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It is asserted in Definition 4.2 in [1] that the random operators U(¢) defined
there are unitary. As was pointed out to the author by Shizan Fang, it is clear that
U(t) is an isometry but it is not obvious that U(¢) is surjective. The purpose of this
note is to fill this gap.  © 1998 Academic Press

1. INITIAL COMMENTS

I would first like to point out that, even without verifying the surjectivity
of U(t) defined in Definition 4.2 in [ 1], all of the results and all but one
proof in [ 1] would still be valid. Indeed, the only place where the surjec-
tivity of U(¢) was used, other than for notational simplicity, was in the first
proof of Theorem 4.14 in [1]. Nevertheless, Theorem 4.14 is still valid
because of Theorem 6.2; see Remark 4.15 in [1]. The only notational
changes that would need to be made are: (1) replace the orthogonal group
O(H,(g)) on Hy(g) by the set ISO(H(g)) of isometries on H,(g) and (2)
interpret U(¢) H(t) as

U(t) H(t) = h(t) + L Ric U(t) h(1).

In the next section we will give a more satisfying remedy to the gap in
Definition 4.2 in [1], namely the fact that U(¢) is unitary.

2. A PROOF THAT U(T) IS UNITARY

The reader is referred to [ 1] for the notation and definitions used in this
corrigendum. Recall that S, = Hy(g) is an orthonormal basis for H(g) and
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for any k, € Hy(g) we let k(z) denote the solution to the It6 stochastic
differential equation (4.2) in [ 1],

k(1) = — D gy k(1) + 3 4Vk(t) dt - with  k(0) =k,. (2.1)

In [1], U(z) was defined as U(t) h:=3% s, (ko, 1) k() (Definition 4.2)
and it was shown that h(z):=U(¢t)h solves Eq. (2.1) with A(0)=h
(Lemma 4.3) and that U(¢) is an isometry (Theorem 4.1). The surjectivity
of U(t) will be an easy consequence of the next lemma.

LemmA 2.1. Let ky, hy € Hy(g); then
E(ko, U(t)* ho)* = E(U(t) ko, ho)? = E(kq, U(1) hy)>. (2.2)

Proof. In what follows we will identify Hy(g) ® Hy(g) with the
Hilbert—Schmidt operators HS(H,(g)) on H,(g) determined by identifying
h®ke Hyg)® Hy(g) with the rank one operator (h® k) u = (k, u) h for all
ue Hyg). We are using (-,-) to denote inner product on both of the
Hilbert spaces Hy(g) and Hy(g) ® H(g).

Let k(¢) = U(t) k, and consider the random operator k(7) ® k(). By 1t&’s
lemma,

d(k(1) @ k(1)) = — (D gy 1y k(1)) @ k(1) — k(1) @ D g1 k(1)

+1 {A“’k(t)@k(t) +k(6)® AVk (1)

+2 % D,k(t)@D,»k(t)}dt. (2.3)

leS,
This last expression may be simplified by noticing that
AVRQI+IRAV+2 Y D,®D,= Y (D,@I+I®D,>=:4%. (24)
/€S, ’esS,

By Theorem 3.12 and Lemma 4.21 in Driver and Lohrenz [ 2], the sums in
Eq. (2.4) converge strongly to a bounded self-adjoint operator (4®) on
Hy(g) ® Ho(g).

Remark 22. 1In [2] the operator D'? :=(D, @ [+I® D,) on Hy(g) ®
H,(g) was simply denoted by D, and A“) on H(g) and A on H, o(9)®
H,(g) were both denoted by 4.

With this notation, we may write Eq. (2.3) as
d(k(1) @ k(1)) = — (D gpy k(1)) @ k(1) — k(1) @ D g, k(1)
+34%(k(1) ® k(1)) dt. (2.5)
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Integrating this equation relative to ¢ and then taking expectations of the
result show that

E(1) @ k(1) =k ® ko + 3E | 42(k(x) @ k(x) de
— ko @ ko + ;A@Ej’ (k()® k(z)) dr. (2.6)

The solution to this last equation is
E(k(1) @ k(1)) = """k ® k). (2.7)
Equation (2.6), along with the fact that 4® is self-adjoint, implies

E(U(t) ko, ho)? = E(k(1), ho)? = (" (ko @ ko), ho ® hg)

= (ko ® ko, ¢"2(hg @ ho)) = E(kq, U(t) hy)*
Q.ED. (2.8)

THEOREM 2.3. The random isometry U(t) defined in Definition 4.2 in [ 1]
is unitary a.s.

Proof. Let P(t):=U(t) U(t)*, a random projection operator. Our goal
is to show that P(¢) =1 a.s. Summing Eq. (2.2) on k, €S, and using the
fact that U(¢) is an isometry shows that

E|[P(t) hoI>=E | U(t)* ho|I? = E | U(t) ho |I* = |Ih |I*

for all hy,e Hy(g). Because |h,|*=|P(t) hy|? it follows that |k,]*=
| P(2) hy||? a.s. or equivalently h,= P(t) hy a.s. Since H,(g) is separable, we
may conclude that /= P(¢) a.s. as desired. Q.ED

Theorem 2.3 may be strengthened as follows. Another proof of the
following theorem which was discovered essentially simultaneously to the
one presented here will appear in Fang [3].

THEOREM 2.4. On a set of full measure independent of t=0, the map
t — U(t) is unitary. That is, the null sets implicitly appearing in Theorem 2.3
may be chosen to be independent of t.

Proof. Let he Hy(g). We will start by showing that there exists a null
set Q,, such that on Q¢, the map ¢ — | P(¢) h||* is continuous. To this end
let {S,}_, be a collection of finite subsets contained in S, such that S,

n=1
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increases to S, as n —» oo. For k, € S set k(t) = U(t) k, and let P,(¢) be the
finite rank projection operators

Ni= Y U ky®U ko= Y k(1)@Kk(0).
ko€ s, ko€ S,
Since k is a continuous process for each k, € S,, there is a null set 22, such
that
t=|P(0) 1= Y (k(2),h)>= ) (k(t)®@K(1),h®h)
ko€ S, kg€ S,

is continuous on f for all heHy(g) and n=1,2,3,... Let
P, .(t):=P,(t)—P,(t) and suppose for concreteness that m >n. Then by
Eq. (2.5), the skew symmetry of D', and the symmetry of 4,

HPm,}1(t)hH27HPmn( )hH2 an A;’L"’

where

M7= [ (P00 DG (hO )
and

A7 =3[ (P00 AP @ ) e

Because M"" is a square integrable martingale,

E( sup |[MP"|*)<CE|M7"|

0<t<T

= CJT Y, E(P,, (1), DP(h®h))*dt

0 ses,

—4cj <Z y (k(t),D/h)z(k(t),hV)dt

/eS8y kyeS,\S,

m

<ac i [’ (2 1P, Dh)

€S,

which converges to zero as m,n— oo by the dominated convergence
theorem along with the facts: (1) || P,, (1) D, k> <D h|? (2) X, cs, DAl
=(—dh, h)<||4],, |1 and (3) lim |P,, .(t) D,h|>=0. Slmllarly,

op m,n— o



CORRIGENDUM 301

t
sup A" = sup

o<t<T 0<t<T

Y. (k(z), 4h)(k(z), h) dr

0 kyes,\s,

Y Y ko)

0 zesy kes,\s,

<[ Wb P YD+ 3 1P (0 D dr

/€S,

which converges to zero boundedly as m, n - oo. Combining the above
estimates shows that

E sup [P, ()II>=IIP,(t) hlI|>=E sup [P, (t)h]*>0  m,n— 0.

0<:<T 0<r<T

Therefore there exists a null set Q, such that on Q, te [0, T] — || P(¢) h|>
is the uniform limit of the continuous functions and hence is continuous.
Since H,(g) is separable, we may choose a null set 2, independent of
he Hy(g) and T>0 such that 1€ [0, T] — ||P(¢) h|?* is continuous on Q5.
By Theorem 2.3, given a countable dense subset D < [0, T'], there exists a
null set €, such that P(¢) =1 on Q; ie., |P(¢) h|| = |h| for all he Hy(g)
and reD. Let 2, be the null set, Q,=Q,u0Q,. Then on 0,
|P(t) k|| = |h| for te[0, T] and he Hy(g) or equivalently P(¢)=1 for all
tel0, T]. Q.E.D
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