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Recently, Gross has shown that the Kakutani-It6-Segal isomorphism theorem
has an extension from the setting of Gaussian measure on a vector space to “heat
kernel” measure (p,) on a simply connected Lie group (G) of compact type. The
isomorphism relates L(p,) to a certain completion of the universal enveloping
algebra of g = Lie(G). Gross proves this resuit using the Kakutani-It6—Segal
theorem and an infinite dimensional calculus associated to G-valued Brownian
motion. Hijab has greatly simplified and clarified Gross’ proof. Hijab’s proof avoids
most, but not all, of the “infinite dimensional” analysis in the original proof. In this
paper, we will build on Hijab’s proof to give a completely “finite dimensional” non-
probabilistic proof of Gross' isomorphism theorem. The proof given here relies
heavily on Hall's beautiful “extension” of the Segal-Bargmann transformation to
the setting of compact Lie groups. This theorem relating L% p,) to a certain
L*-space of holomorphic functions (L*(G%) ~ .#") on the complexified Lie group G*
will also be generalized to Lie groups of compact type. In the process, it is shown
how to characterize, in terms of summability conditions on all the derivatives at the
identity in G*, those holomorphic functions which are in L3(G%).  «* 1995 Academic

Press, Inc.
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1. INTRODUCTION

1.1. Notation

Throughout this paper G will denote a connected Lie group of compact
type, with fixed Ad -invariant inner product (-, -) on g—the Lie algebra
of G. (Recall that G i1s of compact type if there exists an Ad -invariant
inner product on g. This is equivalent to assuming that G is isomorphic to
K x R“ for some compact Lie group K, see Corollary 2.2 below.) Let G©
and g® denote the complexifications of G and g respectively.

Let g, = g be a fixed orthonormal basis for g. Denote by .# : g — g the
operation of multiplication by ./ —1, 1e.

F(X@:2)=X®(/ —1z)VXeq,zeC.

The Laplacians on G and G© are (respectively)

4=y 4° (L.1)
Ae€go
and
de = Y (AP +(FA), (12)
A€ qp

where 4 in (1.1) ((1.2)) denotes the unique left invariant vector field on
G(G*) which agrees with A at the identity.

For >0, let p, and #, denote the convolution heat kernels on G and G©
associated to 4/2 and 4 /4 respectively, i.e., p, and g, are the fundamental
solutions to the heat equations:

dp,jot=534p, onG
and
Op,f0t=3dcp, onG*

respectively. (See Section 2 for more details.) Write L*(p,) (L*(u,)) for the
Hilbert space of complex valued square integrable functions on G (G%)
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relative to the measure p,(x)dx (u,(g)dg), where dx (dg) is a Haar
measure on G (G%).

Let T= @7 _,(g%)®" ((g%)°=C) be the tensor algebra of g*, T" be the
algebraic dual, and J be the two sided ideal generated by

{C@n—n®c—[&n]|énegtt T

Notation 1.1.  Throughout this paper, we will use {.,-> to denote the
pairing between a vector space and its dual.

Let 1 denote the element in T’ defined by {(1,a> =« for all aeCc T
and {1,g® T) =0. Following Gross (when 7=1), for each >0, let
{(-,-)), denote the inner product on T uniquely determined by

n

f
(1 ® - @hy 1 ® -+ © g = 5 0m [] heogidy  113)

k=1

where {h,}7_ u{g}7 8% n,me{0,1,2..}, and (-, ) is the exten-
sion of (-,-) on g to a complex inner product on g“. (We assume that
(-, )4 1s conjugate linear in the second varable.) Let T, be the completion
of T relative to ((-,-)),. Let T* be the ropological dual of T, and (-, ),

denote the dual inner product on T*; ie, xeT*<T" iff

(wa),=Y ¥ Ku&® - @& nl<o. (14

n=0 3. ..3r€q

Remark 1.2. If go<=g is an orthonormal basis for g (as a real inner
product space), then

(1o U (& ® - ®E)Vn & & €80}

n=1

B

is an orthonormal basis for T, as a complex Hilbert space. Hence for
ae T¥,

2= Y Y K& ® - @ .

n=0 &, ...5n€0
Alternatively,

o n

2 2
al?= Y, —lalie
n=0

where

laylgor= 2 Ka & ® - @D

Sl SnEBY
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Finally, let *J={ae T’ |a(J)={0}} (the annihilator of J) and
Yo=InTY={aeT |a(J) =0and (a, a), <o0}.

Notice that the natural isometric isomorphism of 7* with T, restricts to an
isometric isomorphism of *J, with J;*—the orthogonal complement of J.

ExaMmpPLE 1.3. Suppose that G =R with the usual inner product. Then
1. G(; — Cd,
2. A4=3¢_ ,8%0°x; and A =3¢ 0%ox}+Y7_ 0%y}, where
z,=x,++/—1y, are the standard linear coordinates on C*=R* + iR“.
3. pAx)=(2m) " “?exp[ —|x|?}/2r].
4. uz)=(mt) “exp[ —|z|%/t].
5. J L Prelative to (-, -}, for all 1) where ¥ < T are the symmetric
tensors.

6. *J, is naturally isomorphic to #—the completion of the sym-
metric tensor algebra & of C“ with respect to the inner product, ((-,-}),,
on T. The isomorphism 1s given explicitly by:

/jE‘%_’((ﬁa')tel‘ltcT’-

DerFINITION 1.4. For each ue C*(G, C) or C*(G*,C)and ge G or G*
respectively, let (1 — D), 'u denote the element a e T' determined uniquely
by: (i) <a, 1> =u(g) and (ii) for all n=1,2,3, ... and {&,}7_, =g,

(0 E® - ®ED=(DugLE® - ®EY=(E, - Euig) (15)

where £, denotes unique left invariant vector field on G respectively G°©
such that £.(e) = ¢&,. (The form a is found by extending the above formulas
to all of T by complex linearity.)

Remark 1.5. Notice in the above definition that the vectors &, were
required to be in the real Lie algebra g even in the case that » was a
smooth function on G*. If ue #(G®) (the holomorphic functions on G%)
and « is defined as in Definition 1.4, (1.5) is valid for all {&,}7_, cg¢®".

Remark 1.6. Because & —f&—[& n]1=0 for all & neg, it is easy to
check that « = (1 —-D)_ 'u in Definition 1.4 automatically lies in

L= {ae T |a()) =0} = T,
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1.2. A Review of the Fuclidean Results

The Kakutani—It6-Segal isometry [19, 18, 25] may be described
explicitly in finite dimensions by the map in the following theorem.

THeoREM 1.7 (Kakutani-1t6-Segal). Let G=RY and keep the notation
as in Example 1.3. Then the map

(1=D), e LAp,)—*J
has range *J, and
(l _D)(;l e:m'z : LZ(p’) - _LJ’;((/;

is an isometric isomorphism of Hilbert spaces.

Remark 1.8. Actually, the Kakutani-1t6-Segal theorem deals with the
context where d=oc, that is G=H is a real Hilbert space. In the finite
dimensional setting the Kakutani-It6-Segal theorem is closely related to
the mathematics of quantum harmonic oscillators. With this in mind, there
are certainly precursors to the Kakutani—Ito-Segal theorem in the mathe-
matics and physics literature. The formal study of the “Fock-Cook” space
{4;) was started by Fock {10] and carried out mathematically by Cook
{7]. For a more detailed history of this subject, the reader is referred to
(28] and to Chapter 1 of [1].

The Segal-Bargmann Theorem [ 27,28, 29,2, 3,4] in the context of a
finite dimensional vector space may be stated as follows.

THEOREM 1.9 (Segal-Bargmann). Let G=RY 4 be the holomorphic
functions on C?. Also keep the same notation as in Example 1.3. Then for
each fe L p,), e"*f has an analytic continuation to a holomorphic function
(still denoted by e f) on G =C“ Moreover, ¢’ fe L*(u,) N H# and the
linear map

e LA p) - L u) A
is an isometric isomorphism of Hilbert spaces.
The following result is an immediate corollary of Theorems 1.7 and 1.9.
CoroLLARY 1.10. Let G=RY as above, then
(1=D), " LAu)n # -1,

is an isometric isomorphism of Hilbert spaces.
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Theorems 1.7, 1.9, and Corollary 1.10 may be summarized by the asser-
tion that all maps in the following commutative diagram below are
isometric isomorphisms.

l))\)‘ 2012

L(p)————

\ / Dy (1.6)

In this context where G = R, the notation we have been using is very close
to the notation which has been used in the white noise analysis literature,
see for example Y.-J. Lee [22] and the references therein.

Remark 1.11. The significance of the isomorphism in Theorem 1.7 is
that it intertwines directional derivatives with “annihilation” operators.
Similarly, the isomorphism in Theorem 1.9 intertwines the directional
derivatives on L*(p,) with those on L%(u,)n #(G%). In fact, these
intertwining properties are often used to uniquely characterize the
isomorphisms in Theorem 1.7 and Theorem 1.9. This will be discussed
below in the general context of Lie groups of compact type.

1.3. Statement of Results

DerFiNITION 1.12. Let £€eq.

1. Define the annihilation operator A.: 7' — T" by

CAzo, 1y =L@

for all e T. (It is easily checked that 4(*J)=*J.)
2. Foreacht>0 and £eg, let

(AL = {ae S, | A;xe TX}
and for xe Z(4%) set
Ala=A;aetJ,.

3. Define &, to be the L%(p,)-closure of E'Ff<(">'

4. Define £, to be the linear operator on L¥u,) n #(GT) determined
by &, f=&f for each fe %(&,), where

P&y ={feLlXu)n H(GO) | Efe Lu,)}.
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The reader may readily check that 4% is a closed operator on ~J, and
using Lemma 3.2 below that ¢, is a closed operator on L*(y,) n #(GF).
With this notation, L.Gross’ theorem extending Theorem 1.7 may be
stated as follows.

THEOREM .13 (Gross [12, Theorem 2.1]). Assume that G is a simply
connected Lie group of compact type. There exists a unique isometry U, from
LG, p,) onto *~J, such that

I Ul=1e*J,
2. U, =ALU,. forall Ceg.

THEOREM 1.14 (Hijab’s Formula [16]). Keeping the hypothesis and
notation of the above thearem the isometry U, is given explicitly as:

U,=(1-D),; ' e?.

This explicit formula for Gross’ isometry (in the case that G is a compact
Lie group) is due to Hijab [16]. The formula given here differs slightly
from that in [16] because *J, is not identified with J;* as was done there.

Proofs of these two theorems are contained in the statements of
Theorem 4.1 (the isometry assertion), Corollary 6.5 (the surjectivity asser-
tion), and Corollary 7.3 (the intertwining property.)

Hall’s “extension” of the Segal-Bargmann theorem is as follows.

THEOREM 1.15 (Hall [157). Suppose that G is a compact Lie group.
Let # denote the holomorphic functions on G<. Then for each fe L*(p,).
e'¥2f exists and has an analvtic continuation to G, which is still denoted
by e'*2f. Moreover, ¢'**fe L*(u,)n# and €7 : L¥(p,)— L*u,) n # is
an isometric isomorphism of Hilbert spaces.

Corollary 4.5 and Theorem 7.2 below generalizes Hall's theorem to the
statement.

THEOREM 1.16. Suppose that G is a Lie group of compact type. Let #
denote the holomorphic functions on G®. Then for each feLXp,), ¢4°f
exists and has an analytic continuation to G, which is still denoted by e f.
Moreover, e f € L3 (u,) N A,

e LA py— L3u,)n &
is an isometric isomorphism of Hilbert spaces, and

e, = e, (1.7)
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COROLLARY 1.17. Let G be a compact simply connected Lie group. Then
(1—-D) " L¥u) o — 1,
is an isometric isomorphism of Hilbert spaces such that
(1-D)'{,=4(1-D) "

One of the main goals of this paper is to give a direct proof of this
corollary, see Theorem 44 (the isometry assertion), Theorem 6.4 (the
surjectivity assertion), and Theorem 7.1 (the intertwining property).
The key to the proof is Corollary 5.9 below which asserts (for general G
of compact type), a holomorphic function u on G® is in L*u,) iff
(1-D), 'uetJ,

The main results quoted above may be summarized as follows. The maps
in the commutative diagram in (1.6) (with 0 replaced by ee G = G*) are
all isometric isomorphisms of Hilbert space provided that G is a simply
connected Lie group of compact type. Moreover, these maps intertwine the
operators defined in Definition 1.12.

As mentioned in the abstract, Gross’ proof of Theorem 1.14 is rather
involved and uses heavily the machinery of stochastic analysis for G-valued
Brownian motion. Omar Hijab [16] greatly simplified Gross’ original
proof. Hijab’s proof also clarified the structure of Gross’ isomorphism.
However, Hijab’s proof of the fact that the map (1 — D). ' e?? is surjective
relied on a technical result about analytic vectors from Gross’ original
paper. This technical result was proved using an infinite dimensional
calculus associated to G-valued Brownian motion. The main aim of this
paper is to give a “finite dimensional” and “non-probabilistic” proof of
Gross’ isomorphism theorem. This will be done by giving a direct proof of
Corollary 1.17. By combining this Corollary with Hall’s Theorem 1.15, we
will produce a “finite dimensional” proof of Gross’ Theorem 1.13 and
Hijab’s Formula, Theorem 1.14."

In order to keep the paper essentially self contained, I will give a slight
variation of the proof of Hall’s theorem and at the same time extend his
result to Lie groups of compact type. One step in Hall’s proof of
Theorem 1.15 is to show that p, has an analytic continuation to G®. This
is done using some detailed results about the representations of G. The
proof given here observes that it is possible to show directly that ¢’4*f has
an analytic continuation to G® for all fe L*(p,). As a consequence, p, has
an analytic continuation on G©.

'O. Hijab [17], using a technique similar to one in this paper, has found a proof of
Theorem 1.14 which avoids the complexified Lie group and Hall’s theorem.
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2. NOTATION AND PRELIMINARIES
2.1. Compact-Type Lie Groups and Complexifications

THEOREM 2.1 (Structure Theorem). Suppose that G is a connected Lie
group of compact type with Ad, invariant inner product (-, -). Let

t=[g.9]={[4.B]| 4, Beg}

and 3 be the center of o. Then g is the orthogonal direct sum of t and 3, and
both T and 3 are ideals. Let K and Z be the connected Lie-subgroups of G
such that Lie(K) =1 and Lie(Z) =3 Then K is compact, Z is the connected
component of the center of G (hence Z is closed), G=KZ, and KN Z is
finite. Furthermore, the map ¢ : KxZ — G given by ¢(k,z) =kz is a Lie
group homomorphism onto G with

ker¢={(z,z ") |zeKnZ} = D.

For a proof see Lemma 4.6.9 and Theorem 3.6.6 in Wallach [32].

COROLLARY 2.2. Let G be a connected Lie group of compact type, then
G is isomorphic to K' x RY where K’ is a connected compact Lie group.

Proof. From Theorem 2.1, G is isomorphic to (K x Z)/D where K is
compact and connected, Z is abelian and connected, and D= {(z"', z) |
z€ KN Zj} is finite. Since the Lie group Z is abelian and connected, there
are integers k and d, and a Lie group isomorphism p : Z — T* x R¥, where
T* is a k-dimensional torus. (See, for example, Theorem 3.6, p. 25 in [5].)
Since K Z is a finite subgroup of Z, it follows that p(Kn Z) c T* x {0}.
It is now a simple matter to check that G is isomorphic to K’ x R, where
K =(KxT*)/D', D' = {(z,p(z™")): ze KA D}, and p(z) =(p'(z), 0) for
allzeKn Z. Q.ED.

COROLLARY 2.3. Let G be a connected, simply connected Lie group of
compact type. Then there is a simply connected compact Lie group K (with
Lie algebra ), integer d > 0, and Lie group isomorphism ¢ : K x R — G such
that ¢, (Lie(K)x {0})=[g.g]. and ¢,({0} x RY)=3—the center of §. In
particular, the pull back of the inner product (-,-) on § via ¢ is an inner
product on T x R such that  x R is the orthogonal direct sum of tx {0} and
{0} x R

Proof. Let ¢:KxZ—G be the Lie group homomorphism in
Theorem 2.1. Since ker ¢ is finite (in particular discrete), ¢ is a covering
map. Hence ¢ induces an injection from n(KxZ)x=z (K)xn (Z) to
71,(G). Since G is assumed to be simply connected, it follows that both K
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and Z are simply connected. Since Z is abelian and simply connected, Z is
isomorphic to R“ for some d. Because there are no non-trivial finite sub-
groups of RY we must have that ker ¢ = {e}. Therefore, ¢ is a Lie group
isomorphism. QE.D.

Let ¢"=g®, C denote the complexification of g, and extend the Ad
invariant inner product on g to a complex inner product on g“ which is
conjugate linear in the second variable. Let K© denote the complexification
of K, where K is a compact Lie group. (See [5] pp. 151-156 for precise
definitions and existence of complexifications.)

ExampLE 24. 1. If K=SU(n, C), then K®=SL(n, C).
2. fK=TF= Rk/Zk, the K¢ = Ck/Zk.

DEFINITION 2.5. If Z=T* xR set Z* = (T%)® x C. Given a Lie group
G of compact type, set G& = (K* x Z“)/D, where K, Z and D are as in the
Structure Theorem 2.1.

LeMMA 2.6,  The complexified Lie group G© is unimodular.

Proof. Using the fact that ad, : g — g 1s skew symmetric for all Xeg, it
is an easy exercise to verify that Tr(ady: g% — g%)=0 for all Xeg®. Itis
well known that this implies that G* is uni-modular. Q.E.D.

2.2. Laplacians and Heat Kernels on Uni-modular Lie Groups

This section reviews some basic facts about heat kernels on uni-modular
Lie groups. In the next section, we will return to the Lie groups G and G©
defined above. _

Let H be a unimodular Lie group, dh denote a bi-invariant Haar measure
on H . h=T,H be the Lie algebra of H, and h,c b be a basis for h. For
Aeb, let A(A) denote the unique left (right) invariant vector-field on H
which agrees with A at e € H. The left and right invariant Laplacian relative
to the basis b, is given by 4 = ZAebO,Zz and 4’ = ZAebo/iz respectively.
Since H is unimodular, it is easy to check the formal adjoint, relative to
L*(Haar), of A(A) is —A(—A). Hence, 4/2 and 4'/2 are symmetric
operators on the smooth functions with compact support on H. It is well
known, see for example Theorem 2.1, p. 152 of [24], that 4/2 and A4°/2 are
essentially self-adjoint and the closures of 4/2 and 4'/2 generate strongly
continuous, self-adjoint contraction semi-groups ¢’ and ¢'¥/? on L*(Haar).
From standard elliptic regularity theory, the heat semi-groups have integral
kernels k£, and &/, respectively, i.e.

e f(x) =J‘ kix. h) flh)dh and e’d""‘zf(x):f ki(x, h) f(h)dh
H

H
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for all feL*(Haar). Because A4/2 is invariant under left translations
and hence so is e'¥? it follows easily that k/(x, h)=k (e, x 'h). Set
pih) = ke h), so that k,(x.h) = p,(x~'h). Since e™” is self-adjoint, k, is
symmetric and hence p,(x~')=p,(x) for all xe H. Also notice that
pAx) = k(x, e) satisfies the “left” heat equation:

op,/ot=34p, with lim p,=4,, (2.1)
t—0

where J, denotes the delta function at the identity. Similarly, one shows
that k(x, h) = pi/(hx ') = pi(xh~'), where p/ is a solution to “right” heat
equation

ap,/0t=134'p, with lim p]=4,. (2.2)
t—=0

Let x(h) = h '« : H— H), then it is easy to check that K*Z =—4-kfor
all 4ebh. From this is follows that A(f-x)={(4"f)-« for all sufficiently
smooth f. Therefore e'??(f-x)=(e"*f)-k for all fe L*dh). Combining
this fact together with the fact that Haar measure on H is invariant under «,
it follows that k(x, A~ ')=k.(x ", h). Consequently, p,(x)=pi(x ") =pi(x).

The following theorem summarizes the above discussion.

THEOREM 2.7. Assuming the above notation, let p, denote the fundamental
solution to the left heat equation (2.1). Then

1. plx)y=pfx~") for all xe H,
2. p, solves the right heat equation (2.2),
for fe L*dh),
2 fix) = p,(x"'h)f(lz)dh=f 2k~ 1x) f(h) dh,
v H H
4. for feL¥dh),
e 2 f(x) =.[ pihx ") f(h) dh =J pAxh="Y) flh) dh.
H H
In particular, for f e L*(dh):

e fle) =1 f(e) =JH pAh) f(h) dh. (2.3)

580/133:1-6
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In the sequal, we will only consider left invariant vector fields and
Laplacians. From the above discussion, only minor modifications are
necessary to change from “left” to “right.”

The basic Gaussian upper bound for the heat kernel that will be used in
the sequel is summarized in the following theorem. For a proof see
Theorem 2.1, p. 257 of Robinson [24].

THEOREM 2.8 (Gaussian Bound). Let H be a unimodular Lie group,
(-, -) be an arbitrary inner product on b= T,H, hocb be an orthonormal
basis forh, 4 =3, ., A’ p, be the corresponding heat kernel, and for x € H

|x| = d(x, e),

where d(x, e) is Riemannian distance from x to e relative to the left (or right)
invariant Riemannian metric on H which agrees with (-, -) at T,H. Then for
all 0 <t <t <o, there is a constant C(t, t) < o0 such that

pAX)SCr, 1) e M2 wxeH. (2.4)

(See the Appendix for some remarks on the definition of |x|.)

EXAMPLE 2.9. Suppose that H=R"/(Z* x {0}) (k<d)andletn:R" > H
denote the canonical projection. Since = is a local diffeomorphism, we may
identify b with R" using 7, ,. Moreover L*(H, Haar) may be identified with
L;(R")ﬁ—the set of measurable functions F on R” such that;

F(x+m)=F(x)ae. x,VmeZ* x {0},
and

j |F(x)[? dx < oo,
Cx Rk

where C = [0, 1]* is a “unit cell.” The identification is given explicitly by
the map

feL*H, Haar) - fome LX(R").

Let Q be a positive definite n x n matrix and set (x, y) = x- Qy. Suppose
that b, is an orthonormal basis relative to (-,-), then 4=3% , . A2,
thought of as an operator on LX(R"), is given by

2 0 9
= -t i T
4= =1(Q Vi i

ij
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where x=(x!,..,x") are the standard linear coordinates on R”. For
F eLﬁ(R"),

(¢2F)(x) = (2n1) "2 \/deU Q | =1~ @2 (y) dy

i

=  pemx—y) F(y)dy
Cx Rk

= Blx=»F(y)dy,
Cx R4

where

Fl0)=poa(x)= Y (Qu) " Jdet Qe v o mia (25

meZ* x {0}

To understand p, better, let us decompose xeR” into x=(u,v)e
R* x R"~*. We also decompose Q into block matrix form as:

A B
QZ{B’ C]

where 4 and C are symmetric positive-definite & xk and (n—k)x (n—k)
matrices respectively, and B is a k x (n — k) matrix.

ProposiTiON 2.10. Keeping the notation of the above example, then

plu, v)=Pu+ A~ Bv) E(v), (2.6)
where
E(v) =exp[(—Cv-v+ A4 'Bv- Br)/2t], (2.7)

and P is a positive smooth periodic function on R*. In particular there is a
constant 0 <M < oo, such that

M5 (u, v)< plu—0,v) < Mp(u,v) (2.8)

for all (u, v)e RY and 0 R*. Consequently, L3 p,)=L(p,), where

plu,v)y= J plu—0,v)do.

Ie

= (2n1) =02 JC—~B'A B E(v). (2.9)
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Remark 2.11. Equation (2.8) is a special case of B. Hall’'s “averaging
lemma” which appears in the next section.

Proof of Proposition 2.10. A completion of the squares argument yields:
X-Ox=Au-u+2u-Bv+Cv-v
=(u+A 'Bv)- A(u+ A 'Br)+Cvr-v—A " 'Bv-Bv. (2.10)

For ue R set

P(u)i(Znt)‘"/z\/d_et—Q Z e—A|u+m)»(u+m)/21’ (2.11)

meZk

which is convergent since A is positive definite. Using the definition of 7,
in (2.5) and the above two displayed equations it follows that (2.6) holds
where E(v) i1s given in (2.7). It is easy to see that P defined in (2.11) is
smooth, positive, and Z*-periodic. Hence there is a constant M, >0 such
that M, ' < P<M,. Thus

M 'E(v) < plu, v) S M E(v),

and hence (2.8) holds with M =M1
The explicit formula for p,(u, v) is found as follows.

plu,v) = fc plu—0,v)dox)

zf y (znt)—n/z\/@e‘lufrn—ﬂ‘v)-Q(u—nl-(),v)/Zldg

Cmezk

=_[ i (2mt) =2 /det Qg*(u‘l‘VQ(u.vi/Zl du
R

= E(v) ka (2mt) "% /det Qe ¥ A2 dy

= (2nt)~"92_/det Q/det A - E(v).

Since j, is a probability measure, it follows that

J/det Q/det A=_/det(C— B'A~'B).

This may also be seen directly using basic properties of the determinant
and the identity:

A 0
e=M C—B’A"B] M,
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where

QED.

I A°'B
M=
b

Remark 2.12. The Gaussian upper bound (Theorem 2.8) for the p, in
the abelian case of the above example and proposition follows from (2.6)
and (2.7). Indeed, by (2.10) the square of the distance between n(x)
(x={(u,v)eR*xR" " *=R") and n(R* x {0} ) is given by

d(n(u, v), f(R*x {0})=Cv-v—A4 ~'vBv- Bv.
Therefore, according to (2.6) and (2.7),
p.on(x)=P(u+ A" 'Bv) exp[ —d*(n(x), n(R* x {0} )/2¢].

The Gaussian upper bound follows from this equation, because
d(m(x), n{R* x {0}) and |n(x)| = d(n(x), n(0)) are comparable in size, since
n(R* x {0} ) is compact.

We finish this section by recalling a specil case of Langland’s theorem.
This theorem asserts that the heat kernel p, can be used to construct
solutions for the “abstract heat equation” associated to any “reasonable”
representation of H.

TueorReM 2.13 (Langland’s Theorem). Assume the same hypothesis of
the previous theorem. Let (n, V) be a finite dimensional representation of H.
Then for each he H, the End(V,)-valued function

F(r)y = J‘H p.(x) n(hx) dx

satisfies the abstract heat equation:

Fy=F(tyn(4)2  with F(0)=n(h), (2.12)
where
n(d) = Rl e*1),
Agbo ds? |, (

and by, < by is an orthonormal basis for . Alternatively,

J‘ pAx) r(hx) dx = (e"r)(h), (2.13)
H
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where

t"
2™n!

(@ Pr)h) = Y~ (4rm)(h).
n=0

Proof- The assertion in (2.12) is a special case of Theorem 2.1 (p. 152)
in [24]. See also Nelson [23] and Lemma 8 in [15]. Ignoring technical
difficulties the proof of this theorem follows easily from (2.1) along with
integration by parts.

To show that (2.13) is equivalent to the assertion in (2.12), one need
only observe that (4"n)(h) = n(h)[n(4)]". From this observation, it follows
that

(emxzn)(h) — n(h) em(d)/z,
which is precisely the unique solution to (2.12). Q.ED.

2.3. Heat Kernels on G and the Averaging Lemma

Recall that any Lie group G of compact type may be viewed as
G = K x RY where K is compact and d is a non-negative integer.

DerFINITION 2.14. 1. The heat kernel on G=KxR“ is the unique
function (p,) on G such that

(e2f)e)=| flg) pdg) de (2.14)

for all fe L*(G, Haar).
2. The heat kernel on G® is the unique function g, on G such that

(e f)e) = | flx uix) d (215)

for all fe L*(G*, Haar). (Note well in (2.15) that A./4 appears not 4./2.)
3. The K-averaged heat kernel on G® is the function

y(x) = L,u,(xk") dk. (2.16)

Remark 2.15. 1t is easy to check that 4. commutes with the adjoint
action of G, and hence so does e"¥*. Consequently u(gx)=u(xg) for all
geG and xe G In particular, v, is also given by:

v(x) = L,u,(k“’x) dk. (2.17)
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Also note that
vixk)=vikx)=v{(x) VxeG% kek

Hence the function v, is the heat kernel on G/K composed with the
canonical projection from G* to GY/K.

LEMMA 2.16 (Averaging Lemma). For each t>0 there is a constant
0< C=C(1) < oo such that for all ke K, and xe G,

C i thex) Sp(x) < Cu (k).
In particular,

Clu, <v, < Cy,

which implies that L*(u,) = L*(v,).

Proof. See Lemma 11 of B. Hall [15] where this is proved in the
case that G =K. However, the proof is valid in this generality. It is only
ncessary to read Hall's proof with G replaced by G© everywhere. The proof
for the special case that G is abelian was already given in Proposition 2.10.

Q.E.D.

2.4. The Frechét Tensor Albegra

DerFINTION 2.17. Let T, =(),., T,, J, be the closure of J in T,, and
J.=N,.0J, (Wecall T, the Frechét tensor algebra of G©.)

For £eT, and ae T*, we will write ||£|7 for ((&, &)), (defined in (1.3))
and |af? for (a«, x), (defined in (1.4)). Hopefully no confusion will arise
from this abuse of notation. Notice that for 0 <s<t¢, T, = T,<T,. The
following lemma shows that 7', is an algebra and that J_ is a two sided
ideal in T, .

Lemma 2.18. Suppose that t,s>0, AT, and BeT,. Then for all
r>{(t+s), AQB=3"_(Zi_0Ax®B,_ ;) isin T, and

4@ B, < C({1+s)/r) 4], |Bl;,

where C(a) s\/(l +a)(l —a)~
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Proof. Write A=Y;_,A, and B=Y7_, B, where 4,, B, e(g")®"
Then

o

|4® B} = Z

n

Z ®Bn~k

q®"
* p
Z _n{ Z lAkl an kl}
=0 k=
n!

n

—(n+1)? {Z |42 1B, -1} (Cauchy Schwartz)

<Y
- . 1 2 n J(n—k)

= (n—k)!
- n

<412 18I ( >tksu.,k.
"o o\
=412 1BI2 Y, (n+1)? ‘“r’j"

n=0
=C((t+s)/r)? | A} |BIIZ,
where

EZ (n+1Pa"=a"' Y nia"

Il

oc—l.(a%)_(l—a)“’=(1+a)(l—a)“3. QED.

In the sequel we will be most concerned with the following subspaces of
the algebraic dual 7",

DeFiNtTION 2.19. 1. T*=1{J, , T* where T* is the topological dual
of T,.

2. ={aeT a(J)=1{0}}.

3 =T (M )={aeT*: (J)={0}} ={aeT*: a(J)={0}},
where 1> 0.

4. “J, =T¥n(*N={aeT*: o))={0}} ={aeT* a(J,)={0}}.

3. DENSITY THEOREMS

Given a Lie group G of compact type, let #(G) (F(G®)) denote the
linear span of all functions of the form

fg)=Tr(An(g)), (3.1)
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where (7, V) is a finite dimensional (finite dimensional holomorphic)
representation of G (G®) such that = (n|) is unitary and 4 € End(V,). By
definition of the complexification of G, each finite dimensional representa-
tion (7, V) of G has a unique extension to a holomorphic representation
of Gt. We will continue to denote this representation by (7, V,). Therefore,
a holomorphic function f on G® is in #(GY) iff f|; is in F(G).

3.1. .#(G) Is Dense in L*(p,)

LEMMA 3.1. For each t >0, #(G) is dense in

Lipy={7:6¢| [ 10 pde) de<on .

Proof. By the structure theorem, we may take G to be of the form
K x R? where K is a compact Lie group. Given he L*(p,), it suffices to
show h=0if

L h(g) flg) plg)dg=0, VfeF(G). (32)

Suppose that (z, V) is a finite dimensional representation of K, and 4 e R
Setting g =(k, x)e Kx R, then f(g) =e" ~ Tr(An(k)) is in #(G). Thus
by Fubini’s theorem and standard facts about the Fourier transform, (3.2)
implies that

fh(k,x)(T'"r(An_(k))p,(k,x)dk:O forae. xeR’  (3.3)
K

The Peter-Wey! theorem guarantees that the matrix elements of irreducible
representations on K are dense in L*(dk). Since the number of irreducible
representations are countable it follows from (3.3) and Fubini’s theorem
that h(k, x) =0 for a.e. (k, x). Q.ED.

3.2. F(G%) Is Dense in #(G")n L3 (u,)

Let us start by recalling the fact that #(G%)n L*(u,) is a closed sub-
space of L*(u,). The proof is standard but for the readers convenience I will
sketch a proof in the next lemma.

LemMAa 32. Let M be a complex analytic manifold and p be a smooth
positive measure on M. Let # (M) denote the holomorphic functions on M.
Then # (M)~ L(p) is a closed subspace of L*(p). Moreover, if f,— f in
L*(p) as n— oo, then f, and df, converges to [ and df respectively uniformly
on compact subsets of M.
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Proof. Since the property that a function on M is holomorphic is local,
it suffices to prove the lemma in the case that M = D, and p = 1, where for
any R>0,

Dp={zeC'||z|<RVi=12,..d)}. (3.4)

Let f be a holomorphic function on D, 0 <a <1, and ze D,. By the mean
value theorem for holomorphic functions;

fr=en~|

[0, 214

d
fl{z+rey 1) TT 48, (3.5)
j=1

where r=(r,, 7y, ..7,)€R?such that 0<r,<e =1—aforalli=1,2,..d
Multiplying (3.5) by r,---r, and integrating each r; over [0, ¢) shows

f2)=(e?) [ fiz+0) ide),

where A denotes Lebesgue measure on C7 In particular, for each a <1,

sup [z <(@(1=a)*) | £l 2.

ze Dy

Therefore, an L2-convergent sequence of holomorphic functions is uniformly
convergent on compact subsets of D, and so the limit is also holomorphic.
Since the derivatives of uniformly convergent holomorphic functions are
uniformly convergent, it follows that L? convergence also implies uniform
convergence of the differentials on compact sets. QE.D.

The remainder of this section is devoted to the proof of the following key
density theorem. The case where G is compact has already been proven by
B. Hall in [15], see Lemma 10 and 11. We will give a slight variant Hall’s
proof.

THEOREM 3.3. Let G be a Lie group of compact type equipped with an
Ad,; invariant inner product (-,-) on g. Then F& = F(G) is a dense sub-
space of L*(u,)n #(GC).

The following lemma is well known from the “classical” Segal-Bargmann
theory, see for example [ 1] Theorem 1.13 and [2]. The short proof in this
finite dimansional context is given for the readers convenience.

LemMA 34. Let G=R? with the standard inner product (z, w) =z . w.
Suppose that f e #(G®=C"), then for all Le C*

lim . flz)e* “uldz) = f(1h), (3.6)

R— x
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where Dy is defined in (3.4). In particular, if f(z)e* 7 is in L'(u,), then
J S nhde) = flan),

Proof. As in Example 1.3,
uz)=(nt) “exp{ —|z|%/1}.

Write J(2) =%, f0) 2%/, where z*=TT19_, 2%, f™(0)=(3*f)(0)
=114, (8/9z), and a! =T1%_, «,!. Then

J, /216 )= X @70 [ et e,

xeN Dr

Similarly

J, ¢ ud = L gn | )

R Bend

Because u,(dz) is invariant under the transformation z — (e”'z,, .., "%z ),
it is easy to conclude that {,, z*7%u (dz) =0 if a # . Therefore,

| feyersuidn = ¥ (a2 00 (e, R),
D

R e Nd

where

cla, R) Ef 22 u(dz).

Dpg

Notice that ¢(a, R) increases as R increases and limy _, .. ¢(a, R) =t"*'a! by
standard Gaussian integral formulas. Therefore, by the dominated con-
vergence theorem (applied to the sum);

lim flzyer “uddzy =3, (a)) 7 f0) A1"™a) = f{z4). QE.D.

R—x “Dg ne N

COROLLARY 3.5. Let G=RY Q be a symmetric positive definite matrix
on RY and (z, W), = - Qw. Suppose that fe H(CYY n L¥u,), where u, is
the heat kernel measure on C¢ associated to (-, - )o- Then for all Le ce

D‘f(: Fuldz)=f(tQ 1 A). (3.7)
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Proof. The heat kernel g, is now given by:
ufz)=(nr) " “det Q-exp{ —z- Q/t}. (3.8)

Suppose that feL*u,)n #(G%). Using the holomorphic change of
variable w =\/é: and (3.6) one has

| ferer s duts
G

;T

=J SO 12wy @7 ¥y~ expl — |w|?/t} Adw)
ot
— f1Q 20 V) = f(10 ). QED.

LEMMA 3.6 (G=KxZ). Suppose that G=Kx Z, where K is a connec-
ted compact Lie group, Z = RY/(Z* x {0} ), and the inner product (-, ) on g
is such that ¥ = Lie(K) is perpendicular to R = Lie(Z). Then F© = #(G®)
is dense in L*(u,) N H#(G®).

Proof. Let
p:CYo CYUZFx {0})

denote the canonical projection,
C=[0,11"x{0} cR*xR? *<=C“

be the “unit cell,” and Q be the real positive definite symmetric dxd
matrix such that ({0, a), (0, b)) =a - Ob for all a, be RY. We will identify a
function f:G®—C with the function F:KxC“?— C determined by
F(k, z) = f(k, p(z)). Let g, be the heat kernel density on G, u?(z) denote
the Gaussian density in Eq. (3.8), and g% denote the heat kernel density on
K associated to (-, )|y, (o, With this notation

ch(g)#:(g)dgz Flk, zy u¥(ky p2(z) dk dz,

Kb xcd
and
LAu) = Lyuf ®u?),
where
Liuf@uf)={FeLX(uf®u?)| F(-,-+n)=F(-,-)ae.VneZ"x {0} }.
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Because of the Averaging Lemma 2.16 (also see Proposition 2.10),
L*(u,)=L*(v,), where v, is defined in Definition 2.14. Under the above
identifications this is equivalent to the assertion:

LAuf@uf)=L(vi®v?),

where
vi = [ ke ) dk (3.9)
K
and

‘.,Z(:):L (mﬂ,z(_-—o) df. (3.10)

Now assume that fe L*(v,) and f is L*(v,)-perpendicular to #°. The
proof will be completed by showing that f=0. The assumption f 1 #°¢
implies

0 =J F(x, z)exp(i(2an) + A) - z) Tr(n(x) A) v¥(x) vZ(z) dx dz, (3.11)
KO xCd

where ne Z* x {0} < R“, 1€ {0} xR (x, V,) is a finite dimensional holo-
morphic representation of K, and 4 € End(V,). Using Fubini’s theorem,
the definition vZ, the change of variables - — z + @, and Corollary 3.5 one
easily shows that (3.11) is equivalent to:

0= F(x, tQ ' (i2an +id) + 0) exp(i2an + A) - 6) Tr(n(x) 4) vE(x) dx df
KixC

= F(x,1Q 7" (i2nn +il) + 0) 2™ *Tr(n(x) 4) vK(x) dx db,  (3.12)

KixC

where in the second equality we have used the fact that §.2=0.
To simplify notation, let w =irQ ' (2rn+ 4) and decompose w into
w=w, +w,, where w, € C¥x {0} and w,e {0} x C“"*. I assert that

J F(x,w +wy+0)e>™? d():_[ F(x,w,+ @)™ = dg  (3.13)
¢ c

To see this it suffices to notice that both sides of (3.13) are holomorphic
functions of w, and that (3.13) holds for w e R*x {0} because of the
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Z* x {0} -periodicity in the functions 6 — F(x,w+8) and 60— e "
Combining (3.12) and (3.13) gives
0= F(x,w>+0) ™™ Tr(n(x) A) vK(x) dx db. (3.14)

KUxC

Since K is compact, we may (and do) choose an inner product on ¥V for
which 7|, is a unitary representation of K. Using Fubini’s theorem, the
definition of vX and the invariance of Haar measure on K¢, it easily follows
from (3.14) that

0= Flkx, w,+0) e Tr(r(kx) A) uX(x) dk dx do

KxKUxC

= Flkx, wy+0) ™ Tr(A*n(x)* n(k ")) uX(x) dk dx db.

KxKtxC

Using an argument similar to the proof of Eq. (3.13), we may make the
“change of variables” k — kx ! in the above equation to conclude that:

():J Flk,w,+0)
«KxKUxC
Xeinm~0 TI'(A*TZ(X)* 7'[(.\') n(kil))/j(’((x) dk dx d6

= Flk,w,+0)e ™ °Tr{A*Q, n(k ")) dk db, (3.15)

KxC

where @, is the positive definite element of End( V) defined by

QnEf a(xX)* m(x) p(x) dx. (3.16)
K¢

Recall that w, is the {0} x C*~* component of itQ ~'(2zn + 4). Because
Q! is positive definite, one easily shows that w, ranges over i({0} x RY~%)
as A varies over {0} x R“~* This observation and the fact that the right
member of (3.15) is holomorphic in w, implies that (3.15) holds for all
w,€ {0} x C4~*. Since Q, is positive definite, 4*Q, ranges over End(V,)
as A varies over End(V ). Since = and »n are arbitrary, (3.15) and the
Peter—Weyl (Fourier’s) Theorem implies that F(k, 8+ w,)=0 for all ke K|
fe R*x {0}, and w,e {0} x C* * Because F is holomorphic, it follows
that F=0 and hence f=0. Q.E.D.

Proof of Theorem 3.3. By the structure Theorem 2.1, G = KZ, where K
is the connected (compact) Lie subgroup of G with Lie(K)=1=[g,g],
Z is the connected (abelian) Lie subgroup of & which Lie(Z) =3 =3(g) (the
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center of g), KmZ 1s finite, and g is the orthogonal direct sum of f and 3,
Let u,, ¥ and u? denote the heat kernels on the complexified Lie groups
G®, K® and Z® respectively. It is not difficult to show: for all non- negatlve
measurable functions f on G,

f f(g)/l.(g)dg=J flkz) pKky pZ(z) dk dz
Gt KCx 2t

G

= Sflkz) ik, z) dk dz,

where, with N= #(K~Z),

1

2 Zig—1
NZ tEkypf(E 1),

EeKnZ

Ak, z)=

By the averaging Lemma 2.16, it follows that L*(i,) = L*(u¥ ® u%).
Suppose that fe L*(u,)n#(G*) such that f 1 #(G). For each
he F(KExZ%) = F(KC)® F(Z%) it is readily checked that

7o = L 1L
Moy =~ ¥ Mk &)

e KnZ

is well defined.
Claim. he #(G%).

In order to prove the claim, we may assume that
Mk« 2k, 2) = Tr(An(k) ® x(2))

where (7, V) and (y, V) are unitary representations of K and Z respec-

tively and A € End(V,® V,). As usual the holomorphic extensions of 7= and
¥ to K® and ZF respectively are still denoted by = and y. Let

P=— % nd@x<"

feKnZ

z| -

The reader may check that P is an orthogonal projection which commutes
with 7 ® y, and therefore p(kz) = 7(k) ® y(2) | uncp, 1S @ unitary representa-
tion of G. The claim is proved upon noting that

h(g) = Trran{Pi(PAPp(g))~
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Since e F(G),
0= T(g) /(e nle)dg
G
1 - .
- - W&k, &2y ) Flks) w(k) w?(z) dk d=
chz((N:}mz (Ek, & )>f( ) uk(k) A (2)

= hik, z) f(kz) fi(k, z) dk dz.
KCxzZC

But by the above Lemma F(K*xZ%) =ZF(K“)® F(Z%) is dense in

L) n #(KxZ)=L (uX@u?) n #(K x Z). Therefore F(k, z) = f(kz)=0.
QED.

4. THREE ISOMETRIES
4.1. Hijab’s Formula for Gross® Isometry

THEOREM 4.1. Let G be a Lie group of compact type with Ad invariant
inner product (-,-) on q. As above define the heat kernel p, on G by

(e2f)e) =] fig) pdg)dg
G

Then the map
(1-D);"e?: L¥G,dp,)— *J, (4.1)

is an isometry.

Proof. For fe #F =F(G) and z e C, define e™'f by

e f=Y z"4"f/nl.

The above series is convergent since f is the finite linear combination of
matrix elements of finite dimensional representations of G. It is an easy
consequence of Langland’s Theorem (Theorem 2.13), that for all >0 and
feZF(G):

(e f)g) =] pix) flgx)dx. (42)
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Now fix fe #(G) and 7>0, and let F(¢,-): G — R be defined by
F(t, )E erd‘f‘2[ |€(171id/‘2f|2]. (43)

Claim. The function ¢ — F(1, e) is analytic in ¢.

Let # denote the linear span of all functions of the form
{A4%f-A"f} 7. _o- By basic representation theory, dim % < cc. It is now
easy to check that

Ie(rAl)A,"Zf’Z=etz—t)A,/2f_€1r—r)J,f2]‘

is an %,-vector valued analytic function of ¢, say

o
|eir71i.r1e’2f|2= Z tk('k(')s
k=0

where ¢, € %,. Hence
o n

the e ()= Y 2 A, .
n=0 I=0

where the above sum converges in %, ie., F(t, ) is an Z-valued analytic
function. The claim is proved because evaluation at e€ G is a linear func-
tional on %, and hence 1 — F(t, e} is also analytic in ¢.

Because F(t, e) is analytic,

sz(g)pr(g) dg=F(r,e)= Z F'™(0, e) t7/n!, (4.4)
n=0

where F denotes nth t-derivative of F.

To finish the proof, it is only necessary to compute all the derivatives
of F relative to . To simplify notation set U(t, g)=e'"""4f, so that
F(t,-)=e“?[|U(t,-)]*](g) and U= —1A4U. Then it follows by the chain
rule and the product rule that

A4 _ 4_ 4
— 2| = —_UZp-U0Z2
dF/dt=e 5 (UO) - U3 U SU
= T eIEU”
fean
=e"?[|DU|*], (4.5)

580/133°1-7
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where IDUlzzzfeg0 IEU|?, g, < g is an orthonormal basis for g, and ¢ is
the left invaniant vector-field associated to £eg,. Using [£, 4]1=0, 1t is
easy to continue computing derivatives of F in this fashion to learn:

F(1 ) =e [ DUP) =2 0 (&L U (46)

1. éneqo

Combining (4.6) with (4.4) and the fact that u(g) = U(0, g) =(e™*f)(g)
shows that

oo

f(vfz(g)pz(g)dg= >

Pk
—' 'D"u(é’)lg;gn
n=0n'

o Tn )
= Z;:om (D"e™2f)(e)| 4oen

= (1 =D) " e™2f)(e)l. (4.7)

which is the desired isometry property. Since #(G) is dense in L%(p,), the
map in (4.1) extends uniquely to an isometry of all of L?(p,). Q.E.D.

4.2. The Isometry (1 —D).': LG, u,) n #(G®) into *J,

Let {X,} ¢™9 be an orthonormal basis for g and for each i set ¥, = JX,.
{# denotes multiplication by \/ —1in g%.) As usual let X, and Y, denote
the left invariant vector fields on G® which agree with X, and Y, at ee G©
respectively. For the next theorem, it will be convenient to introduce the
complex left invariant vector fields Z, and Z, on G® by:

Z,=(X,—/—17)2

Z=(X+/—17)2

and

respectively.

ExaMPLE 4.2. Suppose that G=R? and X,=e,, where {e,}¢_, is the
standard basis for R?. Then X,=08/0x’, ¥,=0/0y",
Z,=0/dz' = (8fox' — /=1 8/y")2,
and

Z,=0/05 = (8/ox' + ./ —18/8y")/2,

where {z'=x'+./—1y'}¢_, are the standard holomorphic coordinates
on C¥
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Remark 4.3. If f is holomorphic on G, then ¥,f=./—1X,f and
Y./=—/—1%,f and hence Z,f=2Z,f=0. This is easily seen using:
(1) exponential coordinates are holomorphic coordinates and (ii) left trans-
lations on G® are holomorphic maps. See Chapter 2 of [21] for more
details.

TueoreM 44. The map (1—D);': L (u,)nH(G)—> *J, is a well
defined isometry.

Proof. The key observation is that 4; may be written as:

A.=4Y 2,Z,=4Z . Z. (4.8)

To see this, write out 3, Z; Z, as
Y Z,Z =Y (X — /1P X +/—17)

=Y+ (V) + /1K, T =404, (49)

i

where in the last equality we have used [ X,, ¥,] =0. This holds because
the Lie algebra of G is the same as the complexification of g and X, and
Y,=#X,=./—1X, commute in g*.

Let fe #(G%) < #(G%)nL*u,). Notice by elementary representa-
tion theory that |f]?=ffe.#(G%). Hence by Langland’s Theorem
(Theorem 2.13),

=] M) wte) dg=e” 2.

I
I {18

(Z- 2 ()] (410)

From Remark 4.3, it easily follows that (Z-Z)ff)=Y.,Z,f-Z,f and
more generally

d d
Z-Zr(H= Y 1ZyZ, /7= % Xy X1 (4d)

Combining (4.10) and (4.11) shows that

1 1720 = 1L = D) 11, (4.12)

This shows that (1 — D), ! is an isometry on #(G%). Since F(G®) is a
dense subspace of #(G®)n L*yu,), (1—D), "' extends uniquely to an
isometry of #{(G%) n L¥u,). Q.E.D.
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4.3. Halls Isometry

Hall’s analogue (Theorem 1 in [15]) of the Segal-Bargmann transform
is now an easy corollary of Theorems 4.4 and 4.1. From the proof of
Theorem 2.13, ¢"°.%(G) c #(G). We also know by definition of G that
each fe#(G) has an analytic continuation to an element of F(G%).
Hence, we may and do view e as an operator from #(G) to #(GC).

COROLLARY 4.5 (Hall). For each t >0, the map ¢**: F(G)— F(G*)
extends uniquely to an isometry of L*(G, p,) onto L*G®, u,))n #(G®).
(The extension to L*(G, p,) will still be denoted by e'*?.)

Proof. For fe F(G),
le™ 2 N 2y = 1L =D) 7 e “21 17 = | flI 22 pyy»

where the first equality is the content of Theorem 4.4 and the second
equality is the content of Theorem 4.1. Therefore

é”d/z . eg,-(G)CLIZ(p’)'_)(g,’(GC)CL.‘!(GC’#’)F\.%(GC)

is an 1sometry. This finishes the proof, since by Lemma 3.1 and Theorem 3.3
F(G) is dense in L(p,) and F(G®) is dense in LG, u,) n #(G®).
Q.ED.

COROLLARY 4.6. For each s> 0, the heat kernel p, on G has an analytic
continuation to G©.

Proof. Choose s e€(0,s) and set t=s—s". Then p.eL?*p, and
p,=e“?p.. By Corollary 4.5, p.e L*(u,) n #(G®). In particular, p, has
an analytic continuation to G©. Q.ED.

The isometry in Corollary 4.5 has a “K-averaged” version. In order to
state the result, write G = K x R“, where K is a compact Lie group. This is
permissible by Corollary 2.2.

LEMMa 4.7. Suppose that p, is the heat kernel on G = K x R, then there
exists a finite constant C> 1 such that

C'p(g, x)<pik x)<Cplg x)Vk, ge Kand x e RY. (4.13)

In particular L*(p,) = L*(p,), where

pix)= | pith.x) dk. (4.14)
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Moreover,

PAx)=2mt) "% Jdetge ¥ ¥ (4.15)

where q is the positive definite d x d matrix such that

gx - x=(P(0,, x), P(0,, x)) (4.16)

L

and P is the orthogonal projection of g onto (Ix {0})* cg.

Proof. By Corollary 2.2, we may assume that K= (K’ x R"/Z")/D where
D is a finite subgroup of the center of (K’ x R’/Z'), and g = Lie(G) is the
orthogonal direct sum of Lie(K') and R’xR“=Lie(R/Z’) x Lie(R).
(Throughout this proof, f, R, and R’x R will be identified with f x {0},
{0,} xR% and {0,} x R'x R in g respectively.) Let j, be the heat kernel
on (R'/Z') x R relative to (-, ) |/, ge» P, be the heat kernel on K’ relative
to (- )yiex,, and p(k',0,x)= pk') p(0, x)—the heat kernel on
(K'x R"/Z") x R“. By Proposition 2.10 (applied to 5,) and the fact that p,
is a continuous positive function on the compact set K', it follows that
there exists a finite constant C> 1 such that

Clp Ak, 0, x)<pAk", 0, x) < Cp (K, 0, x) (4.17)

for all k', k"e K’ and 0, ' e R"/Z'. The inequality in (4.13) follows from
(4.17) since

1
pArk, 0, ) =— T p kK, 0+8, ), (4.18)

D e e
where
n: K'xRYZ'» K=(K'xRYZ")/D

is the canonical projection and |D| is the number of elements in D.
Finally;

pArk’, 0), x)dk' df

1

ID] Yk s wizt oo 7y e

pAK'K" 0+ 8, x) dk' d§

pAK', 6, x)dk' db

J K x®YzZ!
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= p Ak, 0, x)dk' do

K xRz

=j pAK') pAO, x) dk' dO
K xRz

- j 540, x) do.
rl/Z!

This last integral was done in Proposition 2.10 where it was found that

plx) = fw PO, x) d0=(2n1) "~ Jdetq e~ o
/7

where ¢ = C— B'4 "B and the matrix (Q) of (-, ), restricted to R'x R =
([g.91)* is of the block form Q@ =[7 £]. It is not hard to verify that the
Q-perpendicular subspace to R'x {0} c R'x R is

{(—A4 'Bx,x)| xe R}

and that the orthogonal projection P’ of R’ x R onto this subspace is given

by the matrix:
P,_[o —A"'B
Lo I

Since I = Lie(K") is (-, - },-perpendicular to R’ x R, it follows that

1] [ Op

X X

which is equal to gx-x=(C— B4 'B)x - x.

Alternative Proof of (4.15) and (4.16). Since 4 commutes with left trans-
lations by ke K and p, is an average of left translation of p,, p, is still a
solution to the heat equation

0p,j0t=Ap,/2. (4.19)

Let {£;}7™" be an orthonormal basis for f and choose {v,}¢_, =g such

i=1

that {£,} ™' {v;}{_, is an orthonormal basis for g. Decompose ech v, as:

v,=1;+u,ct@RY
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(Notice that {u,}_, is a basis for R%) Then

i=1
dim - o
2 ~ ~
4= Z &+ Z (7:+4;),
i=1 =
and hence

Ap,=4'p,, {4.20)

where

d
4=y i (4.21)

Because p, converges to -function on G =K xR as 1 — 0, it follows that
p, converges to a d-function on R as r — 0. Therefore, by this observation,
(4.19), and (4.20), p, is the fundamental solution to the heat equation
Ou/ot = A'u/2 on R% Hence p, is given by (4.15) where g is the unique d x d
positive definite matrix such that qu, - u;= ;. To identify g more explicitly,
noice that v, = Py, and that (v,, v,),=J,. Therefore g satisfies

qu;-w;={Pu;, Pu) Vi, j=1, ., d.

That is to say ¢x - x = ( Px, Px), for all xe R“. Q.ED.

The following Corollary is due to B. Hall in the case that G=K is a
compact Lie group.

COROLLARY 4.8. Let G=K xR p, be the K-averaged heat kernel on G
as given in (4.15) and v, be the K-averaged heat kernel on G® as defined in
(2.16). Then

e 2 L) > L3(v,) 0 H(GO) (4.22)

is an isometric isomorphism of Hilbrt spaces.

Proof. Because of Lemma 2.16 and Lemma 4.7, the L*(p,) and the
L*(p,)-norms and the L*(v,) and L*(u,)-norms are equivalent. So by
Corollary 4.5, e : L¥p,) = L*(v,)n #(G®) is a homeomorphism of
Hilbert spaces. So it suffices to show that ¢'#? is an isometry.

Let fe L*p,)=L*p,). For each ke K, set f,(g, x) = f(kg, x). Because
of Lemma 4.7, f, € L*(p,) for all ke K. By Corollary 4.5

2
1Ll 2 = 1€ ficll 2
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This equality, the facts that left translations by elements in K commutes
with both the Laplacian (4) and the operation of analytic continuation,
and the invariance of the Haar measures on G and G® implies that

[ /g X1 pk g, x) dg d
G=KxRd

= I(e"2f)(g, 2)I kg, ) de d.
GC=KCxd

The assertion that e’#? is an isometry from L*(5,) to L%(v,) now follows by

integrating both sides of the above equation relative to k € K. Q.E.D.

5. A GENERALIZED POWER SERIES AND ITS CONSEQUENCES

In this section, it will be shown that a holomorphic function on G may
be expanded in a generalized power series expansion. This expansion will
be used to show: a function ue #(G®) is in L¥y,) iff (1—D)'ue"J,.
Let & be the Maurer-Cartan form on G°. That is 8 is the g“-valued 1-form
on G® defined by 6{(A4>=L,1,4 when 4eT,G" Given any smooth

g:[0,1] — G® such that g(0)=ee GS, let
oAs)=0g(s)) =Lyy-148(s)

so that ¢: I=[0,1] — g is a smooth path in g*.

Proposition 5.1. Suppose that u:G®— C is a holomorphic function,
g2:[0,11— G is a smooth path such that g(0)=e, and c(s)=0{g'(s)).
Then

o

u(g(s)) = Z {L(-) {D"ule), e(s)® - ®cls,)> ds,...dsn}, (5.1)

n=0
where

A5y ={(sy, .. 5,)ER":0<s5, <55+ <5, <5}
The series in (5.1) converges absolutely.
The proof relies on:
LEMMA 5.2. Suppose that u: G®— C is a C*-function, g:[0,1] - G®
is a smooth path such that g(0)=e, and c(s)=0{g'(s)>. Then
N—1

2[ (D'ule), () ® -~ ®c(s,)) ds+ Ryls),  (52)

An(s)
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where

RN(S)EJ (D u(g(s))), c(s))® -+ @clsy)> ds. (5.3)

Ants)

Proof. By the fundamental theorem of calculus;
u(gls)=ue) +| (Dulgls)), c(s))) ds. (54)
0

For fixed s,, let & be the smooth function on G% given by h(x)=
{Du(x), ¢(s))>. Applying (5.4) with u replaced by h and s replaced by s,
gives:

{Du(g(sy)), c(s))> =h{g(s)))=h(e)+ j{:l {Dh(g(s>)), c(s5)> ds>.  (5.5)

It is clear by the definition that

(Dh(g(s,)), clsy)) = <D2u{g(s2)), c($2)@cls)). (5.6)
Combining (5.4-5.6) yields:

u(g(s)) =ule) +Jﬂ {Du(gle), c(s,)> ds,
0

+ J(: ds, J:I dSz<D2u( 2(s4), c(82) @ c(5,)). (5.7)

After relabeling s, and s, so that s, becomes s, and s, becomes s,, Eq. (5.7)
may be written as:

u(g(s))=ule)+ JOs {Du(g(e), c(s,)> ds,

+L (D gls,), c(s;) ® clsy)) ds, ds,.
sy

Repeated application of this argument shows the truth of (5.2) and (5.3) for
all integrs N = 0. Q.E.D.

Proof of Proposition 5.1. For each z=x+4iyeC, let X (s, g) = L,.(zc(5)),
where zc(s) = xc(s)+ y.£e(s). Let o(s,z) denote the solution to the
ordinary differential equation:

da(s, z)/ds = X (s, o(s, z)) with o(0, z)=e. (5.8)

By definition of ¢, g(s)=al(s, 1).
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Because exponential map and the group operations are holomorphic,
one can show (for any se [0, 1]) that the map

((z,8) > XA, 8) ) CxG"-C

is holomorphic provided f is a (locally) defined holomorphic function
on G*. Hence, in a holomorphic coordinate chart (w), the differential equa-
tion in (5.8) translates into an equation of the form

dW(s, z)/ds = F(s, z, W(s, 2)), (5.9)
where
{z, W)= F(s,z, W)):CxU->U

is holomorphic and U < C is the range of w. By standard O.D.E. theorems,
solutions W to (5.9) are holomorphic in z. These local results can be pieced
together to show that z —a(s, =) is holomorphic for each se[0,1]. The
interested reader may provide a more intrinsic proof along the lines of the
material in Chapter 2 of [21].

Now fix s€ [0, 1]. We have shown that U(z) = u(a(s, 2)) is holomorphic
on C. Therefore

* n

ulo(s, z))= Y. :7 U0y, (5.10)

n=0""

where U'"(z) = (d/dz)"U'"(z). On the other hand by Lemma 5.2, with g(s)
replaced by a(s, z),

uo(s, )= Y [ (Dule) ze(s))@ -+ ®zcls,)) ds + O(zY)

n=0 "5

N—1
=y j (Dule), o(s,)® - ®cls,)) ds + O(z"), (5.11)
n=0 E

i)

where in the second equality we have made use of the fact that u is holo-
morphic so that D"u(e) is complex linear on (g*)®". Comparing equations
(5.10) and (5.11), we learn that

Ut = (Dule), els)® - ®cls,) s

Anls}

Using this expression back in (5.10) and then setting z =1 yields Eq. (5.1).
Q.ED.
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We may write Eq. (5.1) as

u(g(s))=<(1-D) " "u, ¥(g)> (5.12)
where
Yig)= 3 f s ® - Dcls,) ds, (5.13)
n=0 "dnls)

and c(s) =8 g'(s)).

PrOPOSITION 5.3. Let g:[0,1]—> G be a smooth path such that
gl0)y=e. Then ¥(g)= ¥ (g) satisfies the estimate:

1P} <exp{lcli/t} =exp{l(g)¥/t}, (5.14)

where |c|, =g le(s)| ds and I(g) =410 g'(5)>| ds—the length of the path
g relative to the left invariant metric determined by Re(.,-). on
g™ = Lie(G%).

Remark 5.4. Notice that Re(-, ), is a real inner product on g“ for

which g, U .#g, is an orthonormal basis for g© whenever g, is an ortho-
normal basis for g.

Proof. The result follows by summing (on n) the following elementary
estimate:

[ e - @, ds
Ay

{

"

=n'/t" IT Cetsi) e(e))) dt ds
Ap X dn j= ’
n! " ? . n
<~t; [f IT le(s ) 4 dSJ =1""|cll;"/n!. Q.ED.
dn =1

COROLLARY 5.5. Let ue#(G®) and set a=(1—-D) 'ue*J If
xe tJ,, then

|| < o], expl [ x]?/2¢}, (5.15)

where |x|=d(x, e)—the distance relative to the left-invariant Riemannian
metric on G°.

Proof. Let g:[0,1]— G* be a smooth path joining ¢ to xe G°. Then
by (5.14)

()] = [<o, P(&IDI < Mladll, - PRI < ol expil?(g)/2t} .
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The proof is completed by taking the infimum of both sides of the above
equation over all paths (g) joining e to x € G*. Q.ED.

Remark 5.6. Suppose that ¢(s)=Eeg" in the above theorem so that
g(1)=e¢". Then

ue) =Y (D"ule), E®" 5l =((1— D) u, Exp(&)>,  (5.16)

n=0

where

Exp(¢)= W(¢) = Y E®nl. (5.17)

THEOREM 5.7. Let ue #(G%) such that a=(1—-D), " 'ue*J, Then
ue LX(G", u,) and |ul 12, = x|,

The proof will be given after the following measure theoretic lemma.

LEMMA 5.8. Let V(r) denote the volume of the Riemannian ball of radius
r in G® relative to the left invariant metric on G which agrees with Re(-, -)
at ee G°. Then there is a constant C >0 such that V(r) < Cexp(Cr).

Proof. For each r>0, let B, denote the open ball of radius r centered
at ee G*. Choose ¢ > 0 sufficiently small such that the closure K of the ball
B,, is compact. By compactness, it is possible to choose a positive integer
N and {x,}” =K such that Kc YN, (x; B,).

i=1

Claim. Let U,=B,, for ne{l,2,..} then

n N
U,‘C WIIE U U (xi]"'xi,,Bu)~

I1=1 i,.., =1

The claim will be proved by induction. Clearly it holds by definition
when n =1 or 2. So assume the claim holds for some positive integer n > 2.
Let xe U, .. Then r=|x| =d(x, ¢) <(n+ 1)e by definition of U,,,,,,. We
may, (and do) assume that r > ne, otherwise xe U, whichisin W, c W,
by the induction hypothesis. Choose pe(r,(n+1)e) and a path
g:[0,p]— G such that |g'(s)]=1, g(0)=e, and g(p)=x. Choose
t£(0, ne) such that |t —r| <e and set y=g(¢). Then ye U, and |y x| =
dy,x)<r—rt<e Since ye U,, there exists {by induction hypothesis) an
I<nand i, ..0e{l,2, .., N} such that yex, ---x,B,. Set w=x, ---x,,
then

w x| =d(x,w)<dx, y)+dy, w)<e+e=2e
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Thus w 'xeK and hence there exist i,,,€{l,2,.., N} such that
wlxex, B, ie

H+177¢€°

xewx, B.=x,---x,-x;, B,

iry1 e i it Ny

This proves xe W, , <« W, ,, and hence the claim.
Let 4 denote {(a) Haar measure on G°. Then

n N
Viney =MU,)< Y Y  Ax,-x,B,)

I=1 4y nit=1

= 3 N'M(e) < NN"V(e)

I=1

Suppose that r >0 is given. Choose # such that r e [ne, (n+ 1)¢). Then
Viry< Vin+1)e) K N>N*"V(e) < NYONV(e) < Ce T,

where C=max{N?V(¢), log(N)/¢}. Q.ED.

Proof of Theorem 5.7. Choose t€(0,f) and re(r 1), then by
Theorem 2.8,

pUAxy <K e W (5.18)

where K’ is a finite constant. From (5.15) and (5.18) we find:

lul 2y, <K' a2 jc( exp{ x|/t — |x|¥r} dx

=K | exp{—d ¥} dx, (5.19)
G

where K=K'|a||?>, é=r '—t"'>0, and dx denotes Haar measure
on G*. By Fubini’s theorem, the identity

exp{ g xP*} = [

N

e’ dp:f 1{/)>(5\.\'|3} e’ dps
0
Lemma 5.8, and (5.19);
Hunizwsxjo‘ dpe=*2({x: |x| < /p/d})

o —
<C’f dpe*"ec\/”/6<oo,
0
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where C’ and C are finite constants. In particular, it follows that u e L*(u,)
for all te (0, t). By Theorem 4.4,

fs &) T" e ['l

2 2 2

el 22y = Nl 7= X ) lot, | en < 3 al |ot, | 76 < |7 < 00
n=0"" n=0""

for all 1 <. Using the continuity of (7, g) = ¢#.(g) and Fatou’s Lemma, it
follows that

2 o 2
Nl 720, < lerTl’nf Nul zl(m =a|? < .

Thus we L*(u,) and (by Theorem 4.4) {u] 2, = lla,. Q.E.D.
COROLLARY 59. Let ue #(G®), then ue L*(u,) iff (1 —=D);'ue=J,
Proof. Combine Theorems 4.4 and 5.7. Q.E.D.

6. RECONSTRUCTION OF # FROM o

In this section, G (and hence G*) is assumed to be simply connected. We
will see that to each a € “J, there is a unique holomorphic function u, on
G° such that (1 — D), ' u,=o. It will then be an easy matter to finish the

proof of Gross’ theorem.

6.1. Construction of u,

THEOREM 6.1 (Gross). Suppose now that w,(G)={1} (hence
(G ={1}) and a e *J . Given a smooth path g: [0, 1] —> G such that
g0)=e, let P(g) = W¥.(g) be us in (5.13). Then there is a unique smooth
Sfunction u, on G© such that

u(g(1)) = <o, ¥(g)). (6.1

Proof. The proof of this result may be found in Gross [12] in the case
that G® is replaced by G, see Lemma 8.2 on p. 427. The proof given there
goes through without change when G is replaced by G® and g is replaced
by g“.

To indicate the “reason” this result is true, I will sketch a different proof.
The main point is to show {a, ¥(g)) only depends on g(1). The proof of
the smoothness of u, will be deferred until Proposition 6.2 below where it
is shown that u, is holomorphic. Since the theorem has already been
proved in [12], T will let the reader verify any technical differentiability
questions. (None are too severe.)
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Let ¥,(g) be efined in (5.13), then Y (g)e T, and ¥ (g) satisfies the
differential equation

d¥(g)/ds="¥(g)0{g'(s)>  with Pyg)=1eT,. (6.2)

It can be shown that ¥ (g) is invertible in 7, and that ¥ '(g) is given
as the solution P(g) to the differential equation

dP(g)ids+0<g'(s)) P{g)=0  with Pyg)=1eT,. (63)

To prove this one shows (with P, defined by (6.3)) that ¥ (g)- P(g) and
P(g) ¥ g) both satisfy linear differential equations which have 1 as a
unique solution.

Let 4 be the End(T, )-valued connection 1-form on G© defined by
A =L, where L, denotes left multiplication on T, by the Maurer-Cartan
form 6. We will identify P(g)e T, with L, ., € End(T, )—left multiplica-
tion by P{g). Because of Eq.(6.3), P, has the interpretation of parallel
translation along g relative to the covariant derivative V=d+ 4 on the
tirivial bundle G*x T, .

Let £:[0,1] — g® be a smooth function such that #(0) = 0. Since P,{g)
is parallel translation along g, it is well known how to compute its
derivative as a function of g. The answer is:

v

dt

d -~ -
P.(ge™ iz{ Py(ge™ + ACK(1)> Py(g)=Pi(g) BR).  (64)
0 0

where A(s) =L, h(s),
~ l ~
BCRy = Pg) ' FCg(s). his)) Py(g) ds, (6.5)

and F is the curvature tensor of V. For this result the reader is referred to
(for example) Theorem 2.2 in Gross [11], Theorem 4.1 of Driver [8], or
Theorem 1.9 of Driver [9] for a very simple proof. Using the relation
Y.(g)=P,(g)"", we know

d . d
thy — _ adt
e m{ s

Pl(gerh)] ¥(g)
0
Thus, (6.4) and (6.5) may be rewritten as:

d -
aZ ¥i(ge™) = ¥i(g)-h(1) = B{R) - Wi(g), (6.6)
0
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where
1

By =] W(e) FCg(s). Tis)> ¥ () ds, (6.7)

0

To compute F, let X and Y be in g%, and X and ¥ denote there unique
extensions to left invariant vector-fields on G®. Notice that A(X)> =L,
and ACY>=L,, where L, and L denotes left multiplication by X and ¥
respectively on T, . Hence

dA<X,’ ?> :X/(LY)_ ‘YY(LX)_(L(K[Y‘T’])): _L[Xv Y]»
and
A ALK, i'/> =Ly, Lyl=Lixgv-vox-

Adding these last two equations together gives,
F()?, ?>:L{X® Y- Y®X—[X Y} (6.8)
Assembling equations (6.6-6.8) gives

d

—| Pige™ = ¥i(g) h(1) - BSRY ¥(g) (69)

0

where

- 1
B<h>EL Y (g){c(s)®h(s)—h(s)®c(s)—[cls), h(s)]} v '(g)ds,
(6.10)

and c(s)=60{g'(s)>. - N
It is now easy to check that B{2)> ¥ (g)e J, sothat {a, ¥ (g) B{(hD =0.
Therefore

| Ca ige™) = (o Pi(g) 1)), (6.11)

0

and hence (d/dt)|, (o, ¥,(ge™)y =0 if (1)=0. This fact and the assump-
tion that G® is simply connected implies that {«, ¥,(g)> depends only
on g(1). Q.ED.

PROPOSITION 6.2. For each ae*J,, the function u, defined above is
holomorphic.
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Proof. Let £eg®, xeG"®, and write u for u,. Choose smooth paths
g:[0,11>G% and 4:[0,1]— g% such that g(0)=e, g(1)=ux, h(0)=0,
and A(1)=¢. Then by Equations (6.1) and (6.11);

d
<du,é(X)>=;,;

. d
u(ge™) =;‘ o, ¥i(ge™)> = o, Pi(g)ED.
0 o

The above displayed equation shows that du, is complex linear and there-
fore u : G — C is holomorphic. Q.ED.

PROPOSITION 6.3. Let a and u=u, be as in the above proposition. Then
(1-D), 'u=a

Proof. 1t suffices to show
(D"u(e),$,® - ®E>=(05® - @D, V{E}I_, =g (6.12)
We will do this by induction on # making use of (5.16) which asserts that
u(e*)={(1-D), " u, Exp(&))

for all e g®. If n=0, we have u(e) = {a«, Exp(0))>. So assume 6.12 holds at
level n—1>0. We will show (6.12} holds at level n.
Let f(z)=u{e™). Then f is real analytic and

F(6) = u(e®) = (o Bxp(tE)y = Y 1", E" 5 /n!.
n=0

Hence

(D"ule), &) = f(0) = Ca, £®7. (6.13)

Now assume that D*u(e) =a| e« for all k <n. By polarizing (6.13) we
know, for all {&,}7_, =g, that

1
L ADU(O) ~0 E,® - ® L) =0, (6.14)

where the sum is over all permutation of {1, 2, .., n}. Using the induction
hypothesis (D~ "u(e) =a| ew-1) and the fact that both (1—D)~ " u(e)
and « annihilate J, one shows

1
FZ {D"ule) —a, éml)@ ®éd1n)> ={D"ule)—a, ¢, ® - ®E,D.

Combining this equation with (6.14) shows that D"u(e)=o| e, Which
completes the inductive argument. QED.

580133/1-8
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6.2. Surjectivity of the Isometries

THEOREM 6.4. Suppose that G is a Lie group of compact type as above.
Further assume that G is simply connected and hence so is G. Then the map

(1=D) " LAG®, u) n #(G®) - *J,
is an isometric isomorphism. In particular this map is surjective.

Proof. Theorem 4.4 asserts that (1—D),' is an isometry from
L*(GS, u,) n #(G*) into *J,. So it suffices to show (1 — D) ! is surjective.
Suppose that «a € ~J,. By Theorem 6.1, Proposition 6.2, and Proposition 6.3
there exists a function u,e #(G®) such that (1—D); 'u,=a By
Corollary 5.9, this function u_ is in L%(u,). Q.ED.

COROLLARY 6.5. The map
(1=D)'e?: LXG,dp,) > *J,

is a surjective isometry provided that G is simply connected.

Proof. The map (1—D);'e™? is the composition of (1 —D); "' and
¢“?, each of which is a surjective isometry by Corollary4.5 and
Theorem 6.4 respectively. Q.E.D.

7. INTERTWINING PROPERTIES

Recall that G is a connected Lie group of compact type. In this section,
1>0 will be fixed, N = {0, 1,2, ..}, and the operators Az, AL, &, and ¢,
are those given in Definition 1.12.

7.1. Intertwining Results

THEOREM 7.1. Let G be a simply connected Lie group of compact type.
Then for each Eeq,

(1-D); ' ¢ =4:(1-D)] " (7.1)
Proof. Let fe #(G®) and set a = (1~ D) 'f. Since
(1=D) (&), &E® - @& = (& &Ef)e)

={0,¢{,® - ®,Q080
={4:%,5,® - Q)
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for all &, .., ¢,eq and ne N\{0}, it follows that
(1-D)'éf =4, (7.2)

By this equation and the isometry property of (1—D)S L fea(&,) iff
ae Z(A) and for fe D(E),

(1-D), "¢, f=A.a=AY1-D)]'f. Q.ED.
THEOREM 7.2. Let G be a connected Lie group of compact type, then
e, =¢ e Veg,

where e"¥? is Hall's isometry of L*(p,) with L*(u,) n #(G").

To simplify notation, let U, denote Hijab’s formula for Gross’ isometry,
i.e.
U =(1- D)(’_l e Lz(p:) - LZ(HI)-

The following corollary is a direct consequence of Theorems 7.1 and 7.2.

COROLLARY 7.3. Suppose that G is a simply connected Lie group of
compact type. Then for each e q,

Ué, =AU, (7.3)

Proof of Theorem 12. Let fe C*(G). Because & commutes with e’
and analytic continuation, we see that

eu,r‘zélf: e"""’ff: Eerds‘zf

By the definition of £, and the isometry property of e
tion implies that e 4?fe 2(¢,) and

E e f =28 f YfeCX(G). (7.4)

1442

42 the above equa-

Since C¥(G) is a core for g, e is an isometry, and g, is a closed
operator, from Eq. (7.4) we may conclude that

e &, e (7.5)

In Corollary 7.17 below, it will be shown that the inclusion in (7.5) is an
equality. QE.D.

The remainder of this paper will be devoted to finishing the proof
Theorem 7.2. The main technical difficulties arise when the Lie group G is
not compact or R There are also extra complications arising from the
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case where the inner product on g is such that ¥ x {0} is not perpendicular
to {0} x R% So before ending this section, I will sketch a relatively easy
proof of Corollary 7.3 in the case that G = K is compact.

Proof of Corollary 7.3 for G Compact. For notational simplicity, we will
prove Corollary 7.3 with 7=1. Let & € g be fixed. Define a one parameter
strongly continuous group {7T,},.s on LG, p,) by:

(T, /)(g) = flge“), geC.

Let ¢ denote the generator of 7, and notice that &| . ¢, =& By standard
regularization arguments, C*(G) is a core for & ie, E=&,. Let
R,=U,T,U["':*J, > *J,. Then R, is a strongly continuous semi-group
on *J;. Let B; denote the generator of R,. The proof will be complete
upon showing that B, =A.

Let xe *J,, f=U'ae L*¥(p,), and u = e?*fe L*(u;) n #(G®). Then

Roa=UT f=(1-D) "' e*T f=(1-D) 'Tu,

where by abuse of notation, (T,u)(x) = u(xe”) for all xe G®. Since u is
analytic,

oL

(T,u)x)= 3, ™M Eu)(x)/nt.

n=0
Hence

oo

(R, &\ ® - Q&> = Z & & " Erunt|,

It

< }_: &H® - ®¢, ®z"cf"/n'>
=(o,{;® - ®L, ®Exp(1g)) (7.6)
Suppose that x € D(B,). Differentiating the above equation at : =0 gives:

(B:, {1 ® - ®E,D>=C0,¢{® - B, QL =C4:0,5,® --- @,
Since {¢,} < g are arbitrary in this last equation; 4.« = B.axe *J,. Hence
aeP(A}) and B, A].

By Eq. (7.6) and the fundamental theorem of calculus, for all ae *J,

<R,d, é]@ ®én>

~ (@ 6@ @& +[ (RAmE® - O, dr.
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For a € #(A}), this equation and the strong continuity of R, implies that
1

R,a=a+j R, A.adr (1.7)
0

holds in *J,. Differentiating this equation at =0 shows that a e %(B.)
and that B.a = A That is 4} c B,. Q.E.D.

7.2. The Homogeneous Chaos Expansion

In this section, we may (by Corollary2.2) and do assume that
G = Kx R? where K is compact. Also let K denote a collection of finite
dimensional irreducible representations of K such that any finite dimensional
irreducible representation of K is equivalent to exactly one elementl of K.
Our immediate goal is to develop the “Homogeneous Chaos” expansion for
L*(p,). As in Lemma 4.7 let

ﬁ,(.\') = JK pl(ks X) dk = (27Z[)7d/‘2 \/m e~x<qv\'/’2r’

where ¢ is the positive definite d x 4 matrix determined by Eq. (4.16). Let
{u,}9_, be a basis for R such that u, qu; =4, and define the g-Laplacian
on R by:

d
4, ‘; Z q; ' 0%/0x' Ox/,

i=1 ij=1

where (x', ..., x%) are the standard coordinates on R Notice that p, is the
heat kernel associated to 4.

DerFNITION 7.4, Given a = («a;, ..., 2,) € N9 let

d
1_[ gx-u,) (7.8)

and
( . )m
2"n

B =e i = Y SO a0 (7.9)

m=0

Remark 7.5. The funtion H, is the “Wick ordering” of the monomial
h,, and is a Hermite polynomial up to a normalization constant. Also
notice that

H (x)=h,(x)+ (lower order terms). (7.10)
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DEerNITION 7.6. To each finite dimensional unitary representation
(r, V,) of K and ne N, let

H, = span{[7 | A€ End(V}), |x| =n}, (7.11)
where
S5k, x) = Tr(An(k)) Hofx), (7.12)
a=(x,.,2)eN? and |a|=a, + --- + o,

For ae R, net=Lie(K) and fe C™(G), let
(afNk, x) = df(k, x + ta)/dt|,

and

(A Wk, x} = df (ke™, x)/dt|,,
ie. a and 7 denote the left invariant vector-fields on G = K x R? such that
d !((’,0) = (0’ a) and ’7 |(1‘.0) = (’7’ 0)

Remark 7.7. Notice that a(#, )< #,, , and 74(#, ) < A, ,. Since 4,
commutes with # and 4,
(Af 7. ks X) = [ Tamipy s (7.13)

and
d
(@5 Mk x) =) (u; qa) %, f7 s (7.14)
i=1

where n(n) = dn(e™)/dt|, _, and e, denotes the /’th standard basis vector for
R

THeoreM 7.8 (Homogeneous Chaos Expansion). L*(p,)=L*Kx R,
dk p(x) dx) is the orthogonal direct sum of the subspaces { #, .} 1cg nen-
Define #" to be the algebraic direct sum of {#,,} ..z Then for each
aeRY, the operator G| ,.: #"— H#" " is a bounded operator with operator

norm equal to \/{a-qa)n/t.

Proof. Let n,teR, AeEnd(V,), BeEnd(V,), and a, fe N’ Letting
d, = dim(V,), it follows from the Schur orthogonality relations that

(fﬁ,a, f;e./f)Llui,)

= [ Tr(An(k)) TrBR)) dhe - | H.(x) Hy(x) p.(x) dx
K

R4

—d_ 5 Tr(AB*).j Ho(x) Hy(x) p,(x) dx.

n
nT R
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Using Theorem 4.1 applied to L}RY p,(x)dx) and some calculus and
combinatorics, one shows that

[ H00) Hyx) pix) dx

d
”1— S (@@ h)0) - (- i1, hy)(0)

=5,y (7.15)
where a! = [T7_, «,!. Combining the above two displayed equations gives:
(ST o) 2y =0 dnt'™ 3, . 8, 5 TH(ABY). (7.16)

This last equation clearly suffices to prove the pairwise L*( j,)-orthogo-
nality of the subspaces { s, ,}. The assertion that

LYp)= & ., (Hilbert space direct sum)

nek neN

now follows from the Peter—Weyl theorem and the well known fact that
polynomials are dense in LX(R?, p,(x) dx).
Now let fe #", then

flk,xy="3 fulk) H,(x)

l2) =n

where f, € C*(K). Using (7.14) and (7.15), one shows:

N2y =1" % & | Sl 2oy

ja] =n

and

d
~ — 2
Haf‘li-’-(ﬁ,)=tn ! Z (a'qui) a’ifa.Ha—e,“[_z(ﬁ,)

:lZ
LY pn

2

Z aifaHa—e,

) =m

d

d
="'y [a-qu))*- Y

i=1 i=1

| Z aifaHxv(',

lx] =n

LA(py)
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d
=tn—l(a.qa), Z Z oc;’(otﬂé’,-)! ”fa“iz(dk)

i=1 {a|=n
d

—r"a-qa)- Y Y ax! Il 22ty

i=1 Jaj=n
=(a-ga)-nt™" | fll 725,

This last inequality shows that the operator norm on " is less than or

equal to /(a-ga)n/t. By choosing f(k, x) = e "“*(qa- x)"e #" one easily
shows that this bound is sharp. Q.ED.

Notation 19. Given fe L} p,)= LXK x R?, dk p.(x) dx), let £, , denote
the orthogonal projection of f onto #,, so that

f=% Jan

7.3. Explicit Description of &,

The following theorem plays a role analogous to Lemma 4.3 in Gross
[12]. The technique of proof is also very similar.

THEOREM 7.10. Let & denote the algebraic direct sum of the subspaces
{Hon) negnens and set || =112y For E=(na)eg=txR’ the

o_per;ztor ¢y =i+ a)|, is closable in Lz(é,) and hence also in L*(p,). Let
&, denote the L3 p,)= L*(p)-closure of &|,. (Item 2 below asserts this
definition of &, agrees with that given in Definition 1.12.) Then

1. The operator &, is given explicitly as:
HEN={ =T Fun€ L) | T W4 om0} (707

and for [ =Y nn frn€Z(E)),
élf=2(ﬁfn.n+&fn,n+l)' (718)

2. C*(G)c2(E,) and C*(G) is a core for &,.
Proof. Let
E=(—f—-a+M)ls,

where M, denotes multiplication by the function (k, x) — ga - x. Elementary
integration by parts shows for all 4, f € & that (Aif, kY= (f, —#h), (af, h)=
(f,(—d+M,h), and hence (Cf,h)=(L'f,h), where (-,-)=(-, )pp,.
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For the purposes of this proof let &, be the linear operator determined by
equations (7.17) and (7.18). Then for he Z and fe 2(&,),

(é—lf; h)=Z (ﬁfn.n+a~fn,n+l’hn,n) (ﬁnite Sum)

n

= 3 AU =) + frme1s (=8 + M) B}
=2 Sams —han + =G+ M) hei) - (B 1 =0)

= Z(f; —ﬁhn.n +(_§+Ma) hn.nfl)

=(f(=f—a+M)h)=(f,h)
Therefore &, = (£7)*.
Claim. & ={H*.
To prove the claim let fe Z((&£7)*) and (ET)*f = h, so that
(h,r)y=(f&"r), Vrez=2(L"). (7.19)

A similar computation to the one above shows (7.19} is equivalent to

Z (hn,n’rn,n)zz (_ﬁfﬂ,n_&fn,n+l*rn.n)' (ﬁnlte Sum) (720)

TR

From this equation it follows that —#f, , — dfy »41=h,., for all e K and
neN. Since he L*(p,), we see that f e Z(¢,) and that hence &, = (£7)*. This
proves the claim.

Because of the above claim, it follows that &, is a closed operator. (This
could have also been seen directly.) In order to finish the proof of the
Lemma it suffices to show that C(G) c Z(¢,) and that both C7(G) and
& are cores for &,. Let us first show that & is a core for :f,.

For each fe%(&,), A€k (ie, AcK and A is a finite set), and
Ne N\{0}, set

N—1
SNEYY faw (7.21)

neA n=0

The 'V - f as A increases to K and N — oc. We also have

é—t(f_f/"N): Z (ﬁfn.n+afn.n+l)+ Z dfn.N' (722)

{r¢ A0ornz= N} e
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Because fe %(&,), the first sum on the right of Eq. (7.22) converges to zero
as A increases to K and N — oc. So to finish the proof that £ i1s a core it
suffices to show

VA €K, llm mf

o

\
S afu =0 (7.23)
neAd

For sake of contradiction suppose that (7.23) does not hold. Then there
exists ¢ >0, 4 € K, and Nye N such that

Z afn.f\"

‘ne A

a~ Z frz.N )

ned

=&, VN2=N,.

But by Theorem 7.8 there exists C' >0 such that

i 2
Y af.n| <CN

=
neAd

5 fn,Nif':czv Yl

ned ned

From the two above displayed equations it follows that

S OY fanl?2 Y gCN=o,

N2Ny ned Nz Ny

which contradicts the assumption that f e L*(p,). Thus (7.23) is valid and
2 is a core for &,.

To show CZ(G) = 2(&,), it suffices to notice by integration by parts that
(f, &h) = éf h) for all feC*(G) and he 2 =2(&"). This shows that
fe@((&EY*)=2(¢,) and that é,f éf ie, &l g el

To see that C*(G) is a core for &,, we w1ll show that any f €% may be
approximated in the &,-graph norm by functions in C*(G). To this end, let
¢:R—[0,1] be a smooth function such that ¢(s)=1 if |s|]<! and
$(s)=0if |s| = 2. Set f!(k, x) = @(|x|/]) f(k, x)e C*(G), then it is routine
to show that f'— f in the ¢,-graph norm. QED.

7.4. Explicit Description of &,
DEeriNITION 7.11. For me K and ne N, let
F,,=e"H, . (7.24)

The next lemma examines the structure of functions in J#, ,.

Lemma 7.12. Let flk,z) = Tr(a(k)A) p(z), where ne K, AcEnd(V,),
and p is a polynomial on RY. (The holomorphic extensions of n and p to K©
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and C* respectively will continue to be denoted by m and p.) Then there exists
C.(t) >0 and p, € RY such that on G* = K* x C?,

(€42 e =142 ) (g, 2) = Col1) THa(R) A) plz 41/~ 1p,).  (7.25)

In particular, the general element Fe ¥, ,, is of the form:

F(g,z2)= Y Tr(n(g) A)h(z+1/—1p,). (7.26)

|| =n

Remark 7.13.  As will be seen by the proof, if fx {0} and {0} x R are
(-, -)4-orthogonal then p,=0 for all nek.

Proof. Let {&}9™' be a basis for f such that {(&,0)}%™ is a (., ),-
orthonormal set. Let {u;}9_, be a basis for R’ such that u; qu, —OU,
or equivalently {P(0,u;)}?_, is a (-, ),-orthonormal set, where P is
orthogonal projection of g onto the orthogonal compliment of fx {0} in g.
Let y,et be defined by P(0, ;) =(y;, ;) for i=1, .., d From the proof of
Lemma 4.7 or using Theorem 2.1 it is not difficult to check that y, is in the
center of f. (Recall that K is isomorphic to (K’ x R¥/Z*)/D, where D is a
discrete subgroup in the center of (K’ x R¥/Z¥). The y, “live” in the Lie

algebra of R*/Z*.) Since (=, V,) is 1rredu01ble and unitary,

d —
a(y) = = | me™=/=1p, 14,
tlo

for some p,e R. Define
d

Pr= z piu€R

i=1

Let 4,= 39! &2 then

i=1

(F,+7)=4,+4, +Zy +22u/,

1 i=1 i=1

.m,
[} M A

and all terms on the far right side of the above equality commute. Notice

that 4,+ 39 , &7 is in the center of the universal enveloping algebra of f,
so that

n<A,+ 5 y*f) K. 1d
i=1
where K, <0. Therefore

1 Af2 1,2

e e - A2

42 d o
—e = eI+ 82 e’Z,:l"')', (7.27)
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and hence

eI e T2 (g, 2) = C (1) ' T W Tr(ak) A) p(z), (7.28)
where C (1) = "2,
Using the above information,

Pl o

o' X Tr(n(k) A) p(2)
L T, Trlk) A) iy pl)

=2
m=0 iy =1
Lo /_lt nt d
=Tr(n(k)4) Nl Y

m!

m=0 ile e dm =1

o _l, ni
=Tr(n(k)4) Y, M%);52’10(:)
n=0

m!
=Tr(n(k)4) p(z+/~11p,),
where the last equality is Taylor’s Theorem. Q.E.D.
By Theorem 7.8 and Corollary 4.8,

LXv)yn £ (GH= D H.,. (Orthogonal Direct Sum).  (7.29)

neK. neN

For fe L*(v,)n #(G®), let f, , denote the orthogonal projection of f onto

A, ., so that

r,on»

F=Y S lin LAv) = Lu,) (7.30)

The next lemma will be used shortly to relate L-notion of convergence of

the above sum with the notion of uniform convergence on compact subsets
of G*.

LeMMA 7.14.  Suppose that F, € #,, for all ne K and neN and that

S wn Fr. converges to O uniformly on compact subsets of G*. Then F, ,=0
for all ne R and ne N.

Proof. By Lemma 7.12, there exists 47 € End(V,) and p, € R such that

Folg2)= Y Tr(AZn(g) hiz+/—lp,). (7.31)

o] =n
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Hence, using the uniform convergence on compacts and the Schur
orthogonality relations, for each e K and Be End(V,)

0=y L F, (k. ) T Be(k)) dk

= Y | Fuutk, z) TOBR0R) dk
n‘=0 K

=dr Z Z Tr(A;B*)hu(:+\/:—1fp,)

n=0 |afj=n

The last sum converges uniformly for z in compact subsets of C% Replacing
z by rz —,/ —1tp, and using the homogeneity of #,, it follows that

0= r S Tr(ALB*) hz).

n=0 |x| =n

for all reC and ze C% It is now elementary to conclude that
Tr(A:B*) =0 VYae N

Since Be End(V,) and 1€ K is arbitrary, 47 =0 and hence F,, =0 for all
aeN“and e kK. Q.E.D.

PROPOSITION 7.15. Let fe #(G%) and f,,€ A, , for neK and neN.
Assume that

F=Y frnuniformly on compact subsets of G©). (7.32)

nn

Then
2 2
II.f“quv,j:Z ”fn.n H Lz(v,)’ (733)
where this equation is to be interpreted as an equality on [0, oc ]. Moreover,,

if either side of (7.33) is finite then the sum in (7.32) is also L*(v,) = L*(u,)-
convergent.

Proof. By Fatou’s Lemma and the L*(v,)-orthogonality of the terms in
the sum in (7.32),

H,f”ilqy,)gz Ilfn‘nuiz[v,)' (734)
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Suppose that the right member of (7.34) is finite, and hence fe L(v,). Let
F=L*-%,,/w. By Lemma32, there is a version of F which is
holomorphic and for this version

F=) f.,(uniformly on compact subsets of G).

an

Thus F = f, the sum in (7.32) is L>-convergent, and (7.33) holds.
Conversely assume that || /135, < oo, then

f=Y Fonin L2(v,)=L¥u,). (7.35)

where f, ,e #. , for all ze K and ne N. Again by Lemma 3.2, the sum in
(7.35) is also uniformly convergent on compact subsets of GC. Let
F, .= f,,‘,,——f,,.,,e,)f?;‘,_,,, then Y, F,, converges to zero uniformly on
compact subsets of G. So by Lemma 7.14, F, , =0, ie., f, = f. .. There-
fore the sum in (7.32) converges in L*(v,) = L*(u,) and Eq. (7.33) holds.
Q.ED.

THEOREM 7.16. Let é=(n, a)eq=TxRY and let §j und @ denote the left
invariant vector fields on G which agree with (n,0) and (0,d) at ec G*.
Then

9@»={feL%mwwchﬁ zuaan+wgwlﬁ%”<m}

and for fe (&),
Elf: Z (ﬁ.fn,n + dfﬂ.l1+ 1 )

Proof. Let feL*v,)n#(G%), then by Lemma 32 the L?*v,)-con-
vergent sum

=2 Jan

is uniformly convergent on compact subsets of G* and also ¥, , df, , con-
verges to df uniformly on compacts. In particular for all feL?*(v,)n
H(GY),

Ef=Y &fnn=Y Gifuntafnni1) (7.36)

an
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with the sums converging uniformly on compacts. By Proposition 7.15,
Sfeli(v) iff 3, ifrn+afnniilliz,, <oo, ie, f feZ(&,) It also
follows from Proposition 7.15 that

£If=Ef=Z (ﬁfn,n+a~fn.n+l)a

where the sum is convergent in L, Q.E.D.

The following corollary is an easy consequence of the explicit description
of &, and £, in Theorems 7.10 and 7.16.

COROLLARY 7.17.  The domains of &, and &, are related by:
2(&)=e"2(E). (7.37)

Proof. Let feL¥p,)=L(p,). By Theorem 7.16, e’**f e #(&,) iff

Yo7 a1 G, < 0. (7.38)

nn

Notice that for all £eg,

eV E=Fe'" "2 0on #. VreKk neN,

n.n’

where & on the left (right) side of the equality is the left invariant vector
field on G (G*) which agrees with ¢ at the identity in G (G®). From this
observation and isometry property of 4 in Corollary 4.8, Eq. (7.38) is
equivalent to

Z Hﬁfn.n+ﬁfn‘n+l”?1;3(ﬁ,|< 0. (739)

T.h

By Theorem 7.10, Eq. (7.39) is equivalent to the assertion that f€ %(&,).
Q.ED.

Remark 7.18. The interested reader may easily continue the above argu-
ment to give a direct proof of Theorem 7.2 without reference to Eq. (7.5).

8. APPENDIX ON METRICS

Suppose that G is an arbitrary Lie group and (-,-) is a given inner
product on g=Lie(G) = T,G. Let (-,-); ((-, - )} be the unique left (right)
invariant Riemannian metric on G which agrees with (-, -) at e€ G.



126 BRUCE K. DRIVER

DerNiTION 8.1.  The left distance metric d; : G x G — G is defined by
1 —_
d(g. h) = inffo V(@' (s). 0'(5)), ds,

where the infimum is taken over all C'-paths o in G such that (0} = g and
ag(1)=h. The right distance metric dg is defined similarly with (., ),
replaced by (-, < )x.

Notice that
di(xg, xh)=d (g h)

for all g, &, x e G, since if o is a curve joining g to A, xo{-) is a curve joining
xg to xh which has the same length as 0. Set |g| =d,(g.e)=d,(e, g), then
because of the above displayed equation,

di(g. h)=|g 'h|=|hn""g|.

Setting # = e in this equation shows that [g| =|g~!| for all geG.
To relate d, to dy, let x(g)= g ! and consider

(K*Lg*A, KoLy B)g= (Rgvl*K*A, R,k Bl
=(—R
=(L,4A4, L, B),.

g’l*A* _Rg"*B>R:(Aﬁ B)

From this equation it follows that if ¢ is a curve joining g to h, then

J\/(a a'(s)) ds-f \/h a'(s), k,0'($)) g ds

—J‘ , T(8)) g ds,

where 7 = k - ¢. Notice that 7 is now a curve in G joining g ' to #~'. Hence

d; (g h) =de(g ' h").
Therefore,

lgl=1g '|=d(g ', e)=dgr(g, €)

and hence
dp(g, h)=|gh '|=hg7"|.

The next proportion summarizes the observations of this appendix.
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ProrosITION 8.2. Let |x| = d,(x, e) forall xe G. Then forall x, k, geG

1. dglx, e)=|x|,

2. Ix7=x}

3. dilg k)y=|g 'kl
4. dplg. k)=lgk™'|.
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