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This note is devoted to a pedagogical proof of logarithmic Sobolev inequalities on
compact Riemannian manifolds when the reference measure is taken to be a heat
kernel measure. The inequalities explained in this paper seems to have been first
discovered by D, Bakry and M. Ledoux?.

1 Introduction

Let M be afinite dimensional connected compact® manifold without boundary,
(-,-) be Riemannian metric on M, A be the Laplacian on M, Ric be the Ricci
tensor of the Levi-Civita covariant derivative V, Z be a smooth vector field on
M, and L = A+ Z. We write P; = e*£/2 for the associated Markov semigroup
and define

plv,w) = Ric(v,w) — (VyZ,w), Vv,w€TmM and me M. (1.1)
The purpose of this paper is to give a reasonably self contained proof of the

following theorem. For applications of this theorem to path and loop spaces,
see Hsu 15, Wang!®, and Driver and Lohrenz!2.

Theorem 1.1 (Bakry and Ledoux) Choose C € R such that p(v,v) >
~C(v,v) for all v € TM. Then for all f € C°(M) and T > 0,

Pr(f*log ) < 2{(e°T —1)/CYPr|Vf|? + Prf? - log Pr(f?), (1.2)

where V f denotes the gradient of f and 0log0 = 0 by definition.

2The proof for complete Riemannian manifolds involves a number of technicalities which
we wish to avoid in this expository note.
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Notation 1.2 For eacho € M and T > 0, let p, T denote the probability
measure on M such that

por(f) = /M fduor = (Prf)(e) VFEC®(M).  (13)

Let &, 7 denote the closure of the symmetric quadratic form 83,7. on C®(M)
determined by

Er(r0) = [ [91Pdpag = Pr(FIP6) VS €CT(0).  (14)

We also let H, T denote the generator of £, 1, i.e. Ho 1 is the unique selfad-
joint operator on L?(M, p, 1) such that

Eox(f f) = (HYFF HY R Laue sy VS €D(Eor) =D(HE),  (L5)

where D(&, ) and D(H;’T'f’) denotes the domain of &, v and Hi’g respectively.
With this notation we may rewrite Theorem 1.1 as follows:

Theorem 1.3 Fiz T > 0 and 0 € M and choose C € R such that p(v,v) >
"—C(v,v) for allv € TM. Then for all f € D(E, 1),

tor(f?log f2) < 2{(e€T = 1)/CY,ox(f, ) + tox(f?) - log por(f?). (1.6)

Proof. For f € C®(M), Eq. (1.6) is a special case of Eq. (1.2). Since by
definition C*(M) is a core for &, 7, a simple limiting argument shows that
(1.6) holds for all f € D(&, 1), see the last paragraph in the proof of Theorem
2 of Gross 13. Q.E.D.

There are by now a number of proofs of Theorem 1.1 and its generaliza-
tions, see Bakry and Ledoux ®, E. Hsu 15, and F. Wang 819 All of these
proofs follow the circle of ideas introduced by Bakry and Emery %6, see also
Bakry 1234, The main difference is the method of proof of the important
intermediate inequality:

|V Prf] < e€T Pr|V{]. (17 -

(Note: this inequality follows easily from Theorem 3.4 of Donnelly and Li !
and the Bochner-Weitzenbock formulas.) The proof we give below is essentially
the one explained to us by Dominique Bakry with some modifications so as to
avoid using (1.7) altogether. Although avoiding (1.7) is not a virtue, we hope
the reader will find the proof given below a useful introduction to the paper of
Bakry and Ledoux?.




2 Preliminaries

We will write (-,-) and V for the induced metric and covariant derivative re-
spectively on any of the vector bundles T®*M @ (T* M)® for k,1 =0,1,2,....,
where as usual T®M = (T M)®0 is to be taken as the trivial vector bundle
M x R. Also let [£[]? = (€,€) for € € T®*M ® (T M)®!. Note that with this
notation for f € C®(M), Vf = df and |Vf| = |V f|. Following Bakry and
Emery 56 for f € C®(M) let

N —

and
1 1
La(f,f) = 3{LOOU ) = 200, LA} = SLIVSR = (VA VLS. (22)
It is well known (see Bakry and Emery 3:¢) that I'; is given explicitly by:

T2(f, f) = [Hessf| + p(V£,V f), (2.3)

where Hessf = Vdf € T M®? is the Hessian of f.
Given f € C®(M) and T > 0, let

Ft,m) = (Pr—cf)(m). (2.4)
Then F solves the backwards heat equation:
dF/8t = —LF/2.

A simple computation shows that

d

d_t(Pt(Fz(t’ )))(m) = Pt(r(F(ta ')1 F(t1 )))(m)

To simplify notation in the sequel, we will suppress the t and the m variables
from the notation and write the above equation simply as

dit(PFz) = PI(F, F). (2.5)
A similar computation using this abbreviated notation gives
%(RI‘(F, F)) = PTy(F, F). (2.6)
The following well known lemma shows that knowledge of I'; determines p.
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Lemma 2.1 ForallmeM andve T, M,
p(v,v) = inf{T2(F,F)(m): F € C®°(M) s.t. VF(m)=v}.  (2.7)

Proof. (Sketch) Let Q(v,v) denote the RHS of (2.7). By (2.3) it is clear
that if VF(m) = v, then T5(F, F)(m) > p(v,v) and hence Q(v,v) > p(v,v).
So to finish the proof it suffices to show there exists F € C®(M) such that
(HessF)(m) = 0 and VF = v. For then, by Eq. (2.3), T2(F, F)(m) = p(v,v)
so that Q(v,v) < p(v,v). To construct such a function, choose F € C>®(M)
such that F(p) = (v,exp;!(p)) for p near m, where exp,, : Tm M — M is the
exponential map at m. Q.E.D.

Before going to the proof of Theorem 1.1, it is instructive to first consider
the simpler issue of spectral gaps for the operator H, r. This is the content of
the next section. -

3 Spectral gap inequalities

Remark 3.1 The mazimum principle (or the fact that (P, f)(z) may be writ-
ten as an integral relative to a probability measure) shows, for anyt > 0,
that the range of P,f is contained in an interval J provided the range of f
is contained in J. This comment will be used in this section without further
mention.

Lemma 3.2 Suppose f € C®(M), ¢ : J CR — R is a smooth function on
an open interval J C R. Assume f(M) C J so that ¢ o f is also a smooth
function on M. Fiz T > 0 and F(t,") = Pr_.f (as in (2.4)) and set
¥(t,m) = R($(F(t,))(m) = P(¢(Pr-:f))(m)
forall0 <t <T and m & M. Then
d¥/dt = P{¢"(F)|VF}*/2} forte (0,T). (3.1)
Proof. We compute:

AV /dt

P{LY(F)/2+ S8(F)).
P{L6(F)/2— &'(F)LF/2). (3.2)

1l

Now

Lé(F) = A¢(F) + Z¢(F) = Ad(F) + ¢'(F)ZF,
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and
A$(F) = trV{¢'(F)VF} = {¢"(F)|VF|* + ¢'(F)AF},

so that
L¢(F) = ¢”(F)|VF|2 + ¢'(F)LF. (3.3)

Eq. (3.1) follows from (3.2) and (3.3). Q.E.D.

Theorem 3.3 (Spectral Gap) Choose C € R such that p > —C(-,-). Then
forall fEeC®(M) and T >0 ‘

Pr(f*) = (Prf)* < {(e°T = 1)/C}Pr|V fI*. (3.4)

Remark 3.4 Forf € L?(po7), let Qf = Qo f = f—([ fdu)-1 be orthogonal
projection onto {1}*. By an easy limiting argument (as discussed in Theorem
1.8), Theorem 8.3 implies

1@ 2ue.ry S {(eT = 1)/CYeo2(f,f) VS ED(Eo1). (3.5)

In particular we have:

NQfF (s, 7y S {7 = 1)/CHHorf,f) VfE€D(Hox).  (36)

From this equation we conclude that the null space of Ho, 1 is the constant
functions and the spectrum of H, r is contained in {0} U[C(e€T - 1)1, o0).
Hence Eq. (3.4) implies a spectral gap for H, 7 which is bigger than or equal
to C(e€T —-1)~1.

Proof of Theorem 3.3. Let F be as in (2.4) and take ¢(z) = z? in Lemma 3.2
to find that ¥ = P(|VF|?) (alternatively use (2.5)). By (2.6) we find

¥ = P([y(F,F)) > —CP(|VF]}) = -C¥, (3.7)

where we have used the assumed bound on p and Eq. (2.3). It follows from
(3.7) that % log ¥ > —C and hence log ¥|T > ~C(T —1). Thus

¥(t) < ¥(T)eCT-Y),

Integrating this last equation over [0, T) gives ¥(T)—¥(0) < ¥(T)(e€T -1)/C,
from which (3.4) follows, since ¥(T) = Prf2, ¥(0) = (Prf)? and ¥(T) =
Pr(V ). Q.E.D.

The following corollary is a weak version of Toponogov’s theorem, see
Theorem 9 on p. 82 of Chavel® Toponogov’s theorem gives an estimate on
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the first eigenvalue of A in terms of C and the dimension of the manifold
M. In the original proof of this theorem one has to make use of the estimate
|Hessf|2 > (Af)?/n, where n = dim(M), instead of throwing it away like in
Eq. (3.7). Presumably there should be a way to improve the spectral gap
inequality (3.4) by making use of |Hessf|?> > (Af)?/n to obtain the original
Toponogov’s theorem.

Corollary 3.5 (Spectral Gap for the Volume Form) Letw denote the nor-
malized volume measure on M. Assume Z = 0 and there is a constant k > 0
such that p(-,-) = Ric(-,-) > k(-,-). Then

w(f?) = W(f)? < zw(VSP), (3.8)

where

Proof. Let o € M be fixed. Since M is compact Pr is ergodic in the sense
that w(f) = limpo o (Prf)(o) for all f € C*®(M). The proof is completed by
letting T' — oo in Theorem 3.3 keeping in mind that C = ~k < 0. Q.E.D.

4 Proof of the logarithmic Sobolev inequality

Before giving a proof of Theorem 1.1 let us state the analogue of Corollary 3.5
for logarithmic Sobolev inequalities. Again this corollary was explained to us
by D. Bakry.

Corollary 4.1 (Bakry and Emery %°) Letw denote the normalized volume
measure on M. Assume Z = 0 and there is a constant k > 0 such that p(-,-) =
Ric(-,-) > k(-,-). Then

w2 10g(7?) < Fw(IVP) (/) -logw(f?). (41)

Proof. Following the proof of Corollary 3.5, let T — oo in Theorem 1.1
keeping in mind that C = —k < 0. Q.E.D.

Remark 4.2 For compact manifolds it is always possible to prove that ({.1)
holds for some constant k > 0, see for ezample Rothaus'®. In fact it is known
‘from the pioneering work of L. Gross'3 that classical Sobolev inequalities imply
logarithmic Sobolev inequalities. In this contert see Deuschel and Stroock19,
Ezercise 6.1.81. It is also possible to prove this fact using Theorem 1.1 and a
Lemma of Holley and Stroock*, see also Section 1l of Stroock!”.
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The proof of Theorem 1.1 will be given after some preparatory results.

Lemma 4.3 Keeping the notation in Lemma 3.2, we have
§ = PRIV + 6" (F)T2(F,F)
+P[¢®)(F)(V2F,VF ® VF)].
This equation combined with (2.3) gives:
¥ = PGEW(F)IVF@VFP+ 56" (F)IVIFI +p(FF, F)))
+P(¢®)(F)(V2F,VF ® VF)). (4.2)
Proof. Because 3¢(F)/dt = ¢'(F)LF/2 and Eq. (3.3),
1 d ; )
S L#(F) + —¢(F) = ¢"(F)|VF[*/2. (4.3)
We also have

L(fg) = tV(fVg+gVf)+Zf-9+f Zg
= tr{2Vf@Vg+ fVig+gVif)+2Zf-g+f Zg
= Lf-g+ fLg+2(Vf,Vg),

and’

1 9, d. o 1 R 1

5L|VF| +:E]VF| =§L|VF| —2(VF,V(§LF))=I‘2(F,F).
Therefore

2§ = PLLIE(F)IVER+ Si(RIVFR)

PUSLIS" () + Z6"(F)IVEFP)
+P(8"(F){SLIVFI + SIVFP))
+P(V"(F), VIVFP)
= P(36"(F)IVFI) + P(¢"(F)Ta(F, F)
+P($P)(F)VF, VIVFP),
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wherein we have used Eq. (4.3) with ¢ replaced by ¢”. The result follows from
this equality, since

(VF,V|VF) = 3 2V.F-(Y.,VF,VF)
Y 2V, F - (V2F(eise;)) - Ve, F

i

= 2(V:F,VF®VF),

where {e,-}?i:f(M) is any local orthonormal frame of TM. Q.E.D.

In order to make use of the last computation we will need the following
elementary lemma.
Lemma 4.4 Suppose that (V,(-,-)) is an inner product space of dimension
larger than or equal to one and a,b,c € R. Then

a(z,z) +b(z,y) +c(y,y) 20 Vz,yeV (4.4)

if
2a>0,c>0, and &% < 4ac. (4.5)
Proof. Assume that (4.4) holds. Choose z € V such that |z] = \/(z,2) =1

and set y = kz, where k € R. Then (4.4) implies that p(k) = a+bk+ck? > 0 for
all k € R. This clearly implies that a,c > 0 and b2 — 4ac < 0, since otherwise
p would have two distinct real roots and hence ming p(k) < 0. Hence (4.4)
implies (4.5).

Now assume that (4.5) holds, then as above the polynomial g(k) = a —
bk + ck? is nonnegative. Hence if |z| # 0, then

a(z,z) + b(z,¥) +c(v,y) 2 alz)* ~ |bll(z,y)] + clyl?
> alzf - bllzllyl + clyl?
= |zfPq(lyl/I=]) 2 0.
Hence (4.5) implies (4.4). . Q.E.D.

Corollary 4.5 Let f € C®(M) and ¢: J — R be as in Lemma 3.2. Assume
¢() >0, 4" >0, and 2[¢(N? < ¢" - ¢4, (4.6)

then )
¥ 2 P(56"(F)p(VF,VF)). (4.7)
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Proof. An application of Lemma4.4 withV = TM®TM,z =VFQ®VF,y=
V2F,a= %da(“)(F), b=¢B)(F),and c= 1¢"(F) shows that the conditions in
(4.6) implies that

%da(“)(F)IVF ® VF[? + 3¢"(F)|V2F [ + $O)(F)(VF,VF @ VF) 2 0.

Using this inequality in (4.2) gives (4.7). Q.E.D.

Theorem 4.6 Choose C € R such that p > —C(-,-). Let f € C=*(M) and
¢ : J = R be functions as in Corollary 4.5. Then

Pr(¢(f)) — ¢(Pr(f)) < {(eT = 1)/2CYPr(¢"(F)IVSI?). (4.8)

Proof. Asin Lemma3.2,set F(t,m) = (Pr-.f)(m) and ¥(t) = P(¢oF(t,)).
Then by Corollary 4.5, Eq. (3.1), and the assumption that p > —C(-,-), it
follows that ) _

¥ > -CV. (4.9)

As in the proof of Theorem 3.3, this implies
¥(T) — ¥(0) < ¥(T)(e°T - 1)/C.

This last equation implies Eq. (4.8), since ¥(T) = Pr(4(f)), ¥(0) = ¢(Prf)
and ¥(T) = Pr(¢"(f)IVfI?)/2 by Eq. (3.1). Q.E.D.

Lemma 4.7 The solutions to the differential equation

2602 = ¢” - 41 (4.10)
are
¢(z) = Bz?> + Cz + D, (4.11)
or
é(z) = A~2(Az + B)log |Az + B|+ Cz+ D (4.12)

for some constants 'A, B,C; and D, such that A #0.

Proof. Suppose that ¢ is a solution to (4.10) and set k(z) = ¢"(z). Then k
solves the ODE: |
: 20k = k- k", (4.13)
One way to solve this equation is to have k' = 0, in which case k(z) has a

constant value, i.e. ¢"(z) is 2 constant. Hence ¢(z) = Bz? + Cz + D for some
constants B, C, and D.



Now assume that k¥’ # 0 and we are on an interval in R where k¥ # 0. In
this case Eq. (4.13) may be written as:

2k [k =k"[K. (4.14)
Integrating this last equation gives:
log |k’| = log |k|? + const.

and hence k' = Ak?, for some constant A. From this differential equation we
learn that k(z) = (Az + B)~! for some constants A and B. We may and
do assume that A # 0, otherwise we will be back in the case where ¥’ = 0.
Integrating the equation

¢"(z) = k(z) = (Az + B)™?

gives (4.12). Q.E.D.

Remark 4.8 Let ¢(z) = z?, then ¢ verifies (4.6). Hence Theorem 8.3 easily
follows from Theorem /.6. ‘

Proof of Theorem 1.1. Let B > 0, and define ¢g(z) = (z + B)log(z + B), for
z > —B. Then ¢p verifies (4.6) on (—B, o) and ¢%(z) = (z+B)~!. Therefore
by Theorem 4.6, for a non-negative function f € C® (M),

Pr(65(f) - ¢8(Pr(£) < 2{(e°7 = V/CYPr(f + BYIVSP).  (419)

Now suppose that f € C®(M) is arbitrary. Apply (4.15) with f replaced by
f2? to find:

Pr(¢s(f?)) - 68(Pr(f?))

IA

AT~ 1)/CYPr(s* + B £V 117
< 2{(e°T - 1)/CYPr(IVSI). (4.16)
By the domin.ated convergence theorem,

EEIOIPT(dJB(fZ)) = Pr(f*log %),

where 0log0 = 0 since limgyo ¢5(0) = 0. Hence letting B | 0 in Eq. (4.16)
shows that Eq. (1.2) holds which proves Theorem 1.1. Q.E.D.
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