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Preface

The Taniguchi International Workshop on ” New Trends in Stochastic Anal-
ysis ” was held in Charingworth Manor, Charingworth, Gloucestershire, Eng-
land from September 21st to September 27th, 1994. Sixteen mathematicians,
nine from Japan and seven from other countries, participated in the workshop
to discuss several of the new directions stochastic analysis is taking, ranging
from analysis on fractals to analysis on loop spaces. This volume contains
contributions from the members of this workshop.

The workshop was followed by a symposium held with the Mathematics
Research Centre of the University of Warwick from September 28th to October
1st. This was timed to also open the 1994-95 Stochastic Analysis Year at
Warwick. In the symposium about 50 mathematicians participated, with many
coming from continental Europe. There were many formal and informal talks,
and many participants stayed on afterwards to continue the discussions.

It was with great sadness that we heard later in 1994 of the death of Mr
Toyosaburo Taniguchi whose vision and generosity had led to the creation of
these meetings with their unique character. Professor Ito, who as co-ordinator
of the Taniguchi International Symposia, guided the organising committee to
the success of this meeting, has kindly written a brief account for this volume
of the story behind their creation. We can no longer thank Mr Taniguchi in
person, but we do hope that the workshop and symposium have contributed not
only mathematical advances but also to international mutual understanding,
the ideal of Mr Taniguchi in supporting us. For our part we hope that we can
play a role in keeping that ideal alive.

David Elworthy, Shigeo Kusuoka and Ichiro Shigekawa
September 1996



Toyosaburo Taniguchi, 1901-1994.

Toyosaburo Taniguchi and the Taniguchi Symposium

Toyosaburo Taniguchi was born in 1901. After graduating from Third High
School (gymnasium) in 1922, he majored in applied mechanics in the Faculty
of Engineering at the Imperial University of Tokyo. Through his work in the
Toyobo Textile Company, he modernized the textile industries by introducing
automatic spinning systems and market surveys, and thus became a magnate
of the textile industries in Japan.

In accordance with the will of his father, he established the Taniguchi Foun-
dation in 1929, in order to support research projects for science and technology.
For example, donations by the Foundation covered all expenses connected with
the construction of a cyclotron for the nuclear physicists at Osaka University.

Around 1950, Japan enthusiastically promoted industrial activities, in or-
der to cope with the serious economic problems caused by the aftermath of the
Second World War. Research projects connected with industrial plants were
strongly supported, but mathematics and the theoretical sciences were mostly
ignored. Responding to the request of Yasuo Akizuki, Professor of Mathemat-
ics at Kyoto University and a classmate in the Third High School, Taniguchi
decided in 1956 to help young mathematicians hold nation-wide small semi-
nars (Akizuki seminars) several times a year, each seminar consisting of about
15 members who were allowed to stay at one of the resorts of the Toyobo
Company. Taniguchi was very much impressed by the young participants and
their lively and friendly mathematical discussions. These Akizuki seminars
continued for about twenty years.

The ideal of eternal world peace that had been eagerly pursued after the
end of the Second World War was gradually fading away because of continuous
international conflicts occurring at different levels. Through his bitter expe-
riences related to international trade conflicts of the textile industries around
1970, Taniguchi became convinced that conflicts could be solved not by debate
or by force but only by international mutual understanding and friendship,
which would eventually bring about world peace.

In 1976, Taniguchi donated a large amount of his property to the Taniguchi
Foundation in order to establish a new foundation, whose purpose is to con-
tribute to the promotion of international mutual understanding and friendship
by supporting international symposia on mathematics and fundamental sci-
ences in the following way.

Every year one or two symposia are supported in each of the following
sections: (1) mathematics, (2) business history, (3) biophysics, (4) medical
history, (5) brain sciences, (6) ethnology, (7) neurobiology in vision, (8) theory
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of condensed matter, (9) philosophy, (10) art history, (11) civilization studies,

(12) catalysis, (13) life sciences, (14) religious philosophy, (15) molecular and

cellular biology, (16) polymer chemistry, and (17) developmental biology.
The symposia to be supported are characterized as follows:

(a) A research project in a developing field that cannot easily obtain support
from other sources is preferred to one in an established field. Participa-
tion of young scholars is recommended.

(b) The number of participants is approximately 15, one half from Japan,
and the other half from abroad. All participants stay in the same hotel for
about 10 days, organize the symposium in whatever form they like, and
promote the international mutual understanding and friendship through
scientific discussions. No formal report of the achievements is required.
This unique style is an international version of the Akizuki seminars of
mathematics mentioned above.

In the mathematics section two symposia were organized, one for algebra
and geometry and the other for analysis. In each symposium, we proposed a
division into two parts.

(1) Workshop: discussions among the participants.
(2) General conference whose speakers are the participants.

Taniguchi agreed with this proposal, but asked us to keep in mind that the
former is the principal part.

During the period of each symposium, Taniguchi invited the participants to
a dinner party and asked them to promote international mutual understanding
and friendship through exchange of scientific ideas. He also expressed his
gratitude to his friend Akizuki for suggesting the symposia that fit his own
aim. Participants always talked about their pleasant experiences in this unique
style of symposium.

Akizuki passed away in 1984 at the age of 81, and Taniguchi in 1994 at
the age of 93. The foundation is to be dissolved in 1998 in accordance with
Taniguchi’s wishes, when the total number of the participants in the Taniguchi
Symposia will have reached approximately 6500.

It is my sincere hope that Taniguchi’s dream of attaining world peace by
international mutual understanding and friendship will be passed on to all
participants of the Taniguchi Symposia.

Kiyosi It
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HILBERT SPACES OF HOLOMORPHIC FUNCTIONS ON
COMPLEX LIE GROUPS

BRUCE K. DRIVER
Department of Mathematics, 0112, University of California, San Diego, La Jolla
CA 92093-0112, USA

1

LEONARD GROSS
Department of Mathematics, Cornell University, Ithaca,
NY 14853, USA

An isometry is established between a Hilbert space of holomorphic, square inte-
grable functions with respect to the heat kernel measure on a simply connected,
complex Lie group and a Hilbert space of “expansion coefficients” of such functions
at the identity of the group.

1 Introduction

Let G be a connected, complex Lie group. A holomorphic function u : G —
C is uniquely determined on G by its family of derivatives at the identity
element e relative to any holomorphic coordinate system near e. If G = C*
then u can of course be recovered from these derivatives by Taylor’s formula,
which represents u as an everywhere convergent power series. Moreover in this
case these “expansion coeflicients” of u also determine, simply and explicitly,
the norm of u in the Hilbert space #L?(C", Gauss), of holomorphic square
integrable functions relative to Gauss measure. One has the identity

oo

k 2= u(z) | pe(2)dz .
S /axl = [ lu(P () (1)

k=0

where i, (z) = (nt)~" exp(~—|z|?/t) and oy is the symmetric k tensor defined
by
(ak,€,® - ® ei,) = (0, - -0, u)(0)

wherein ey, .. ., e, is the standard basis of R® C C* and 8; = 8/0z;. Equation
(1.1) reflects in part the easily verifiable fact that the monomials z¥* ... z&»
are mutually orthogonal with respect to Gauss measure p;(2)dz.

The identity (1.1) has a long history that flows from its potential usefulness
in understanding the structure of quantum fields [1, 2, 3, 4, 5, 9, 17, 18, 19,
20, 23, 25, 26, 29, 30, 31, 32, 35]. It is also intimately connected with the
characterization theorem for generalized functions in white noise analysis. (See
(14, 21, 22, 24, 27] and their bibliographies.)
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In this paper we will prove an analog of Equation (1.1) in case G is a con-
nected, simply connected, complex Lie group with any given Hermitian inner
product on its Lie algebra. The Gauss measure on the right side of (1.1) will be
replaced by the heat kernel measure on G associated to a Laplacian on G. The
space of symmetric tensors whose norm appears on the left side of Equation
(1.1) will be replaced by a completion of the universal enveloping algebra of the
Lie algebra of G. Power series will be replaced by a different global reconstruc-
tion of u from its “expansion coefficients,” i.e., derivatives at the identity. (See
Section 3.) The resulting (noncommutative) version of (1.1) has its origins in
a technique introduced in [10] for proving ergodicity of the left action of a loop
group of a compact Lie group K on the pinned K valued Brownian motion mea-
sure space. A key ingredient in that technique consisted in establishing a natu-
ral unitary map from L2(K, heat kernel measure) onto a completion U of the
universal enveloping algebra of the Lie algebra of K. Motivated by this isome-
try B. Hall [13] extended the Segal-Bargmann transform [29, 30, 31, 32, 2, 3, 4]
to obtain a natural isometry from L?(K, heat kernel measure) onto the space
HLY(K.,another heat kernel measure) of holomorphic square integrable func-
tions over the complexification, K., of K. Thus these three spaces, L?(K),
HL%*(K.), and U are all naturally isomorphic. The structure of the three iso-
morphisms between these three spaces has been clarified in three papers; O.
Hijab [15, 16] and B. Driver [8]. The probababilistic proof in [10] has been re-
placed by analytical proofs. See [8] for a detailed account. However all proofs
of these isomorphisms have so far required some form of centrality of the rel-
evant Laplacian. This reflects itself, for example, in the requirement that the
complex group G = K., which appears in two of the isomorphisms, have a real
form (e.g. K) of compact type. It seems likely that AdK invariance of the inner
product is indeed essential for the existence of those two isomorphisms which
involve the space L?(K, heat kernel measure). Our main theorem, however,
will show that the third isometry, that between # L2(G, heat kernel measure)
and a completion of the universal enveloping algebra of Lie(G), does not re-
quire that the inner product on Lie(G) be Ad invariant under any real form
of the given complex group G. It is in this respect that we go beyond previous
work in [8]. Our main results are stated in Theorems 2.5 and 2.6.

2 Statement of Results

We will consider throughout a connected, complex Lie group G of complex
dimension d. We assume there is a given Hermitian inner product (, ) on the
complex Lie algebra g := T.G.
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Convention: In this paper dz will always denote a fixed right invariant Haar
measure on G.

Notation 2.1 Let (-, ) denote the (real} left invariant Riemannian metric on
G uniquely defined by

(A, B) = Re(A,B)Y A,B € g, (2.1)

where for any A € g, A denotes the unigue left invariant vector field on G
such that A(e) = A. We will abuse notation and let (-,-) denote the restriction
of (-,-) to g = T.G. Define A to be the left invariant second order elliptic
differential operator on C™(G) determined by

2d
Ag=>"V?¢ ($€C™(G)), (2.2)
i=1
where Vi, ..., Vaq is any orthonormal basis of the real inner product space

(9,(,)). (Note: it is easily seen that A is independent of the choice of or-
thonormal basis.) We denote by p(z) the fundamental solution to the heat
equation, t.e.
Ope(z)/0t = (1/4)Ape(z) t>0, z2€G (2.3)
and
pe(z)dz — 6. (dz) (weakly) ast — 0, (2.4)

where &, is the Dirac measure at the identity e € G. (The basic properties of
pe will be explained in more detail at the beginning of Section 3.)

It is worth noting that A is a symmetric operator on L?(G, dz). Indeed it
is easily shown that

2d
[@oEeas =~ [ ZCIATEE | eo@ne @)

for any real functions ¢ and ¥ in C*(G) when ¥ has compact support.
Remark 2.2 IfG is unimodular, it is well known and easily verified that A is
the Laplace-Beltrami operator on the Riemannian manifold (G, (-, -)). To show
this note that Eq. (2.5) may be written as

/ (~Ad)(z)¥(z)dz = / (Vé(z), V(z))dz,
G G

where V denotes gradient operator associated with the Riemannian metric (-, ).
Since dzx is left invariant, it follows that dz is proportional to the Riemann
volume measure on G. Hence the above identity shows that A is the Laplace-
Beltrami operator for the Riemannian manifold (G, (-, -)).
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Let # = #(G) denote the space of complex valued holomorphic func-
tions on G. We are going to study the Hilbert space HL?(G, pu;(z)dz) =
L*(G, pt(z)dz) N H(G) of holomorphic functions in L2(G, u:(z)dz).
Notation 2.3 Denote by T the tensor algebra over the complez vector space
g. For eacht > 0 define a norm on T' by

n

18I =" (/)8 B=" Be, B €9®, k=0,1,2,.... (2.6)
k=0

k=0

Here |Bk| refers to the cross norm on g®* arising from the inner product on
g®*k determined by the given inner product on g. T, will denote the completion
of T in this norm. Then T; is a compler Hilbert space with respect to the
Hermitian inner product determined by polarizing (2.6).

Denote by T" the algebraic dual space of T. Writing g* for the dual
space of g we may identify 7" with the strong direct sum (= direct product)
Y oreo(@*)®*. For a in T' and B in T we use the bilinear pairing

(@B) =) () a=> ok, =) f, (2.7)
k=0 k=0 k=0
ar € ()8, B €g®, k=0,1,....

Then the topological dual space of T; may be identified with the subspace iy
of T" consisting of those o € T” such that the norm

o0

llellf = ) (¢ /R |k e yen (2.8)

k=0

is finite. Here |ak|(g.yox is the cross norm over (g*)®* determined by the
Hermitian inner product on g* dual to the given Hermitian inner product on
g.

It is our objective to establish, for each strictly positive real number t,
a natural unitary map between the space HL%(G, pu:(z)dz) of holomorphic
square integrable functions on G and a subspace of T} which will be explicitly
specified below. The unitary map will be given by the “Taylor” expansion
as follows. Suppose that V is an open neighborhood of a point z¢ in G and
f:V = Cis holomorphic in V. If §,..., &, are in g then (§~1 . ~§~,,f)(:ro) is
complex linear in each £; because f is holomorphic. Hence there is a unique
vector oy in (g*)®" such that (an, &, @ - ® &) = (€1 - - & f)(z0). We will
denote the vector @, by (D" f)(zo). Thus

((D"f)(zo)a£1®"'®£n):(gl"'gnf)(l'o): §i€g, j=1,...,n. (2.9
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Of course we will write D°f(zo) = f(z0).

Remark 2.4 If f is in C®(G) but not necessarily holomorphic 1t still makes
sense to define (D" f)(zo) by Eq. (2.9), the only difference is that (D" f)(zo)
must be viewed as an element of (gg)®", i.e. g* is considered as a real vector
space and the tensor product is now taken over R rather than C.

For f holomorphic the series
[o <]
2 (D" N)leo)

always defines an element of 7'. We will use the following suggestive notation,
introduced in (8],

(1-D);lf= Z (D" f)(z0) € T". (2.10)

For later use let us note that in view of (2.9) the (g*)®*-norm of D* f(z)

is given by
|D*f(@)? = D1, & f () (2.11)
where e1, . . .,eq is any orthonormal basis of the complex inner product space

g and each 11 runs from 1 to d.
Now let J denote the 2-sided ideal in T generated by {{@n —1® ¢ —

. Write
€, n);€,n € 8} Writ P = {aeT :alJ)=0}. (2.12)

Since the map & — £ is a Lie algebra isomorphism we have

((1—D);}f,£1®-~®§k®(£®n—n®£—[£,n])®§k+1§>---®~£n)
= (€1 &l — € — (€, k41 -€nS)(z0)
= 0.
Hence (1 — D);}f € J°. Define now
JE=TrnJ° (2.13)

Our main theorems are the following. They will be proved in Section 5.
Theorem 2.5 The map u — (1 — D);'u is an isomeiry from
HL2(G, u(z)dz) into J?.

Theorem 2.6 If G is simply connected then the map u — (1 — D);lu isa
unitary operator from HL?(G, p:(z)dz) onto JP.

81
3 Bounds on Derivatives of Holomorphic Functions

In this section G will continue to denote a connected, complex Lie group of
complex dimension d with a given Hermitian inner product on its Lie algebra
8. ps will denote the heat kernel with respect to right invariant Haar measure
dz as described in Section 2. The following proposition summarizes some of
the (largely) well known properties of the heat kernel which we will need.

Proposition 3.1 The heat kernel p, is in C®((0,00) xG), s strictly positive,
and has the following properties:

1. ps ts conservative:

/Gp,(:c)dz -1, (3.1)

2. ps(z)dz is invariant under z — z~1, i.e. for all measurable nonnegative
functions f,

/G £ (@)s (v)dy = /G £ Yss (w)dy, (3.2)

3. ps satisfies the semigroup property:

pese(z) = /G s {2y ) o) dy, (3.3)
and

4. ps is an approzimate é-function, i.e.

tim [ Sty =i [ Senmdy = 1(2) £ 1 € C(G).
(3.4)

Proof. For item 1. see Eq. (1.3) on pg. 253 of Robinson [28]. Items 3 and
4 are discussed in great generality in Section IIL.2 and Theorem 2.1 of [28].
Nevertheless for the readers convenience we will sketch the proof.

The Laplacian (A) is symmetric on C2°(G) in L%(G, dz) for right invariant
Haar measure dz as already noted in (2.5). Moreover A is essentially self-
adjoint on C2°(G). (This fact is proved for the Laplace-Beltrami operator in
Strichartz [33], Theorem 2.4. The same proof given there works with essentially
no change for the operator A.) We abuse notation and continue to denote the
closure of A on C2°(G) by A.
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Since A is a nonpositive self-adjoint operator, exp(tA/4) for t > 0 is a
semigroup of Hermitian contraction operators on L*(G,dz). Define convolu-

tion by
2= [ ey oty = [ 16
G G
The semigroup exp(tA/4) is given in terms of the heat kernel by convolution:
exp(tA/A)f = f * pq for f € L*(G, dz)

Property 3 reflects the semigroup property of exp(tA/4) while Property 4 re-
flects strong continuity at ¢ = 0. Property 2 has a more special character which
we will discuss in greater detail. If m is a proba.bility measure on the Borel
sets of G and we define convolution by (Crm f)(z) = [ f( m(dy) then
standard techniques show that Cy, is a contra.ctlon operator on L2(G dz). Let
m* (A) = m(A L. Then m* is also a probability measure on G and satisfies
Je I( = [ f( m*(dy) for every nonnegative measurable function
f. A stralght forward computa.tlon shows that for f and g in C.(G) one has
(Cmf,9) = (f, Cm-g) in the L%(G,dz) inner product, from which it follows
that (Cpm)* = Cme . In the case of interest to us the Hermitian operator
exp(sA/4) is given by Cr, with m(dz) = p,(z)dz. Since Cy, is Hermitian we
have m* = m. This is property 2. Let us note, 1n01denta.lly, that this implies
that the heat kernel itself satisfies u,(y l)A(y) = pus(y) where A(y) is the
modular function on G, which may be defined by the identity [, f(y~')dy =
fG dy for all nonnega.tlve measura.ble functlons f For indeed Eq.(3.2)
gives ff vdy = [ fly~ y)dy = [ f(y) ~1A(y)dy for all non-
negative measura.ble functions f whlch proves the assertlon of the previous
sentence since A(y) and p,(y) are continuous. Thus y;, is itself invariant under
the map y — y~! if and only if G is unimodular. This is also discussed in
Theorem 2.1 of [28]. Q.E.D.

For a function u in HL?(u¢(z)dz) we will first derive integral bounds on
the derivatives of u (cf. Lemma 3.5) and from these derive bounds on the
derivatives of u at the identity (cf. Proposition 3.3). We will then use the
“Taylor series” representation of u to get pointwise growth bounds for u and
its derivatives (cf. Proposition 3.3 and Corollary 3.10). Aside from the general
properties listed in Proposition 3.1 and the defining Equation (2.3) for pu,
no special properties of p, (such as the heat kernel bounds of Section 4, or
parabolic Harnack inequalities of Section 8) will be used in this section.
Notation 3.2 Given a measurable function u: G — C and s > 0 let

ulls = llullLau, (z)az)-
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Proposition 3.3 Let u € HL?(p:(z)dz) and write @ = (1 — D)7 'u. Then

le)ls < |ulls < 0o for 0 < s < t. (3.5)

The proof will require the following four lemmas.

Lemma 3.4 Let (M, o) be a pointed complez analytic manifold. There erists
a smooth compactly supported probability measure p on M such that

- /M f(@)p(ds

for all holomorphic functions f on M.

Proof. The lemma is local, so without loss of generality we may assume that
M = D, and o = 0 € D, where (for any R > 0,)

Dr={z€C|s| < RVi=1,2,...,d}. (3.6)

Let f be a holomorphic function on D;. By the mean value theorem for holo-
morphic functions;

Q.

frse=T 3 I 485, (3.7)

10) = @m)¢ [

[0,2x]d

where r = (r1,79,...,74) ER%such that 0 <y < 1fori=1,2,...,d. Choose
a smooth function h : R — [0, 00) such that h has support in (—1/2,1/2), h is

constant near 0, and
1
/ h(ryrdr = 1.
0

Multiply (3.7) by r1 - - - rgh(r1) - - - h(rq) and integrate each r; over [0, 1) to find:
f0) = A f(2)p(2)A(d2),
1

where p(z) = (2m)~%h(]21]) - - - h(|24]) and A is Lebesgue measure on C?. Q.E.D.

Lemma 3.5 Let ¢ > 0. There are constants {Ce(k)}2, such that for u €
HL?(pe(z)dz), k € {0,1,2,...}, and s € (0,2 — €],

/G |D*u(g) Pus (9)dg < Celk)l[ull?. (3.8)


driver
Pencil

driver
Pencil
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Proof. Choose a smooth probability density p as in Lemma 3.4 so that

/ f(z)p(z)dz for all f € H(G). (3.9)

Let ¢ € G and let u € H(G). Put f(z) = u(gz™!) in (3.9). Using right

invariance of Haar measure we get,

u(g) = /G u(gz=)p(z)dz = /G u(y™")p(ug)dy. (3.10)

Fix&;,...,& ingand put 8 = £, ®- - -®&. Then, since the following integrand
is smooth and compactly supported, we have

@ Ba)o) = /G w(y™) - ) (9)dy. (3.11)

Now p and all of its derivatives have compact support while . (z) is bounded
away from zero on {¢ < o < t} x {support of p}. Hence there are constants
a(e, k) such that

|D* p(2)](g)ex < a(e, k)po() (3.12)

for all z in G and for all ¢ in [¢,t]. Note that the subscript on the left side of
(3.12) refers to g and g* as real inner product spaces since p is not holomor-

phic.(See Remark 2.4.) Combining (3.11) and (3.12) we find
(D u(g), B] < 181 / fu(y~)lale, K)o (vg)dy. (3.13)
By Schwarz’s inequality we have
(D u(e), B < ale, k18P [ uly™)Puoun)dy. (319

Now suppose 0 < s < t—e¢. Choose ¢ = t—s. Then e < ¢ < t. Multiplying
the inequality in Eq. (3.14) by ,(g) and integrating we get

IA

a(e, k)18 / / fu(y™") 210 (49) s (0) dydg
(€, k) Iﬂ|2/ fu(y= )P (y)dy
afe 1P | fu(e)Pre(z)d (3.15)

/G (D*u(g), B) s (0)dg
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wherein we have used the semigroup equation (3.3) and also equation (3.2)
of Proposition 3.1. Letting &;,...,& run independently over an orthonormal
basis of g (as a complex inner product space) we may sum the last inequalities

to obtain (3.8) with C(e, k) = a(e, k)2d*. Q.E.D.

We denote by d(z,y) the Riemannian distance from z to y in G and write
lz| = d(e,z). We note that d(-,-) is left invariant, i.e. d(zk,zg) = d(k,g)
holds for all z,9,k € G. Therefore [z~1] = d(e,z~!) = d(z,e) = |z| and
lzy| < d(zy,z) + d(z,e) = |y| + |z|, see Proposition 8.2 of [8] for more details.
Lemma 3.6 There erists a sequence of functions h,, in C®(G) such that

L 0<h,<1
2. ha(g) = 1 whenever [g| < n
3. sup, sup,e [D*ha(g)| < 0o for k=0,1,2,....

Proof. Let v € C2°(G) be nonnegative with Jo v(y)dy = 1 and with support
in {y : [y| < 1} where dy is right invariant Haar measure. Let w,(z) = 1 if
l#] < n+ 1 and zero otherwise. Define

hn(z) = /wn(:cy_l)v(y)dy = /wn(y‘l)v(yx)dy.

Clearly condition 1 holds. If [z] < n then for |y| < 1 we have |zy~!| <
lz] + |yl < n+ 1. So when |z| < n, wa(zy~!) = 1 on the support of v
and therefore h,(z) = [v(y)dy = 1 . This establishes condition 2. Now
the integrand wy, (zy~!)v(y) is zero unless {y] < 1 and |zy~!| < n + 1, which
together require |z| < |zy=!| + |y| < n+ 2. So hu(z) = 0 if |z| > n + 2.
Therefore h,, has compact support.! If A;,..., Ax are left invariant vector
fields then for £ = 0,1,2,...,

A1 - Acha(2)] < /G I(Ar - Agv)(ye)|dy = /G (Ar - Axv)()ldy,

which establishes condition 3 and shows that A, is in C®(G). Q.E.D.

Remark 3.7 We will need the following identity which has already been
pointed out in [8], Section 4.2.

(A/4)|DFu(z)|* = |D**1u(z)|? for k = 0,1,2,... and u € H(G). (3.16)

1 Using the left invariance of the metric d, it is easily checked that (G,d) is a complete

metric space. Hence by the Hopf-Rinow theorem (see Section 1.7 of [6]), closed bounded
subsets of G are compact.
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In order to prove (3.16) choose an orthonormal basis ey, ..., eq of (g,(, ))
as a complex inner product space. Then one easily verifies that eq,...,eq,
v/—1ei,...,v/—1eq is an orthonormal basis of (g, ( -)) as a real inner product
space. Let X; = & and Y; = (v/=1e;)~ forj = 1,...,d. Then by the definition
of A in Eq. (2.2),

d
Z X? +Y?)¢ ¥g € C=(G). (3.17)

In the complex1ﬁed tangent bundle C® T'(G) let Z; = (X; — /—1Y;)/2 and
Z = (X; +V-1Y;)/2. Since g is a complex Lie algebra X; and Y; commute
Hence Z Z; = (X2 +Y7?)/4. Thus

d
Ap=4) Z;Z;$¥ ¢ € C®(G).
=1

But if ¢ is a holomorphic complex valued function on G then Y;¢ = /~1X;¢

and therefore Z;¢ = 0. (Cauchy-Riemann equations.) Moreover Z; ¢=(Z;¢) =

0 also. Hence if u € #(G) then Z; Z;|u|? = | Z;ul]® = | X;u|?. Thus
d
(A/9)ul? =) |&ul® Yue H(G). (3.18)
=1

In view of (2.11) this proves (3.16) for k = 0. The general case now follows by
induction.

Lemma 3.8 Let u be in HL?(p;(z)dz). Define F(s) = ||ull?. Then F is in
C*((0,t)). Moreover
/lD" (9)dg, 0 < s <t k=0,1,2,. (3.19)
F®)(0) = lim, o F*)(s) exists for k=0,1,2,... and
[DFu(e)]? < l’iﬂ}F(")(s). (3.20)

Proof. Let
H(k,s) / | Dk u(g)|2ps(g)dg, 0 < s < t. (3.21)
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By Lemma 3.5 this is finite for all s in (0,¢) and for k£ = 0,1,2,... . Choose
functions h,, as in Lemma 3.6 and define
Halky9) = [ ha(@)lD¥ul0) P (0)dg, 0 <5 < 1. (3.22)
G

By Lemma 3.5 and dominated convergence, H,(k, s) converges for each s in
(0,t) to H(k,s). Since the integrand in (3.22) is in C2(G), Hy(k, s) is differ-

entiable in s and by the heat equation and integration by parts we have
dtin(k,)fds = [ holo) D*ulo) P(A A (5)d
LA/ (@ D* (Gt (0) e
| @D )0}l
t /G Ro k()15 (9)dg (3.23)

wherein we havé used Eq. (3.16) and where

Rnk(9) = {(A/4)ha(9)}D* u(g)” + (1/2)(Vha(g), VID*u(g)[?).

Now the first term in (3.23) is H,(k + 1, s), which, as already noted, converges
to H(k + 1, s) for each s in (0,¢). In fact, for any € > 0 the convergence takes
place boundedly in s for s in (0, ¢—¢] by Eq. (3.8) and the uniform boundedness
of the functions h,. Next, since Ah,(g) converges to zero boundedly as n — oo,
the same argument also shows that

A/ @)D ) (o)

converges to zero as n — oo for each s in (0,t) and boundedly on each in-
terval (0,t — ¢]. Finally, since |Vhy,(g)| converges to zero boundedly in G
while {V|D¥*u(g)|?| < const.(|D*u(g)|? + | D*+'u(g)|?), the same argument ap-
plies also to the second term in [ Ry, x(g)s(g)dg. Hence [ Ra x(9)1s(9)dg —
0 boundedly on each interval (0,¢t — ¢]. We may conclude therefore that
(d/ds)Hn(k,s) converges to H(k + 1,s) for each s in (0,t) and in fact bound-
edly on each interval (0, — €]. So for 0 < @ < b < t, the equation H,(k,s) =
Hp(k,a) + fa’(d/da)H,,(k,a)da, which is valid for ¢ < s < b, goes over in
the limit n — oo to H(k,s) = H(k,a) + [} H(k + 1,0)do, by the dominated
convergence theorem on [a, s]. This shows first, that H(k, ) is continuous for
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k=0,1,2,..., second, that H(k,) is continuously differentiable on [a, b) with
derivative H(k+1, -) and third that F(s) is infinitely differentiable on (0, ¢) with
derivatives correctly given by Equation (3.19). Since F(*+1) is nonnegative on
(0,t), F®)(s) is decreasing as s decreases to zero. Therefore lim, o F(¥)(s)
exists for each £k =0,1,2,....

In order to prove Eq. (3.20), let h € C®(R) satisfy 0 < h < land h(s) = 1
for |s| < 1. Let ¢(g) = h(lg]). Then ¢(-)|D*¥u(-)|? is in C¢(G) and since p, is
the fundamental solution to the heat equation we have

lim | @(9)|D*u(g)’s(g)dg = [D"u(e)

But [ (1 — ¢(g))|D*¥u(g)|?n,(g)ds > 0. Hence
Iim F(k)( = lim lnf{/ |Dk ﬂ,g (g)dg

sl0
+ - Dku 2[1, d Dku [ 2.

Proof of Proposition 8.3.. Let u be in HL?(p:(z)dz) and define F(s) = |jul|?.
By Lemma 3.8, F is in C*((0,t)) with all derivatives nonnegative. In partic-
ular |julls < oo for 0 < s < ¢t. By Taylor’s formula with remainder we may
write F(s) = So1_, F®)(a)(s — a)¥/(k!) + FN+D(s;)(s — a)N+1/(N + 1)! for
0 < @ < s <t and for some point s; in (a,s). Since the remainder term is
nonnegative,

N
DY F®(a)(s —a)k/(K) < F(s) 0<a<s<t. (3.24)
k=0

Using Eq. (3.20), we find by letting e | 0 in (3.24) that

N
Y ID*u(e)’s* /(K) < F(s) = [|ufi?.

k=0
We may now let N — co. In view of the definition of {|a||? in Eq. (2.8) the
resulting inequality is precisely (3.5). Q.E.D.
Proposition 3.9 Letu € H be such that a = (1 — D). 'u € J?. Suppose that
r,s > 0 are such that r + s <. Then

|DFu(g)|? < k!(d/r)*|lal|2e!9/*) k =0,1,2,..., (3.25)

where d is the compler dimension of g.

Proof. The global recovery of the holomorphic function u from its set, o,
of “expansion coefficients” has been explained in detail in Proposition 5.1 of
reference [8]. The function u and its derivatives are explicitly given in terms
of a as follows. Let o : [0,1) = G be a smooth path such that o(0) = e and
o(1) = g. Let c(s) = 8(0'(5)) = Lo(s)-1.0"(s) € g and define

¥(o) = Z/ ¢(51) ® -+ ® c(sn) ds. (3.26)
n=0 An
where A, = {(51,...,8,) : 0 < 51 < -+ < s, < 1} and ds = dsydsy - -ds,,.

Then u(g) = (@, ¥(c)). More generally, if 3 € g® and g is the corresponding
left invariant k-th order differential operator on # then

(Bu)(9) = (1 - D);'Bu, ¥(0)) = (o, ¥(0) ® B). (3.27)
From (3.27) we find that
1(Bu)(9)1* < lle|IZ11%(s) ® BII7. (3.28)
Let . )
p= /0 |"(s)]ds :/0 le(s)|ds = £(c), (3.29)

where £(c) denotes the length of the path o. Then

et = S 5L o o) oo
n=0
< WZ(’;L’S /. TT(e(s5), elts))dsat
- An XA nj=1
< 1A ("t,f;,'f J. . TLieictlasae
nJ 1
< wPZ("th)‘p?"/(n!)?
n=0
- ke '2i("+" "(OHEy (3.30)
Because

Tklonl t t t

(n+k) hd C i (n-l-k) n4k— l( ) (_s_if)nﬂc < 1’


driver
Pencil
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it follows from (3.30) that

KB & 2 2 '
(o) ® 67 < 'ﬂ' Z(p:)"/n!=k!lf' P15 = k'lﬂV (0)7/s

n=0

This equation and (3.28) show:

k!
(Bu)o)? < flalfp I s, (3.31)
Since o is an arbitrary path joining e to g in G, Eq. (3.31) implies
Bu)@) < el o (3.32)

Hence, for any orthonormal basis go of g we have

(DFa) @) = D & -&u)(g)?

€1,..,€k€Q0

k! 2
< Y Nl
€1,.. ,enEBu
= dk||a||2 elgl /s
which is Eq. (3.25). Q.E.D.

Corollary 3.10 Let u be in HL?(pi(x)dz). Suppose that 0 < s < o <t and
that r > 0 and satisfies s+ r < o. Then
|D*u(g)|” < ki(d/r)¥[[ullZelo* < oo (3.33)

where d is the complex dimension of G.

Proof. If @ = (1 — D);'u then by Proposition 3.3 |||l < [|u/ls. We may
apply Proposition 3.9 with t replaced by o. Then (3.33) follows from (3.5) and
(3.25). Q.E.D.

Remark 3.11 We will see in Section § that (3.33) holds also for ¢ =t.

4 Equality of Norms Before Time t

In this section G will be assumed to be a connected complex group as in the
previous section. However in Corollary 4.6 it will also be assumed to be simply
connected.

N

Proposition 4.1 Suppose u € H(G) and a = (1— D);'u. If [|a|l; < oo thern
u € HL?(us(z)dz) for 0 < s <t and

lalls = llull. 0<s<t. (4.1)

Lemma 4.2 (Heat kernel Bounds) There ezists v € R such that for T > (
and ¢ € (0,1], there is a constant C(T,€) such that

1y(9) < C(T, )5~ exp{—(lg] - vs)2/(1+ )3}, Vs € (0, T] and g € G. (4.2

Moreover, v = 0 if G is unimodular.

Proof. This lemma is essentially stated in Robinson [28] on page 286. A few
remarks are in order. First Robinson treats the case of right invariant differen-
tial operators and uses a left invariant Haar measure. This is of no importance
since the map £ € G = z~! € G transforms right invariant differential op-
erators to left invariant differential operators and left Haar measure to right
Haar measure. Robinson shows on the top of page 286 that there are constants
0 < C(T,e€) < oo and v € R such that

us(9) < C(T,e)s™¢ ir>1% exp{p?(1 + €)s/4 — p(|lg| — vs)}. (4.3

p2
Moreover, v = 0 if G is unimodular. Choosing p = 2(1_'_:;’: (this p minimize:
the exponent) in (4.3) gives (4.2). Q.ED

Lemma 4.3 Let p € R. Then

1.
/ e=Plal’erlaldg < co VB > 0. (4.4
G

2. For some [y > 0 and constant K
/ e~Plal*erldl gg < Ke P, VY8 > po. (4.5
lgl>1
8. Forany s; >0

lim elo*/s1 . (g) dg = 0. (4.6
40 Jigi>1
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4. Let 0 < sg < s1. There is a constant K, depending on sy and s; such
that

/ eld*/o1 (g)dg < K for 0 < s < so. (4.7)
G

Proof.  Since for all 8’ < B there is a constant K = K(8,4', p) such that
e~Plal’erlal < Ke=F'lol” it suffices to prove (4.4) for the special case where
p = 0. Let V(r) be the right Haar measure of {g € G : |g| < r}. Then V is
monotone increasing, V(0) = 0, and V is continuous. (The continuity of V is
not necessary for the argument. Nevertheless it follows from Proposition 3.2,
p. 116 of [6] by viewing right-Haar measure as the Riemann volume measure
of a right invariant Riemannian metric on G.). If A : [0,00) — [0,00) is
continuously differentiable and 0 < a < ¢ < 0o then

c c
[ ahds= [ h)ave) = bV Ol - [V (08)
a<|g|<e a a
Let h(r) = e~#7". Then —h/(r) > 0. Moreover by Lemma 5.8 in [8] there is
a constant C' < oo such that V(r) < Ce€r. By the monotone convergence
theorem we may let ¢ — oo to get

/ e~Plol’gg = —h(a)V(a)+/oo V(r)28re=P" dr
lgl2a

a

IA

(o0}
/ CeCr2Bre=Pdr. (4.9)
Putting a = 0 gives (4.4).
To prove (4.5) take By > |p| + C and repeat the above argument with
h(r) = e P’erm and a =1 to find

(o0}
/ e~ Plol? oolol gg < / CeCr(28r — p)el P+ dr. (4.10)
lgl>1 1

(Note for # > p/2 that —h'(r) > 0 for r > 1.) Then for @ > By the right hand
side of (4.10) is bounded by

*© 3e=(F-C-r)gC
3 C/ relCHo=Brig. — 25~ PV o ge—h.
) qF-C—p) =
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To prove (4.6) choose any so < s1 and choose € > 0 such that so(1+€) < s1.
Then by (4.2) with T'=s; and s < s¢

/ eol*/#1p,(g)dg
lgl>1

< C(sl,f)s—d/ elal?/s1g=(al-vs)*/ (1403 4,
lgl21

C(s1,€)s™¢ /|g|21 exp {—,3|_t]|2 + %ﬁ?ﬂ} dg (4.11)

where f = (14 ¢)~1s~! — s7'. By (4.5) with p = 2|v|/(1+ €) the right side
goes to zero as s | 0 because s~ exp(—a/s) goes to zero for any a > 0.

To prove (4.7) observe that if, for the given so and 51, we choose the same
¢ as in the proof of (4.6) then

IA

e—u’s(1+e)-‘/ ol /1= (Igl-vs)/ (1+)s g
lgl21

2
= 191/ 51 _ el . 2l d
= /191216 exp{ (T+0)s + T4e g

decreases as s decreases from sg. Hence the first integral on the right side of
(4.11) remains bounded for s € (0, so] while the entire right side of (4.11) goes
to zero as s goes to zero. Hence the left side of (4.11) is bounded on (0, so].
But since p, is a probability density we also have

/ el /o1 (g)dg < el/*r ¥s > 0
lgl<1
This proves (4.7). Q.ED.

Lemma 4.4 Suppose u € H(G) and @ = (1 — D);'u. If ||la|li < oo then
uw € HL?(us(z)dz) for 0 < s < t and F(s) = ||u}|? has an analytic continuation
to a neighborhood of [0,1) in C.

Proof. By the bounds in Eq. (3.25) and Eq. (4.7) we see that u €
HL2(u,(z)dz) for all s € (0,t). By Lemma 3.8 F(s) = [|ul|? is a C*-function
on (0,t) such that F and all of its derivatives have a continuous extension to
[0,t). Asin Lemma 3.8 let F(}(0) = lim,y0 F*)(s). Our goal is to show that
F is real analytic on {0,¢). More explicitly we will show that for all ¢, € [0,1)
there exists § > 0 such that

F(s):iF(k)(to)(s—to)k/k!,VsE Is, (4.12)

k=0
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where
Is = [0,t) N (to — 8,20 + 4).

By Taylor’s theorem, Eq. (4.12) may be proved by showing that

. F®)(s)%
kllglo os<1f;<)‘ = 0, (4.13)
|s—to| <4

for some § > 0.

To prove (4.13), choose s1 € (to,t), set r =t — 51, and assume that 4 is
chosen sufficiently small, so that ¢, + 6 < s; < t and dé/r < 1. Using (3.25)
with s = s; and (4.7) with sg =t +J we find for 0 < s < s¢

PO = [ (Dm0 P (g

KI(d/r)¥ o2 / o721 4, (g)dg
G
KI(d/r)MalPK;.

By letting s | 0 we see that the last inequality holds also for s = 0. Hence if
s € I then

IA

IN

Fk)(5)8%
k!
which suffices to prove {4.13). Q.E.D.

< (constant)(dd/r)¥,

Proof of Proposition 4.1. Our first goal is to show that F*)(0) = |D*u(e){?.
To do this it suffices, by looking at the last equation in the proof of Lemma
3.8, to show

lim |D*u(g)|?u,(g)dg = 0. (4.14)
40 Jigl21
By the bound in Eq. (3.25) we learn that for each s; € (0,1) there is a constant
C such that |D*u(g)|? < Cel9!*/*1. Hence (4.14) follows from Eq. (4.6).
Since Lemma 4.4 guarantees that F(s) = ||u||2 has an analytic continuation
to a neighborhood of [0,t), we learn

(e o]

o0
F(s) = [lull2 =) F®(0)s* /k = Y | Dru(e) 2s* /k! = |a2
k=0 k=0
for s € (0, €) with € > 0 sufficiently small. Since |ja||? is given as a convergent
power series in s it is clear that ||a||? has an analytic continuation to a holo-
morphic function in the open disc of radius ¢ in C. Using these facts it follows
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that F and s — [Ja||? must agree on all of [0,t). Therefore, ||u||? = ||||? for
all s € (0,t). .E.D.

Corollary 4.5 Ifu is in HL?(u(z)dz) and a = (1 — D)7 u then
[Jlls = |lulls for 0 < s < t. (4.15)

Proof. By Proposition 3.3, {|a||s < ||ulls < oo for 0 < s < t. Choose ¢ in
(0,t). Then |ja]j, < co. We can therefore apply Proposition 4.1 with ¢ replaced
by o to conclude that (4.15) holds for 0 < s < ¢. Since ¢ is arbitrary in (0,1)
(4.15) holds for all s in (0,1). Q.ED.
Corollary 4.6 Ifa is in J? and G is simply connected then there exists a
function u in H(G) such that (1 — D);u = a. Moreover

lledls = |Ju|s for 0 < s < t. (4.16)

Proof. For the existence of u € H(G) such that (1 — D);'u = a, see Lemma
8.2 in [10] or Theorem 6.1 in [8]. The corollary now follows from Proposition

4.1. Q.E.D.

5 Equality of Norms at Time t

The following theorem proves the isometric embedding of HL?(p,(z)dz) into
J? stated in Theorem 2.5.
Theorem 5.1 Assume that G is a connected complex Lie group with a given
Hermitian inner product on its Lie algebra. Let u be in HL?(p(z)dz) and let
a={1-D);'u. Then

llele = [lufl:- (5.1)

We will need the following lemma.
Lemma 5.2 Assume u is in HL?(p(z)dz). Then
a) (Jul* ps){g) < oo forallge G and 0 < s <t and

b) uxp,=uonG for0 <s<t.

Proof. Let 0 < s <b< s, <o <t By Corollary 3.10 with k =0 and s = 53
we find ,
u(g)| < [[ullgels/ o). (5.2)
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Thus, using |gz~!|? < (|g] + |z])? < 2|g|2 + 2|z|?, we have
(Weme) = [ lulgs™)la(e)de
G
/||u|]ae|9"l|’/(2’1)p,(z)d1:
G
lulloelares [ eletrosp, )iz

< Keld/o1 for 0 < 5 <b.

IA

IA

by Lemma 4.3, part 4 with so = b. This proves a) and moreover shows that for
each g, (|u|*y,)(g) is uniformly bounded in s for each subinterval (0, 5] C (0, t).
To prove b) choose functions h, again as in Lemma 3.6 and let v(s,g) =

(u * ps)(g). Then by Eq. (3.2)

v(s,g) :/Gu(g:c‘l)p,(:c)dz:/Gu(g:c)p,(z)d:c.
Let
vn(s,g) =Lh"(z)u(gz)p,(z)dz.

Clearly v, (s, g) converges to v(s, g) for each g in G and for all 5 in (0,). Since
hn(z)u(gz) is in CL(G), va(-,g) is in C*((0,1)). Moreover

(8/85)vn(s,g) = / ho(2)u(g2)(A/4) s (2)ds

il
A
g
~
N
~
~
>
—_
~—
—
Q
]
~—
—
=
D3
—_
~—

I

/ {[(A/4)hn(2)]u(g2)
+(1/2)(Vha(2), (V1) (g2)) it (2)dz

since Au = 0. But Ah,(z) goes to zero pointwise and boundedly on G as
does |Vhy,(z)|. The same method of estimating |u| * u, shows that for each
g in G [;|(Vu)(gz)|ps(z)dz is also uniformly bounded on each subinterval
{a,8] C (0,t). One need only start with the case k = 1 in Proposition 3.9.
Hence 0vy, (s,g)/0s converges to zero for each s in (0,t) as n — oo and in fact
converges boundedly on each subinterval [a, 8]. Thus

b
v(b,g) —v(a,g) = nango (Ovn(s,g)/0s)ds =
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So v(s, g) is constant in s on (0,t). In view of Lemma 4.3 (part 3), the bound
(5.2) also allows us to show (as in the first few lines of the proof of Proposi-
tion 4.1) that lim,_o v(s,g) = u(g). This provesitem b) of the lemma. Q.E.D.

Proof of Theorem 5.1. Let g(-) denote the G valued Brownian motion begin-
ning at e and with transition semigroup *4/4. Let u be in # L2 (u:(z)dz). B
Lemma 5.2 and the Markov property of g(-), the process M(s) = u(g(s)) is
a martingale on [0,%]. Moreover E(|M(s)|?) = ||u[|?. Tt follows, by viewing
conditional expectations as orthogonal projections, that M (s) — M(t) in L2
as s Tt and in particular that

lim flulf} = flull?.

But from the monotone convergence theorem and the definition in Eq. 2.8
we see that |je]|? = lim,y ||a||?. Combining these limits with Corollary 4.5,
Theorem 5.1 follows. Q.E.D.

Remark 5.3 Another proof of Theorem 5.1 will be given in the Appendiz. It
avoids Lemma 5.2 and the associated martingale argument, but uses insteaa
the Li-Yau parabolic Harnack inequalities.

Corollary 5.4 Let u € HL?(p(z)dz). Suppose that 0 < s < t, r > 0, and
s+r <t. Then

ID*u(g)? < k(d/r)HlullZelo™s, k= 0,1,2,..., (5.3)

Proof. By Theorem 5.1 we may apply Proposition 3.9. Q.E.D.

Remark 5.5 If we put k =0 in Eq. (5.8) we obtain an inequality in which
r does not appear. We may therefore take the limit s 1t to find:

lu(9)[? < Ilulffelel™/*. (5.4)

This inequality reduces exactly to Bargmann’s pointwise bound (Eq. (1.7) in
[2]) in case G = C*.

Theorem 5.6 Assume G is simply connected and « is in J?. Then there
erists a function u in HL?(u,(z)dz) such that (1 — D)7 u = a. Moreover

fledle = llulle- (5.5)

Proof. Assume « is in J?. By Corollary 4.6 there is a function u in H(G)
such that (1 — D);!'u = @ and moreover (4.16) holds. By Fatou’s Lemma in
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the integral and the monotone convergence theorem in the sum we may take
the limit s 1 ¢ in (4.16) and find ||e||; > |Ju||;. Hence u is in HL?(p:(z)dz).
By Theorem 5.1, Equation (5.5) holds. Q.E.D.

This completes the proof of Theorem 2.6 .

6 Reproducing Kernels

The next lemma asserts that 2 L2(u:(z)dz) has a reproducing kernel. G need
not be simply connected. But in Proposition 6.2 we will give a “power series”
representation for the reproducing kernel which is valid in case G is simply
connected.

Lemma 6.1 Lett > 0. For all g € G, there ezists a unique holomorphic
function K;(g,-) € HL*(G, pe(z)dz) such that

u(g) = (v, Ki(g,))e, Yu € HL?(G, pe(2)dz).

Proof. By Lemma 3.4, the map (v — u(g)) : HL?(G, u(z)dz) — Cis a
bounded linear functional on % L%(G, p:(z)dz). Hence, the Riesz representa-
tion theorem guarantees the existence of K, (g, ). Q.E.D.

Proposition 6.2 Keep the same assumptions and notation as in Lemma 6.1.
Assume further that G is simply connected. Let J* denote the orthogonal
complement of J in T;. Then

Ki(g,2) = (¥(o), P ¥(7))1:, (6.1)

where P, is the orthogonal projection of T; onto J, and o and T are any two
smooth curves (o, 7 : [0,1] & G) such that ¢(0) = (0) = e, o(1l) = z, and
r(l)=g.
Proof. Let u € HL?*(G,u(z)dz) and set o = (1 — D);lu and 8 = (1 —
D);1K.(g,-). Then as in the proof of Proposition 3.9,

u(g) = (o, ¥(7)) = (a, BY¥(r)) = (o, (-, Y (7)1, )¢

While by Lemma 6.1

u(g) = (U’I‘rt(g) ))t = (a:ﬂ)b

Since u € HL?(G, pt(z)dz) is arbitrary so is a by Theorem 2.6. Hence com-
paring the above displayed equations shows that

B =(,PY¥(r))r,.
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Finally
Ki(g,z) = (8,¥(0)) = (¥(0), P.Y(T)),.
Q.E.D.

7 Differential Operators, Annihilation Operators, and Uniqueness
of Isomorphisms

We contirtue the notation of Section 2. We will take G to be simply connected
as well as connected and complex in this section.

Definition 7.1 Let £ € g. Denote by R¢ the operation of right multiplication
byl onT. Thatis, Ref = Q& Let Ag = Rg :T' > T

Note that A¢J° C JO because R¢J C J. Now let f € H(G) and write § =
1@ ®&, €g®". Fixz € G. By Eq. (2.9) we have

(Ae(1—D);1f,8) = ((1- D);'f,B®¢&) = BEf(z) = (1 — D);'éf, B),

and hence _
A¢(1-D);'f = (1= D);'Ef. (7.1)

This equation is purely algebraic; no norm restrictions on either side are
required for its validity. But we wish to consider now £ and A as operators
in HL?(u:(z)dz) and J? respectively. Define & f = €f with domain D(§;) =
{f € HL? (e (z)dz) : £f € HL?(u(z)dz)}. Similarly write A ;o = Agax with
D(A¢:) = {a € J? : A¢a € JP}. Then we have
Lemma 7.2

A¢(1- D)7 = (1 - D);1¢, (7.2)

Proof. In view of Theorem 2.6 and the definition of the domains of these op-
erators this is merely a restatement of Eq. (7.1) but with domains asserted to
match up correctly under the unitary operator (1 — D);!. Q.E.D.

Now it is not immediately clear that, for a general complex (connected,
simply connected) Lie group G, D(£;) is dense in H L2 (u.(z)dz) or even con-
tains any nonzero functions. Equivalently, the domain of A¢; is not mani-
festly nontrivial. More generally, denoting by C°°(u.) the set of all functions
f € HL?(us(z)dz) which are in the domain of all finite products of the oper-
ators {€; : € € g} and by C®(J?) the similarly defined subspace of J? for the
Ag ¢, one may ask whether C*(u;) is dense in H L?(u;(z)dz) or, equivalently,
whether C%(J?) is dense in J?. Since R¢g®" C g®("+!) and g is finite dimen-
sional, A¢ is defined on all of (g*)8("*+1) and takes this subspace of 7" into
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(8*)®". That is, A¢ lowers rank by one. Consequently any finite rank tensor
a € J%is in C®(J?). However it is known [11] that if g is semisimple then J°
contains no finite rank tensors except the zero rank tensor. Nevertheless it is
true that if G has a real form of compact type and the inner product on g is Ad
invariant under the real form then C*(J?) is dense in J?. ( See [10], Section 6,
or [8], Section 7.) In particular if G is semisimple and the given inner product
on g is Ad invariant under some compact rea] form then C*(J?) is dense in
JO. We conjecture that if G is solvable then J{ has a dense set of finite rank
tensors. If this conjecture is correct then C®(J?) is again dense in J?. Finally,
we mention that in the simplest case, that in which g is abelian, J? is just the
space of symmetric tensors in 7" and therefore C*(J?) is dense in J?. But
for a general complex Lie algebra we have only the following limited, though
suggestive, information.

Proposition 7.3 Let g be a compler Lie algebra with a Hermitian inner
product. Lett > 0 and € > 0. Then

TPy C C®(JD). (1)
Proof. Forany f € g®* ¢ €g,and a =) 2 ax €T’ we have

(Aea)r, B)] = (Ag¢e,B)| = {a,B®E)| = [(ar+1,8 ®@E)]
< aksa] 1B @ €] = |an41llB][E].

Hence |(A¢a)k|(ga)ox < [€]lak+1](ga)ocessy Thusif 0 < r < s then

llA¢all?

I

D (/R (Ace)ilfgeyon

g

< (R 1))k + DY Rl ppnnn

b
1l
o

< C(r8)EPllell?

where C(r,s) 1= sup;»o5(r/s)*(k + 1) < co. Hence A¢J? C J? whenever
r < 5. By dividing the interval [t, + €] into n equal subintervals it now follows
that Ae, - Ag, JO C J. Q.E.D.

Remark 7.4 UesoJP, is dense in J? if G is semisimple (and the inner
product is Ad invariant under some real form) or commutative. But we don’t
know whether such density holds in general. Nevertheless we will show in the
next proposition how the identity (7.1) determines the unitary map (1 — D);!

uniquely when C®(J?) is dense in J?.

101

Let us write w =190 0@ --- € T". Since no tensor in J has a non-zero
component of rank zero it follows that w € J? for all ¢ > 0. Moreover for any
a € J? we have (o,w); = ag = (@,w) where @ is defined just as w but regarded
as an element of 7.

Proposition 7.5 Lett > 0. Let G be a connected, simply connected, complex
Lie group. Assume that C™®(u,) is dense in HL%(u:(z)dz). Suppose that
U : HL*(ue(z)dz) — J? is a unitary operator such that

1. Ul=w
2. U = AU forall € € g.
Then U = (1 — D);1.
Proof. We assert that
(£, 1) L2(ui(e)az) = f(€) for all f € HL?(ue(z)dz) (7.4)

For in fact (1 — D);'1 = w, so that

(f, Dr2(ui(eras) = (1 = D);* f,w)e = D°f(e) = f(e).
Let f € C*(p;). Then o := Uf € C*(J?) by repeated application of condi-
tion2 onU.Let B=£6, Q- Q& € g®" and let f =&, ---£,. Then

(0,8) = (Ag, 0,610 - ® €n1) = (U f,E1® - @ En_1)

by 2. again. So by induction we have

(@,8) = (UBf,@)=(UBf,w) = (UGS, U1):
= (ﬂf’ l)Lz(l-‘t(r)dz) = (ﬂf)(e) =((1_D)e—1f’ﬂ)'

Hence Uf = (1 — D);!f. Since C* (y;) is dense in HL?(p:(x)dz) and U and
(1 — D) ! are both unitary they are both equal. Q.E.D.

€

8 Appendix: Two Applications of Parabolic Harnack Inequalities

Our proof of Theorem 5.1 is elementary but relies on Lemma 5.2 for the tran-
sition from equality of norms at time s < ¢t to equality at time s =t. A shorter
proof of this transition can be given which depends, however, on the Li-Yau
parabolic Harnack inequalities. We will state them and apply them in case G is
unimodular. The reason for restricting our attention to a unimodular group is
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that in this case the operator A in Eq. (2.2) is the Laplace-Beltrami operator
for (G, (-,)) as was pointed out in Remark 2.2. In the nonunimodular case A
differs from the Laplace-Beltrami operator by a left invariant vector field.?
Lemma 8.1 (Li-Yau Harnack Inequality) Assume that G is unimodular.
Let T > 0 be given. For each vy > 1, there is a constant K depending on v and
T such that any positive solution, u, to the heat equation

du/dt = Au/4,

on (0,T) x G satisfies the Harnack inequality:

u(s,2) < K(Syu(t y) exp( 2520, (8.)

forallz andy in G, and 0 <s <t < T.

For a proof of this lemma for the Laplace-Beltrami operator the reader
is referred to Theorem 5.3.5, p. 162 in Davies [7], which is applicable in our
case because the Ricci curvature is left translation invariant and has therefore
a uniform lower bound.

Alternate proof of Theorem 5.1 for a unimodular group. Assume u €
HL%(ue(z)dz) and a = (1 — D)7 u. By Corollary 4.5 we have ||a||, = |Juf|, for
0 < s < t. By the monotone convergence theorem we have limy4; |ja||s = ||]];.
It therefore suffices to show that

lim [fulls = {ju(]e. (8.2)
st

But by Lemma 8.1 with £ = y, we have p,(z) < K(%)‘”p,(z) for0 <s <t
Since [ |u(z)|?ps(z)dz < co and limyte ps(2) = pe(z) pointwise, the parabolic
Harnack inequality allows us to prove (8.2) by the dominated convergence the-

orem. Q.E.D.

It is interesting that the Li-Yau Harnack inequality also gives pointwise
bounds on the derivatives of holomorphic functions similar to those of Corollary
5.4. The proof avoids the combinatorial method on which Proposition 3.9
(and therefore Corollary 5.4) is based. But the result is less precise than that
of Proposition 3.9 and in particular inadequate for proving the key Lemma
4.4. However the proof is very short, given steps that we have already used
elsewhere.

2In a recent preprint, Feng-Yu Wang [34] (see Theorem 2.1) has given an extension of the
Li-Yau Harnack inequality which could be used in this appendix to remove the unimodular
restriction. All of the proofs would remain unchanged.
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Proposition 8.2 Assume that G is unimodular and that v € HL?(p,(z)dz).
Let 0 < s < t. There are constants C(s, k) < co such that

[D*u(g)[* < C(s, B)llull? exp(lgl*/s), k=0,1,2,.... (8.3)

Proof. Given 0 < s < t choose ¢ > 0 and ¥ > 1 such that (t —¢)/y = s.
Because of the left invariance of the Riemannian distance d, d(yg,y) = lg| for
all y,g € G. In (8.1) replace s by ¢, =z by yg and u by the heat kernel y, to
find:

t

pelus) < Ky (10 = k(byorpelolse,  (84)

where K < oo is a constant depending on vy = (t —€)/s. In Eq. (3.14), o is at

our disposal in the interval [¢,#]. Choose ¢ = € in (3.14) and use Eq. (8.4) to
get

[(D*u(g), )

IA

ale, KPR [ fuly™) P )y

t 2
a(e, k)2 IBIPK (2) el lul 2,

Il

where we have used Eq. (3.2) in the last equality. Summing this last equation
over A running through an orthonormal basis of g® as in the proof of Lemma

3.5 gives (8.3) with C(s, k) = afe, k)zd"K(‘;)‘”. Q.E.D.
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