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Abstract

These notes consist of two topics. The lirst topic is concerned with the classification of
vector bundle covariant derivative pairs by the corresponding parallel translation operator
restricted to based loops on the base manifold. The second topic is concerned with a gen-
eralization of the classical Cameron-Martin quasi-invariance theorem for classical Wiener
spaces to Wiener spaces associated to a compact manifold.

Section 0: Introduction.

These notes represent an expanded version of a series of four lectures that [ gave tor the
Semestre Di Analisi A Infinite Dimensioni, at Dipartimento di Matematic - Centro Vito
Volterra (Rotme [} in October of 1992, The author would like to thank Professor Accardi
and Centro Yolterra for the opportunity to give these talks and for a very pleasent and
productive stay in Rome.

These notes are organized as follows. In Part [ (Sections 1. and 2.) the problem of
classification of bundle covariant derivative pairs by parallel translation is discussed. In
Part 11 (Sections 3. and 4.) a generalization of the Cameron-Martin theorem to manifolds
is discussed. The remainder of this introduction is devoted to the motivation of the results
i Part 1.

The results to be described in part [ of these talks were motivated by the problem of con-
structing Yang-Mills Quantum field theories. This problem may be described as defining a
certain probability measure (u) on a space of connection 1-forms A. (An element 4 € Ais
of the form 4 = Z:‘zl A,dzrt where each component A, is a function on R taking values
in U'(V)-the ¥ x N complex unitary matrices.) The measure g is to be “given” by the
following heuristic expression:

dp(A)y =271 exp[Z/tr( R;IV‘I(I))."L[IlD.'{, (YM)

<y
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where R{_‘l = §;A4,-9,4,+[4,, A,;] is the curvature of 4, DA denotes “infinite dimensional”
Lebesgue measure on A, and Z is a normalization constant chosen to make u a probability
measure. [t turns out that even at this informal level the expression in (YM) is not well
defined. This is because (heuristically) both the exponent in (YM) and Lebesgue measure
D A are invariant under the action of the infinite dimensional gauge group G of functions
g from RY to U(V). This action of G on A is given by (g, 4) — A7 = g~'dg + g™ Ag.
Thus using (YM) to define a probability measurs on A would be similar to defining a
probabilty measure v on R* by the formula dv(z,y) = Z~'exp —(z?)dzdy. For this
reason it is standard to reinterpret the measure i given in (YM) as a probability measure
on the quotient space A/G rather than a measure on A. The reader interested in more
information on this topic may consult Driver {D?2,D3] and Gross {G2] and the references
thererin.

With the above comnments in mind, in order to define the measure 4 it should be helpful
to have “nice” parameterizations of the “moduli space” 4/G. Such parameterizations are
the topics of the first two lectures.

Lecture 1. Trivial Bundle Case.

We start this lecture with a review of connections, curvature and parallel translatioa for
trivial vector bundles. The main theorem in this section is Theorem 1.15 which states that
a connection on a trivial bundle can be recovered upto a “gauge transformation” from the
knowledge of its parallel translation operator on based loops. The basic reference for this
section is Gross [G1], see also Driver [D1] The discussion here is more geometrical than
that of (G1} or [D1].

Lec (M, 0) be a connected manifold with base point o0 € M. Let W'(M) be the C'-paths
on M starting at o € M which are parametrized by the unit interval I = [0,1]. Let
L'(M) C W' (M) be the subset of loops based at o. For the purposes of this lecture the
reader may assurne that M = R4 and 0 = 0 € R%.

We now suppose the V is a given finite dimensional vector space. Let us recall the notation
of connections, covariant derivatives, and parallel translation for the trivial vector bundle
E=MxV

Definition 1.1. A connection 1-form (A) on E is a g{(V)-valued 1-form on M, where
9{(V) is the Lie algebra of GL(V) - the general linear group on V.

Definition 1.2. Corresponding to the connection 1-form (A) is the covariant derivative
(V) acting on sections (S) of E. More explicitly let $: M — V be a smooth function
and v, € T M - the tangent space to M at m. Then V,S is given as:

V.S =dS <v>+4<v>5m), (1.1)

where dS < v >= %h,S(a(t)) provided J‘l?a(t)llal) =v.
Defnition 1.3. Given a curve ¢ : R — M and a function § : R — V, we define %T§
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forall v,w e T,, M and m € M.

Proof: Direct coniputation using the fact that

a a
d. ;g >= = Ty .= ;>
A<a. o > A<o > 83A<a>

QE.D.

Theorem 1.9. Let {v(t)}:er be a one parameter family of paths in W'(M) such that
v(t,3) = y(t)(9) is smooth in (¢,3). Then

v
P () = PO B < 3(0) >, (1.9)

where B is the GL{V) -valued l-form ou W'(M) given by
1
B'< X >s/ PMa) 'R < 0'(3), X(3) > P (0)ds (1.10)
0

for each X € T,WH (M) and 0 € W(M).

Remark 1.10. Notice that a tangent vector X € T,W!(M) is by definition the derivative
(¥(0)) of a 1-parameter family of curves {¥(t)}ier such that ¥(0) = ¢. Therefore X(s5) =
fl-l.,-/(t, 3) € T, 9 - that is X(s) is a vector field along .

Proof of Theorem [.9: By the definition of paraliel transport we know VPMa)/ds =0 for
all (5,t). Hence

vV .

N — z S A - i ot Z . A
T dl.P' (i) = [d‘;. (HIP. (7(8)) = R7 < ¥'(t,5). (L s) > Plia(e)), (L.11)

 using Lemma 1.3, in the [ast equality. From (1.11) and Lemma 1.7. it follows that

LI PA()

d ' . .

SIPT mm= = PG TR < () (k) > PRa) (L12)

The theorem is now easily proved by integrating (1.12) relative to s using V P3'(+(t))/dt =
QE.

0. D.
Remark 1.11. Equation {1.9) may also be written as

d
o Pl = PAHAUNBY < 4(t) > A < 3(t 1) > P~() (1.13)

Remark 1.12. [t is easy to check that knowledge of B on TC'(M) (the set of vector
felds (.X) along loops 7 £ L1 M) such that X(0) = X(1) = 0) uniquely determines B '
on all of TH Y.




Corollary 1.13. The 1-form B+ restricted to £'(M) may be computed as:

BA = (P 'd(P) on LH(M).

\Remark L.14. [f g : M — GL(V) is a restricted gauge transforin (i.e. ¢(0) = I) thea
by Lemma 1.6, P*’ = P~ on £}(M). Hence by Remark 1.12 and Corollary 1.13 it follows
that B** = B4 on TW'(M). This is also possible to check by direct computation.

Theorem 1.15. Let A be a given connection 1-form, M = R, and set P(a) = P{Y(a) for
o € LY(M). The connection 1-form A may be recovered upto gauge equivalence from the
function P : LY M) — GL(V).

Proof: Define the l-form B on TLY(M) by B = P~'dP. By Remark 1.12 this can be
extended to TW'(M). Now for each z € M = R choose a path I € WH{M) such
(1) = z and the map (r,3) — Z.(s) is smooth. For example let £.(3) = sz. Define
glz) = P4(E,), and notice by Lemma 1.6 that

I'=y4(x) PRE) = PY(S, (1.14)

Let alt) be a curve in M = R4, so by (1.14) and (1.13) with A replaced by A? we find

L d_. ! .
0= (‘[—t1 = iP,-‘ (Tarn) = BY < ‘%‘_‘u(,, > -4 < aft) >
d
=B« ES“(U >-4A' < a(t) >, (115)

where we have used Remark 1.14 to replace B’ by B* = B. But Eq. (1.15) shows
A7 < aft) >=B < 3“7‘:0“, >, that is B determines A modulo the gauge transformation
q. Q.E.D.

Section 2: The General Case.

{n this section we review the notions of vector bundles, covariant derivatives, curvature,
and parallel translation. The main theorem is the classification Theorem 2.15. The basic
reference for this section is {D1].

{n this lecture we keep the same notation as in Lecture 1 with the exception that £ is now
a general vector bundle. We recall the definition.

Definition 2.1. A vector bundle (£) over M with model space V is an assignment of a
vector space ( E,,) for each m € M such that E., is isomorphic to V and

1) EnNE, =oform#m' and E =], ¢y Em i3 a smooth maunifold.
t1) The map 7 E — M given by 7(E,) = {n} is smooth.

3

iii) 3 an open cover {Q,} of M and functions (U, } defined on O, such that for all £ € O,,
Us(z): V — E, is an isomorphism and the map + — U,(z)¢ from O, to E is a smooth
V€ € V. (The U,’s are called local frames.)

Example 2.2a. £E = M xV, Eqn = {m}xV, and U(z)f = (z,§) for all z € M.
E = M x V is called a trivial bundle.

Example 2.2b. Tangent bundle TM of M with model space RY where d is the dimension
of M.

Deflnition 2.3. Given a system of local frames of E as in Definition 2.1. we may form
the transition tunctions

gus(z) = Ua(z) " Ui(2) € GL(V) for £ € O, N O,.

Proposition 2.4. The functions {g.s} satisfy the cocycle condition:

guc(:) = gab(I)gbc(I) Vz € on n ob no..
Coanversley to each collection of smooth functions g4 : O, N Oy — GL(V) satisfying
the cocycle condition above there exists a vector bundle E over M modeled on V with a

collection of local frames {U,} such that g4(z) = Uas(z) ™' Us(z).

Proof: The proof of the first statement is easy. For a proof of the second statement see
Steenrod (S].

Definition 2.5. a) A section () of E is a smooth function § : M — E such that
S(m) € En VYm € M. Let ['(E) denote the sections of E.

b) A section along a parametrized curve (s — ¢(3)) in M is a function (3 — 5(s)) such
that 5(s) € E,(,, for all 5.

c) A section along a parametrized surface ((3,t) — 7{(3,t)) in M is a function ((s,¢) —
5(s,t)) such that 5(s,t) € E, ) for all (s,¢).

Deflnition 2.6. A covariant derivative V on E is a map V : TM x ['(E) — E (we will
write V, § for V(v, §)) such that

i) Forve ToM and S€(E),V,S € E,.

i) v— V,S islinearon T, M for all m € M.

iii) For sections §,, 5, € [(E), f€ C®(M) and v € T, M; V, satisfies
V(S + £5:) = V.S +(vf)Sa2m) + f(m)V, S
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Definition 2.14. P, and P; € P are said to be equivalent if there exists a ¢ € GL(V)
such that gPy(o)g™" = Pi(0) for all 7 € L'(M). Denote the equivalence class containing
P € P by [P], and the set of all such equivalence classes by P.

Theorem 2.15 Given a bundle covariant derivative pair (E, V), define [P¥] € P by
[uy*PYu,) where u, : V — E, is any linear isomorphism. Then the map [(E, V)] —
[PY} of £ to P is a 1-1 correspondence.

Proof: (Sketch) We will restrict our attenetion to the proof that P & P can be used to
construct a bundle covariant derivative pair (£, V). For this purpose choose an open cover
{O,} of M such that each open set O, has the following property. For each £ € O, there
exists a path £ € W'(M) such that £2(1) = z Vr € O, and (£.3) — Zi(s) € M
is smonth. Now define g,4(z) = P(-S—ESi) for z € O, NO,. where i—;_ denotes the path
£7 traversed in the reverse direction. [t can be shown that the functions gas satisfv the
cocycle condition in Proposition 2.4. and hence define a vector bundle E over M.

Now set. B = P~'dP on L'(M). It can be shown that B may be extended to TW!'{.\)
in a natural way. After doing this define 4* < v >= B < S%v > for all v € TO,. Here
Liv= f; lo 5, € TWY (M), where a(t) is any curve in M such that L |y a(t) = v. It
is then possible to prove that the 4®'s constructed above are local connection 1-forms for
the bundle E coastructed above and hence defines a covariant derivative on E. For more

details see Driver [D1].

[ will end this lecture with another more explicit methorl for construction the bundle £
and the parallel trauslation operators on W!(M). The construction is as follows.

Let £ = WY M) x V/ ~ where a pair (¢,,&;) is said to be equivalent to (77.&;) provided
that end points of o, and o, agree and £; = P(d;0:)¢,. where @; denotes the path o,
traversed in the reverse direction. We will denote the equivalence class of (7, £) by P(o)-&.
The fiber E,, of E over a point m € M is

En={P(s)-{:0(l) =mand { € V}

With this notation given an acbitrary C'-curve a : [0.1] — M we may define “parallel
translation” (PY) along a by:

P¥(a)(P(7) &) = P(r) - (P(Fad)}). (2.1)
where o and r are arbitrary cucves in W'Y(M) such that a(0) = o(1) and a(1) = r(1).

The above construction is motivated by the following considerations. Suppose that (E.V)
is a give bundle covariant derivative pair and PY is the corresponding parallel translation
operator along C'-curves in M. For notational simplicity we will identify E, with V. Now
consider the map v : W' (M) x E, — E given by

o«




Writing P for PY restricted to £L'(M) one easily observes that (a1,£1) and (02,{2) are
mapped to same point in £ under ¥ iff they are equivalent in the sense described above.
It is also trivial to see that y is a surjective map.

Now let a, o, and r be curves as above. Given an n € Eqq), set § = P¥(a)~'n so that
= 2Y(a)E. Then by the multiplicative property of paraltel transport,

PY(a)p = PY(a)(PY(0)€) = P¥(ac)t = PY(r)(P(Fao)f). (2.3)

Eq. (2.3) should convince the reader that the definition in (2.1) is the correct one. of
course in general one has to check a number of details.

Section 3. Cameron-Martin Theorem for Manifolds.

In this section we first review the notion of Wiener measure on the path space of a com-
pact manifold. The Cameron-Martin theorem for manifolds (Theorem 3.6) is then stated.
Finaly we end this section with a review of the [t6 development map for the case of smooth
curves. The basic reference for this section is Driver {D4]. The reader will find related
topics in (D3] and Driver and Rackner [DR]. '

The notations for Sections 3. and 4. are the same as above with £ = TM. We also assume
that M is equipped with a Riemannian metric (g) and a covariant derivative (V) on (TM).
The covariant derivative V is assumed to be compatible with g. This means that PY¥(o)is
an isometry for all ¢ € W'(M) and 5 € {0, 1] and in particular PY(a)" = P7(a)"". Given
v,w € TmM, we will denote g(v,w) by v - w. Finally, for a smooth function f on M we
will denote the gradient of f by either Gradf or by V f.

Definition 3.1. Let Af(m) = Te(VGradf)(m) = Zf_:l(V,l(Gradf) - &), where {e;}4,
is an orthonormal basis for T, M. The Laplacian (Q) is a second order elliptic differential
operator. Denote by p,(z,y) the solution to the heat equation:

17 1 . A
EPJ(I-y)‘_' ;A:P:(I-y) with p,(z, y) =by(r)r (31)
where 0, denotes the é-function (relative to the volume form on M) concentrated at y € M.
In other words, p,{z, y) = kernel (ef2)(z,y).

Example 3.2. If M = R? with the usual Riemannian metric and V = d then A =
5 ai:-; and

o=l

1 2 -_
polz,y) = (.,*T;)d/'f Hleolt, (3.2)

v

Definition 3.3. Wiener measure v¥ on W (M) is the unique probability measure v¥ on

W (M) such that
k-1

/ F(a).]uv(d)=/ f(rlv-*-lfk)HP(I‘“—J.)(‘IUIH—l)dLl""ljku (33)
W{M) M*r

=0

where F(a) = f(o(31),....0(s¢)) with 0 < 3y, < 33 < .. <84 =1, f: M* — R
is a bounded measurable function, Ty = o, dz denotes the volume measure on M, and
k=1,23....

Fact 3.4. There exists a unique measure vV on W(M) satisfying (3.3). However, the
measure i3 concentrated on continuous but nowhere differentiable paths.

Remark 3.5. It is interesting to notice for M = RY that

= 13 |zigy - 2
H Ploipr—si)(Eir Zir1) = exp ~ 3 Z 5 (3041 = 3i)
=0

i=0 = (3i41 = 3i)?
1/t N
= exp ~ 5 / 1 5'(s) |* ds, (3.4)
= Jo
where
3—=3 .
o(3) = o + ———(Lip1 = £i) il 3 € [34,3i41]
Jig| ~ 3

Notice that z is the piecewise linear path connecting (3;, 2;) to (3,41, %i+1) fori=0,....k—
1. Because of (3:4) and (3.3) one is motivated to write heuristicly

du(z) = %e_’ Lllt'('”,""Dz, (3.5)

where y is supposed to be Wiener measure on W(R?) and Dz is supposed to be “Lebesgue
measure” on W(R4) and Z is a normalization constant so that u(W(R?%)) = 1.

Theorem 3.8, (Cameron-Martin 1945) Let H = {h:{0,1] — R? € fol P h(s) P ds <
o0}, the Cameron- Martin space, and u be Wiener on W(R?). Thea for each h € H and

du(h +2) _ - [*¥tdsa= [

e (3.6)

where ];)l h'(s) - dz(s) is to be interpreted as a stochastic integral.
Exercise 3.7. Give a heuristic derivation of (3.6) using (3.3).

We would like to generalize the Cameron-Martin theorem to Wiener measure on W(M).
This is contained in the following theorem.

Theorem 3.8, Let h: [0,1) — T,M be a C* -function such that A{0) = 0. Let PY(a)
denote stochastic parallel transport along the Wiener trajectory o € W(M). (Note: PY ()
is only almost every-where defined function of ¢ € W(M)). Define the vector-field (X*)
on W(Al) by

XMo) = PY(a)h(s) for s € (0,1] (3.7)
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Proof: Compute:

d
L H@0) = VI(a(9) PI (o) (3) = PP (@)™ O f((9) - H(s),  (3.12)

and

2
4 fais)) = PY(0)"'V )V f B (s) + PT(0)7 T fla(s)) - " (5)

ds?
= (Vps (o (n V) P (s) + P (7)™ ' Vf(a(s)) - 8"(s) (3.13)

Add (3.12) times ds to 1/2 of (3.13) times ds? to get (3.11). We have used db(3) D db{3) =
b(s) @' (s)ds?. Because we only keep terms upto second order. Q.E.D.

Section 4: On the Proofl of Theorem 3.8.

This section is devoted to a sketch of the proof of Theorem 3.3. of the last section. We
start by reviewing the stochastic [té map and its properties.

Definition 4.1. The stochastic Itomap »¥ : W(R") — W(M)is given by p¥ (w) = 0(3)
where ¢ solves the Stratonovich stochastic differential equation:

da(s) = PY(7)6w(s) with o(0) = o. (4.1)

(Here § is always nused to denote the Stratonovich differential in the “s” variable.) Eq.
(4.1) is to be interpreted as follows. For all f € C™(M) the real process f(7(s)) should
be a semi-martingale and

Sf(a(s)) = P (o) ' T f(a(3)) - 6u(s). {4.2)

The Ito form of {4.2a) is
§f(a(s)) = P7(7)7 'V f(a(s)) - duw(s) + %Af(cr(snds (4.20)

This should be compared with Eq. (3.11). Notice that the last term in in (3.11) in the
case that b = w is a Brownian motion becomes

(Vp5 (et n T f) - P (@)dw(s) = Te(VV f)(a(3))ds = Af(o(s))ds. (+.3)

Fact 4.2. The map ;¥ : W(R") — W(M) is a ga.c. defined function and Sp =

pow™" =v¥ Furthermore, there exists a measure theoretic inverse (%)

that ()7 =4

“Uito ¥ such

Remark 4.3. For X € THW () let

v_\'{. 2 ds (4.4
1 »)I s, .

3

1
GY < X. X >;/ |
0
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Then GV defines a metric on TW'{ M) ~this metric is often used by differential geometers.
The vector fields {X*}aen satisfy

GY <« X" Xk > (0)=(h,k)yuVh ke H (4.5)
‘That is to say h — X* is an isometric trivilization of the tangent bundle TW'(M).
Fact 4.2. states that the Ito map (¢ 7) is a measure theoretic isomorphism of (W(RY), u)
with (W(M),vY). However, 0¥ : WHRY) — W' (M) is not an isometry. That is ¥
does not respect Riemannian geometries on W' (RY) and W'(M) described in Remark 4.3.
Theorem 4.4. Let ¥'* denote the vector-field on W(R?) found by pulling back X* via
the Ito map Y. Then on W'(RY)) one finds:
vho) = [ Chul I +his) (4.6)
0

where

Cf(w) = /' Qu(,l) < h(J'),UI(J') > dJ' + Gu(,) < h(S),‘ > . (47)
0

In this last expression u(s) = PY(p%(w)), Qu < ab >= u'RY < ua,ub>uforabe
T, M and any frame u : T,M — T. M. Similarly, O is defined by O, < a,b>= TV <
ua, ub >. Here RY is the curvature of ¥ and TV is the torsion of V.

Far a proof see [D4, Theorem 2.1.].

Theorem 4.5 Using the same notation as Theorem 4.4. The correct stochastic forin of
Eq. (4.6)is:

YMw) = / Chwyduls') + / RA()ds', (4.8)
0 0
where s
Cho)= / 0,(5") < h(s"), dw(s') > +0.(5) < h(s),- > . o (4.9)
[l
and Y
RMw) = 5[Ricy(yy < h(s) > +8.(5) < h(s) >+ 4'(5) (4.10)

(The integrals in the above equations are stochastic integrals.) Iu (4.10) Ric denotes the
Ricei-tensor and © denotes a contraction of a certain derivative of the torsion tensor 0.

Proof: For a proof see [D4, Theorem 5.1, and Theorem 6.2.] The computations are similar
to those done in Section 1. The reader will also find in {D4] a more detail explanation of
the notation.

We now outline the proof of Theorem 3.8, — the Caineron-Martin Theorem for manifolds.

13

{CM1]

(CM2]

(Dt}

Step 1. By Theorem 4.4 and 4.3 we may study the vector field ¥ on W(R?) instead of
X* on W(M).

Step 2. So we now want to solve for a function y : R x W(R*) — W(RY) such that
g(tw) = YP(y(t,w)) with y(0,w) =w VYw € W(RY). (4.11)

We will look for a solution in the form
yo(t,w) = / O, (t,w)dw(s') + / ag(t,w)ds',
o o

where 3 — 0,(t,w) is an End(T,M) - valued adapted process and 3 — a,(¢,w) is an
T, M -valued adapted process. Eq. (4.11) translates inco the following equacions for O and
a:
0,(t,w) = CHy(t,w))0,(t,w) with 0,(0,w) = id (4.12)
and
a,(t,w) = CI(y(t, w)a,(t,w) + R(y(t,w)) with a,(0,w) =0 (4.13)

Step 3. Because TV < X,Y > Y = 0 for all vector fields X and Y on M, it follows
Ch(y(t,w)) is a skew adjoint operator on T,.M. Therefore, any solution to (4.12) is neces-
sarily orthogonal. [t is now possible to solve (4.12) and (4.13) to find O(¢,w) and a(t,w).
This can be done using a modified Piccard iteration scheme which is chosen to preserve
the orthogonality of the process O at each stage of the iteration.

Step 4. We now have a solution y to (4.11) written in the form
n(to) = [ Ostenddals) + alta)ds
°

with O(t,w) an orthogonal process for all ¢. [t is now possible to use Girsanov’s theorem
to show that the law of y(¢,-) is equivalent to 4.

Step 5. Use the li6 map to push the results on W{ R4) to similar results on W(M). For
more details see {D4) Q.ED.
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