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Abstract. It is shown that in four space-time dimensions the compact U(l)
lattice gauge theory with general energy function converges to a renormalized
free electromagnetic field on the current sector as the lattice spacing approaches
zero, provided the coupling constant is sufficiently large. For the Wilson energy
function, it is possible, by judicious choice of the Gibbs state, to get convergence
for arbitrary coupling strengths. Furthermore, for all but a countable number of
values of the coupling constant, the limit exists and is independent of the
particular state chosen to define the lattice model.

1. Introduction

The problem of mathematical existence of quantized Yang-Mills' fields is (on an
informal level) equivalent to defining a certain probability measure on a space of
connection forms. The informal description of this (Yang-Mills') measure is

τ J Σ trace(Ftj(x)2)dx]DA9 (1.1)
Udi<J J

where A runs over a space of connection forms (A) on the trivial unitary vector
d

bundle CN x Ud, FΛ = dA + A A A is the curvature of A, DA = J\ J"] diA^x)) is
i= 1 xeUd

"infinite dimensional Lebesgue measure" on (A), g2 is a positive "coupling" constant,
and Z is a normalization constant which makes μ a probability measure. See Gross
[5] for a discussion of (1.1) and its ailments.

A standard approach for trying to make sense of the informal expression (1.1) is
to "approximate" the measure by a compact lattice gauge model introduced by
K. Wilson [1], see Sect. 3 below. The problem is then to show that the lattice
measures have a limit as the lattice spacing tends to zero (the continuum limit).

The procedure for removing the lattice cutoff has still not been carried out for
space-time dimension larger than two with a non-abelian gauge (structure) group.
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However, for partial results (involving renormalization group ideas related to ideas
in Wilson [2]) in the non-abelian case, see T. Balaban [1-14] and P. Federbush
[1-7].

This paper is concerned with the case where the gauge group (G) is 1/(1). This is a
considerable simplification since the measure in (1.1) may now be defined directly as
an infinite-dimensional Gaussian measure, see for example Gross [5]. For our
purposes, the measure (μ) of (1.1) (called the free Euclidean electromagnetic field for
G = 1/(1)) is characterized by

f exp (FA(p))dμ(A) = exp [ - g2(Δ ~1 d*p, d*p)/2], (1.2)

where A = ^Aidx1 with At being a real Schwartz distribution on Ud, FA = dA (in
distribution sense), p is any compactly supported C°°-differential 2-form on Ud, d* is
the iΛadjoint of d, and A = — (d*d -f dd*). Given that μ in (1.1) is already defined by
(1.2) for G = 1/(1) proving convergence of the lattice approximating measures is to be
considered a test case for the more difficult non-abelian case.

Gross [3] showed, for d = 3 and G = U(ί) and under some natural assumptions
on the lattice action, that the "lattice current" converges (in the sense of Fourier
transforms) to the current in the free Euclidean electromagnetic field. Furthermore,
if the lattice action is the "Villain" action, then Gross essentially shows that the
lattice field strength tensor converges to the corresponding field strength tensor of
the free Euclidean electromagnetic field.

This paper shows that similar results hold for d = 4 and G = 1/(1), despite the fact
that the heuristics motivating the definition of the lattice measure are not very
convincing when d = 4 (see Gross [5]). In particular, for various hypothesis and
lattice models, the lattice measures converge in the sense of Fourier (Laplace)
transforms in the "lattice current" to the current of a renormalized free Euclidean
electromagnetic field. As in Gross [3], a main technique used is the Schwinger-
Dyson equations (an infinite-dimensional integration by parts). However, unlike in
Gross [3], the mechanism for convergence is based on choosing a particularly nice
extreme Gibbs state to represent the lattice model. These extreme Gibbs states are
needed to provide the necessary decoupling of distantly separated "plaquettes."

In this paper, attention has been restricted to studying the lattice current
(J = d*F) rather than the field strengths (F). This allows us to avoid the Dirac
monopoles (breakdown of the Bianchi identity) which are inadvertently introduced
into the lattice theory. Avoidance of the monopoles seems resonable in the abelian
theory because a similar mechanism for avoiding them in the non-abelian theory is
now available, Gross [4].

Closely related results to Gross [3] and this paper have been obtained by
C. King [1-2]. King has used the results and idea's of Balaban [1-3] to prove the
existence of the continuum £/(l)-Higgs (abelian) model in two and three space-time
dimensions. However, the approximating measures that King uses are non-compact
versions of the Wilson lattice approximation. The generalization of these non-
compact approximations to the non-abelian setting is as yet unknown.

This paper has been divided into eight sections with one appendix. Sections two
and three contain the basic notation and the definition of the lattice model. Section
four gives the statements of the main results. The remaining sections are devoted to
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the proofs of the main theorems. The appendix describes the necessary notations
and facts about pressure which are needed in Sect. 8.

Finally, let me introduce some notation which will be used throughout the paper.
The notation μ{f) will be used to denote \fdμ, and the notation A ecz B will be used
to denote AaB and \A\ < oo(|Λ| is the number elements of the set A).

2. Lattice Complexes and Their Basic Properties

Definition 2.1. Let {ei}
d

=ί be the standard unit vectors in Rd, and fc be a non-
negative integer less than d. The positively (/negatively) oriented fc-cells based at
xeZd, are the formal symbols: + (eh Λ ^ Λ Λ eik)x, where 1 :§ iι < i2 < • •• < ik

^id9 provided k ̂  1. The positive (/negative) oriented 0-cells are the symbols (±)x9

where xeZd. Let (Zd)(k) denote the set of fc-cells of both orientations.
A fc-chaίn is defined in the usual way as the formal sum of a finite number of fc-

cells with integer coefficients with — \c identified with the fc-cell (— c) of opposite
orientation. Similarly, the boundary operator (d) is defined on chains by

dc= Σ Σ ( - ] ) ε + J K Λ ei2 A - A έtj A - . Λ eik)x+aeι, (2.1)
ε=Oj=l

(where the basis vector under the circumflex is to be omitted) for c =
(eh A ei2 A ••• Λ eik)x, and then extended linearly.

Definition 2.2. A (lattice) fc-form is a homomorphism on the Z module of fc-chains to
the complex numbers. So if φ is a fc-form and c, and d are the fc-chains and α is an
integer, then φ(c + αd) = φ(c) + αφ(d). A fc-form is said to have compact support if it
is identically zero on all fc-cells based sufficiently far from 0.

The differential (dφ) of fc-form (φ) is the fc + 1 form determined on (fc + l)-cells (c)
by

(2.3)
pedc

If φ and φ arc two k-forms with compact support, set

(<P,Ψ) = t Σ <P(c)Ψic). (2.4)
ce(Zd)M

The co-differential (d*φ) of (fc + l)-form (φ) is the fc form determined on fc-cells (p) by

d*φ(p)= £ φ(c). (25)
c.pedc

The co-differential (d*) is the adjoint of (d) with respect to (2.4).
The rest of this section deals with approximating differential (C00) forms on Ud by

lattice forms on Zd. If φ is a differential fc-form on Ud, and α > 0 (thought of as the
lattice spacing), then define the lattice approximation (φα) by

Ψα(c)=$φ= J Φiίt2...ik(^ + sίeiι + "'+skeik)dsί...dsk9 (2.6)
αc [0,α]k

where c = (eh A eh A •- Λ eik)x and ψiιi2...ik = ψ(eil9 eh9..., eik) the components of φ.
(Note: φα(c) ^ αkφili2..jk(αx) for a close to zero.)
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We now have two meanings for the symbol (d). However, the next lemma shows
that for lattice approximations the two differentials may be interchanged.

Lemma 2.1. Let φ be a differential k-form on Ud and φa be a lattice approximation.
Then (dφ)a and d(φa) are the same k-forms on Zd, where the first d is the exterior
differential and the second d is the lattice differential.

Proof. (#)β(c) = J # = j ψ = J φ = φa(dc) = (#β)(c).
ac d{ac) a{dc)

The second equality is Stokes' theorem, see Spivak [1]. The rest is only a matter of
unwinding definitions. Q.E.D.

Finally, if φ9 and ψ are compactly supported C00 differential fc-forms on Ud, put

(ψ9 φ) = ΣS Ψt1i2..Λk(Φiιi2...ik(x)dx, (2.7)
ud

where the sum is over increasing subsequences of length k of {l,2,3,...,d}9 and
Φi1i2...ik(

x) a n d <Piii2...ik(x) a r e th e components of the differential /c-forms φ and φ
respectively. The following lemma connecting the two bilinear forms (2.4) and (2.7) is
easily proved using standard Riemann integral techniques.

Lemma 2.2. Let φ and φ be compactly supported differential k-forms on Rd, then

(ψ9φ) = lima<d-2k\ψa9φa). (2.8)

3. Definition of the Lattice Model

Let h:U-> U be a real twice continuously differentiable even periodic function with
period 2π. Any such function (h) will be called an energy function. The main
examples of interest are given below.

Example 3.1. Wilson energy: h(x) = 1 — cos(x).

Example 3.2. Generalized Wilson energy: h(x) = 1 — cos (mx), where m is any
integer.

N

Example 3.3. Wilson-like energy: h(x) = — ]Γ bk cos (kx\ where bk ̂  0 and N is an
k=l

positive integer.

Example 3.4. Villain energy: For each β > 0, define hβ by

exp(-j&y*)) = ̂  f expl-β(x-2πn)2/2l (3.1)
n= — oo

where cβ is a constant chosen such that the right-hand side is one at x = 0.
To each energy function (h) we will associate a lattice statistical mechanical

model. See Israel [1] Preston [1] for the general notation and facts about lattice
statistical mechanics.

Let (β + )0& be the set of (positively oriented) one cells on Zd. Let (^ + ) ^ be the set
of (positively oriented) two cells. The one cells will also be referred to as bonds and
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the two cells as plaquettes. The lattice for the model is the set of positively oriented
bonds J* + . The state space for the model is S1, the unit circle. The unit circle will be
identified with the interval [— π,π] with the end points identified. The "apriori"
measure on S1 is taken to be normalized Lebesgue measure (λ) on [— π,π]. The
configuration space (Ω) is then (Sλf+ = {ω:&+ - > [ - π,π]}.

It is convenient to embed configuration space (Ω) in (S1)^, by defining ω(—b) =
— ω(b), where be$ + and ωeί2. (Remember that the unit circle has been identified
with [ — π, π].) With this convention each configuration may be extended to a 1-form
o n Z d .

Definition 3.1. Let h be a given energy function, then the associated interaction

potential (φh = {φh

B}Bc^<% ) *s given by

(h(dω(p)) iϊB = dp f o r s o m e p e ^

otherwise " ^

where B denotes the set of bonds in B disregarding orientation. Hence, the energy
(HB(ω\ω')) of a configuration (ω) given the boundary conditions (ωf) over β c c | +

is

ifS(ω|α/)= £ h(dlωBxω'^ΛB-](p)l (3.3)

where

\ω{b) if i
;/ f\ t . . (3.4)

ω'(b) otherwise

The corresponding specification (Πh ~ Πφh = {Πh

B}Bczcz^ ) is defined in the
standard way as follows. If (/) is a continuous function on Ω (a compact space
with the product topology) then,

Πh

B(ω,f) = Z^(ω)- 1 f β - ^ ( ω N / ( ω ^ x ωaΛB)dλB(ω'B), (3.5)
β(β)

where Z^(ω) is the normalization constant such that ΠB(ω,l)= 1,Ω(B) = (S1)B,
coB = ω'\BeΩ(B% and dλB(ωB) is the product of the normalized Lebesgue measures
on Ω(B). The set of (extreme) Gibbs states associated to Πh will be denoted by
(Ge(h))G(h).

Up to this point it has been convenient to absorb certain numeric factors
associated with the lattice spacing parameter a and the coupling strength g into the
energy function h. These factors are easily made explicit when necessary.

Definition 3.2. A Gibbs state μeG(g~2a{d~4)h) is said to be a lattice approximation
(for the lattice aZd) to the free Euclidean electromagnetic field with coupling strength
g. (The factor ώd~^ is motivated by (2.8).)

Definition 3.3. The lattice field strength tensor is

F(p)(ω) = h'(dω(p)% (3.6)

where pe^, and ωeΩ. (Remember that each ω is extended to be a 1-form on Zd, so
dω(p) is defined.)
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Remark 3.1. Since the energy function (h) is assumed to be even, h' is then odd. So for
each configuration (ω\ F(-)(ω) may be considered as a 2-form on Zd.

Definition 3.4. The "lattice current" associated to F is

for all beέfi, and ωeΩ.

4. Statement of the Main Results

Theorem 4.1. Let d > 4, and φ be a closed (dφ = 0) complex valued test 2-form on Ud.
For each a > 0, let μaeG(g~1a{d~Δr)h\ then

(4.1)
a|0

(F, φj(ω) = i ^ F(p)(ω)φa(p) as m (2.5).
pe0>

Remark 4.1. The fact that φ is closed is equivalent to the existence of a test 1-form (j)
such that φ = dj (provided d > 2), as follows from standard compact De Rham
cohomology theory (Bott and Tu [1]). Hence the theorem is a statement about the
lattice current d*F, since (F, φ) = (F, dj) = (d*F,j) = (J, j).

Theorem 4.1 asserts that the continuum limit on the current sector of the lattice
models for d>4 is "trivial." The limiting measure is a (5-function at the zero
configuration.

In the following, we will restrict the space-time dimension to the case of most
interest; d = 4. This is an exceptional case, since the lattice approximating Gibbs
state of Definition 3.2 no longer depends on the lattice spacing parameter (a). The
influence of the lattice spacing is only felt in the lattice approximations φa to the test
2-form φ.

Theorem 4.2. (d = 4) Suppose that G(g~2h) = {μ}, is a one element set. Then for any
closed complex test 2-form (φ) on [R4,

f ^ \ (4.2)

where a = μ(h" (ω(dp))) ̂  0 (independent ofpeέP). Furthermore, α — 0 if and only ifh is
a constant function.

Remark 4.2. The set of Gibbs states G(g~2h) is closed under translations and 90°-
rotations of the lattice, since the specifications are invariant under these operations.
Hence, the unique Gibbs state (μ) must be invariant under translations and 90°-
rotations.

The theorem says that the Laplace transforms of the lattice current converges to
the corresponding Laplace transforms of the free Euclidean field (compare (4.2) with
(1.2)) provided the coupling constant (g2) is renormalised by the factor α. (Note:
(A ~ * d*p, d*p) = - (p, p) if dp = 0.)
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An application of Dobrushin's uniqueness theorem gives an easy method for
checking the hypothesis of Theorem 4.2. This is the subject of the next lemma.

Lemma 4.1. Let ft be a given energy function, and let the coupling constant (g2) be
chosen sufficiently large such that [sup (h) - inf (ft)] < 2g2/9. Then \ G(g'2h)\ = 1, and
hence the conclusion of Theorem 4.2 holds.

Theorem 4.3. (d = 4) Let φbea real-valued closed (dφ = 0) test 2-form on U4'. Suppose
that μeGe(g~2h) is an extreme Gibbs state which is also translation and 90°-rotation
invariant. Then

lim μ(ei{F^) = exp \^g2(φ, φ) \ (4.3)
aiO \ I J

where a is the constant defined in Theorem 4.2.
The proofs of Theorems 4.1-4.3 are given in Sect. 6.

Remark 4.3. Theorem 4.3 is a special case of Theorem 4.2 if \G(g'2h)\ = 1.
The existence of a Gibbs state satisfying the hypothesis of Theorem 4.3 is not

known for general energy functions (ft). However, if ft is a Wilson-like action
(Example 3.3), then results of Messager et al. [1] guarantee the existence of such a
Gibbs state.

Theorem 4.4. (Messager et al. [1]) Assume d = 4, and suppose ft is a Wilson-like
energy function. Let μgeG(g~2h) be the Gibbs state constructed by taking the
thermodynamic limit with zero boundary conditions:

|"2
μ* = weak- lim 77|"2h(0, •), (4.4)

where 0 denotes the zero configuration, and B\& + means that B should eventually
contain any finite set of bonds in& + . Then μ°g exists and defines an extreme invariant
Gibbs state, i.e. satisfies the hypothesis of Theorem 4.3.

The proofs of Lemma 4.1 and Theorem 4.4 are in Sect. 7.
Following ideas in Pfister [1] and Frohlich and Pfister [1], one finds for a

Wilson-like energy function and for almost all values of the coupling constant (g)
that the limit in Theorem 4.3 exists and is independent of the particular choice of
invariant Gibbs state.

Theorem 4.5. (d = 4) Let hbea Wilson-like energy function. Then for all but at most a
countable number of g > 0,

lim μg{e*F^) = exp ( ̂  g2(φ, φ)\ (4.5)

where μg is any (translation and 90°-rotation) invariant element of G(g~2h\ φ is any
real closed test 2-form, and α = μ° (h"(ω(dp))) (μg is defined in (4.4)) independent of the
particular choice (μg).

The proof is given in Sect. 8.

It should be pointed out that Theorems 4.3-4.5 are only needed when there is a
first order phase transition for the model, that is when | G(g~2h)\ > 1. Otherwise the
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stronger result of Theorem 4.2 would be applicable. The existence of a first order
phase transition is still an open question for these ί/(l)4-gauge models. Recall that
Guth's theorem (Guth [1]) asserts that in d = 4, the L/(l)4 lattice gauge theory with
the Villain action does have a phase transition. However, this phase transition is
characterized by the decay properties of "Wilson loop variables" as the size of the
loop increases to infinity. It is not clear how a phase transition of this type is related
to the more standard phase transitions which are characterized by smoothness
properties of the thermodynamic potentials.

5. Preliminary Lemmas and Estimates

This section contains some basic identities which result from integration by parts.
These identities will then be used to derive a number of basic estimates of quantities
involving the Laplace or Fourier transforms of the lattice currents. Throughout this
section it will be convenient to absorb the factor g~2a{d~A') into the energy function
(h). These factors are easily reinserted later when they are needed. Also, unless
explicitly stated, the dimension of space time (d) is allowed to be arbitrary.

Lemma 5.1. (Schwinger-Dyson Equations, see Gross [3].) Let h be an energy
function, μeG(h) be an arbitrary Gibbs state. Let f be a differ entiable periodic function
depending on only finitely many bond variables. Then for any bond b

), (5.1)

where J(b) is the lattice current in Definition 3.4.

Proof. Choose 5 c c J>+ such that f(ω) depends only on ωB and such that b and the
bonds of any neighboring plaquettes are contained in B. Then by finite dimensional
integration by parts, noting that the boundary terms are zero by periodicity,

71* (α>, Bf/dω(b)) = 77* (ω, J(b) f)9 (5.2)

for all configurations ω. See Eqs. (3.3), (3.5) and the definition of J(b) (Definition 3.4)
and the following computation:

dHh

B(ω'\ω)/dω'(b) = £ h'(dω'(p)yddω'(p)/dω'(b)

= Σ h'(dω'(p)) = J(b)(ω').
pe& beδp

In the second equality we used the assumption that h! is odd, the convention of ω'
being extended to a 1-chain, and the assumption that b was in the "interior" of B.

The theorem now follows by integrating both sides of Eq. (5.2) with respect to the
Gibbs state (μ) and using the D.L.R. equations; Preston [1], Israel [1] or Ruelle
[1]. Q.E.D.

Lemma 5.2. (See Gross [3].) Let] be a lattice I-form with finite support, μeG(h\ and
u(s) = μ(es(JJ)) for s real. Then

u'(s) = s Σ dj(p)2μ(hf/(dω(Pyes^j))). (5.3)
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Proof.

u'(s) = sμ((J, ; > S ( J J>) = (1/2)Σ j(b)μ(J(b)e*J »)

where the sums are over all bonds. The Schwinger-Dyson equations were used in
the third equality.

Set φ = dj, so by Definitions 3.3 and 3.4, (J,j) = (F, φ). We now compute the
derivative in (5.4).

2, θω{D)

= Σφ(p)2h"(dω(p)), (5.5)

where

{i ̂ L
Plug (5.5) into (5.4) to finish the proof, noting the extra factor of two in (5.3) arises
from the restriction of the sum to & + . Q.E.D.

Lemma 5.3. {Dimension = d) Let j be a complex lattice I-form with finite support,
μeG(h) a translation invariant Gibbs state, and u(s) = μ(es(Jtj)). Then

where \\dj\\2=z(dja9ffa).

Proof. Without loss of generality, it may be assumed that j is real since \u(s)\
Sμ(\es(JJ)\) = μ(es(J>Rej}\ a n d | | J R e ( j ) | | 2 ^ \\dj\\2. So a s s u m e / i s real .

By Eq. (5.3),

\h"\\ooΦ)' (5-8)

Hence

|ln(φ)/u(O))|^ J \dln(u(t))/dt\dt£\\dj\\2\\h"\\ms2/2.
ίe[O,s]

The lemma follows by exponentiating this last inequality using u(0) = 1. Q.E.D.
For notational ease, let K(-, •,...,•) denote a generic function which is increasing

in each of its variables. From lemma to lemma and even line to line there may be
many such functions K, which will all be denoted by the same letter.

Lemma 5.4. (Dimension = d) Let μeG(h) be an invariant Gibbs state, and j be a
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complex lattice I-form on Zd, with finite support. Then

μ(\e^-l\2)^K(\\h"\\w-\\dj\\2)\\h"\\o0-\\dj\\2. (5.9)

Proof. Let

υ(s) = μ{\e*J'Λ - 112) = μ ( e 2 s R e ( J " / ) + 1 - es(JJ> - ei{J-Jl). (5.10)

Differentiating (5.10) using Eq. (5.3), one easily finds the estimate

By using the estimate in Eq. (5.8) and this last equation, we conclude that

\v'(s)\^K(\\h"\\00-\\dj\\2)\\h"\\00 \\dj\\2

2 (5.11)

for se[0,1]. Since v(0) = 0, the same estimate holds for v. Q.E.D.

6. Proofs of Theorems 4.1-4.3

Our first goal will be to prove Theorems 4.2 and 4.3. Theorem 4.1 will be proved at
the end of this section. The proof of Theorems 4.2 and 4.3 will be broken up into a
number of propositions and lemmas.

Proposition 6.1. (d = 4) Suppose that j is a complex valued test 1-form on R4 and
μeGQί) is an invariant Gibbs state. Define

c(a) = sup {\covμ(h"(dω(p)\es(J^)\:pe0> + ,selO, 1]}, (6.1)

where co\μ(f, g) = μ(fg) — μ{f)μ{g) Suppose that lim c(a) = 0, then

lim μ ( e w >) = exp (% (dj, dj)\ (6.2)
HO V /

with a as in Theorem 4.2..

Proof. Let ka = a(dja,dja), ua(s) = μ{e^J'\ and υa(s) = exp(- kas
2l2)-ua(s). Then by

Lemma 5.2

v'a{s) = exp ( - kas
2β) {- kasua(s) + u'a(s)} = exp ( - kas

2/2) {(l/2)s

x Σ 4 ( P ) 2 covμ(h"(dω(p)), e«JM)}. (6.3)
P

So

\v'M^K-c(ay\\dja\\\ (6.4)

where

K = sup {(s/2)exp(- kas
2/2)\0 < a < 1, 0 ̂  s ̂  1}, (6.5)

and

By Lemma 2.2 ka^k = oί(dj,dj) as α->0, so that K < oo. Since by assumption
c(α)->0 as α-^0, ^ - > 0 as α->0 uniformly in S6[0,1]. Since va(0)= 1 (M Λ (0)= 1),
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it follows that va converges to one uniformly in s. Putting s = 1, conclude that
ua(l)-+ek/2 as<2->0. *' Q.E.D.

In view of this proposition, the proofs of Theorems 4.2 and 4.3 are reduced to
showing in each case that c(α)->0 as a-+0. This will be done by using the cluster
properties of unique or extreme Gibbs states. To carry this procedure out we must
divide the test 1-form into "near" and "far" pieces. The cluster properties will be
applied to the far pieces. The following lemma enables us to control this spliting of
the test 1-form.

For the remainder of this section let g be a real infinitely differentiable function
with compact support on Ud. Furthermore assume g is radial, 0 ̂  g rg 1, and

O i f | x | £ 2

Put gr(x) = g{r~ xx) for all r > 0.

Lemma 6.1. Let] be a complex test 1-form on Ud and gr be as above. Define/ = gr'jfor
all r > 0. Then

^ - Ί K d A l l i ^ x ClljΊli rW-^+iidjΊI^], (6.7)

for all positive r and a. The sup-norms are supremums over all the components of the
forms and over all ofUd. K is a constant which only depends on the dimension (d), and
the function (g).

Proof.

II W)a Hi ̂  [ IIW A j)a | |2 + II (gr-dj)a | | 2 ] 2

^ 2 [ | | ( d / Λ j ) β | | | + | | t o ' dj)β | | | ]. (6.8)

We estimate the two terms of (6.8) separately. Starting with the first term observe,

\W A Mv)\ ύ f W A Ί ύ H Ίlco f 1^1, (6.9)
ap ap

where the absolute value of a form denotes the maximum over the absolute value of
the components. By the definition oϊgr

9 there exists a dimension dependent constant
(c) such that

f I dgr I = 0 if dist (ap, 0) ̂  cr. (6.10)
ap

Using the estimate,

\dgr\ = \r-1Vg(r-1x) dx\£r-1\\Vg\\a), (6.11)

and (6.10), we conclude that

J r - V χ ^ ί p ) , (6.12)

where

if dist (p,O)gsi ? ,6.3)
0 otherwise
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Combine the estimates (6.9) into (6.12) to get

\W A MP)\ ύK\\ JlLr-WxcnM (6.14)

Square and then sum this last estimate over all plaquettes to obtain

a^-^\\(dgr A j)a\\2

2SK-\\j\\i'/d-2\ (6.15)

To obtain this last inequality I have used

I {p dist (p,0) ^ cr/a} | ^ K-(r/a)d, (6.16)

where K denotes a constant only depending on d. By a similar (easier) argument it

follows

•r", (6.17)

where K is a constant only depending on d.
The theorem now follows from the estimates (6.8), (6.15) and (6.17). Q.E.D.
We are now ready to apply the cluster properties of extreme or unique Gibbs

states. So for convenience, let me remaind the reader of these cluster properties. A
Gibbs state (μ) is said to have the (strong) cluster property, if for all feC(Ω) there
exists Bczcz&+ such that for any geC(Ω) that depends only on ω@ χ β, then

. {μ(\gI) (strong)

where covμ(/, g) = μ(fg) - μ(f)μ(g). and || || „ is the sup-norm.

Theorem 6.1. (Ruelle [ i ] or Preston [1]) //α Gibbs state μ is (unique) extreme, then μ
has the (strong) cluster property.

Theorem 6.2. (d = 4) Let h be an energy function, μeG(h), and] be a complex test 1-
form on IR4. Fix a plaquette (p0) based at OeZ4. Then

a) If\G(h)\ = Uthen

\\dja\\2)Όpo(a). (6.19)

b) If μ is extreme (μeGe(h)) andj is purely imaginary, then the estimate (6.19) still
holds, and in (6.19), Opo(a) denotes a function which is independent of the test \-form (j),
and tends to zero as a tends to zero.

Proof. Let r be a positive number less than one, / be as above, and put kr = j — f.
For notational ease put jj = (f)a, kr

a = (kr)a, and f(ω) = h"(dω(p0)). The parameter (r)
will eventually be chosen to be a function of a which converges to zero as a goes to
zero.

First split covμ(f, e(JJa)) into two parts,

covμ(/, eiJ> '«>) = covμ(/, e

{JjrWto)

= covμ(f, [ β ( J ^ - 1 > ( ^ } ) + covμ(/, eiJ'®). (6.20)

Call the first term in (6.20) A and the second term B. We now estimate \Λ\,

SK(\\dfJ2,\\dkrJ2y\\dfa\\2^K(\\dj\\m,\\J\\π,\\dja\\2yr, (6.21)
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where K( ,-,-) denotes a function (depending on ft) which is increasing in its
arguments. The Cauchy-Schwartz inequality was used in the second inequality,
Lemma 5.3 and Lemma 5.4 in the third, and || dka

r | | 2 <Ξ || dja \\2+\\ dfa | |2, Lemma 6.1
and r rg 1 in the last inequality.

To estimate \B\ we will have to divide the proof into two cases corresponding to
the two cases of the theorem. However, first note that (J, kr

a){ω) depends only on the
bond variables outside a ball of radius (cr/a), where c is a positive constant. At this
time choose r = a(1J2\ hence r/a->oo as a->0.

Case (a)|G(ft)| = 1: By the strong cluster property (Theorem 6.1), there exists a
function Opo{a) as in the statement of the theorem such that

\B\ = |cov μ (/,e ( J ^) | ^ Opo(a) μ(\e{J^\). (6.22)

Using Lemma 5.3, Lemma 6.2 and Eq. (6.22) we conclude that

| c o v μ ( / , e { J ^ ) \ g OPo(a) K( \\ j \ \ ^ \\dj||00, | |dj a | | 2 ) . (6.23)

Case (b) μeG(h) is extreme and j is purely imaginary: The observation that

β(Λθ| _ i a n ( j t h e c i u s te r property to Theorem 6.1 asserts again an estimate of type
(6.23) holds (with K independent of j in this case).

The estimate (6.19) follows from combining the estimates (6.21), (6.23), and
(6.20). Q.E.D.

It is now an easy matter to extend Theorem 6.2 to allow for the fixed plaquette p0

on the left-hand side of (6.19) to be arbitrary.

Lemma 6.2. Suppose that μeG(h) is an invariant (translation and 90° rotation
invariant) Gibbs state satisfying an estimate of the form (6.19), then

j \ \ ΰ ΰ , \\dj\\^ \\dja\\2)ΌPo(a) (6.24)

holds for all

Proof. Let Tx denote the natural translation operators on differential forms and on
lattice forms, see Appendix. Then if j is a test 1-form

(Taxj)a = TJa. (6.25)

So using (6.25) and the fact that both sides of the estimate (6.19) are invariant under
translations of j , allows us to conclude that inequality (6.19) is valid if the plaquette
(p0) in the left-hand side of (6.19) is replaced by any of its translates. Using a similar
argument for rotations, we conclude that the plaquette (p0) on the left-hand side of
the estimate (6.19) may be replaced by any plaquette (p). Q.E.D.

Proof of Theorems 4.2 and 4.3. Combining Proposition 6.1, Theorem 6.2, and
Lemma 6.2 with the energy function h replaced by g~2h gives the limits in Eq. (4.2)
and (4.3) of Theorems 4.2 and 4.3. So it only remains to show that α ̂  0 with equality
if and only if h is constant. This is a consequence of the following lemma.

Lemma 6.3. Let μ be an invariant Gibbs state, then

a EE μ(h"(dω(p))) = (2(d - l ) )^ 1 μ(J(b)2), (6.26)

where b is any bond, and d is the dimension. Furthermore, oc>Oifh is not a constant.
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Proof.

( ^ { £ F(p)}

p .bedp

The Schwinger-Dyson equations were used in the first equality, the definition of J in
the second, the definition of F in the third, and the fact that 2(ά — 1) is the number of
plaquettes with a given bond in their boundaries. So the validity of Eq. (6.26) has
been shown.

Fix a bond bε$ + , and let B c c J* + be such that beB and J(b) depends only on
the bond variables over B. If h is not constant, it is easy to check that J(b) is not
identically zero. So by continuity oϊJ(b), there is a neighborhood in Ω with J(b)2 > 0.
It then follows that Πh

B(ω, J(b)2) > 0 for all configurations ω, since finite dimensional
Lebesgue measure charges open sets. Since μ(J(b)2) = μΠh

B( ,J(b)2) by the D.L.R.
equations, we conclude that μ(J(b)2) > 0, and thus a > 0. Q.E.D.

Proof of Theorem 4.1. For notational ease, let φ = dj,

Π"B(ω',-) = πi"4)\ω',-), and ua(s) = /zβ(e"w~4)(' ' >).

for se[0,1]. Then by Lemma 5.2 with h replaced by a{d~4)h,

u'a(s) = (s/2)aW £ φa(p)2μa(h"(dω(p))esa<d~^). (6.27)
pe0>

Since (s/2)α ( d~4 )£ φa(p)2^s(φ,φ) as α->0 (Lemma 2.2), it suffices to show that
pe0>

μa{h"(dω{p))esaid~4){JJa))-+0 uniformly in p as α ^ O , because ua{0)= 1.
Let p be a plaquette based at zero. Choose a subset £ c c ^ + which contains all

the bonds (disregarding orientation) of any plaquettes having a bond in common
with p. By the finite volume Schwinger-Dyson equations (see Eq. (5.2)) with h
replaced by α(d~4)/z,

(6.28)

where fc is any bond in the dpθ9 and ω'e/2 is any configuration. Dividing Eq. (6.28)
by α ( d~4 ), using the fact that J and F are uniformly bounded, we find

(6.29)

where K is a constant depending on || /z || ̂  .
As in Theorem 6.2, split the 1-form j a into its "near" and "far" pieces,

i f ^ ° r . - / ' l s i n β (6.30)
| otherwise

and
Jfa=ja-Γa. (6-31)

We do not have to be so careful in this case.
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Now

|μ β (Λ"(dω(p»^

= \μa{Π%[', Λ " ( d ω ( p ) ) ^ " 4 ) ^ ) ] • e ^ ' V j ί ) } I

^^«^«.- w " 3 ) .0(f lW-*)).μ β ( |^ w " 4 ω)|), ( 6 > 3 2 )

where K is a constant depending on | £ | and || ft ||«,. The D.L.R. equations were used
in the second equality along with the fact that (JJ{) only depends on the bond
variables outside of B. The inequality is a consequence of Eq. (6.29) and the easy
estimate

where K only depends on \B\. But by Lemma 5.3 with ft replaced by α(d~4)ft,

ΊlΦαllillΛHoo/ί}. (6.34)

Combine the estimates (6.34) and (6.32) to get

\μa{h'f{dω{p))esa{d~M{J^)\ ^ K(|| j | | „ , ώd~^ || dja \\2)'a^^\ (6.35)

where K is an increasing function in its arguments. As in Lemma 6.2 the estimate
(6.35) remains valid when (p) is any plaquette, since for small a the Gibbs state μa

is unique and hence invariant, see Lemma 4.1 and Remark 4.2. Hence we have
shown that μa{h"(dω(p))esa (7' /'«))->0 uniformly in p as α->0, so the theorem is
proved. Q.E.D.

7. Proof of Lemma 4.1 and Theorem 4.4

Lemma 4.1 is a special case of the following (specialized) version of Dobrushin's
uniqueness theorem (Dobrushin [1]) which is a combination of Dobrushin's result
and an estimate of B. Simon [2]. Also see Gross [1-2] and Follmer [1] for other
proofs and related results to Dobrushin's theorem.

Theorem 7.1. Suppose that φ is a finite range interaction potential on Ω such that

sup Σ ( | B | - l ) l l < M c o < l , (7.1)
beSS+ B .beB

then there is only one Gibbs state associated to the potential φ.

Proof of Lemma 4.1. Without any loss of generality, assume that g = 1. We first note
that G(ft — c) = G(h) for any real constant (c), since IJ^~C) = ΠB for all real c and
B a a&+ (B c= ̂ *+ and \B\< GO). Thus we may assume that ft is normalized such
that || ft || oo = 2[ s u P(ft)~ inf(ft)].

An easy computation using the Definition 3.1 shows

sup X (1^1-1)11^1100 = 3^-1)11^1100 (7.2)
be&8+ BώeB

in ^-dimensions. The factor 3 is from the fact that \dp\ = 4 if p is a plaquette. The
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factor dΛ counts the number of positively oriented plaquettes with b in the
boundary. The lemma now follows from Theorem 7.1. Q.E.D.

Proof of Theorem 4.4. The fact that the limit μ°g defined in (4.4) exists and defines an
extreme Gibbs state is a special case of Theorem 1 of Messager et al. [1] applied to
our model. The invariance of the measure μ° easily follows from the in variance of

πQ{ω, f) = Π°B\ω*TJ° T), (7.3)

where T denotes the action of a translation by an element of Zd (see Appendix) or a
90°-rotation on <% + , Ω, and C(Ω). Hence, if ω in (7.3) is the zero configuration
(ω(b) = 0) so that ω° T = ω, the invariance of μ° follows by letting B]^+ in (7.3).

Q.E.D.

8. Independence of the Limit (Proof of Theorem 4.5)

Our first goal will be to find a criteria on a Gibbs state which insures that the limit in
(4.5) exists and is the desired value. The following theorem is closely related to
Theorem 6.2, and will take its place in this setting. Throughout this section h will
denote a Wilson-like energy function.

Theorem 8.1. (g = 1) Let hbe a Wilson-like energy function, p0 be a fixed plaquette
based at 0, and μeG(h) be any Gibbs state such that μ°(h"(dω(p0)) = μ(ti'(dω(p0))),
where μ° = μ? as defined in Eq. (4.4). Then

where K is an increasing function in its arguments, Opo (α) -• 0 as α -> 0, and) is any real
test 1-form on [R4 (i.e. the estimate (6.19) is still valid).

For the proof of this theorem we will need a fact which is Proposition 1 of
Messager et al. [1] applied to this model.

Proposition 8.1. (Messager et al. [ i ]) Let hbe a Wilson-like energy function. Let μ°
denote the Gibbs state defined in (4.4) with g = 1, and μeG(h) be any other Gibbs state.
Then μ°(cos (Y m(b)ω(b))) ̂  μ(cos (Y m(b)ω(b))) for any function m'M + -> Z of finite

b b

support.

Proof of Theorem 8.1. For ease of notation set f0 = h"(dω(pQ)). It is well known that
any Gibbs state (μ) may be decomposed into its extreme states;

M / ) = ί v(/)P(dv), (8.2)
Ge(h)

where P is a probability measure on the extreme Gibbs states (Ge(h)) and / is any
continuous function on Ω (see for example Ruelle [1], Preston [1] or Dynkin [1]). Set
f = f0 in (8.2) and use μ(/0) = μ°(/0) ^ v(/0) for all veG(ft) (Proposition 8.1) to
conclude that

):v(/o) = μ°(/o)} = l. (8.3)

If/ is any continuous function on Ω, let f'.Ge(h) -> U be the function /(v) = v(f). By
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definition, the function / i s measurable on Ge(h)—the σ-algebra on Ge(h) is taken to
be the smallest σ-algebra for which the functions / are measurable (Dynkin [1]).
With this notation we may restate (8.3) as / 0 = μ°(/o) P-almost surely.

Now if/ and g are two continuous functions on Ω and μ is given by Eq. (8.2), an
easy computation shows that

covμ(/,flf)= J covv(f,g)P(dv) + covP(f,g). (8.4)
Ge(ft)

In particular if / = / 0 , then

covμ(/0,flf)= j covv(/0, g)P(dv\ (8.5)
Ge(h)

since / 0 is a constant P-almost surely. By Theorem 6.2, for each veGe(h) there exist
functions K and Ov such that

|covv(/0,e*J-M)\ S K(|| J Ί L , II 4/ II«>, II4/βII2)'Ov(fl), (8.6)

where K is increasing in its arguments, Ov(a) -> 0 as a -> 0, and) is any real test 1-form.
Furthermore, looking at the proof of Theorem 6.2, the function K may be chosen to
be continuous and independent of the Gibbs state v. For later convenience the
function K is also chosen to be larger than one. It will be shown below (Lemma 8.3)
that the functions Ov(a) may be chosen so that for each fixed a the map v -> Ov(a) is
measurable on Ge(h) and the map is bounded by 21| h" || ̂ . So use the estimate (8.6) in
Eq. (8.5) with g = ei(JJa) to get

|covμ(/0,e* J^)\ < K(|| j||„, || dj||„, ||dja\\2\OPo{a\ (8.7)

where

Opo(a)= J Ov(α)P(dv). (8.8)
G(Λ)

An application of the dominated convergence theorem shows that OPo(α)->0
asα->0. Q.E.D.

Corollary 8.1. Let h be a Wilson-like energy function and μeG(h) be an invariant
Gibbs state such that μ(h"(dω(p))) = μ°(h"(dω(p))) for some plaquette p (and hence all
p's). Then for each real test \-form on IR4,

lim μ(e«J-M) = exp ( ^ (dj, dj)\ (8.9)

where α = μ°(h"(dω(p0))).

Proof. The proof is the same as the proof of Theorem 4.3 after using Theorem 8.1 in
place of Theorem 6.2 part (b). Q.E.D.

This corollary is the desired convergence criteria that we were seeking. The
technical detail of measurability will be completed at the end of this section.

The next objective is the proof of Theorem 4.5. In view of Corollary 8.1, it is
enough to show the following proposition.

Proposition 8.2. (Dimension = d) Let h be a Wilson-like energy function and μ°β

denote the limit in (4.4) with g~2 = β. Then each translation invariant measure
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μsG{βh) satisfies μ(h"(dω(p))) = μ°β(h" (dω(p))) {p is any plaquette), for all but at most
a countable number of β > 0.

Remark 8.1. This result is modeled on Corollary 4.3 of Pfister [1], and Proposi-
tion 3.5 of Frδhlich and Pfister [1].

Proof. Since h is a Wilson-like energy,

h"{x) = £ k2b,cos(kx). (8.10)
k=l

Let

P(j8) = P(φ'Λ) (8.11)

be the pressure P(φβh) as defined in Eq. (A. 10) of the appendix. By Theorem A.I, the
function P(β) is a convex continuous function. So by standard facts about convex
functions, P'(β) exists for all but a countable number of β > 0. By Corollary A.I,
Definition 3.1, and φβh = βφh;

Pf(β)=~μ( Σ \B0Γ1'φh

B)=-μ( £

°
X £ (8 1 2 )

p c ^ + :0ebase(p) p c & + :0ebase(p)

where μeG(βh) is any translation invariant Gibbs state (which includes μ°β) and β is a
point where P'(β) exists. By Eq. (8.10), h" is a sum of cosine terms with positive
coefficients, and hence by Proposition 8.1.

(8.13)

for all plaquettes p and μeG(βh). In view of Eq. (8.12) and (8.13), we conclude that

for all plaquettes p and translation invariant μeG(βh). Equation (8.14) is valid for all
β for which P\β) exists, that is for all but a countable number of /Fs. Q.E.D.

Proof of Theorem 4.5. As already noted, Theorem 4.5 is a direct consequence of
Corollary 8.1 and Proposition 8.2—take β = g~2. Q.E.D.

We now finish with the technical measurability detail which was left open in the
proof of Theorem 8.1.

Lemma 8.1. The collection of real continuous functions on U4 with compact support
(CC(R4)) is separable in the sub-norm topology. Furthermore, a countable dense set
D a CC(U4) may be chosen to have the following property. If feCc(U4) and n is
sufficiently large such that the supp(/) cz B(0, ή) = {xeU4:\x\ ^ n}, then there exists
geD arbitrarily close to f with the supp(g) c B(0,n + 1).

Proof. Let D' be the collection of continuous functions formed by taking
polynomials with rational coefficients of the functions x-»|x — j/|:[R4->[R, where
yeU4 with rational components. The collection D' is a countable set. By the Stone-
Weierstrass theorem the collection D' when restricted to any compact set K a U4 is
dense in C(K).
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For each positive integer n, choose gneCc(M*) such that supp(#π) c B(0,n + 1),

#„ = 1 on B(0, n), and 0^gn^l. We now define the countable collection of func-

tions (D) as D = {fgn:feD' and n a positive integer}. Then if /eCc([R4) with

supρ(/) cz B(0, n) there exists ftkeD' such that || / - hk ||L<*>(β(o,π+1)} -> 0 as fc -• oo. Hence

II f-Qnh II oo ->0 as fc->oo, since I I / - 0 Λ I L ^ I I / - M L < W » + I ) ) Q.E.D.

Definition 8.1. A continuous fe-form (φ) on IRd is a continuous function from Ud to
the degree-/c exterior algebra over Ud. In other words, φ is a differential fe-form except
that the standard coefficients are only required to be continuous rather than smooth.

Lemma 8.2. Let a>0 be fixed. Let X denote the space of pairs (j,φ}, where] is a
continuous I-form and φ is a continuous 2-form on (R4 both with compact support. The
space X is given the norm

With the above notation, the space (X, \\ ||) is a separable space.

Proof. Put | |<ΛΦ>Ik = IIJΊL +IIhalloo- Let DoczX be the collection of pairs
which have all of their components in the set D of Lemma 8.1. The countable set Do

is clearly dense in the space (X, || < v > ||«,). So let ε > 0, and < j , φ>eX be given, and
suppose that supp(<j, φ}) cz J5(0,ή). Then by Lemma 8.1, there exist <y'fc, φk)eD0

supported in B(0, n + 1) converging to < j , φ > in the sup-norm. It follows by the easy
estimate

\\{φ-φk)a\\2ύK[n+l + 2aT\\φ-φk\\^ (8.16)

that || < j k , φk > — < j , φ > || -+ 0 as n -> oo, where K is the volume of the unit sphere in 4-
dimensions. Hence, Do is also a countable dense set in (X, || | |). Q.E.D.

Lemma 8.3. Let K be a continuous function, increasing in its arguments, K^l, and
such that an estimate of form {6.19) of Theorem 6.2 is valid for all extreme Gibbs states
v. Then for each ae(0,1), the function

Ξ s u p ί ^ ι ι ' T V M : ι Γ T i ' ii Ϋjis a test 1-form l (8 17)

[K{\\j\\O0,\\dj\\O0,\\dja\\2) J
is measurable as a function ofveGe(h). Furthermore Ov(a) is uniformly bounded by
21|ft"||„, and Ov(α)-+0 as α->0.

Proof. Each real test 1-form (j) may be identified with the element {j, dj }eX, where
X is the space defined in Lemma 8.2. The space of test 1-forms given the norm

\\j\\ = \\<j9dj>\\ (8.18)

is a subspace of the separable normed space X, and hence is separable. The
expression in the bracket of Eq. (8.17) is easily seen to be continuous in the || ||-
topology of (8.15). So it suffices to take the supremum in (8.17) over a countable set.
But the expression in the braces of (8.17) when considered as a function of v is
measurable (by definition), and hence so is v -> Ov(a).

The estimate that Ov{a) ^ 21| h" \\ ̂  is trivial. The fact that Ov(a) -• 0 as a -> 0 is
Theorem 6.2. Q.E.D.
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Appendix: Pressure

For this appendix, φ = { φ 5 } β c c ^ + (<PB'Ώ -» U such that φB(ω) only depends on ωB) is
an arbitrary finite range translation invariant (defined below) interaction potential
on Ω = (S1fs+. The case of interest is the interaction potential in Definition 3.1. The
norm of such an interaction potential is defined to be

Hφll= sup Σ iarΊl<M«>. (A.i)

The group Zd naturally acts on the lattice & + via

r»[W,]Mi+,). (A.2)

So Tx acts on a bond simply by translating the base point. The action on Zd naturally
induces actions on f2, and the functions on ί2,

Tx(ω) = ωoT_x, (A3)

Tx(f)(ω) = f(ωoTx). (A.4)

Definition A.I. The interaction potential (φ) is translation invariant if

φβ(ω° Tx) = φTχ(B){ω\ (A. 5)

for all xeZd a n d ΰ c c g g + .

Definition A.2. Let A c Zά, The set of positively oriented bonds associated to A is

A(1) - {(ei)x\xeΛd and i = 1, 2,..., d}. (A.6)

Definition A3. The pressure (PΛ(ω, φ)) of a translation invariant, finite range
interaction potential (φ) on Ω, given a configuration (ω) and A a c Zd, is

)(ω)], (A.7)

where

Z^ (i,(ω)= J exp(-#V)(ωΊω))^ Λ ( 1 ) (ω'Λ(υ) (A.8)

is the normalization constant for the associated specification, and

flV)(ω'|ω)= Σ ^ ( ω ' Λ d j x ω ^ ^ d ) ) (A.9)

is the energy of the configuration ω' in A(1) given the "boundary conditions" ω.

Definition AA. lϊB c : c i ^ + ,ρutB 0 = {xeZd |3 a bond 5 e ΰ with x as its base point},
the base of A.

Theorem A.I. The infinite volume pressure (P) defined by the limit

P(φ)=hmPA(ω9φ) (A. 10)
Λ\Zd

exists and is independent of the boundary conditions (ω\ as A increases to Zd through
cubes. The limiting function P is a continuous convex function on the space of finite
range translation invariant interaction potentials. Furthermore, there is a one-to-one
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correspondence between tangent functionals to the pressure at φ and translation
invariant Gibbs states of the interaction potential φ. (A tangent functional toPatφ is a
continuous linear functional (α) such that P(ψ) — P(φ) ^ oc(ψ — φ) for all invariant
interaction potentials φ.) If μ is a translation invariant Gibbs state, the associated
tangent functional is

« # ) = - / * [ Σ \B°ΓιψBl (A.11)
B:0eB°

If α is a tangent functional, the associated translation invariant Gibbs state is
determined by

μ(f)=-*(ψ')9 (A.12)

where f is a continuous function depending only on the bond variables over some set
Acicz B+, and

0 otherwise

Proof. This is easily reduced to the corresponding well known statements for lattice
models over Z\ see Israel [1]. Indeed, if T = Sd, then the map K:S®+ -* Ύz\ given by
K(ω)(x) = {ωίfo J J } ^ u can be used to map the lattice system over S®+ to one over
Tzd. Q.E.D.

Corollary B.I. Let P and φ be as above and let P(β) = P(βφ) for all β>0. IfP{β)
exists at β, then

rw=-μl Σ I a0 Γ >*] = « » (A.i4)
B:0eB°

for all translation invariant Gibbs states μeG(Πβφ).

Proof. By Theorem A.I,

for all heU and μeG(Πβφ) which are translation invariant. Divide both sides of (A. 15)
by I ft I and take the limit as ft tends to zero from above and below to get ± P\β) ̂

±β*μ(φ) Q.E.D.

Acknowledgement. It is a pleasure to thank L. Gross for many useful discussions.
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