exponent. Then there exists constants 0 < E0;C such that if

kðf ; gÞk _BBsc ;1� _BBsc�1;1 � E0; ð5Þ

there exits a global solution c which satisfies the continuity condition:

kckCð _BBsc ;1Þ\Cð1Þð _BBsc�1;1Þ � Ckðf ; gÞk _BBsc ;1� _BBsc�1;1 : ð6Þ

The solution c is unique in the following sense: There exists a sequence of smooth
functions ðfN ; gN Þ such that:

lim
N!1

kðf ; gÞ � ðfN ; gN Þk _BBsc ;1� _BBsc�1;1 ¼ 0:

For this sequence of functions, there exists a sequence of unique smooth global solu-
tions cN of (1) with this initial data. Furthermore, the cN converge to c as follows:

lim
N!1

kc� cNkCð _BBsc ;1Þ\Cð1Þð _BBsc�1;1Þ ¼ 0:

Also, c is the only solution which may be obtained as a limit (in the above sense) of
solutions to (1) with regularizations of ðf ; gÞ as initial data. Finally, c retains any
extra smoothness inherent in the initial data. That is, if ðf ; gÞ also has finite
_HHs � _HHs�1 norm, for sc < s, then so does c at fixed time and one has the following
estimate:

kckCð _HHsÞ\Cð1Þð _HHs�1Þ � Ckðf ; gÞk _HHs� _HHs�1 : ð7Þ

In a straightforward way, the function spaces we iterate in allow us to show the
following scattering result:

Theorem 1.2. Using the same notation as above we have that there exists data sets
ðf�; g�Þ, such that if c� is the solution to the homogeneous wave equation with the
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corresponding initial data, the following asymptotics hold:

lim
t!1kcþ � ckCð _BBsc ;1Þ\Cð1Þð _BBsc�1;1Þ ¼ 0; ð8Þ

lim
t!�1kc� � ckCð _BBsc ;1Þ\Cð1Þð _BBsc�1;1Þ ¼ 0: ð9Þ

Furthermore, the scattering operator retains any additional regularity inherent in
the initial data. That is, if ðf ; gÞ has finite _HHs norm, then so does ðf�; g�Þ, and
the following asymptotics hold:

lim
t!1kcþ � ckCð _HHsÞ\Cð1Þð _HHs�1Þ ¼ 0; ð10Þ

lim
t!�1kc� � ckCð _HHsÞ\Cð1Þð _HHs�1Þ ¼ 0: ð11Þ

2. PRELIMINARY NOTATION

For quantities A and B, we denote by A.B to mean that A � C � B for some
large constant C. The constant C may change from line to line, but will always
remain fixed for any given instance where this notation appears. Likewise we use
the notation A � B to mean that 1

C
� B � A � C � B. We also use the notation

A � B to mean that A � 1
C
� B for some large constant C. This is the notation we will

use throughout the paper to break down quantities into the standard cases: A � B,
or A � B, or B � A; and A.B, or B � A, without ever discussing which constants
we are using.

For a given function of two variables ðt; xÞ 2 R� R3 we write the spatial and
space-time Fourier transform as:

f̂fðt; xÞ ¼
Z

e�2pix�xfðt; xÞdx;

~ffðt; xÞ ¼
Z

e�2piðttþx�xÞ fðt; xÞdt dx:

respectively. At times, we will also write F½f � ¼ ~ff .
For a given set of functions of the spatial variable only, we denote byWðf ; gÞ the

solution of the homogeneous wave equation with Cauchy data ðf ; gÞ. If F is a
function on space–time, we will denote by WðFÞ the function W Fð0Þ; @tFð0Þð Þ.

Let E denote any fundamental solution to the homogeneous wave equation. i.e.,
one has the formula &E ¼ d. We define the standard Cauchy parametrix for the
wave equation by the formula:

&�1F ¼ E 	 F �WðE 	 FÞ:
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Explicitly, one has the identity:

d&�1F&�1Fðt; xÞ ¼ �
Z t

0

sinð2pjxjðt� sÞÞ
2pjxj

bFFðs; xÞds: ð12Þ

For any function F which is supported away from the light cone in Fourier
space, we shall use the following notation for division by the symbol of the wave
equation:

X�1F ¼ E 	 F :

Of course, the definition of X�1 does not depend on E so long as F is supported away
from the light cone in Fourier space; for us this will always be the case when this
notation is in use. Explicitly, one has the formula:

F X�1F
� �ðt; xÞ ¼ 1

4p2ðt2 � jxj2Þ
eFFðt; xÞ:

3. MULTIPLIERS AND FUNCTION SPACES

Let j be a smooth bump function (i.e., supported on the set jsj � 2 such that
j ¼ 1 for jsj � 1). In what follows, it will be a great convenience for us to assume
that j may change its exact form for two separate instances of the symbol j (even
if they occur on the same line). In this way, we may assume without loss of generality
that in addition to being smooth, we also have the idempotence identity j2 ¼ j. We
shall use this convention for all the cutoff functions we introduce in the sequel.

For l 2 f2j : j 2 Zg, we denote the dyadic scaling of j by jlðsÞ ¼ jðslÞ. The
most basic Fourier localizations we shall use here are with respect to the space-time
variable and the distance from the cone. Accordingly, for l;d 2 f2j : j 2 Zg we form
the Littlewood–Paley type cutoff functions:

slðt; xÞ ¼ j2lðjðt; xÞjÞ � j1
2l
ðjðt; xÞjÞ; ð13Þ

cdðt; xÞ ¼ j2dðjtj � jxjÞ � j1
2d
ðjtj � jxjÞ: ð14Þ

We now denote the corresponding Fourier multiplier operator via the formulasfSluSlu ¼ sl~uu and gCduCdu ¼ cd~uu, respectively. We also use a multi-subscript notation to
denote products of the above operators, e.g., Sl;d ¼ SlCd. We shall use the notation:

Sl;
�d ¼
X
d�d

Sl;d; ð15Þ

to denote cutoff in an OðdÞ neighborhood of the light cone in Fourier space. At times
it will also be convenient to write Sl;d�
 ¼ Sl � Sl;
<d. We shall also use the notation
S�l;d etc., to denote the multiplier Sl;d cutoff in the half space �t > 0.

Global Regularity for NLWE 1511
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The other type of Fourier localization which will be central to our analysis is the
decomposition of the spatial variable into radially directed blocks of various sizes.
To begin with, we denote the spatial frequency cutoff by:

plðxÞ ¼ j2lðjxjÞ � j1
2l
ðjxjÞ; ð16Þ

with Pl the corresponding operator. For a given parameter d � l, we now decom-
pose Pl radially as follows. First decompose the the unit sphere Sn�1� Rn into
angular sectors of size d

l � � � � � d
l with bounded overlap (independent of d). These

angular sectors are then projected out to frequency l via rays through the origin.
The result is a decomposition of suppfplg into radially directed blocks of size
l� d� � � � � d with bounded overlap. We enumerate these blocks and label the
corresponding partition of unity by bol;d. It is clear that things may be arranged so
that upon rotation onto the x1-axis, each bol;d satisfies the bound:

j@N
1 b

o
l;dj � CNl

�N ; j@N
i b

o
l;dj � CNd

�N : ð17Þ

In particular, each Bo
l;d is given by convolution with an L1 kernel. We shall also

denote:

Sol;d ¼ Bo

l;ðldÞ12
Sl;d; Sol;
�d ¼ Bo

l;ðldÞ12
Sl;
�d:

Note that the operators Sol;d and Sol;
�d are only supported in the region where
jtj. jxj.

We now use these multipliers to define the following dyadic norms, which will be
the building blocks for the function spaces we will use here.

kukp
X

1
2
l;p

¼
X
d22Z

d
p

2kSl;dukpL2 ; (‘‘classical’’ Hs;d) ð18Þ

kukYl ¼ l�1k&SlukL1ðL2Þ; (Duhamel) ð19Þ

kukZl
¼ l

2�n
2

X
d

X
o

kSol;duk2L1ðL1Þ

 !1
2

: (outer block) ð20Þ

Notice that the (semi) norms X
1
2

l;p and Yl are only well defined modulo measures
supported on the light cone in Fourier space. Because of this, it will be convenient
for us to include an extra L1ðL2Þ norm in the definition of our function spaces. This
represents the inclusion in the above norms of solutions to the wave equation with
L2 initial data. Adding everything together, we are led to define the following
fixed frequency (semi) norms:

Fl :¼ X
1
2

l;1 þ Yl

� �
\ Sl L1ðL2Þ� �

: ð21Þ

Unfortunately, the above norm is alone not strong enough for us to be able to iterate
equations of the form (1) which contain derivatives. This is due to a very specific
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Low� High frequency interaction in quadratic non-linearities. Fortunately, this
problem has been effectively handled by Tataru (1999), based on ideas from
Klainerman and Machedon (1996) and Klainerman and Tataru (1999). What is
necessary is to add some extra L1ðL1Þ norms on ‘‘outer block’’ regions of Fourier
space. This is the essence of the norm (20) above, which is a slight variant of that
which appeared in Tataru (1999). This leads to our second main dyadic norm:

Gl :¼ X
1
2

l;1 þ Yl

� �
\ Sl L1ðL2Þ� � \ Zl: ð22Þ

Finally, the spaces we will iterate in are produced by adding the appropriate number
of derivatives combined with the necessary Besov structures:

kuk2Fs ¼
X
l

l2skuk2Fl
; ð23Þ

kukGs ¼
X
l

lskukGl
: ð24Þ

Due to the need for precise microlocal decompositions, of crucial importance to
us will be the boundedness of certain multipliers on the components (18)–(19) of our
function spaces as well as mixed Lebesgue spaces. We state these as follows:

Lemma 3.1 (Multiplier Boundedness).

(1) The following multipliers are given by L1 kernels: l�1HSl, Sol;d, S
o
l;
�d, and

ðldÞX�1Sol;d. In particular, all of these are bounded on every mixed
Lebesgue space LqðLrÞ.

(2) The following multipliers are bounded on the spaces LqðL2Þ, for
1 � q � 1: Sl;d and Sl;
�d.

Proof of Lemma 3:1. (1) First, notice that after a rescaling, the symbol for the
multiplier l�1HSl is a C1 bump function with Oð1Þ support. Thus, its kernel is in
L1 with norm independent of l.

For the remainder of the operators listed in (1) above, it suffices to work with
ðldÞX�1Sol;d. The boundedness of the others follows from a similar argument. We
let w� denote the symbol of this operator cut off in the upper resp. lower half plane.
After a rotation in the spatial domain, we may assume that the spatial projection of
w� is directed along the positive x1 axis. Now look at wþðs; ZÞ with coordinates:

s ¼ 1ffiffiffi
2

p ðt� x1Þ;

Z1 ¼ 1ffiffiffi
2

p ðtþ x1Þ;

Z0 ¼ x0:

It is apparent that wþðs; ZÞ has support in a box of dimension � l�ffiffiffiffiffiffi
ld

p � � � � � ffiffiffiffiffiffi
ld

p � d with sides parallel to the coordinate axis and longest side in
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the Z1 direction and shortest side in the s direction. Furthermore, a direction
calculation shows that one has the bounds:

j@N
Z1
wþj � CNl

�N ; j@N
Z0 w

þj � CN ðldÞ�N=2; j@N
s w

þj � CNd
�N :

Therefore, we have that wþ yields an L1 kernel. A similar argument works for the
cutoff function w�, using the rotation:

s ¼ 1ffiffiffi
2

p ðtþ x1Þ;

Z1 ¼ 1ffiffiffi
2

p ð�tþ x1Þ;

Z0 ¼ x0: &

Proof of Lemma 3:1: ð2Þ We will argue here for Sl;d. The estimates for the others
follow similarly. If we denote by K�ðt; xÞ the convolution kernel associated with S�l;d,
then a simple calculation shows that:

e�2pitjxjcK�K�ðt; xÞ ¼
Z

e2pittcðt; xÞdt;

where suppfcg is contained in a box of dimension � l� � � � � l� d with sides along
the coordinate axis and short side in the t direction. Furthermore, one has the
estimate:

j@N
t cj � CNd

�N :

This shows that we have the bound:

kcK�K�kL1
t ðL1

x Þ . 1;

independent of l and d. Thus, we get the desired bounds for the convolution
kernels. &

As an immediate application of the above lemma, we show that the extra Zl

intersection in the Gl norm above only effects the X
1
2

l;1 portion of things.

Lemma 3.2 (Outer Block Estimate on Yl). For 5 < n, one has the following uniform
inclusion:

Yl  Zl: ð25Þ

1514 Sterbenz
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Proof of (25). It is enough to show that:

X
o

kX�1Sol;duk2L1ðL1Þ

 !1
2

. l
n�4
2

d

l

	 
n�5
4

kSlukL1ðL2Þ:

First, using a local Sobolev embedding, we see that:

kBo

l;ðldÞ12
X�1Sol;dukL1ðL1Þ . l

nþ1
4 d

n�1
4 kX�1Sol;dukL1ðL2Þ:

Therefore, using the boundedness Lemma 3.1, it suffices to note that by Minkowski’s
inequality we can bound:

X
o

 Z
kSol;duðtÞkL2

x

!2

dt

0@ 1A1
2

.
Z X

o

kSol;duðtÞk2L2
x

 !1
2

dt;

. kSl;dukL1ðL2Þ:

The last line of the above proof showed that it is possible to bound a square
sum over an angular decomposition of a given function in L1ðL2Þ. It is also clear that

this same procedure works for the X
1
2

l;1 spaces because one can use Minkowski’s
inequality for the ‘1 sum with respect to the cone variable d. This fact will be of great
importance in what follows and we record it here as:

Lemma 3.3 (Angular Reconstruction of Norms). Given a test function u and
parameter d � l, one can bound:

X
o

kBo
l;duk2

X
1
2
l;1;Yl

 !1
2

. kuk
X

1
2
l;1;Yl

: ð26Þ

4. STRUCTURE OF THE Fk SPACES

The purpose of this section is to clarify some remarks of the previous section and
write down two integral formulas for functions in the Fl space. This material is all
more or less standard in the literature (see e.g., Foschi and Klainerman, 2000; Tataru
1998, 1999) and we include it here primarily because the notation will be useful for
our scattering result. Our first order of business is to write down a decomposition for
functions in the Fl space:

Lemma 4.1 (Fl Decomposition). For any ul 2 Fl, one can write:

ul ¼ u
X
�
l
þ u

X
1=2

l;1
þ uYl ; ð27Þ

Global Regularity for NLWE 1515
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where u
X
�
l
is a solution to the homogeneous wave equation, u

X
1=2

l;1
is the Fourier

transform of an L1 function, and uYl satisfies:

uYlð0Þ ¼ @tuYlð0Þ ¼ 0:

Furthermore, one has the norm bounds:

1

C
kulkFl

�
	
ku

X
�
l
kL1ðL2Þ þ ku

X
1=2

l;1
k
X

1
2
l;1

þ kuYlkYl



� CkulkFl
: ð28Þ

We now show that the two inhomogeneous terms on the right hand side of (27)
can be written as integrals over solutions to the wave equation with L2 data. This
fact will be of crucial importance to us in the sequel. The first formula is simply a
restatement of (12):

Lemma 4.2 (Duhamel’s Principle). Using the same notation as above, for any uYl ,
one can write:

uYlðtÞ ¼ �
Z t

0

jDxj�1 sin
�ðt� sÞjDxj

�
&uYlðsÞds: ð29Þ

Likewise, one can write the u
X

1=2

l;1
portion of the sum (27) as an integral over

modulated solutions to the wave equation be foliating Fourier space by forward
and backward facing light-cones:

Lemma 4.3 (X
1
2

l;1 Trace Lemma). For any u
X

1=2

l;1
, let u�

X
1=2

l;1

denote its restriction to the

frequency half space 0 < �t. Then one can write:

u�
X

1=2

l;1

ðtÞ ¼
Z

e2pitse�itjDxju�l;s ds; ð30Þ

where u�l;s is the spatial Fourier transform of fu�u� restricted to the sth translate of the
forward or backward light-cone light cone in Fourier space, i.e.,:

cu�u�l;sðxÞ ¼
Z

dðt� s� jxjÞfu�u�ðt; xÞdt:
In particular, one has the formula:Z

ku�l;skL2ds . ku�
X

1=2

l;1

k
X

1
2
l;1

: ð31Þ

5. STRICHARTZ ESTIMATES

Our inductive estimates will be based on a method of bilinear decompositions
and local Strichartz estimates as in the work Tataru (1999). We first state the
standard Strichartz from which the local estimates follow.
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Lemma 5.1 (Homogeneous Strichartz Estimates, see Keel and Tao, 1998). Let
5 < n, s ¼ n�1

2 , and suppose u is a given function of the spatial variable only. Then
if 1

q
þ s

r
� s

2 and
1
q
þ n

r
¼ n

2 � g, the following estimate holds:

ke�itjDxjP
�lukLq
t ðLr

xÞ . lgkP
�lukL2 : ð32Þ

Combining the L2ðL2ðn�1Þ
n�3 Þ endpoint of the above estimate with a local Sobolev in the

spatial domain, we arrive at the following local version of (32):

Lemma 5.2 (Local Strichartz Estimate). Let 5 < n, then the following estimate
holds:

ke�itjDxjBo

l;ðldÞ12
ukL2

t ðL1
x Þ . l

nþ1
4 d

n�3
4 kBo

l;ðldÞ12
ukL2 : ð33Þ

Using the integral formulas (29) and (30), we can transfer the above estimates to
the Fl spaces:

Lemma 5.3 (Fl Strichartz Estimates). Let 5 < n and set s ¼ n�1
2 . Then if 1

q
þ s

r
� s

2

and 1
q
þ n

r
¼ n

2 � g, the following estimates hold:

kSlukLqðLrÞ . lgkukFl
; ð34Þ

 X
o

kSol;
�duk2L2ðL1Þ

!1
2

. l
nþ1
4 d

n�3
4 kukFl

: ð35Þ

Proof of Lemma 5:3. It suffices to prove the estimate (34), as the estimate (35)
follows from this and a local Sobolev embedding combined with the re-summing
formula (26). Using the decomposition (4.1) and the angular reconstruction formula
(26), it is enough to prove (34) for functions u

X
1=2

l;1
and uYl . Using the integral formula

(30), we see immediately that:

ku
X

1=2

l;1
kLqðLrÞ �

X
�

Z
ke�itjDxju�l;skLqðLrÞ ds;

. lg
X
�

Z
ku�l;skL2 ds;

. lgku
X

1=2

l;1
k
X

1
2
l;1

:

For the uYl portion of things, we can chop the function up into a fixed number of
space–time angular sectors using L1 convolution kernels. Doing this and using Ra
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to denote an operator from the set fI; @ijDxj�1g, we estimate:

kuYlkLqðLrÞ � l�1
X
a

k@auYlkLqðLrÞ;

. l�1
X
�;a

Z
ke�itjDxj�e�isjDxjRa&uYlðs; xÞ

�kLq
t ðLr

xÞ ds;

. lgl�1
X
a

Z
ke�isjDxjRa&uYlðs; xÞkL2

x
ds;

� lg kuYlkYl : &

A consequence of (34) is that we have the embedding:

X
1
2

l;1  L1ðL2Þ:

Using a simple approximation argument along with uniform convergence, we arrive
at the following energy estimate for the Fs and Gs spaces:

Lemma 5.4 (Energy Estimates). For space-time functions u, one has the following
estimates:

kukCð _HHsÞ\Cð1Þð _HHs�1Þ . kukFs ; ð36Þ

kukCð _BBsÞ\Cð1Þð _BBs�1Þ . kukGs : ð37Þ

Also, by duality and the estimate (5), we have that:

lX�1L1ðL2Þ  lN�1X
�1

2

l;1  X
1
2

l;1: ð38Þ

This proves shows:

Lemma 5.5 (L2 Estimate for Yl). The following inclusion holds uniformly:

d
1
2Sl;dðYlÞ  L2ðL2Þ; ð39Þ

in particular, by dyadic summing one has:

d
1
2Sl;d�
ðFlÞ  L2ðL2Þ:

6. SCATTERING

It turns out that our scattering result, Theorem 1.2, is implicitly contained in the
function spaces Fs and Gs. That is, there is scattering in these spaces independently
of any specific equation being considered. Therefore, to prove Theorem 1.2, it will
only be necessary to show that our solution to (1) belongs to these spaces.
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Using a simple approximation argument, it suffices to deal with things at fixed
frequency. In what follows, we will denote the space _HH1 \ @�1

t ðL2Þ to be the Banach
space with fixed time energy norm:

kuðtÞk2_HH1\@�1
t ðL2Þ ¼ kuðtÞk2_HH1 þ k@tuðtÞk2L2 :

Because the estimates in Theorem 1.2 deal with more than one derivative, we will
show that:

Lemma 6.1 (Fl Scattering). For any function ul 2 Fl, there exists a set of initial
data ðf�

l ; g
�
l Þ 2 PlðL2Þ � lPlðL2Þ such that the following asymptotic holds:

lim
t!1kulðtÞ �Wðfþ

l ; g
þ
l ÞðtÞk _HH1\@�1

t ðL2Þ ¼ 0; ð40Þ

lim
t!�1kulðtÞ �Wðf�

l ; g
�
l ÞðtÞk _HH1\@�1

t ðL2Þ ¼ 0: ð41Þ

Proof of Lemma 6:1. Using the notation of Sec. 4, we may write:

ul ¼ u
X
�
l
þ uþ

X
1=2

l;1

þ u�
X

1=2

l;1

þ uYl ;

We now define the scattering data implicitly by the relations:

Wðfþ
l ; g

þ
l ÞðtÞ ¼ u

X
�
l
�
Z 1

0

jDxj�1 sin jDxjðt� sÞð Þ&uYlðsÞds;

Wðf�
l ; g

�
l ÞðtÞ ¼ u

X
�
l
�
Z 0

�1
jDxj�1 sin jDxjðt� sÞð Þ&uYlðsÞds:

Using the fact that &uYl has finite L
1ðL2Þ norm, it suffices to show that one has the

limits:

lim
t!�1

kuþ
X

1=2

l;1

ðtÞ þ u�
X

1=2

l;1

ðtÞk _HH1\@�1
t ðL2Þ ¼ 0:

Squaring this, we see that we must show the limits:

lim
t!�1

Z
jDxjuþ

X
1=2

l;1

ðtÞ jDxju�
X

1=2

l;1

ðtÞ ¼ 0; ð42Þ

lim
t!�1

Z
@tu

þ
X

1=2

l;1

ðtÞ @tu�
X

1=2

l;1

ðtÞ ¼ 0: ð43Þ

We’ll only deal here with the limit (42), as the limit (43) follows from a virtually
identical argument. Using the trace formula (30) along with the Plancherel theorem,
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we compute:

ðL:H:S:Þð42Þ
¼ lim

t!�1
4p2

Z
e2pitðjxj�jxjÞjxj2

Z
e2pits1 duþl;s1þs2

uþl;s1þs2
ðxÞ du�l;s2u�l;s2ðxÞds1 ds2 dx:

By (31) we have the bounds:

jxj2
Z �� duþl;s1þs2

uþl;s1þs2
ðxÞ�� � ��du�l;s2u�l;s2ðxÞ

��ds1 ds2���� ����
L1
x

. l2 kuþ
X

1=2

l;1

k
X

1
2
l;1

ku�
X

1=2

l;1

k
X

1
2
l;1

:

This shows that the function:

HtðxÞ ¼ jxj2
Z

e2pits1 duþl;s1þs2
uþl;s1þs2

ðxÞ du�l;s2u�l;s2ðxÞ ds1 ds2;

is bounded point-wise by an L1 function uniformly in t. Therefore, by the dominated
convergence theorem, it suffices to show that we in fact have that limt!�1 Ht ¼ 0.
To see this, notice that by the above bounds in conjunction with Fubini’s theorem,
we have that for almost every fixed x the integral:

jxj2
Z duþl;s1þs2

uþl;s1þs2
ðxÞ du�l;s2u�l;s2ðxÞ ds2;

is in L1
s1
. The result now follows from the Riemann Lebesgue Lemma. Explicitly, one

has that for almost every fixed x, the following limit holds:

lim
t!�1

HtðxÞ ¼ lim
t!�1

jxj2
Z

e2pits1 duþl;s1þs2
uþl;s1þs2

ðxÞ du�l;s2u�l;s2ðxÞds1 ds2 ¼ 0: &

7. INDUCTIVE ESTIMATES I

Our solution to (1) will be produced through the usual procedure of Picard itera-
tion. Because the initial data and our function spaces are both invariant with respect
to the scaling (3), any iteration procedure must effectively be global in time. There-
fore, we shall have no need of an auxiliary time cutoff system as in the works
Klainerman and Machedon (1995) and Tataru (1999). Instead, we write (1) directly
as an integral equation:

f ¼ Wðf ; gÞ þ&�1Nðf;DfÞ: ð44Þ

By the contraction mapping principle and the quadratic nature of the nonlinearity,
to produce a solution to (44) which satisfies the regularity assumptions of our main
theorem, it suffices to prove the following two sets of estimates:

Theorem 7.1 (Solution of the Division Problem). Let 5 < n, then the F and G

spaces solve the division problem for quadratic wave equations in the sense that
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for any of the model systems we have written above: YM, WM, or MD, one has the
following estimates:

k&�1Nðu;DvÞkGsc . kukGsckvkGsc ; ð45Þ

k&�1Nðu;DvÞkFs . kukGsc kvkFs þ kukFskvkGsc : ð46Þ

The remainder of the paper is devoted to the proof of Theorem 7.1. In what
follows, we will work exclusively with the equation:

f ¼ Wðf ; gÞ þ&�1ðfHfÞ: ð47Þ

In this case, we set sc ¼ n�2
2 . The proof of Theorem 7.1 for the other model equations

can be achieved through a straightforward adaptation of the estimates we give here.
In fact, after the various derivatives and values of sc are taken into account, the proof
in these cases follows verbatim from estimates (49) and (50) below.

Our first step is to take a Littlewood–Paley decomposition of &�1ðu;HvÞ with
respect to space-time frequencies:

&�1ðuHvÞ ¼
X
mi

&�1ðSm1uHSm2vÞ: ð48Þ

We now follow the standard procedure of splitting the sum (48) into three pieces
depending on the cases m1� m2, m2 � m1, and m2 � m1. Therefore, due to the ‘1 Besov
structure in the F spaces, in order to prove both (45) and (46), it suffices to show the
two estimates:

k&�1ðSm1uHSm2vÞkGl
. l�1m

n
2

1kukFm1
kvkFm2

; m1 � m2; ð49Þ

k&�1ðSmuHSlvÞkGl
. m

n�2
2 kukGm

kvkFl
; m � l: ð50Þ

Notice that after some weight trading, the estimates (45) and (46) follow from (50) in
the case where m2�m1.

Proof of (49). It is enough if we show the following two estimates:

kSlðSm1uHSm2vÞkL1ðL2Þ . m
n
2

1kukFm1
kvkFm2

; m1 � m2; ð51Þ

kSl&�1ðSm1uHSm2vÞkL1ðL2Þ . l�1m
n
2

1kukFm1
kvkFm2

; m1 � m2: ð52Þ

In fact, it suffices to prove (51). To see this, notice that one has the formula:

Sl;&�1
� �

G ¼ WðE 	 SlGÞ � SlWðE 	GÞ:
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Thus, after multiplying by Sl, we see that:

Sl Sl;&�1
� �

G ¼ Pl
�
WðE 	 SlGÞ � SlWðE 	GÞ�;

¼ WðE 	 SlPlGÞ � SlWðE 	 PlGÞ;

¼ Sl Sl;&�1
� �

PlG:

Therefore, by the (approximate) idempotence of Sl one has:

Sl&�1G ¼ Sl&�1SlGþ Sl Sl;&�1
� �

G;

¼ Sl&�1SlGþ Sl Sl;&�1
� �

PlG:

Thus, by the boundedness of Sl on the spaces L1ðL2Þ the energy estimate, one can
bound:

kSl&�1GkL1ðL2Þ . l�1 kSlGkL1ðL2Þ þ kPlGkL1ðL2Þ
� �

:

We now use the fact that the multipliers Sl and Pl are both bounded on the space
L1ðL2Þ to reduce things to the estimate:

kSm1uHSm2vkL1ðL2Þ . kSm1ukL2ðL4ÞkHSm2vkL2ðL4Þ;

m
n�2
4

1 m
nþ2
4

2 kukFm1
kvkFm2

:

Taking into account the bound m1 � m2, the claim now follows. &

Next, we’ll deal with the estimate (50). For the remainder of the paper we shall
fix both l and m and assume they such that m � l for a fixed constant. We now
decompose the product SlðSmu;HSlvÞ into a sum of three pieces:

SlðSmuHSlvÞ ¼ Aþ Bþ C; ð53Þ

where

A ¼ SlðSmuHSl;cm�
vÞ;
B ¼ Sl;cm�
ðSmuHSl;
<cmvÞ;
C ¼ Sl;
<cmðSmuHSl;
<cmvÞ:

Here c is a suitably small constant which will be chosen later. It will be needed to
make explicit a dependency between some of the constants which arise in a specific
frequency localization in the sequel. We now work to recover the estimate (50) for
each of the three above terms separately.
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Proof of (50) for the Term A. Following the remarks at the beginning of the proof
of (49), it suffices to compute:

kSlðSmuHSl;cm�
vÞkL1ðL2Þ . l kSmukL2ðL1ÞkSl;cm�
vkL2ðL2Þ;

. lm
n�1
2 kukFm

ðcmÞ�1
2kvkFl

;

. c�1lm
n�2
2 kukFm

kvkFl
:

For a fixed c, we obtain the desired result. &

We now move on to showing the inclusion (50) for the B term above. In this
range, we are forced to work outside the context of L1ðL2Þ estimates. This is the
reason we have included the L2ðL2Þ based X

1
2

l;1 spaces. This also means that we will
need to recover Zl norms by hand (because they are only covered by the Yl spaces).
However, because this last task will require a somewhat finer analysis than what we
will do in this section, we content ourselves here with showing:

Proof of the X
1
2

l;1 \ SlðL1ðL2ÞÞ Estimates for the Term B. Our first task will be deal
with the energy estimate which we write as:

kSl&�1Sl;cm�
ðSmuHSl;
<cmvÞkL1ðL2Þ.m
n�2
2 kukFm

kvkFl
: ð54Þ

For G supported away from the light-cone in Fourier space, we have the identity:

Sl&�1SlG ¼ X�1SlG�WðX�1PlSlGÞ:

Therefore, by using the energy estimate for the X
1
2

l;1 space, this allows us to estimate:

kSl&�1SlGkL1ðL2Þ . kX�1SlGkL1ðL2Þ þ kWðX�1PlSlGÞkL1ðL2Þ;

. kX�1SlGkL1ðL2Þ;

. kX�1SlGk
X

1
2
l;1

:

Therefore, in order to prove the estimate (54) we are left with estimating the term B

in the X
1
2

l;1 space. To do this, for a fixed distance d from the cone, we compute that:

kX�1Sl;dSl;cm�
ðSmuHSl;
<cmvÞkL2ðL2Þ . d�1 kSmukL2ðL1ÞkSlvkL1ðL2Þ;

. d�1m
n�2
2 kvkFm

kukFl
:
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Summing d
1
2 times this last expression over all cm � d yields:X

cm�d

d
1
2kX�1Sl;dSl;cm�
ðSmuHSl;
<cmvÞkL2ðL2Þ

.
X
cm�d

m
d

� �1
2

m
n�2
2 kvkFm

kukFl
:

For a fixed c we obtain the desired result. &

8. INTERLUDE: SOME BILINEAR DECOMPOSITIONS

To proceed further, it will be necessary for us to take a closer look at the
expression:

Sol;dðSmuHSl;
<cmvÞ; cm � d; ð55Þ

as well as the C term from line (53) above which we write as the sum:

C ¼ Sl;
<cmðSmuHSl;
<cmvÞ ¼ CI þ CII þ CIII ;

where:

CI ¼
X
d<cm

Sl;dðSm;
�du HSl;
�dvÞ;

CII ¼
X
d<cm

Sl;
<dðSm;
�du HSl;dvÞ;

CIII ¼
X
d�m

Sl;
<minfcm;dgðSm;du HSl;
<minfcm;dgvÞ:

We’ll begin with a decomposition of CI and CII . The CIII term is basically the
same but requires a slightly more delicate analysis. All of the decompositions we
compute here will be for a fixed d. The full decomposition will then be given by sum-
ming over the relevant values of d. Because our decompositions will be with respect
to Fourier supports, it suffices to look at the convolution product of the correspond-
ing cutoff functions in Fourier space. In what follows, we’ll only deal with the CI

term. It will become apparent that the same idea works for CII . Therefore, without
loss of generality, we shall decompose the product:

sþl;d s�m;
�d 	 sþl;
�d

� �
: ð56Þ

To do this, we use the standard device of restricting the angle of interaction in
the above product. It will be crucial for us to be able to make these restrictions
based only on the spatial Fourier variables, because we will need to reconstruct
our decompositions through square-summing. For ðt0; x0Þ 2 suppfs�m;
�dg and
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ðt; xÞ 2 suppfsþl;
�d
g we compute that:

OðdÞ ¼ ��jt0 þ tj � jx0 þ xj��;
¼
������ jx0j þ jxj þ OðdÞ��� jx0 þ xj

���;
¼
���OðdÞ þ ��� jx0j þ jxj��� jx0 þ xj

���:
Using now the fact that d < cm and m < cl to conclude that jx0j � m and jxj � l, we
see that one has the angular restriction:

mY2
�x0;x .

���� jx0j þ jxj � jx0 þ xj
���¼OðdÞ:

In particular we have that Y�x0;x .
ffiffi
d
m

q
. This allows us to decompose the product (56)

into a sum over angular regions with O

� ffiffi
d
m

q �
spread. The result is:

Lemma 8.1 (Wide Angle Decomposition). In the ranges stated for the CI term
above, one can write:

sþl;dðs�m;
�d 	 sþl;
�dÞ ¼
X

o1 ;o2 ;o3 :

jo1�o2 j�ðd=mÞ
1
2

jo1�o3 j�ðd=mÞ
1
2

b
o1

l;lðdmÞ
1
2

sþl;d s
o2

m;
�d

� 	 b
o3

l;lðdmÞ
1
2

sþl;
�d

	 

: ð57Þ

for the convolution of the associated cutoff functions in Fourier space.

We note here that the key feature in the decomposition (57) is that the sum is
(essentially) diagonal in all three angles which appear there (o1;o2;o3). It is useful
to keep in mind the diagram (Fig. 1):

Figure 1. Spatial supports in the wide angle decomposition.
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We now focus our attention on decomposing the convolution:

sþl;
�minfcm;dg
�
s�m;d 	 sþl;
�minfcm;dg

�
: ð58Þ

If it is the case that d � m, then the same calculation which was used to produce (57)
works and we end up with the same type of sum. However, if we are in the case where
d � m, we need to compute things a bit more carefully in order to ensure that we may
still decompose the multiplier s�m;d using only restrictions in the spatial variable. To
do this, we will now assume that things are set up so that cm � d. It is clear that
all the previous decompositions can be made so that we can reduce things to this
consideration. If we now take ðt0; x0Þ 2 suppfs�m;dg and ðt; xÞ 2 suppfsþl;
�minfcm;dgg,
we can use the facts that t0 ¼ O�ðdÞ � jx0j, t ¼ OðcmÞ þ jxj, and jxj � m to compute
that:

OðcmÞ ¼
�����t0 þ t

��� jx0 þ xj
���;

¼
���O�ðdÞ � jx0j þ OðcmÞ þ jxj � jx0 þ xj

���; ð59Þ

where the term O�ðdÞ in the above expression is such that jO�ðdÞj � d. In fact, one
can see that the equality (59) forces �O�ðdÞ < 0 on account of the fact that
�ð�jx0j þ jxj � jx0 þ xjÞ > 0 and the assumption jOðcmÞ þ O�ðdÞj � d. In particular,
this means that we can multiply s�m;d in the product (58) by the cutoff sjtj<jxj without
effecting things. This in turn shows that we may decompose the product (58) based
solely on restriction of the spatial Fourier variables, just as we did to get the sum in
Lemma 8.1.

We now return to the CI term. For the sequel, we will need to know what
the contribution of the factor Sl;
�dv to the following localized product is:

S
o1

l;dðSm;
�du HSl;
�dvÞ:

Using Lemma 8.1, we see that we may write:

s
o1

l;dðsm;
�d 	 sl;
�dÞ ¼ s
o1

l;d

�
s
o2

m;
�d 	 b
o3

l;lðdmÞ
1
2

sl;
�d

�
; ð60Þ

where jo1 ��o2j � jo3 ��o2j �
ffiffi
d
m

q
. However, this can be refined significantly. To

see this, assume that the spatial support of so1

l;d lies along the positive x1 axis. We’ll
label this block by b

o1

l;ðldÞ12
. Because we are in the range where

ffiffiffiffiffiffi
md

p � ffiffiffiffiffiffi
ld

p
, and

furthermore because for every x 2 suppfbo3

l;lðdmÞ
1
2

g and x0 2 suppx0 fso2

m;
�dg the sum

xþ x0 must belong to suppfbo1

l;ðldÞ12
g, we in fact have that x itself must belong to a
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block of size �l� ffiffiffiffiffiffi
ld

p � � � � � ffiffiffiffiffiffi
ld

p
. This allows us to write:

Lemma 8.2 (Small Angle Decomposition). In the ranges stated for the CI term
above, we can write:

s
o1

l;dðsm;
�d 	 sl;
�dÞ ¼ s
o1

l;d

�
s
o2

m;
�d 	 s
o3

l;
�d

�
: ð61Þ

where jo1 � o3j �
ffiffi
d
l

q
, and jo1 ��o2j �

ffiffi
d
m

q
.

It is important to note here that if one were to sum the expression (60) over o1,
the resulting sum would be (essentially) diagonal in o3, but there would be many o1

which would contribute to a single o2. This means that the resulting sum would not
be diagonal in o2 as was the case for the sum (57). It is helpful to visualize things
through the Fig. 2.

Our final task here is to mention an analog of Lemma 8.2 for the term (55). Here
we can frequency localize the factor Sl;
<cm in the product using the fact that one has
m � c�

1
2

ffiffiffiffiffiffi
ld

p
. The result is:

Lemma 8.3 (Small Angle Decomposition for the Term B). In the ranges stated for
the B term above, we can write:

s
o1

l;dðsm 	 sl;
�cmÞ ¼ s
o1

l;d

�
sm 	 b

o3

l;ðldÞ12
sl;
�cm

�
: ð62Þ

where jo1 � o3j �
ffiffi
d
l

q
.

Finally, we note here the important fact that in the decomposition (62) above,
the range of interaction in the product forces d . m. This completes our list of
bilinear decompositions.

Figure 2. Spatial supports in the small angular decomposition.
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9. INDUCTIVE ESTIMATES II: REMAINDER OF THE
Low�High)High FREQUENCY INTERACTION

It remains for us is to bound the term B from line (55) in the Zl space, as well as
show the inclusion (50) for the terms CI – CIII from line (8). We do this now, proceed-
ing in reverse order.

Proof of Estimate (50) for the CIII Term. To begin with we fix d. Using the remarks
at the beginning of the proof of (49), we see that it is enough to show that:

kSl;
<minfcm;dgðSm;du HSl;
<minfcm;dgvÞkL1ðL2Þ . l
	X

o

kSom;duk2L1ðL1Þ


1
2

kvkFl
:

ð63Þ

To accomplish this, we first use the wide angle decomposition, (57), on the left hand
side of (63). This allows us to compute, using a Cauchy–Schwartz, that:

kSl;
<minfcm;dgðSm;du HSl;
<minfcm;dgvÞkL1ðL2Þ;

.
X
o2 ;o3 :

jo3�o2 j�ðd=mÞ
1
2

kSo2

m;dukL1ðL1Þ � kHBo3

l;lðdmÞ
1
2

Sl;
<minfcm;dgvÞkL1ðL2Þ;

. l
X
o

kSom;duk2L1ðL1Þ

 !1
2 X

o

kBo

l;lðdmÞ
1
2
Sl;
<minfcm;dgvÞk2L1ðL2

xÞ

 !1
2

;

. l
X
o

kSom;duk2L1ðL1Þ

 !1
2

kvkFl
:

Summing over d now yields the desired estimate. &

Proof of (50) for the CII Term. Again, fixing d, and using the angular decomposi-
tion Lemma 8.1, we compute that:

kSl;
<dðSm;
�du HSl;dvÞkL1ðL2Þ;

. l
X
o2 ;o3 :

jo3�o2 j�ðd=mÞ
1
2

kSo2

m;
�dukL2ðL1Þ � kBo3

l;lðdmÞ
1
2

Sl;dvkL2ðL2Þ;

. l
X
o

kSom;
�duk2L2ðL1Þ

 !1
2

kSl;dvkL2ðL2Þ;

. lm
n�2
2

d

m

	 
n�5
4

kukFm
kvkFl

:
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This last expression can now be summed over d, using the condition d < cm, to
obtain the desired result. &

Proof of (50) for the CI Term. This is the other instance where we will have to rely
on the X

1
2

l;1 space. Following the same reasoning used previously, we first bound:

kX�1Sl;dðSm;
�du HSl;
�dvÞkL2ðL2Þ;

. d�1
X
o2 ;o3 :

jo3�o2 j�ðd=mÞ
1
2

kSo2

m;
�dukL2ðL1Þ � kBo3

l;lðdmÞ
1
2

Sl;
�dvÞkL1ðL2Þ;

. d�1
X
o

kSom;
�duk2L2ðL1Þ

 !1
2

�
X
o

kBo

l;lðdmÞ
1
2
Sl;
�dvÞk2L1ðL2

xÞ

 !1
2

;

. d�1
2m

n�2
2

d

m

	 
n�5
4

kukFm
kvkFl

:

Multiplying this last expression by d
1
2 and then using the condition d < cm to sum

over d yields the desired result for the X
1
2

l;1 space part of estimate (50). It remains
to prove the Zl estimate. Here we use the second angular decomposition Lemma 8.2
to compute that for fixed d:

X
o1

kX�1S
o1

l;dðSm;
�du HSl;
�dvÞk2L1ðL1Þ

 !1
2

;

. ðldÞ�1
X

o1 ;o2 ;o3 :

o1�o3�ðd=lÞ
1
2

o1�o2�ðd=mÞ
1
2

kSo1

l;d

�
S
o2

m;
�du HSo3

l;
�d
v

�
k2L1ðL1Þ

0BBBBBB@

1CCCCCCA

1
2

;

. d�1 sup
o

kSom;
�dukL2ðL1Þ �
X
o

kSol;
�dvk2L2ðL1Þ

 !1
2

;

. d

m

	 
n�5
4 d

l

	 
n�5
4

m
n�2
2 l

n�2
2 kukFm

kvkFl
:

Multiplying this last expression by l
ð2�nÞ
ð2Þ and summing over d using the condition

d < l; m yields the desired result. &

Proof of the Zl Embedding for the B Term. The pattern here follows that of the
last few lines of the previous proof. Fixing d, we use the decomposition Lemma 8.3
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to compute that:

X
o

kN�1Sol;dðSmu HSl;
�cmvÞk2L1ðL1Þ

 !1
2

;

. ðldÞ�1
X
o1 ;o3 :

jo1�o3 j�ðd=lÞ
1
2

kSo1

l;d

�
Smu HBo3

l;ðldÞ12
Sl;
�cmv

�
k2L1ðL1Þ

0BB@
1CCA

1
2

;

. d�1kSmukL2ðL1Þ �
X
o

kBo

l;ðldÞ12
Sl;
�cmvk2L2ðL1Þ

 !1
2

;

. m
d

� �1
2 d

l

	 
n�5
4

m
n�2
2 l

n�2
2 kukFm

kvkFl
:

Multiplying the last line above by a factor of l
ð2�nÞ
ð2Þ and using the conditions d < l

and cm < d . m, we may sum over d to yield the desired result. &
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