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1. INTRODUCTION

Let M be an n-dimensional oriented Riemannian manifold (not
necessarily complete) without boundary and E a smooth Hermitian vector
bundle over M. Denote by 1(E) the smooth sections of E. Further assume
that L is a second order elliptic differential operator on 1(E) whose prin-
ciple symbol is the dual of the Riemannian metric on M tensored with the
identity section of Hom(E). In this paper we derive stochastic calculus for-
mulas for DetL: and etLD: where : # 1(E) and D is an appropriately
chosen first order differential operator on 1(E).

As an example of the kind of formula found in this paper, let us consider
one representative special case. Namely suppose that M is a compact spin
manifold, E=S is a spinor bundle over M, D is the Dirac operator on
1(S) and L=&D2. Let scal denote the scalar curve of M. Then

(e&TD2�2D:)(x)=(De&TD2�2:)(x)

=
1
T

E[e&(1�8) �0
T scal(Xt(x)) dt#BT ��&1

T :(XT (x))],

where Xt(x) is a Brownian motion on M starting at x # M, ��t is stochastic
parallel translation along Xv(x) in S relative to the spin connection, Bt is
a Tx M-valued Brownian motion associated to Xt(x) and #BT is the Clifford
multiplication of BT on Sx . This result is described in more detail in
Section 5.2 below.

It is also possible to get a formula for D2e&TD2�2: by iterating a minor
generalization of the previous formula. For example if 0<T1<T then

(D2e&TD2�2:)(x)

=
1

T1(T&T1)
E[e&(1�8) �0

T scal(Xt(x)) dt#BT1
#BT&BT1

��&1
T :(XT (x))];

see Theorem 7.4 below.
There are a number of other related approaches to derivative formulas

in the literature; see for example Norris [44], Elworthy and Li [24, 26],
Stroock and Turetsky [54, 55] and Hsu [34, 35].

Let us end the introduction with a short outline of the paper. Section 2
introduces the basic stochastic and differential geometric notation along
with the standing Assumption 1 used throughout the paper. Geometric
examples satisfying Assumption 1 are also presented here. More details on
the notation and the examples of Section 2 may be found in Appendix A.
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Section 3 introduces a number of local martingales associated to the
geometric data of Section 2. Theorem 3.7 and Corollary 3.9 of this section
are fundamental to the rest of the paper. In Section 4 we describe some
general heat equation derivative formulas under the assumption that the
local martingales introduced in Section 3 are in fact martingales, see in par-
ticular Eqs. (4.22) and (4.23).

Section 5 illustrates our results for compact M. Dirac operators are
covered in Section 5.2 and the differential d and co-differential d* are
treated in Section 5.3. Heat equation derivative formulas involving
covariant derivatives are covered in Section 5.4, and Section 5.5 in the con-
text of 1-forms. In Section 6 we show how to relax the compactness
assumption on M. Some technical heat semi-group properties used in the
section are gathered in Appendix B.

Section 7 is devoted to higher derivative formulas. The ideas are
illustrated in Theorems 7.4 and 7.7. Theorem 7.4 gives a formula for the
square of the Dirac operator on spinor valued solutions to the heat equa-
tion while Theorem 7.7 gives a formula for the Hessian of a solution to the
scalar heat equation.

2. GENERAL STOCHASTIC AND GEOMETRIC NOTATION

2.1. Brownian Motion on M

Let M be an n-dimensional oriented Riemannian manifold (not
necessarily complete) without boundary, ( } , } ) be the Riemannian metric
on M, and {TM be the Levi�Civita covariant derivative on TM. Let (0, F,
[Ft]t�0 , P) be a filtered probability space satisfying the usual hypothesis,
and for each x # M let [Xt(x): t<`(x)] be an M-valued Brownian motion
on (0, F, [Ft]t�0 , P), starting from x, with possibly finite lifetime `(x).
Recall that Xt=Xt(x) is said to be an M-valued Brownian motion
provided that X is a diffusion process such that

M f
t :=f (Xt)& f (X0)& 1

2 |
t

0
2f (Xs) ds on [t<`(x)]

is a real local martingale for every f # C�(M). Here 2f denotes the
Riemannian Laplacian of f.

2.2. Covariant Derivatives and Parallel Translation

Let E � M and E� � M be two vector bundles over the Riemannian
manifold M. Further assume that E and E� are equipped with covariant
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derivatives, {E and {E� respectively. In the case that E and E� are Rieman-
nian vector bundles with fiber metrics ( } , } )E and ( } , } )E� respectively, we
will always assume that {E and {E� are metric compatible covariant
derivatives. Given a smooth curve _: [0, �[ � M, let

��TM
t (_): T_(0) M � T_(t) M, ��E

t (_): E_(0) � E_(t) and

��E�
t (_): E� _(0) � E� _(t)

denote parallel translation along _ up to time t relative to {TM, {E, and
{E� respectively. The corresponding stochastic parallel translations along the
Brownian motion Xv(x) will simply be denoted by ��TM

t : TxM � TXt(x) M,
��E

t : Ex � EXt(x) and ��E�
t : E� x � E� Xt(x) respectively.

Notation 2.1. In what follows, let ( } , } ) denote the pairing between a
vector space V and its dual space V*. For a linear operator C: V � W, let
C tr: W* � V* denote the transpose of C. If V and W are inner product
spaces, C*: W � V will denote the adjoint of C relative to the inner
products on V and W. The inner product on V will be denoted by ( } , } )
or ( } , } )V .

The covariant derivatives {TM, {E, and {E� induce covariant derivatives
on any vector bundle E over M which is constructed by taking tensor
products of the bundles TM, E, E� and their dual bundles. In order to sim-
plify notation we will simply write { for the induced covariant derivative
on any such vector bundle E and similarly we will write ��t : Ex � EXt(x) for
stochastic parallel translation and R for the curvature tensor relative to this
covariant derivative.

Example 2.2. Suppose that E=TM�E*�E� and that v�:�! # Ex ,
then

��t(v�:�!)=(��TM
t v)� ((��E tr

t )&1 :)� (��E�
t !) (2.1)

and for a, b # TxM,

R(a, b)(v�:�!)=RTM(a, b) v�:�!

+v� (&: b RE (a, b))�!+v�:�RE� (a, b) !,

where (��E tr
t )&1 : :=: b (��E

t )&1 and RTM, RE, and RE� are the curvature ten-
sors for {TM, {E and {E� respectively. Our convention of denoting parallel
translation and the curvature tensor as ��t and R respectively on all bundles

45HEAT EQUATION DERIVATIVE FORMULAS



associated to TM, E, and E� leads to the strange looking identities,
��tr

t =��&1
t and Rtr=&R. For example, on E=TM�E*�E� ,

��tr
t =(��TM

t )tr � ((��E tr
t )&1)tr� (��E�

t )tr

=(��T*M
t )&1� (��E

t )&1� (��E� *
t )&1

which is ��&1
t on E*=T*M�E�E� *. Similarly, Rtr=&R is a conse-

quence of the fact that, in general, RE*=&(RE)tr.

Definition 2.3. The orthogonal frame bundle of M will be denoted by
O(M). Given a point x # M, the principle bundle O(M) may be realized as
�m # M Om(M), where

Om(M) :=[u: TxM � TmM | u is an isometry].

(The base point x will be suppressed from the notation since different x's
lead to equivalent principle bundles.) Let ?: O(M) � M be the fiber projec-
tion map defined by ?(u)=m if u # Om(M) and let � be the TxM-valued
one-form on O(M) defined by �(!)=u&1?

*
! for all ! # TuO(M).

Definition 2.4 (Brownian Motion on Tx M). Associated to the
Brownian motion Xt(x) on M is a TxM-valued local martingale Bt defined
on [0, `(x)[ by the Fisk Stratonovich stochastic integral,

Bt :=|
t

0
��&1

s $Xs(x) :=|
t

0
�($��TM

s ),

see [22, 28].

2.3. Laplacians and First Order Differential Operators
For a vector bundle E over M, let 1(E) denote the smooth sections of

E. In case of a Riemannian vector bundle E over M, let L2(E) denote the
square-integrable sections relative to the Riemannian volume measure on
M and L2-1(E) the square-integrable smooth sections of E.

Definition 2.5 (Horizontal Laplacians). The horizontal Laplacians
g: 1(E) � 1(E) and g� : 1(E� ) � 1(E� ) are the second order differential
operators given by

ga := :
n

i=1

{2
ei �ei

a and g� a~ := :
n

i=1

{2
ei �ei

a~ ,

where [ei]n
i=1 is any local orthonormal frame of TM and for a # 1(E)

{2
ei �ei

a :=({E
ei

)2 a&{E
{ei

TMei
a (2.2)
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with {2
ei �ei

a~ being defined analogously. In other words, g is given as the
following composition,

g: 1(E) w�{
E

1(T*M�E) ww�{T*M�E
1(T*M�T*M�E) w�tr 1(E).

Definition 2.6 A multiplication map from E to E� is a smooth sec-
tion m of the vector bundle Hom(T*M�E, E� )$TM�E*�E� . To each
multiplication map m we define a first order differential operator Dm :
1(E) � 1(E� ) by

Dma=m {a. (2.3)

Notation 2.7. For v # TxM, let mv # Hom(Ex , E� x) be given by

mv! :=m((v, } )�!) # E� x

for all ! # Ex . In the following we will typically describe m by describing mv

for v # TM.

Definition 2.8 (Compatibility with {). A multiplication map m is said
to be compatible with { provided {m=0, i.e.

{E�
v (mX a)=m({v

TMX)a+mX ({E
v a)

for all X # 1(TM), a # 1(E), and v # TM.

Since a # T*x M�Ex $Hom(TxM, E) may be written as a=�n
i=1

(ei , } )�a(ei) where [ei]n
i=1 is an orthonormal frame for TxM, it follows

that

ma= :
n

i=1

mei a(e i). (2.4)

In particular, the operator Dm defined in Eq. (2.3) may be expressed as

(Dma)x= :
n

i=1

mei {eia, (2.5)

where a # 1(E) and [ei]n
i=1 is an orthonormal frame for TxM.

Definition 2.9. To each multiplication map m, there is a dual multi-
plication map mtr which is the smooth section of the bundle Hom(T*M�
E� *, E*) determined by m tr

v =(mv)tr for all v # TM. If E and E� are Rieman-
nian vector bundles, the adjoint multiplication map m* from E� to E is
determined by mv* :=(mv)* for all v # TM.
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Remark 2.10. It is easily checked that if m is compatible with { then so
is its dual mtr and its adjoint m*. Moreover, if m is {-compatible, then
��&1

t m=m, ��&1
t mtr=mtr and ��&1

t m*=m*. More precisely

mv =(��E�
t )&1 m��t

TMv ��E
t ,

m tr
v =(��E

t )tr m tr
��t

TMv (��E� tr
t )&1,

and

mv*=(��E
t )&1 m*��t

TMv ��E�
t

for all v # TxM. Also recall that when {E and {E� are metric compatible
covariant derivatives, then (��E

t )&1=(��E
t )* and (��E�

t )&1=(��E�
t )*.

In geometrically natural situations one is often presented with the follow-
ing formalism.

Assumption 1. We suppose that m is a multiplication operator and L
and L� are given second order differential operators on 1(E) and 1(E� )
respectively which satisfy the following conditions.

1. The operators D :=Dm , L, and L� obey the commutation relation:

DL=L� D&\,

for some \ # 1(Hom(E, E� )).

2. The operators R :=g&L: 1(E) � 1(E) and R� :=g� &L� :
1(E� ) � 1(E� ) are zeroth order operators, i.e. R and R� are sections in
1(End(E)) and 1(End(E� )) respectively.

2.4. Examples

Let us now gives some examples where Assumption 1 is satisfied. More
detailed comments about these examples and the general setup may be
found in Section A.3 of Appendix A.

Example 2.11 (Exterior Bundle Examples). Let 4T*M :=�n
k=0

4kT*M denote the exterior bundle over M, 0k(M) denote the sections of
4kT*M and 0(M) :=�n

k=0 0k(M) be the space of differential forms over
M. Let d denote the exterior differential on 0(M), d* be the co-differential
and

2=&(d+d*)2=&(d*d+dd*)

be the de Rham�Hodge Laplacian on 0(M). We now give three related
examples satisfying Assumption 1 with \=0.
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1. Let E :=4kT*M, E� :=4k+1T*M and let mv=Cv be the exterior
product or creation operator which is defined by Cv: :=(v, } ) 7 : for
v # TxM, : # 4kT*xM and x # M. Then

DC=dk =d | 0k(M), L :=2k :=2 | 0k(M),

L� :=2k+1=2 | 0k+1(M)

satisfy Assumption 1 with \=0.

2. Let E :=4kT*M, E� :=4k&1T*M and mv=Av be the interior
product or annihilation operator which is defined by Av : :=:(v, } , ..., } ) for
all v # TxM, : # 4kT*xM and x # M. Then

DA = &d k*=&d* | 0k(M), L=2k=2 | 0k(M),

L� =2k&1=2 | 0k&1(M)

satisfy Assumption 1 with \=0.

3. Let E=E� :=4T*M, L=L� :=2 and let m=# be the ``Clifford''
multiplication defined by #=C&A. Then

D#=d+d*, L=L� =2

satisfy the Assumption 1 with \=0.

Item 3 of the last example generalizes to differential forms with values in
a vector bundle. This is described in the next example.

Example 2.12 (Vector-valued Forms). Let S � M be a Euclidean vec-
tor bundle over M (with fiber inner product denoted by ( } , } )S) equipped
with a metric compatible covariant derivative {S. Let E=E� =4T*M�S
and let m be the Clifford multiplication # determined by #=C&A, where
as above Cva :=(v, } ) 7 a and Ava=a(v, } , ..., } ) for all v # TxM,
a # 4kT*xM�S and x # M (see Section A.1 of Appendix A for our conven-
tions). Then D#=d{+d*{ where d{ and d*{ are the covariant differential
and co-differential on A(E) :=1(4T*M�S). Then L=L� := &D2

#=
&(d{+d*{)2 and # satisfy Assumption 1 with \=0.

Example 2.13 (Dirac Operator on a Spin Manifold). Assume now that
M is a spin manifold and S � M a spinor bundle over M. Let {S denote
the spin connection on S and let S� =S. Further let mv:=#v: denote the
Clifford action of v # Tx M on : # Sx . Then D# is the Dirac operator on
1(S) and L=L� :=&D2

# satisfy Assumption 1 with \=0 and R=R� =
1
4 scal, where scal is the scalar curvature of M. For details on this and the
next example, see (for instance) Theorem 3.52 on p. 126 of [4].
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Example 2.14 (Twisted Dirac Operators). The spinor bundle S is ten-
sored with an auxiliary Riemannian�Hermitian vector bundle F over M to
give a Dirac operator of the form

D: 1(S�F ) ww�{S�F
1(T*M�S�F ) ww�#�1 1(S�F ), (2.6)

where as in the previous example # denotes Clifford multiplication. Then
again L=L� =&D2 satisfy Assumption 1 with \=0.

Proposition 2.15 ({ on a General Vector Bundle). Let E � M be a
vector bundle with covariant derivative {E, RE be the curvature tensor of {E,

E� :=T*M�E$Hom(TM, E)

and m: T*M�E � E� =T*M�E be the identity map considered as a multi-
plication map from E to E� . (Notice that Dm={E.) Given R # 1(End(E)) let

R� =Rictr �1E&2RE } +1T*M�R # 1(End(E� )) (2.7)

and

\={ } RE+{End(E)R # 1(Hom(E, E� )), (2.8)

where for ' # E� x=T*x M�Ex $Hom(TxM, Ex), v # Tx M, a # Ex , and [ei]
again an orthogonal frame for TxM,

(RE } ')(v)= :
n

i=1

RE (v, ei) '(ei), (2.9)

({ } REa)(v)# :
n

i=1

({ei R
E)(ei , v) a, (2.10)

({End(E)Ra)(v)=({End(E)
v R) a, (2.11)

and Ric is the Ricci tensor of M,

Ric v# :
n

i=1

RTM(v, ei) ei . (2.12)

Then L :=g&R, L� =g� &R� , \, and m=id satisfy Assumption 1.
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Proof. By Eq. (A.18) of Appendix A,

{E
v La={E

v (g&R) a={E
v ga&({End(E)

v R) a&R {E
v a

=(g� {Ea)(v)&{Ric va+2 :
n

i=1

RE (v, ei) {ei a

&({ } REa)(v)&({End(E)
v R) a&R {E

v a

=(L� {Ea)(v)&(\a)(v). K

2.5. The Adjoint of Dm

We will end this section by computing the formal adjoint of Dm when m
is compatible with {.

Lemma 2.16. Suppose that E and E� are vector bundles with fiber metrics
( } , } )E and ( } , } )E� and that {E and {E� are metric compatible covariant
derivatives on E and E� respectively. Also assume that m is a {-compatible
multiplication map and let m* be the adjoint multiplication map. Then the
operator Dm* : 1(E� ) � 1(E) is the formal adjoint of &Dm . More precisely,

|
M

(DmS, T )E� d vol=&|
M

(S, Dm*T )E d vol

for all smooth sections S # 1(E) and T # 1(E� ) such that S�T has compact
support.

Proof. For S and T fixed as above, let X be the compactly supported
vector field on M determined by

(mvS, T )E� =(X, v)TM

for all v # TM. Let [ei]n
i=1 be a local orthonormal frame on M, then

ei (X, ei)TM =ei (mei S, T )E� =({ei (mei S), T )E� +(mei S, {ei T )E�

=(m{ei ei S, T )E� +(mei {ei S, T )E� +(S, m*ei {ei T )E

=(X, {ei ei)TM+(mei {ei S, T )E� +(S, m*ei {ei T )E .

Hence

div(X)= :
n

i=1

({ei X, ei)TM= :
n

i=1

[ei (X, ei)TM&(X, {ei ei)TM]

= :
n

i=1

[(mei {eiS, T )E� +(S, m*ei {ei T )E]

=(DmS, T )E� +(S, Dm*T )E .
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The lemma now follows by integrating this last expression over M and
using Stokes' theorem to conclude that

|
M

div(X) d vol=|
M

d(AX vol)=0. K

Remark 2.17. An analogous proof shows that if m is a {-compatible
multiplication map, then

|
M

(DmS, T) d vol=&|
M

(S, Dmtr T) d vol

for all smooth sections S # 1(E) and T # 1(E� *) such that S�T has
compact support.

3. LOCAL MARTINGALES

In this section, suppose that m is a multiplication map and L=g&R

and L� =g� &R� are second order differential operators on 1(E) and
1(E� ) satisfying Assumption 1, i.e. \ :=L� Dm&DmL # 1(Hom(E, E� )). Let
Qt # End(Ex) and Q� t # End(E� x) denote the solutions to the ordinary dif-
ferential equations,

d
dt

Qt=&
1
2

QtR��t with Q0=idEx (3.1)

and

d
dt

Q� t=&
1
2

Q� tR� ��t with Q� 0=idE� x , (3.2)

where R��t :=(��E
t )&1 R ��E

t and R� ��t :=(��E�
t )&1 R� ��E�

t are linear operators on
Ex and E� x respectively.

Notation 3.1. A time dependent section [at]0�t<T of E is said to be
smooth if (t, x) [ at(x) is infinitely differentiable for (t, x) # ]0, T[_M
with derivatives extending continuously to [0, T[_M.

Proposition 3.2. Let m, L and L� be as in Assumption 1 and Q and Q�
be defined by Eqs. (3.1) and (3.2) respectively. Suppose further that
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[at]0�t<T is a smooth time dependent section of E which satisfies the
backwards heat equation,

�
�t

at+
1
2

Lat=0. (3.3)

For t in the stochastic interval [0, `(x) 7T[, let

Nt :=Qt��&1
t at(Xt(x)) (3.4)

and

N� t :=Q� t��&1
t Dat(Xt(x)). (3.5)

Then the stochastic differentials of Nt and N� t are given by

dNt=Qt��&1
t {��t

TM dBt at(Xt(x)) (3.6)

and

dN� t=Q� t��&1
t {��t dBt Dat (Xt(x))+ 1

2Q� t��&1
t (\at)(Xt(x)) dt, (3.7)

where \ :=L� Dm&DmL # 1(Hom(E, E� )) as in Assumption 1.

Proof. The proof is an application of Itô's lemma and the commutation
relations in Assumption 1. In more detail we have,

dNt =Qt��&1
t {��t dBt at(Xt(x))

+ 1
2 \&Qt R��t ��

&1
t at(Xt(x))+Qt��&1

t gat(Xt(x))
&Qt��&1

t Lat(Xt(x)) + dt

=Qt ��&1
t {��t dBt at(Xt(x)),

where in the last equality we used the identity,

&R��t ��
&1
t +��&1

t g=��&1
t (g&R)=��&1

t L.

Similarly,

dN� t =Q� t��&1
t {��t dBt Dat(Xt(x))

+ 1
2 \&Q� tR� ��t ��

&1
t Dat(Xt(x))+Q� t��&1

t g� Dat(Xt(x))
&Q� t ��&1

t DLat(Xt(x)) + dt

=Q� t��&1
t {��t dBt Dat(Xt(x))+ 1

2Q� t��&1
t (\a)(Xt(x)) dt

because

&R� ��t ��
&1
t D+��&1

t g� D&��&1
t DL=��&1

t (L� D&DL)=��&1
t \. K
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3.1. Dual Pairs

Definition 3.3. A pair of adapted continuous processes lt # E*x and
l� t # E� *x is called a dual pair if Zt=(N� t , l� t) &(Nt , lt) is a local martingale.

Theorem 3.4. Suppose that lt # E*x and l� t # E� *x are continuous semimar-
tingales such that

dlt=:t dBt+;t dt

and

dl� t=:~ t dBt+;� t dt,

where :t # Hom(TxM, E*x), :~ t # Hom(TxM, E� *x), ;t # E*x and ;� t # E� *x are
predictable processes. Then l and l� is a dual pair provided

:~ #0, (3.8)

1
2\tr��t Q� tr

t l� t=��t Q tr
t ;t , and (3.9)

m tr
��tv��t Q� tr

t ;� t=��t Q tr
t :t v for each v # TxM. (3.10)

Proof. Let Zt=(N� t , l� t)&(Nt , lt) and write dX&dY if X&Y is a
local martingale. Computing dZt using Proposition 3.2 gives

dZt &(dN� t , l� ) +(N� t , dl� t) +(dN� t , dl� t) &(Nt , dlt)&(dNt , dlt)

&( 1
2Q� t��&1

t (\at)(Xt(x)), l� t) dt

+(N� t , ;� t) dt+(Q� t��&1
t {��t dBt Dat(Xt(x)), :~ t dBt)

&(Nt , ;t) dt&(Qt��&1
t {��t dBt at(Xt , (x)), :t dBt)

= 1
2(Q� t��&1

t (\at)(Xt(x)), l� t) dt

+ :
n

i=1

(Q� t ��&1
t m��tei {��tei at(Xt(x)), ;� t) dt

+ :
n

i=1

(Q� t ��&1
t {��tei Dat(Xt(x)), :~ tei) dt

&(Qt��&1
t at(Xt(x)), ;t) dt

& :
n

i=1

(Qt ��&1
t {��tei at(Xt(x)), :t ei) dt.
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Keeping in mind that ��t=(��&1
t )tr (i.e. ��E*

t =((��E
t )&1) tr) we find, by com-

paring terms involving a, {��tei a, and {��tei Da, that dZt &0 provided that
Eqs. (3.8), (3.9) and (3.10) are satisfied. K

The upshot of the previous theorem is that to make a dual pair we
should choose :~ =0 (i.e. dl� t=;� t dt),

;t = 1
2 (Q tr

t )&1��&1
t \tr��tQ� tr

t l� t and

:t v=(Q tr
t )1��&1

t m tr
��tv ��tQ� tr

t ;� t for each v # TxM.

Because the processes Q tr
t and Q� tr

t will arise often in the sequel, it is
convenient to introduce the following notation.

Notation 3.5. Let Qt :=Qtr
t # End(E*x) and Q� t :=Q� tr

t # End(E� *x). Taking
the transposes of Eqs. (3.1) and (3.2) shows that Q and Q� solve the follow-
ing ordinary differential equations:

d
dt

Qt=&
1
2

R tr
��t

Qt with Q0=idE*x (3.11)

and

d
dt

Q� t=&
1
2

R� tr
��t

Q� t with Q� 0=idE� *x . (3.12)

Definition 3.6 (Finite Energy Process). Let V be a finite dimensional
vector space. A V-valued process [ls]s # [0, T[ is said to be a finite energy
process provided l is adapted and (on a set of measure one) s � ls is
absolutely continuous and �T

0 |dls �ds| 2
V ds<�, where | } | V denotes any one

of the equivalent norms on V. If in addition there is a p # [1, �) such that

E _\|
T

0
|dls �ds| 2

V ds+
p�2

&<�,

then we say that [ls]s # [0, T[ is an L p-finite energy process.

We have the following immediate consequence of Theorem 3.4. In this
theorem and in the rest of the paper we will write l rather than l� for a
finite energy process with values in E� *x .

Theorem 3.7. Let a, N, and N� be as in Proposition 3.2, lt # E� *x be a
finite energy process and define the E*x -valued process,

Ul
t :=|

t

0
Q&1

s ��&1
s m tr

��s dBs
��sQ� sl$s+

1
2 |

t

0
Q&1

s \ tr
��s

Q� sls ds, (3.13)
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where \��s :=��&1
s \(Xs(x))��s and

\tr
��s

=�� tr
s \tr(Xs(x))(��&1

s )tr=��&1
s \tr(Xs(x))��s . (3.14)

(See the remarks at the end of Example 2.2 explaining the identity �� tr
s =

��&1
s .) Then

Zl
t :=(N� t , lt) &(Nt , U l

t ) (3.15)

is a local martingale on [0, `(x) 7 T[ and

dZl
t =(Q� t��&1

t {��t dBt Dat(Xt(x)), lt)

&(Qt ��&1
t {��t dBt at(Xt(x)), U l

t )

&(Nt , Q&1
t ��&1

t m tr
��t dBt

��tQ� tl$t) . (3.16)

Proof. Because of Theorem 3.4 and the comments after its proof, we
need only prove Eq. (3.16). Since we already know that Zl

t is a local mar-
tingale, we need only keep track of those terms in dZl

t which depend
linearly on dBt . Hence Eq. (3.16) follows from the identity

dZl
t =(dN� t , lt)+(N� t , dlt)+(dN� t , dlt)

&(dNt , U l
t )&(Nt , dU l

t )&(dNt , dU l
t )

and Eqs. (3.6), (3.7) and (3.13). K

By Remark 2.10, if the multiplication operator m is compatible with {,
then

mtr
v =�� tr

s m tr
��sv(��&1

s ) tr=��&1
s m tr

��s v��s

for all v # Tx M. Hence, the formula for U l
t in Eq. (3.13) simplifies to

Ul
t =|

t

0
Q&1

s mtr
dBs

Q� sl$s+
1
2 |

t

0
Q&1

s \ tr
��s

Q� s ls ds. (3.17)

Remark 3.8. Suppose that lt # E� x is a finite energy process. Under the
further assumption that E and E� are Riemannian vector bundles and m is
compatible with {, the results of Theorem 3.7 remains true with U l

t and Zl
t

defined by

Ul
t :=|

t

0
(Q&1

s )* m*dBs Q� s*l$s+
1
2 |

t

0
(Q&1

s )* \*��s Q� s*ls ds (3.18)
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and

Zl
t :=(N� t , lt)E� &(Nt , U l

t )E , (3.19)

where \*��s :=��&1
s \*(Xs(x))��s .

We will finish this section with another equivalent version of
Theorem 3.7.

Corollary 3.9. Suppose that m is compatible with { ( for simplicity),
kt is an E� *x -valued finite energy process and a and N are as in Proposition
3.2. Also define:

N� t :=��&1
t Dat(Xt(x)), (3.20)

U� k
t :=|

t

0
Q&1

s m tr
dBs

(k$s+
1
2R� tr

��s
ks)+ 1

2 |
t

0
Q&1

s \ tr
��s

ks ds (3.21)

and

Z� k
t :=(N� t , kt) &(Nt , U� k

t ) . (3.22)

Then Z� k
t is a local martingale on [0, `(x) 7T[ whose Itô differential is given by

dZ� k
t =(��&1

t {��t dBt Dat(Xt(x)), kt)

&(Qt��&1
t {��t dBt at(Xt(x)), U� k

t )

&(Q&1
t Nt , m tr

dBt
(k$t+

1
2R� tr

��t
kt)) . (3.23)

Proof. Comparing Eqs. (3.5) and (3.20) shows that N� t=Q� tN� t . Define
the finite energy process ls by ls :=(Q� s)

&1 ks so that ks=Q� s ls . Because

k$s=Q� sl$s&
1
2R� tr

��s
Q� sls=Q� sl$s&

1
2R� tr

��s
ks , (3.24)

it follows from Eq. (3.17) that U� k
t :=U l

t . This identity and

(N� t , lt)=(Q� tN� t , (Q� t)&1 kt)=(N� t , kt)

shows that Z� k
t =Zl

t as well. By Theorem 3.7 Z� k
t =Zl

t is a local martingale
on [0, `(x) 7 T[ and by Eq. (3.16) and Eq. (3.24) the differential of Z� k

t is
given by

dZ� k
t =(Q� t��&1

t {��t dBt Dat(Xt(x)), (Q� t)&1 kt)

&(Qt ��&1
t {��t dBt at(Xt(x)), U� k

t )

&(Nt , Q&1
t mtr

dBt
(k$t+

1
2 R� tr

��t
kt))

which is the same as Eq. (3.23). K
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4. THE FUNDAMENTAL DERIVATIVE FORMULAS

In this section, we will give a number of derivative formulas under the
assumption that the local martingales in Proposition 3.2 and Theorem 3.7
are in fact martingales. In the later sections we will verify this hypothesis
in a number of cases. To simplify notation, we will from now on assume
that the multiplication map m is compatible with the covariant derivative
{. Thus the assumptions which are in force in the remainder of the paper
are:

Assumption 2 (Standing Assumptions). Let E and E� be vector bundles
endowed with covariant derivatives. Assume that L, L� , and m are given
satisfying Assumption 1 and that m is compatible with the covariant
derivatives.

All of our examples in Section 3 satisfy this assumption. The following
theorem contains the basic derivative formulas in this paper.

Theorem 4.1 (Basic Derivative Formula I). Let a be a solution to
Eq. (3.3) and Q and Q� be given by (3.1) and (3.2). Also let { be a stopping
time bounded by T<� such that {<`(x) and let lt # E� *x be a finite energy
process on the stochastic interval [0, {]. Assume that { and l have been
chosen such that

E |(Q� { ��&1
{ Da{(X{(x)), l{) |<�, E |(Q{��&1

{ a{(X{(x)), U l
{) |<�,

where Ul is defined in Eq. (3.17). Further assume (Zl){
t :=Zl

t 7{ is a mar-
tingale where Zl

t is the local martingale in Eq. (3.15). Then

E[(Da0(x), l0)]=E[(Q� { ��&1
{ Da{(X{(x)), l{)]

&E[(Q{��&1
{ a{(X{(x)), U l

{)]. (4.1)

Therefore,

1. if l{=0 and l0=! # E� *x then

(Da0(x), !) =&E[(Q{��&1
{ a{(X{(x)), U l

{)], (4.2)

2. or if l0=0 and l{=! # E� *x (where ! may be random here) then

E[(Q� { ��&1
{ Da{(X{(x)), !)]=E[(Q{ ��&1

{ a{(X{(x)), U l
{)]. (4.3)

Proof. Since we have assumed that the expression (Zl){ in Eq. (3.15) of
Theorem 3.7 is a martingale, it follows that EZl

0=E(Zl){
T=EZl

{ , i.e.

E(N� { , l{)&E(N� 0 , l0)=E(N{ , U l
{)
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which along with the definitions of N, N� in Proposition 3.2 proves
Eq. (4.1). K

Remark 4.2. Suppose that lt # E� x is a finite energy process. Under the
further assumption that E and E� are Riemannian vector bundles and m is
compatible with {, Theorem 4.1 remains valid with all pairings ( } , } )
replaced by the appropriate inner products ( } , } )E or ( } , } )E� and all trans-
poses replaced by adjoints and Ul defined as in Eq. (3.18) above.

Theorem 4.3 (Basic Derivative Formula II). Let a be a solution to
Eq. (3.3) and Q be given by (3.1). Also let { be a stopping time bounded by
T<� such that {<`(x) and let kt # E� *x be a finite energy process on the
stochastic interval [0, {]. Assume that { and k have been chosen such that

E |(��&1
{ Da{(X{(x)), k{) |<�, E |(Q{ ��&1

{ a{(X{(x)), U� k
{) |<�,

where U� k is defined in Eq. (3.21). Further assume (Z� k){
t :=Z� k

t 7 { is a mar-
tingale where Z� k

t is the local martingale in Eq. (3.22). Then

E[(Da0(x), k0)]=E[(��&1
{ Da{(X{(x)), k{)]

&E[(Q{ ��&1
{ a{(X{(x)), U� k

{ )]. (4.4)

Therefore,

1. if k{=0 and k0=! # E� *x then

(Da0(x), !) =&E[(Q{��&1
{ a{(X{(x)), U� k

{ )], (4.5)

2. or if k0=0 and k{=! # E� *x (where ! may be random here) then

E[(��&1
{ Da{(X{(x)), !)]=E[(Q{��&1

{ a{(X{(x)), U� k
{ )]. (4.6)

Proof. The proof is the same as Theorem 4.1 except that we use
Corollary 3.9 in place of Theorem 3.7. K

The formulas appearing in Theorem 3.7 take on a simpler form when m
is compatible with { and lt is of the form lt=l� t! where l� t is an R-valued
finite energy process and ! # E� *. To write out these formula, it is con-
venient to introduce the process V l�

t # Hom(Ex , E� x) by

Vl�
t =|

t

0
l� $sQ� s mdBs Q

&1
s + 1

2 |
t

0
l� sQ� s\��s Q

&1
s ds, (4.7)

where \��s :=��&1
s \(Xs(x))��s and the E� x -valued process

Z� l�
t :=l� t N� t&V l�

t Nt . (4.8)
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Corollary 4.4. Let a be a solution to Eq. (3.3) and Q and Q� be given
by (3.1) and (3.2). Also let { be a stopping time bounded by T<� such that
{<`(x) and let l� t be an R-valued finite energy process on the stochastic
interval [0, {]. Assume that { and l� have been chosen such that

E |l� { Q� { ��&1
{ Da{(X{(x))|<�, E |V l�

{ Q{ ��&1
{ a{(X{(x))|<�,

where V l� is defined in Eq. (4.7). Further assume (Z� l� ){
t :=Z� l�

t 7 { is a mar-
tingale where Z� l�

t is the local martingale in Eq. (4.8). Then

Da0(x)=E[l� {Q� { ��&1
{ Da{(X{(x))]&E[V l�

{ Q{��&1
{ a{(X{(x))]. (4.9)

Moreover,

1. if l� {=0 and l� 0=1 then

Da0(x)=&E[V l�
{ Q{ ��&1

{ a{(X{(x))], (4.10)

2. or if l� 0=0 and l� {=1 then

E[Q� { ��&1
{ Da{(X{(x))]=E[V l�

{ Q{��&1
{ a{(X{(x))]. (4.11)

In the remainder of Section 4, we will illustrate the type of formulas that
can be derived from Theorem 4.1. For now we will just assume that the
hypothesis of Theorem 4.1 or Corollary 4.4 are satisfied. The subsequent
sections will address the issue of verifying these hypotheses in a number of
different contexts.

In order to apply Theorem 4.1, it is necessary to have a solution a to
Eq. (3.3). There are basically two choices which will be used in the sequel:
(i) at=e(T&t) L�2: where : # 1(E) and (ii) at=: where L:=0. The second
case is formally a special case of the first.

4.1. Feynman�Kac Formulas

For this subsection, we will assume that the lifetime !(x) of the
Brownian motion is infinite. We begin by recalling the Feynman�Kac
representation for etL and etL� .

Proposition 4.5 (Feynman�Kac). Suppose that : and :~ are smooth
sections of E and E� such that there exist smooth solutions to the partial
differential equations

�
�t

u(t)=
1
2

Lu(t) with u(0)=: (4.12)

60 DRIVER AND THALMAIER



and

�
�t

u~ (t)=
1
2

L� u~ (t) with u~ (0)=:~ . (4.13)

Further assume that there is a solution to Eq. (4.13) when :~ =D:. We will
write etL�2: for u(t), respectively etL� �2:~ for u~ (t), and etL� �2 D: for the solution
to Eq. (4.13) when :~ =D:. Let at=u(T&t)=e(T&t) L�2:, respectively,
a~ t=u~ (T&t)=e(T&t) L� �2:~ , and let Nt and N� t be defined by Eqs. (3.4) and
(3.5). If the local martingales Nt and

t � Q� t ��&1
t a~ t(Xt(x))

are in fact martingales for 0�t�T, then

(eTL�2:)(x)=E[QT��&1
T :(XT (x))], (4.14)

(eTL� �2:~ )(x)=E[Q� T��&1
T :~ (XT (x))]. (4.15)

Under the further assumptions,

(i) |
T

0
E |Q� t \��t Q

&1
t NT | dt<� (4.16)

(with \��t as in Eq. (3.14)) and (ii) the local martingale

t � |
t

0
Q� r ��&1

r {��r dBr Dar(Xr(x)) (4.17)

is a martingale on [0, T ], then

(eTL� �2 D:)(x)=(DeTL�2:)(x)

+ 1
2 E _\|

T

0
Q� t \��t Q

&1
t dt+ QT ��&1

T :(XT (x))& . (4.18)

Remarks 4.6. (i) Equation (4.18) is a stochastic version of Duhamel's
principle.

(ii) The hypotheses of the previous proposition are easily verified
when M is compact, see Proposition 5.1 below.

Proof (of Proposition 4.5). Since Nt is assumed to be a martingale,

(eTL�2:)(x)=E[N0]=E[NT]=E[QT ��&1
T :(XT (x))]

which proves Eq. (4.14). The proof of Eq. (4.15) is similar and so we omit it.
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Taking expectations of Eq. (3.7) of Proposition 3.2 and using Eq. (4.15)
with :~ =D:, we find that

(eTL� �2 D:)(x)=E[Q� T ��&1
T D:(XT (x))]=E[N� T]

=E[N� 0]+ 1
2 E |

T

0
Q� t��&1

t (\at)(Xt(x)) dt

=(DeTL�2:)(x)

+ 1
2E |

T

0
Q� t��&1

t \(Xt(x))��tQ&1
t Qt��&1

t at(Xt(x)) dt

=(DeTL�2:)(x)+ 1
2E |

T

0
Q� t \��t Q

&1
t Nt dt. (4.19)

Note that Eq. (4.16), along with the martingale property of Nt , implies
as well that

|
T

0
E |Q� t \��t Q

&1
t Nt | dt<�. (4.20)

To simplify notation, let 1t :=Q� t \��t Q
&1
t . From the bounds in Eqs. (4.16)

and (4.20) and Fubini's Theorem, it follows that

E |1t NT |<� and E |1t Nt |<� (4.21)

for almost every t # [0, T]. At any t where Eq. (4.21) holds, one shows
using the martingale property of Nt that E[1tNt]=E[1t NT]. (This is
done by first truncating 1t and then passing to the limit.) Since
E[1t Nt]=E[1t NT] for almost every t, we find that

E |
T

0
Q� t\��t Q

&1
t Nt dt=|

T

0
E[1tNt] dt=|

T

0
E[1tNT] dt,

which along with Eq. (4.19) implies Eq. (4.18) since

NT=QT ��&1
T aT (XT (x))=QT ��&1

T :(XT (x)). K

4.2. Semigroup Derivative Formulas
Let at=e(T&t) L�2: where : # 1(E) and etL�2 is the semigroup generated

by a suitable extension of L. Taking {=T in Theorem 4.1, we find the
following derivative formula from Eq. (4.2),

(DeTL�2:(x), !)=&E[(QT��&1
T :(XT (x)), U l

T)]

for any ! # E� *x (4.22)
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where l is an appropriate finite energy process with values in E� *x such that
lT=0 and l0=!. Similarly, using Proposition 4.5 and Eq. (4.3),

(eTL� �2 D:(x), !)=E[(Q� T ��&1
T D:(XT (x)), !)]

=E[(QT��&1
T :(XT (x)), U l

T)]

for any ! # E� *x , (4.23)

where now lT=! and l0=0.

Remark 4.7. It is interesting to notice that by choosing lT to be ran-
dom, we may also use Eq. (4.3) of Theorem 4.1 to get a formula for
eTL� �2D:(x) for any operator L� on 1(E� ) of the form L� =g� &R� . To do this,
let

d
dt

Q� t=&
1
2

Q� tR� ��t with Q� 0=idE� x , (4.24)

where R� ��t :=(��E�
t )&1 R� ��E�

t , and choose l such that l0=0 and lT=
(Q� TQ� &1

T )tr ! with ! # E� *x non-random. Then by the Feynman�Kac formula
(Proposition 4.5)

(eTL� �2 D:(x), !)=E[(Q� T��&1
T DaT (XT (x)), !)]

=E[(Q� T ��&1
T DaT (XT (x)), (Q� TQ� &1

T )tr !)]

=E[(Q� T ��&1
T DaT (XT (x)), lT)]. (4.25)

This equation along with Eq. (4.3) and aT=: implies that

(eTL� �2 D:(x), !)=E[(QT ��&1
T :(XT (x)), U l

T)], (4.26)

where l is an E� *x -valued process such that l0=0 and lT=(Q� TQ� &1
T )tr !.

Remark 4.8. Equations (4.22) and (4.23) provide stochastic formulas
for DeTL�2: and eTL� �2 D:, not containing derivatives of the section :. These
and related formulas rely on the fact that one of the local martingales given
by Eq. (3.15), or Eq. (3.19), or Eq. (3.22), is a martingale for certain choices
of a finite energy process [lt], respectively [kt]. Nevertheless there is an
essential difference between formula (4.22) and (4.23). To get the formula
for DeTL�2:, we need to know that the local martingale

Zl
t =(N� t , lt)&(Nt , U l

t ) ,

as given by Eq. (3.15), is a martingale for a finite energy process l such that
l0=! and lT=0. As we shall see (Section 6), this can always be achieved
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(independently of whether M is compact or complete), for instance, by tak-
ing ls=0 already for s�{ 7 T where { is the first exit time of X(x) from
some relatively compact neighborhood of x. On the other hand, to get the
formula for eTL� �2 D:, the martingale property for Zl is exploited where now
l0=0 and lT=!, which no longer is a local problem. It implies the second
equality in (4.23), which combined with the Feynman�Kac representation
for eTL� �2 D: gives both equalities in Eq. (4.23). As will be seen in Section 5,
the martingale property in this case is easily checked if M is compact (for
most applications, completeness of M is sufficient), but it is not automati-
cally satisfied in general. For instance, sticking to the case \=0 for sim-
plicity, and under the assumption that Zl is a martingale also for ls #!, we
get the formula

( (DeTL� �2:)(x), !) =E[(Q� T ��&1
T D:(XT (x)), !)]

which combined with Eq. (4.23) shows that DeTL� 2:=eTL� �2 D:, see also
Eq. (4.18). The validity of such commutation rules is known to be an
intriguing question for (non-complete) Riemannian manifolds.

4.3. Harmonic Section Derivative Formula

Suppose that a # 1(E) is a L-harmonic section (i.e. La=0) defined
locally in a neighborhood V of x. Let { be the first exit time of Xt(x) from
some relatively compact neighborhood of x which is contained in V. If
[lt]0�t<{ is a bounded L1-finite energy process (i.e. (�{

0 |l$(s)|2 ds)1�2 # L1)
such that l0=! # E� *x and l{=0, then

(Da(x), !) =&E[(Q{ ��&1
{ a(X{(x)), U l

{)] (4.27)

where Ul is the process defined in Eq. (3.17).

5. APPLICATIONS FOR COMPACT M

In order to avoid technical complications we will first demonstrate some
applications of the previous results under the assumption that M is a com-
pact manifold without boundary. Applications in the case that M is not
compact will be given in the next section. One key consequence of the com-
pactness of M is that `(x)=� a.s. for all x # M. Again recall that Assump-
tion 2 (at the beginning of Section 4) is in force throughout the remainder
of this paper.
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By standard elliptic P.D.E. theory and the Minakshisundaram�Pleijel
method for constructing heat kernels we have the following facts. The heat
equation

�t at=Lat with a0=: # 1(E) (5.1)

has a unique solution which we write as Pt :. The linear operator Pt :
1(E) � 1(E) extends continuously to a one-parameter semigroup on
L2(E), see for example Chapter 2 of [4]. The L2 generator of this semi-
group is the closure L� of L. To verify this last assertion, let L� be the L2

generator of Pt and L- denote the formal adjoint of L. Then using the
result in [4], L- generates (in the same way L generated P) the adjoint
semigroup Pt*. Therefore, for a # D(L� ) and b # 1(E), we have that

(L� a, b)=
d
dt }0+

(Pt a, b)=
d
dt }0+

(a, Pt*b)=(a, L-b).

This shows that L/L� /L� /(L-)*. However, by basic elliptic regularity
theory, D((L-)*)=D(L� )=H 2��the Sobolev space with two derivatives in
L2. Therefore, L� =L� =(L-)*. From now on we will write etL for Pt .

Proposition 5.1. Suppose that : and :~ are L2 sections of E and E�
respectively, then the Feynman�Kac formula in Eqs. (4.14) and (4.15) of
Proposition 4.5 are valid. If we further assume that : is an H1 section of E
(i.e. : is an L2 section of E with one weak derivative in L2), then Eq. (4.18)
is valid as well.

Proof. Using a continuity argument, it suffices to prove Eqs. (4.14),
(4.15) and (4.18) under the assumption that : and :~ are smooth sections
of E and E� respectively. Since M is compact, Qt , Q&1

t and Q� t are bounded
by eKt, where K is a non-random constant depending on the bounds on
R and R� . Using these facts and the assumed smoothness of : and :~ , it is
easy to see that the assumptions in Proposition 4.5 are satisfied. K

Remark 5.2. A simple consequence of Eq. (4.18) is that DetL�2:=
etL� �2 D: when \=0. Of course this may be proved directly as well. Indeed,
for : # 1(E), at=DetL�2: and bt=etL� �2 D: are both solutions to the heat
equation d

dt at=
1
2 L� at with initial condition at | t=0=D:. Uniqueness of

solutions to the L� heat equation gives at=bt , i.e.

DetL�2:=etL� �2 D: for all : # 1(E).

By continuity, the previous equation extends to all H 1 sections : of E.

65HEAT EQUATION DERIVATIVE FORMULAS



For a more general account on the elliptic theory of the heat equation
(5.1), including elliptic boundary problems in the case of compact
manifolds with boundary, the reader is referred to Agranovich [1], Grubb
[33], as well as Seeley [47, 48, 49].

5.1. Corollaries of Theorem 4.1

Corollary 5.3. Suppose that : is a bounded measurable section of E
and ! # E� *x . Let [lt]0�t�T be an L1-finite energy process with values in E� *x
(see Definition 3.6) such that lT=0. Then, with ! :=l0 # E� *x ,

(DeTL�2:(x), !) =&E[(QT��&1
T :(XT (x)), U l

T)], (5.2)

where Ul is given by Eq. (3.17). More generally, letting p # (1, �) and
q= p�( p&1) be the conjugate exponent of p, if [lt]0�t�T is an Lq-finite
energy process and : is an L p section of E, then Eq. (5.2) is still valid.

Proof. We will apply Theorem 4.1 with at(x) :=(e(T&t) L�2:)(x). By the
Burkholder�Davis�Gundy inequality, there exists a constant C, depending
only on q # [1, �), K and T, such that

E } |
T

0
Q&1

s m tr
dBs

Q� s l$s }
q

�CE _\|
T

0
|l$t | 2 dt+

q�2

&
and also

E } |
T

0
Q&1

s \ tr
��s

Q� sls ds }
q

�CE _\|
T

0
|ls | 2 ds+

q�2

&
�C \lq

0+E _\|
T

0
|l$s |2 ds+

q�2

&+ .

These equations together show that U l
T is Lq-integrable.

First suppose that : is a bounded measurable section of E. As in the
proof of Proposition 5.1, the local martingale N of Proposition 3.2 and Zl

of Theorem 3.7 are already martingales. In case |DetL�2:| is not bounded on
(0, T]_M it may be necessary to first modify l such that l(T&=)=0 for
some small =>0 and then to take the limit as = � 0, see [58] for details.

Finally, if p # (1, �) and [lt]0�t�T is an Lq-finite energy process, then
both sides of Eq. (5.2) depend continuously on : # L p(E), hence it suffices
to prove Eq. (5.2) when : is smooth. But for smooth : it is easy to verify
the hypothesis of Theorem 4.1. K
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Corollary 5.4. Suppose that : # 1(E) is an L-harmonic section (i.e.
L:=0) and ! # E� *x . Let [lt]0�t�T be an L1-finite energy process with values
in E� *x such that lT=0 and l0=! # E� *x . Then

(D:(x), !) =&E[(QT��&1
T :(XT (x)), U l

T)], (5.3)

where again U l is given by Eq. (3.17).

Proof. This is a consequence of Theorem 4.1 with at :=: or directly
from the previous Corollary upon noting that eTL�2:=: since L:=0. K

Corollary 5.5. Suppose that : is a C1 section of E and ! # E� *x . Let
[lt]0�t�T be an L1-finite energy process with values in E� *x such that l0=0
and lT=! # E� *x . Under Assumption 2,

(eTL� �2 D:(x), !)=E[(QT ��&1
T :(XT (x)), U l

T)], (5.4)

where Ul is given by Eq. (3.17). If instead we choose l as above except with
l0=! # E� *x and lT=0, then

(eTL� �2 D:(x), !)=E[(QT ��&1
T :(XT (x)), W l

T)], (5.5)

where

W l
T := 1

2 \|
T

0
Q� t\��t Q

&1
t dt+

tr

!&U l
T .

Proof. Equation (5.4) follows from Eq. (4.3) of Theorem 4.1 with at :=
e(T&t) L�2:. Equation (5.5) is a consequence of Eq. (4.2) of Theorem 4.1 and
Eq. (4.18) which imply,

&E[(QT ��&1
T aT (XT (x)), U l

T)]

=(DeTL�2:(x), !)

=( (eTL� �2 D:)(x), !)

& 1
2E _�\|

T

0
Q� t \��t Q

&1
t dt+ QT ��&1

T :(XT (x)), !�& . K

Remark 5.6. Suppose that E and E� are Hermitian vector bundles with
metric compatible covariant derivatives. Under these conditions, the results
of Corollaries 5.3, 5.4, and 5.5 may be rewritten by replacing the dual space
E� *x by E� x and the dual parings ( } , } ) by the appropriate Hermitian
metrics and then using Eq. (3.18) to define the process U l

t .
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5.2. Formulas for Dirac operators

Let us specialize Corollaries 5.3 and 5.5 to the case where E=E� =S is
a spin bundle over M. Recall that S is Riemannian vector bundle with
metric compatible spin connection {S, see Example 2.13. In this case
R=R� = 1

4scal, \=0,

QT=Q� T=e&(1�8) �0
T scal(Xt(x)) dt idSx

and

Ul
T=&|

T

0
#dBs l$s ,

wherein we have used the fact that #*=&#. Corollary 5.3 (see Remark 5.6)
becomes

(De&TD2�2:(x), !)Sx

=E _e&(1�8) �0
T scal(Xt(x)) dt \��&1

T :(XT (x)), |
T

0
#dBs l$s+Sx

& ,

where l is an L1-finite energy process with values in Sx such that lT=0
and l0=! # Sx . Taking lt=ht ! in the previous equation (where ! # Sx and
ht is an L1-finite energy process with values in R) gives

(De&TD2�2:)(x)

=&E _e&(1�8) �0
T scal(Xt(x)) dt \|

T

0
h$s#dBs+ ��&1

T :(XT (x))& (5.6)

wherein we have used the fact that #v*=&#v . Choosing ht=1&t�T in this
equation implies

(De&TD2�2:)(x)=
1
T

E[e&(1�8) �0
T scal(Xt(x)) dt#BT ��&1

T :(XT (x))]. (5.7)

Similarly, using Eq. (5.4) of Corollary 5.5 (with ! # Sx),

(e&TD2�2 D:(x), !)Sx

=&E _e&(1�8) �0
T scal(Xt(x)) dt \��&1

T :(XT (x)), |
T

0
#dBs l$s +Sx

& ,
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where l is an L1-finite energy process with values in Sx such that lT=!
and l0=0. Taking lt=t!�T in the previous equation gives the same for-
mula for e&TD2�2 D:(x) as in the right side of Eq. (5.7). This of course
should be the case since [D, L]=0.

5.3. Application to d and d*

Let E=E� =4T*M, L=L� =2 and Pt :=et2� �2 where 2� is the self-adjoint
extension of 2. An application of Corollary 5.3 with m being either the inte-
rior product A or the exterior product C (see Example 2.11 and Defini-
tion A.1 in Appendix A for the notation) gives the following theorem.

Theorem 5.7. Let M be a compact manifold, a be a bounded measurable
section of 4T*M and v # 4Tx M for some x # M. Then

( (dPTa)x , v)=&E _���&1
T a(XT (x)), QT |

T

0
Q&1

t (AdBt Qt l$t)�& (5.8)

( (d*PTa)x , v)=&E _���&1
T a(XT (x)), QT |

T

0
Q&1

t (dBt 7Qt l$t)�& , (5.9)

where l is any L1-finite energy process with values in 4TxM such that l0=v
and lT=0, Qt is the solution to the differential equation

d
dt

Qt=&
1
2

Rtr
��t

Qt with Q0=id4Tx M , (5.10)

Rtr
��t

=��&1
t Rtr��t and Rtr is the Weitzenbo� ck curvature term described in

Eq. (A.16) of Lemma A.9, Appendix A.

Similarly an application of Corollary 5.5 with m being either the interior
product A or the exterior product C implies the following theorem.

Theorem 5.8. Let M be a compact manifold, a be a C 1 section (H1

would do) of 4T*M and v # 4Tx M for some x # M. Then

( (PT da)x , v)=E _���&1
T a(XT(x)), QT |

T

0
Q&1

t (AdBt Qt l$t)�& (5.11)

( (PT d*a)x , v)=E _���&1
T a(XT(x)), QT |

T

0
Q&1

t (dBt 7 Qt l$t)�& , (5.12)

where l is any L1-finite energy process with values in 4TxM such that l0=0
and lT=v and Qt solves Eq. (5.10) as above.
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This theorem also follows from Theorem 5.7 because dPT a=PT da and
d*PT a=PT d*a for C1 sections a of 4T*M, see Remark B.9.

In the special case where l$#constant, the formulas (5.9) and (5.10)
have been derived by Elworthy and Li [26] from a non-intrinsic formula
by the techniques of filtering out redundant noise, as developed in
Elworthy and Yor [27]; see [23] for a general account on this.

Specializing Eq. (5.8) to zero forms gives the following Bismut type for-
mula, see [24, 56, 58].

Corollary 5.9. Let f: M � R be bounded and measurable, x # M and
v # TxM. Then, for any L1-finite energy process l with values in TxM such
that l0=v, and lT=0,

( (dPT f )x , v)=&E _f (XT (x)) |
T

0
(Qtl$t , dBt)& ,

where Qt is the Aut(TxM)-valued process satisfying the differential equation:

d
dt

Qt=&
1
2

Ric��t Qt with Q0=idTxM . (5.13)

Proof. Letting a= f # 40(T*M) in Eq. (5.8) and using the fact that ��t

and Qt act as the identity on 0-forms we find that

( (dPT f )x , v)=&E _f (XT (x)) |
T

0
AdBt Qtl$t&

=&E _f (XT (x)) |
T

0
(Qt l$t , dBt)& ,

where Qt is the restriction of the solution of Eq. (5.10) to TxM. By
Eq. (A.17) of Appendix A Rtr | TM=Ric, and thus Qt restricted to TxM
solves Eq. (5.13). K

The following theorem is a special case of Eq. (5.9) of Theorem 5.7 and
improves a result in [19] (see Corollary 5.18 below) by giving a formula
for E[{ } Y(XT (x))] which does not contain derivatives of the curvature
tensor.

Theorem 5.10. Let M be a compact Riemannian manifold, Qt denote the
solution to Eq. (5.13), Y be a smooth vector field on M, { } Y denote the
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divergence of Y, T>0 and l be a real-valued L1-finite energy process. If
l0=0 and lT=1, then

E[{ } Y(XT (x))]=&E _\��&1
T Y(XT (x)), QT |

T

0
l$tQ

&1
t dBt +& . (5.14)

Proof. Let a=(Y, } ) # 01(M). By Eq. (A.9) of Appendix A,

d*a=&:
i

Aei {ei a=&:
i

Aei ({ei Y, } )=&{ } Y.

Applying Eq. (5.12) with v=1 # 40(TxM) implies

E[{ } Y(XT (x))]=&( (PT d*a)x , 1)

=&E _���&1
T a(XT (x)), QT |

T

0
Q&1

t l$t dBt�& ,

where we have used the fact that Rtr=0 on 40(TM) and Rtr=Ric on
41(TM) and hence that Qt | 40(TxM)=id and Qt | 41(TxM) solves
Eq. (5.13). This proves Eq. (5.14) because ��&1

T a(XT (x))=(��&1
T Y(XT (x)), } ).

K

Note that compactness of M is not essential here: the formulas in
Theorem 5.8 only require the martingale property of (3.15), or (3.19), for
some l such that l0=v and lT=0. As indicated in Remark 4.8, this can
always be achieved and gives a formula for (dPTa)(x), respectively.
(d*PTa)(x), as long as PTa is well-defined, i.e. Q&1

T ��&1
T a(XT (x)) # L1. In

particular, a need not be differentiable. Also the finite lifetime of the
Brownian motion only effects the stochastic representation of PTa, see
Section B.1 of Appendix B but not the given argument. (See Section 6 for
precise statements in this direction.) In the situation of Theorem 5.10 this
shows that the right-hand side of Eq. (5.14) is just &d*PTa where
a=(Y, } ). To verify however that

d*PTa=&E[({ } Y)(XT (x))] (#PT d*a) (5.15)

requires assumptions (in particular, differentiability of a): it precisely
reflects the property that the local martingale (3.5) is actually a martingale,
from where (5.15) follows by taking expectations.

5.3.1. An integrated logarithmic gradient estimate for the heat kernel
on M. As an application of formula (5.14) we get the following integrated
estimate for the gradient of the logarithmic derivative of the heat kernel
on M. Of course this result may be derived by partial differential equation
techniques as well.
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Theorem 5.11. Let M be a compact Riemannian manifold without
boundary. For every q # [1, �[ there is a constant Cq<� such that for all
t�1,

\|M
|{z log pt(x, z)|q pt(x, z) vol(dz)+

1�q

�Cqe2Ktt&1�2, (5.16)

where K is a bound on the Ricci curvature (Ric) of M.

Remark 5.12. This estimate with q=1 may be used to show that pinned
Brownian motion on a compact manifold is a semimartingale.

Proof. Without loss of generality, we may assume that q�2. Since

E[{ } Y(XT (x))]=|
M

pT (x, z) { } Y(z) vol(dz)

= &|
M

(Y(z), {z log pT (x, z))TM pT (x, z) vol(dz),

Equation (5.14) is equivalent to

|
M

(Y(z), {z log pT (x, z))TM pT (x, z) vol(dz)

=E _\��&1
T Y(XT (x)), QT |

T

0
l$t Q

&1
t dBt +& ,

where l is a real-valued L1-finite energy process such that l0=0 and lT=1.
If K is a bound on Ric and 1�p+1�q=1, Ho� lder's and the Burkholder�

Davis�Gundy inequalities imply

} |M
(Y(z), {z log pT (x, z))TM pT (x, z) vol(dz)}
�eKT E _ |Y(XT (x))| } |

T

0
l$tQ

&1
t dBt }&

�eKT (E |Y(XT (x))| p)1�p \E } |
T

0
l$tQ

&1
t dBt }

q

+
1�q

�CqeKT (E |Y(XT (x))| p)1�p \E } |
T

0
tr[(Q&1

t )* Q&1
t ] l$2

t dt }
q�2

+
1�q

�Cqe2KT (E |Y(XT (x))| p)1�p \E } |
T

0
l$2

t dt }
q�2

+
1�q
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for some constant Cq<�. Choosing lt :=t�T in this inequality shows,

} |M
(Y(z), {z log pT (x, z))TM pT (x, z) vol(dz)}
�T &1�2Cqe2KT (E |Y(XT (x))| p)1�p

=T &1�2Cqe2KT \|M
|Y(z)| p pT(x, z) vol(dz)+

1�p

.

Now choose Y(z) :=|{z log pT (x, z)|q&2 {z log pT (x, z) to get

|
M

|{z log pT (x, z)|q pT (x, z) vol(dz)

�T &1�2Cqe2KT \|M
|{z log pT (x, z)| p(q&1) pT (x, z) vol(dz)+

1�p

=T &1�2Cqe2KT \|M
|{z log pT (x, z)|q pT (x, z) vol(dz)+

1&1�q

.

Solving this equation for (�M |{z log pT (x, z)|q pT (x, z) vol(dz))1�q proves
Eq. (5.16). K

5.4. Formulas for {eTL�2

In this subsection, we will write out the results in Corollaries 5.3, 5.5 and
Theorem 4.3 when D={. Let E � M be a Riemannian vector bundle with
metric compatible covariant derivative {E, R # 1(End(E)), E� :=T*M�E,
m=id (the identity multiplication map), Dm={E, and L=g&R. We
also define R� # 1(End(E� )) and \ # 1(Hom(E, E� )) by

R� =Rictr � idE&2RE } +idT*M�R,

and

\={ } RE+({End(E)R).

By Proposition 2.15, L :=g&R, L� =g� &R� , \, and m satisfy Assump-
tion 2. We have the following immediate consequences of Corollaries 5.3
and 5.5.

Theorem 5.13. Suppose that : is a bounded measurable section of E and
! # E� *x=TxM�E*x and [lt]0�t�T a L1-finite energy process with values in
E� *x (see Definition 3.6) such that lT=0 and l0=! # E� *x . Then

({eTL�2:(x), !) =&E[(QT��&1
T :(XT (x)), U l

T)], (5.17)
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where Ul is given by Eq. (3.17). If we further assume that : is an H 1 section
of E and [lt]0�t�T is an L1-finite energy process with values in E� *x such that
l0=0, then

(eTL� �2 {:(x), !)=E[(QT ��&1
T :(XT (x)), U l

T)]. (5.18)

Remark 5.14. We may extend Eq. (5.18) using Remark 4.7 as follows.
Let R� be an arbitrary section of End(E� ), L� =g� &R� and

d
dt

Q� t=&
1
2

Q� tR� ��t with Q� 0=idE� x , (5.19)

where as before R� ��t :=(��E�
t )&1 R� ��E�

t . Then

(eTL� �2 {:(x), !)=E[(QT ��&1
T :(XT (x)), U l

T)],

where lt is any L1-finite energy process such that l0=0 and lT=
(Q� TQ� &1

T )tr !.

By using Theorem 4.3, we may get another (more explicit) formula for
{eTL�2. This theorem will be given after the following preparatory Lemma.

Lemma 5.15. The transpose of the multiplication map m=id is the
``annihilation'' operator A, where Av : E� *=TM�E* � E* is determined by

Av(w�:)=(v, w) : for all v, w # TxM, : # E*x , x # M.

Also

R� tr=Ric� idE*+2 :
n

i=1

e i�RE*( } , e i)+idTM�Rtr, (5.20)

where [ei]n
i=1 is a local orthonormal frame and ei�RE*( } , e i) # 1(End(E� *))

is determined by

ei �RE*( } , ei)(v�:)=ei �RE*(v, e i) :=&ei �: b RE (v, ei)

for v # TxM and : # E*x . Moreover,

\tr=({ } RE)tr+({End(E)R)tr # 1(Hom(TM�E*, E*)), (5.21)

where

({ } RE)tr (v�:)=: b ({ } RE)(v)= :
n

i=1

: b (({ei R
E)(ei , v)) (5.22)

and

({End(E)R)tr (v�:)=: b ({End(E)
v R). (5.23)
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Proof. Let v, w # TxM, ! # Ex and : # E*x . Since mv : Ex � E� x=
T*x M�Ex is given by mv!=(v, } )�!, it follows that

(mv!, w�:) =(v, w)(!, :)=(!, (v, w) :)=(!, Av(w�:))

which shows that m tr
v =Av . Now let ; # Hom(TxM, Ex)$T*x M�Ex .

Then Eq. (5.20) follows by taking transposes of Eq. (2.7) along with the
computation,

( (RE } )tr (v�:), ;) =(v�:, RE } ;)

= :
n

i=1

(:, RE(v, ei) ;(ei))

= :
n

i=1

(ei�RE (v, ei)
tr :, ;)

=& :
n

i=1

(ei�RE*(v, e i) :, ;).

Eqs. (5.21), (5.22) and (5.23) are proved similarly:

( ({ } RE) !, v�:) = :
n

i=1

( ({ei R
E)(ei , v) !, :)

= :
n

i=1

(!, : b (({ei R
E)(e i , v))) ,

and

( ({End(E)R) !, v�:)=( ({End(E)
v R) !, :)

=(!, ({End(E)R)tr (v�:))

=(!, : b ({End(E)
v R)) . K

Theorem 5.16. Let R # 1(End(E)), Q be as in Eq. (3.1), L=g&R,
and m=id. Suppose that : is a bounded measurable section of E, ls is a
TxM-valued L1-finite energy process and

Vl
t :=|

t

0
[(l$s+

1
2 Ric��s ls , dBs)&RE

��s
(ls , $Bs)+ 1

2(ls , dBs
�

) R��s] Q&1
s ,

where $Bs , and dBs
�

denotes the Fisk-Stratonovich and backwards Itô dif-
ferential respectively. (More precisely, if X is another semimartingale, then
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Xs $Bs=Xs dBs+
1
2 dXs dBs and Xs dBs

�
=Xs dBs+dXs dBs .) If l0=v # TxM

and lT=0 then

{veTL�2:(x)=&E[V l
TQT ��&1

T :(XT (x))], (5.24)

and assuming in addition that a # 1(E), if l0=0 and lT=v # Tx M then

(eTg� �2 {:)v=E[V l
T QT��&1

T :(XT (x))]. (5.25)

Proof. Let at :=e(T&t) L�2:, ! # E*x , ls be an L1-finite energy process
with values in TxM and ks=ls�!. In order to apply Theorem 4.3 we need
to work out U� k

t defined in Eq. (3.21). Using Lemma 5.15,

mtr
dBs

(k$s+
1
2 R� tr

��s
ks)=AdBs(l$s�!+ 1

2R� tr
��s

(ls�!))

=(l$s , dBs) !+ 1
2(Ric��s ls , dBs) !

+ :
n

i=1

(ei , dBs) RE*
��s

(ls , ei) !+ 1
2(ls , dBs) R tr

��s
!

=(l$s+
1
2 Ric��s ls , dBs) !+RE*

��s
(ls , dBs) !

+ 1
2 (ls , dBs) R tr

��s
!.

Similarly,

\tr
��s

ks=({ } RE) tr
��s

(ls) !+({End(E)R) tr
��s

(ls) !

and hence from Eq. (3.21),

U� k
t =|

t

0
Q&1

s [(l$s+
1
2 Ric��s ls , dBs) !+RE*

��s
(ls , dBs) !

+ 1
2 (ls , dBs) Rtr

��s
!]

+ 1
2 |

t

0
Q&1

s (({ } RE) tr
��s

(ls) !+({End(E)R) tr
��s

(ls) !) ds

=|
t

0
Q&1

s [(l$s+
1
2 Ric��s ls , dBs) !+RE*

��s
(ls , $Bs) !

+ 1
2 (ls , dBs

�
) R tr

��s
!]

=(V l
t )tr !,

where in the last equality recall that RE*(v, w)=&(RE (v, w))tr. This com-
putation along with Eq. (4.5) of Theorem 4.3 gives:
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If lT=0 and l0=v # Tx M then

({veTL�2:(x), !)=({eTL�2:(x), v�!)

=&E[(QT ��&1
T aT (XT (x)), (V l

T) tr !)]

which implies Eq. (5.24) since ! # E*x is arbitrary. Similarly if lT=v # TxM
and l0=0, then by Eq. (4.6) of Theorem 4.3

E[(��&1
T {:(XT (x)), v�!)]=E[(QT ��&1

T :(XT (x)), (V l
T)tr !)].

By Eq. (4.15) of Proposition 4.5,

( (eTg� �2 {:)v , !) :=( (eTg� �2 {:)(x), v�!)

=E[(��&1
T {:(XT (x)), v�!)].

Combining the last two equations proves Eq. (5.25). K

Corollary 5.17. Let : # L2(E) and T>0 and Qt be the End(TxM)-
valued process defined as the solution to the ordinary differential equation

Q4 + 1
2 Ric��t Qt=0 with Q0=idTx M .

If hT=0 and h0=v # Tx M then

{veTg�2:=&E _{|
T

0
[(Qt h4 t , dBt)+RE

��t
($Bt , Qtht)]= ��&1

T :(XT)& . (5.26)

Assume in addition that : # 1(E). If hT=Q&1
T v # TxM and h0=0, then

(eTg� �2 {:)v=E _{|
T

0
[(Qt h4 t , dBt)+RE

��t
($Bt , Qtht)]= ��&1

T :(XT)& (5.27)

where E� =T*M�E.

Proof. This follows from an application of Theorem 5.16 with R=0
and lt :=Qtht . K

As an application of Theorem 5.16 we may recover the following result
in [19] (see Theorem 4.1 and Corollary 4.3). A better version of this for-
mula has already appeared in Theorem 5.10 above.

Corollary 5.18. Suppose that Y is a C1 vector field on M and h is an
L1-finite energy path with values in R such that h0=0 and hT=1, then

E[({ } Y)(XT (x))]

=E \��&1
T Y(XT (x)), |

T

0
(h$s dBs&

1
2 hs Ric��s dBs

�
)+ (5.28).

77HEAT EQUATION DERIVATIVE FORMULAS



Proof. By Theorem 5.16 with E=TM, R=0 (and hence Q=id) and
l0=0, we have

E[��&1
T ({��TlT :)(XT (x))]=E[V l

T ��&1
T :(XT (x))], (5.29)

where

V l
t :=|

t

0
(l$s+

1
2 Ric��s ls , dBs)&|

t

0
RTM

��s
(ls , $Bs).

Let [ei]n
i=1 be an orthonormal basis for TxM. Replace l in Eq. (5.29) by

li
s :=hs ei , take the inner product with ei and then sum on i to find:

E[({ } Y)(XT(x))]= :
n

i=1

E[({��T ei Y(XT (x)), ��Tei)]

= :
n

i=1

E[(��&1
T {��Tl

i
T
Y(XT (x)), ei)]

= :
n

i=1

E[(V li

T ��&1
T Y(XT (x)), ei)]

= :
n

i=1

E[(��&1
T Y(XT (x)), (V li

T)* ei)].

This finishes the proof since

:
n

i=1

(V li

T)* ei =|
T

0
:
n

i=1

[(h$s ei+
1
2 hs Ric��s ei , dBs) ei

+RTM
��s

(hsei , $Bs) ei]

=|
T

0
((h$s+

1
2 hs Ric��s) dBs&hi Ric��s $Bs)

and

1
2hs Ric��s dBs&hs Ric��s $Bs

= 1
2hs Ric��s dBs&hs Ric��s dBs&

1
2 hs d Ric��s dBs

=&1
2hs Ric��s dBs&

1
2hs d Ric��s dBs

=&1
2hs Ric��s dBs

�
. K
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Remark 5.19. The backwards Itô differential in Eq. (5.28) may be
expressed as

hs Ric��s dBs
�

=hs Ric��s dBs+
1
2hs ��&1

s {9 scal(Xs(x)) ds, (5.30)

where {9 scal denotes the gradient of the scalar curvature of M. The proof
proceeds as follows,

hs Ric��s dBs
�

=hs Ric��s dBs+hs d Ric��s dBs

=hs Ric��s dBs+ :
n

i=1

hs ��&1
s ({��sei Ric)��sei ds

=hs Ric��s dBs+hs��&1
s { } Ric ds, (5.31)

where { } Ric is the vector field on M given by

{ } Ric := :
n

j=1

({ej Ric) e j ,

where [ej]n
j=1 is a local orthonormal frame on M. On the other hand for

v # TxM,

v scal= :
n

i=1

v(Ric ei , ei)= :
n

i=1

({v Ric ei , ei)

= :
n

i, j=1

(({vRTM)(ei , ej) ej , ei)

which by the Bianchi identity (d{RTM=0) may be written as

v scal=& :
n

i, j=1

(({ej R
TM)(v, e i) ej , ei)& :

n

i, j=1

(({ei R
TM)(ej , v) ej , ei)

= :
n

i, j=1

(({ej R
TM)(v, ei) ei , ej)+ :

n

i, j=1

(({ei R
TM)(v, ej) ej , ei)

=2 :
n

j=1

(({ej Ric) v, ej)=2 :
n

j=1

(({ej Ric) ej , v)

=2({ } Ric, v).

Hence { } Ric={9 scal�2 which combined with Eq. (5.31) proves Eq. (5.30).
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5.5. Formulas for {et2�2 on 01(M)

Using Example 2.11, Theorem 5.13 we may write formulas for {et2�2 on
0k(M) for 0�k�n. Rather than doing this in general, we will content
ourselves with the case k=1. So in this section let E=T*M, E� =
T*M�T*M, and 2=&d*d&dd* on 01(M).

Proposition 5.20. Suppose that : is a bounded measurable differential
1-form (i.e. section of T*M) and ! # E� *x=TxM�TxM. Let [lt]0�t�T be
an L1-finite energy process with values in Tx M�TxM (see Definition 3.6)
such that lT=0 and l0=!. Then

({eT2�2:(x), !) =&E[(QT��&1
T :(XT (x)), U l

T)], (5.32)

where

Ul
t =|

t

0
Q&1

s AdBs Q� sl$s+
1
2 |

t

0
Q&1

s \ tr
��s

Q� sls ds, (5.33)

\tr # 1(Hom(TM�TM, TM)) is given by

\tr(v�w)=({v Ric) w&({ } RTM)(v) w, (5.34)

Q and Q� are defined by Eqs. (3.11) and (3.12) with Rtr=Ric and

R� tr=Ric� idTM+2 :
n

i=1

ei�RTM( } , ei)+idTM�Ric, (5.35)

where (see Lemma 5.15)

ei �RTM( } , ei)(v�w)=ei�RTM(v, ei) w

for v, w # TxM.

Proof. By Eq. (A.17) of Lemma A.9, we have 2=g&R where R=
Rictr. Let E=T*M, E� =T*M�T*M and m, \ and R� be as in Proposi-
tion 2.15. By Lemma 5.15 above, mtr

v =Av , R� tr is given by Eq. (5.35) and

\tr=({ } RT*M)tr+({End(T*M) Rictr)tr.

Since RT*M(v, w)=&(RTM(v, w))tr and in general {v(Atr)=({vA)tr, the
previous equation is the same as Eq. (5.34) above. Finally Eq. (5.32)
follows from Corollary 5.3. K

We may get another formula by using Theorem 5.16 in place of
Corollary 5.3.
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Proposition 5.21. Suppose : is a bounded measurable 1-form on M and
ls is a TxM-valued L1-finite energy process such that l0=v # TxM and
lT=0. Then

{veT2�2:(x)=&E[V l
TQT ��&1

T :(XT (x))],

where

V l
t :=|

t

0
[(l$s+

1
2 Ric��s ls , dBs)&RT*M

��s
(ls , $Bs)

+ 1
2 (ls , dBs

�
) Rictr

��s
] Q&1

s

and Q solves

dQs

ds
=&Qs Ric tr

��s
with Q0=idT*x M .

See Theorem 5.16 for the meaning of $Bs and dBs
�

.

Remark 5.22. The expression for V l
t may be written solely in terms of

Itô differentials using

RT*M
��s

(ls , $Bs)=RT*M
��s

(ls , dBs)+ 1
2 :

n

i=1

({��sei R
T*M)��s (ls , ei) ds

=RT*M
��s

(ls , dBs)& 1
2 ({ } RT*M)��s (ls) ds

and

(ls , dBs
�

) Ric tr
��s

=(ls , dBs) Rictr
��s

+ :
n

i=1

(ls , ei)({��sei Ric) tr
��s

ds

=(ls , dBs) Rictr
��s

+({��s ls Ric) tr
��s

ds.

6. APPLICATIONS FOR NON-COMPACT M

For E=4T*M let again 2=g&R be the Rham�Hodge Laplacian on
1(E) where R # 1(End E) denotes the Weitzenbo� ck curvature term, see
Proposition A.7 of Appendix A. Further, let R

�
=min Spec R, i.e.

R
�
(x)=min[(Rxv, v): v # Ex , |v|=1], (6.1)

and consider the scalar semigroup PR
�t as defined in Appendix B Sect. B.1.
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Now let 2� be the Friedrichs extension of 2 | 1c(E) and Pt a=et�22� a be
the semigroup on L2(E) generated by 2� �2 and Qt denote the solution to
Eq. (3.1). Then,

Pt a(x)=E[Qt ��&1
t a(Xt(x)) 1[t<`(x)]] (6.2)

for all a # L2(E) with PR
�t |a|(x)<�, see Appendix B Theorem B.4.

On a complete manifold, by the spectral theorem, one has dPt a=Pt da,
and dual to this, d*Pt a=Pt d*a, see Section B.2 in Appendix B below. If
we drop completeness then these equations are no longer true, even if M
is BM-complete, see [59]. But we will show that there always exist Bismut
type formulas for dPt a and d*Pt a, not involving derivatives of a, inde-
pendently whether a is smooth or not.

Theorem 6.1. Let M be a Riemannian manifold, a # L2(4T*M) and
x # M such that PR

�T |a| (x)<� for some T>0, further let { be the first exit
time of X(x) from some relatively compact neighborhood of x and T*=
(T&=) 7 { for some arbitrary small =>0. Then for any v # 4Tx M the
following formulas hold:

( (dPT a)x , v)

=&E _���&1
T a(XT (x)) 1[T<`(x)] , QT |

T

0
Q&1

t (AdBt Qt l$t)�&
( (d*PT a)x , v)

=&E _���&1
T a(XT (x)) 1[T<`(x)] , QT |

T

0
Q&1

t (dBt 7 Qtl$t)�&
for any bounded finite energy process l with values in 4TxM such that l0=
v, lt=0 for all t�T*, and the property that E[(�T*

0 |l$s |2 ds)1�2]<�. If, in
addition, a # L2(4T*M) is bounded on this neighborhood, one can take ==0.

Proof. Recall that Qt is defined by Eq. (5.10) and let Qt :=Q tr
t .

We fix a relatively compact neighborhood U of x. Then |(PT&t a)(Xt)|,
|(dPT&t a)(Xt)| and |(d*PT&t a)(Xt)|, where X#Xv(x) denotes our Brow-
nian motion starting from x, as well as Qt and Qt , are all bounded on the
stochastic interval [0, T*]. This shows that the local martingales in
Proposition 3.2 and in Theorem 3.7 are uniformly integrable martingales
when stopped at t=T*. Taking expectations at time 0 and T* leads to

( (dPT a)x , v)

=&E _�QT*��&1
T* (PT&T*a)(XT*), |

T*

0
Q&1

t (AdBt Q
tr
t l$(t))�& .
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Note that

QT* ��&1
T* (PT&T*a)(XT*)=EFT *[QT��&1

T a(XT) 1[T<`(x)]]

which is by definition a bounded FT* -measurable random variable. This
gives the first formula of the Theorem, the second one is derived in a com-
pletely analogous way.

If a is bounded, eventually by modifying l, we assume first that l#0
already on [T 7{, T ] & [T&=, T ] for some small =>0. Finally, this
restriction can again be removed in the resulting formulas by letting = tend
to 0, see [58] for technical details. K

6.1. Bismut's Formula
The following example is taken from [58]. There are similar formulas for

(du)x if u is harmonic on some domain about x, see [58, 60].

Theorem 6.2. Let f: M � R be a bounded measurable function, x # M
and v # TxM. Then, for any bounded finite energy process [lt]t # [0, �[ with
values in TxM such that E[(�{ 7 T

0 |l$s |
2 ds)1�2]<�, and the property that

l0=v, ls=0 for all s�{ 7 T, the following formula holds,

( (dPT f )x , v)=&E _f (XT (x)) 1[T<`(x)] |
{ 7 T

0
(Qsl$s , dBs)& , (6.3)

where { is the first exit time of X(x) from some relatively compact open
neighborhood D of x and Q is the process defined in Eq. (5.13) of
Corollary 5.9.

On the other hand showing, for instance, that

( (dPT f )x , v)=E[(QT��&1
T (df )XT (x) , v) 1[T<`(x)]]

is a quite different matter: it requires the martingale property of

Qt��&1
t (dPT&t f )Xt(x) 1[t<`(x)] , 0�t�T,

which comes down to a question of differentiation under the expectation.
In particular, it is necessary for f to be differentiable.

6.2. Dirichlet Problem for Harmonic Forms
We conclude this section by specializing our results in case of the

Dirichlet problem for harmonic forms on bounded domains. In particular,
we present stochastic formulas for differentials and co-differential of har-
monic forms on manifolds with boundary. These formulas can be used to
prove local Harnack type estimates for harmonic forms in the same way as
has been done for harmonic functions in [60].

83HEAT EQUATION DERIVATIVE FORMULAS



Theorem 6.3. Let M be a compact Riemannian manifold with non-
empty boundary �M, a # 1(4T*M), x # M"�M and { be a positive bounded
stopping time which is dominated by the first time the Brownian motion X(x)
hits the boundary �M. (For simplicity, a is assumed to be smooth up to the
boundary of M.) Let Qt denote the solution to Eq. (5.10) of Theorem 5.7
defined on the stochastic interval [0, {] and Qt=Q tr

t . If a is harmonic (i.e.
2a# &(d*d+dd*) a=0) on M"�M, then

a(x)=E[Q{ ��&1
{ a(X{(x))] (6.4)

and for any v # 4TxM the following formulas hold,

( (da)x , v)=&E _�Q{��&1
{ a(X{(x)), |

{

0
Q&1

t (AdBt Qt l$t)�& (6.5)

( (d*a)x , v)=&E _�Q{ ��&1
{ a(X{(x)), |

{

0
Q&1

t (dBt 7 Qt l$t)�& , (6.6)

where [l]s # [0, �[ is a bounded L1-finite energy process taking values in
4TxM such that l0=v, l{=0, and the property that (�{

0 |l$s | 2 ds)1�2 # L1.

Proof. Note that a, da, d*a extend as bounded sections to M since M
is compact. The proof is now essentially the same as the proof of
Theorem 5.7 above with Pt a replaced by a and T by {. The key point is
that the local martingales of Proposition 3.2 and Theorem 3.7 are easily
seen to be martingales up to the first exit time {. Hence the optional
sampling theorem applies to give stopped versions of Proposition 4.5,
Corollary 5.3 and Corollary 5.5 from which Eqs. (6.4), (6.5) and (6.6)
follow. K

Remark 6.4. The formulas (6.4), (6.5), and (6.6) in Theorem 6.3 hold as
well when { is the first time the Brownian motion X(x) hits the boundary,
�M, provided that

E _exp \&1
2 |

{

0
R(Xs(x)) 7 0 ds+&<�, (6.7)

where R is given by Eq. (6.1) and the L1-finite energy process [l]s # [0, �[

in Eqs. (6.5) and (6.6) is chosen with the additional restriction that ls=0
if s�{ 7 t0 for some t0 # (0, �). Indeed, if { denotes the first hitting time
of the boundary �M then the formulas (6.4), (6.5), and (6.6) hold with
{7 T instead of { for any T�t0 , and condition (6.7) gives the existence
of an L1-dominating function for [Q{ 7 T]T>0 (see estimate (B.11) of
Appendix B) which allows by the dominated convergence theorem to pass
to the limit as T � �.
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The method used in Theorem 6.3 can easily be adapted to other situa-
tions, for instance, if a is smooth on M"�M and extends only continuously
to �M.

For technical details about how to construct finite energy processes l

satisfying the conditions in Theorems 6.1, 6.2 and 6.3 the reader is referred
to [58] and [60].

7. HIGHER DERIVATIVE FORMULAS

We can get higher derivative formulas by iterating our previous formulas
following the ideas of Elworthy and Li in [24] and [26]. In order to carry
this out, we will need a minor extension of the results in Section 4. Let [Ft]
denote the filtration associated to the Brownian motion Xt(x) and EFt denote
conditional expectation relative to the _-field Ft . As usual we will assume that
E, E� , L, L� , m satisfy Assumption 2 at the beginning of Section 4. For sim-
plicity, let us assume that M is a compact manifold. The next theorem is the
conditioned version of Theorem 3.7 and Corollaries 5.3 and 5.5.

Theorem 7.1. Let 0�{<T, : be a bounded measurable section of E,

at :=e(T&t) L�2:,

[lt]{�t�T be an L1-finite energy process with values in E� *x (see Defini-
tion 3.6), and N and N� be as in Eqs. (3.4) and (3.5). For 0�{�t�T let

Ul
{, t :=|

t

{
Q&1

s m tr
dBs

Q� sQ� &1
{ l$s+

1
2 |

t

{
Q&1

s \ tr
��s

Q� sQ� &1
{ ls ds (7.1)

and
Zl

{, t :=(N� t , Q� &1
{ lt)&(Nt , U l

{, t). (7.2)

Then [Zl
{, t]{�t�T is an [Ft]-martingale with

dZl
{, t =(Q� t ��&1

t {��t dBt Dat(Xt(x)), Q� &1
{ lt)

&(Qt ��&1
t {��t dBt at(Xt(x)), U l

{, t)

&(Nt , Q&1
t mtr

dBt
Q� tQ� &1

{ l$t) (7.3)
and

(��&1
{ Da{(X{(x)), l{) =EF{[(Q� T��&1

T DaT (XT (x)), Q� &1
{ lT)]

&EF{[(QT ��&1
T aT (XT (x)), U l

{, T)]. (7.4)

Therefore,

1. if lT=0 then

(��&1
{ De(T&{) L�2 :(X{(x)), l{)

=&EF{[(QT��&1
T :(XT (x)), U l

{, T)], (7.5)
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2. or if l{=0 then

EF{[(Q� T ��&1
T D:(XT (x)), Q� &1

T lT)]

=EF{[(QT��&1
T :(XT (x)), U l

{, T)]. (7.6)

Remark 7.2. The results in this theorem are direct analogues of
Theorems 3.7, and Corollaries 5.3 and 5.5. In fact this theorem could be
deduced using these results along with the strong Markov property of the
Brownian motion Xt(x). (If H: C(R+ ; M) � R+ is bounded measurable
and { a finite stopping time, then

EF{[H b X{+ } (x)]=E[H b X v( y)]| y=X{(x) a.s.) (7.7)

We will sketch a proof here using the methods already developed in
Section 3.

Proof. Notice that dU l
{, t=Q&1

t m tr
��t dBt

Q� tQ� &1
{ l$t+

1
2Q&1

t \ tr
��t

Q� t Q� &1
{ lt dt

and hence by Theorem 3.4, U l
{, t and Q� &1

{ lt for {�t�T are a dual pair, i.e.
[Zl

{, t]{�t�T is an [Ft]-martingale. The same computations leading to
Eq. (3.16) in Theorem 3.7 proves Eq. (7.3). (In fact Eq. (7.3) is Eq. (3.16)
with lt replaced by Q� &1

{ lt and the lower limits in the integrals defining
UQ� {

&1
l

t being changed from 0 to {.)
Since Zl

{, t is an [Ft]-martingale, Zl
{, {=EF{[Zl

{, T]. This identity is the
same as Eq. (7.4) because

Zl
{, { =(N� { , Q� &1

{ l{) =(Q� {��&1
{ Da{(X{(x)), Q� &1

{ l{)

=(��&1
{ Da{(X{(x)), l{)

and

EF{[Zl
{, T]=EF{[(N� T , Q� &1

{ lT)]&EF{[(NT , U l
{, T)]

=EF{[(Q� T��&1
T DaT (XT (x)), Q� &1

{ lT)]

&EF{[(QT��&1
T aT (XT (x)), U l

{, T)].

Finally, Eqs. (7.5) and (7.6) are immediate consequences of Eq. (7.4). K

The following Corollary is the conditioned analogue of Eq. (4.10) of
Corollary 4.4.

Corollary 7.3. Let 0�{<T, : be a bounded measurable section of E,
[l� t]{�t�T be an L1-finite energy process with values in R such that l� T=0.
For 0�{�t�T let

Vl�
{, t=|

t

{
Q� &1

{ Q� s(l� $s mdBs+
1
2\��s l� s ds) Q&1

s . (7.8)
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Then

��&1
{ De(T&{) L�2 :(X{(x)) l� {=&EF{[V l�

{, TQT��&1
T :(XT (x))]. (7.9)

Proof. Let ! be a bounded F{ -measurable random variable with values
in E� *x and let lt=l� t!. In this case

U l
{, T =|

T

{
Q&1

s m tr
dBs

Q� s Q� &1
{ l� $s!+ 1

2 |
T

{
Q&1

s \ tr
��s

Q� s Q� &1
{ l� s! ds

=(V l�
{, T)tr !,

where V l�
{, T is defined in Eq. (7.8). Hence by Eq. (7.5) above,

(��&1
{ De(T&{) L�2 :(X{(x)), l� {!)=&EFt[(QT ��&1

T :(XT (x)), (V l�
{, T)tr !)]

=&(EF{[V l�
{, TQT��&1

T :(XT (x))], !).

Since ! is arbitrary, this proves Eq. (7.9). K

7.1. Higher Derivative Formula for Dirac Operators
Let E=E� =S � M be a spinor bundle over M, m=# be the Clifford

multiplication, D=D# the Dirac operator, and L=L� =&D2. Recall that in
this case \=0, and R=R� = 1

4 scal.

Theorem 7.4. Suppose that 0<T1<T and l is an L1-finite energy
process with values in R such that l0=2, lT1=1 and lT=0, then

(D2e&TD2�2:)(x)

=E[e&(1�8) �0
T scal(Xt(x)) dt#�0

T1 l$s1 dBs1
#�T

T1
l$s2 dBs2

��&1
T :(XT (x))] (7.10)

where : is a bounded measurable section of S. For example, if l$s=
&(T &1

1 1[0, T1)+(T&T1)&1 1[T1, T]), Eq. (7.10) becomes

(D2e&TD2�2 :)(x)

=
1

T1(T&T1)
E[e&(1�8) �0

T scal(Xt(x)) dt#BT1
#BT&BT1

��&1
T :(XT (x))]. (7.11)

Proof. Since R=R� = 1
2 scal and \=0,

Qt =Q� t=e&(1�8) �t
0 scal(Xs(x)) ds,

V l�
{, t=e(1�8) �{

0 scal(Xs (x)) ds |
t

{
l� $s#dBs=e(1�8) �{

0 scal(Xs (x)) ds#�t
{ l� $s dBs
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and hence by Corollary 7.3, for 0�{<t,

��&1
{ De&(t&{) D2�2 :(X{(x)) l� {

=&EF{[e&(1�8) �t
{ scal(Xs (x)) ds#�t

{ l� $s dBs ��
&1
t :(Xt(x))], (7.12)

where l� is an R-valued L1-finite energy process such that l� t=0.
Let h :=l|[0, T1]&1 and k :=l| [T1, T] so that h and k are L1-finite energy

processes on [0, T1] and [T1 , T] respectively such that h0=1, hT1
=0,

kT1
=1, and k0=0. Using the semigroup property of e&tD2

and the fact that
D commutes with e&tD2

,

D2e&TD2�2 :=De&T1 D2�2 De&(T&T1) D2�2 :.

By Eq. (7.12) with {=0 and t=T1 ,

(D2e&TD2�2 :)(x)

=&E[e&(1�8) �0
T1 scal(Xt(x)) dt#�0

T1 h$s dBs ��
&1
T1

De&(T&T1) D2�2 :(Xt1
(x))]

and by Eq. (7.12) with {=T1 and t=T

��&1
T1

De&(T&T1) D2�2 :(XT1
(x))

=&EFT1[e&(1�8) �T
T1

scal(Xs (x)) ds#�T
T1

k$s dBs ��
&1
T :(XT (x))].

Combining these two equations implies that

(D2e&TD2�2 :)(x)=E[e&(1�8) �0
T scal(Xt(x)) dt#�0

T1 h$s1 dBs1
#�T

T1
k$s2 dBs2

��&1
T :(XT (x))]

=E[e&(1�8) �0
T scal(Xt(x)) dt#�0

T1 l$s1 dBs1
#�T

T1
l$s2 dBs2

��&1
T :(XT (x))]. K

Remark 7.5. The method used in this proof already appears in the
work of Elworthy and Li, see [24] in the context of 0-forms on a manifold
and [26] for proving formulas for dd* Pt a, d*d Pta, 2kPt a where a is a
differential form.

Remark 7.6. Let 0<T1<T2< } } } <Tn&1<Tn=T. The previous
Theorem may easily be extended to give

(Dne&TD2�2 :)(x)

=E _e&(1�8) �0
T scal(Xt(x)) dt |

J
l$s1

l$s2
} } } l$sn #dBs1

#dBs2
} } } #dBsn

��&1
T a(XT (x))& ,
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where l is an R-valued L1-finite energy process such that l0=n, lT1
=

n&1, ..., lTn&1
=1 and lTn=0 and

J=[(s1 , s2 , ..., sn): 0�s1�T1�s2�T2� } } } �Tn&1�sn�Tn].

7.2. A Hessian Formula
In this section we will work out a formula for

Hess(eT2�2f ) :={ deT2�2f,

where f is a bounded measurable function on M.
Similar formulas hold for { deT2�2:, where : is a differential form on M.

Related Hessian formulas may also be found in Norris [44], Elworthy and
Li [24, 26], Stroock and Turetsky [54, 55] and Hsu [35, 34].

Theorem 7.7. Let M be a compact Riemannian manifold, ! # TxM�
TxM for some x # M, further f: M � R be a bounded measurable function on
M. Also for 0<T1<T, let [ls]0�s�T1 be an L1-finite energy process with
values in TxM�TxM such that l0=! and lT1

=0, and let [hs]T1�s�T be an
R-valued L1-finite energy process such that hT1=1 and hT=0. Then

(Hess(eT2�2f )(x), !)=E _f (XT(x)) |
T

T1

h$s(QsU l
T1

, dBs)& , (7.13)

where Q solves

Q$s=&1
2 Ric��s Qs with Q0=idTx M (7.14)

and U l
T1

is given in Eq. (5.33) of Proposition 5.20. (The process U l
T1

depends
on the curvature tensor and its first derivatives.)

Proof. Since d2=2d,

{ deT2�2f ={ deT12�2e(T&T1) 2�2f ={eT12�2 de(T&T1) 2�2f.

Consequently by Proposition 5.20,

({ deT2�2f, !) = &E[(QT1
��&1

T1
de(T&T1) 2�2f (XT1

(x)), U l
T1

)]

= &E[(��&1
T1

de(T&T1) 2�2f (XT1
(x)), QT1

U l
T1

)]. (7.15)

Suppose now that [ks]T1�s�T is a TxM-valued L1-finite energy process
such that kT=0 and kT1

=QT1
U l

T1
. By Eq. (7.5) of Theorem 7.1 above

applied to the case where E=M_R, E� =T*M, L=2(0), L� =2(1), R=0,
R� =Rictr and m=C (as in item 1. of Example 2.11) gives

(��&1
T1

de(T&T1) 2�2f (XT1
(x)), QT1

U l
T1

)=&EFT1[ f (XT (x)) U k
T1, T], (7.16)
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where

U k
T1, T=|

T

T1

C tr
dBs

Qs Q&1
T1

k$s=|
T

T1

(QsQ&1
T1

k$s , dBs). (7.17)

(Notice that when applying Theorem 7.1, Q=id and Q� is the Q defined by
Eq. (7.14) above.) Plugging Eq. (7.16) into Eq. (7.15) shows that

({ deT2�2f, !) =E _f (XT (x)) |
T

T1

(QsQ&1
T1

k$s , dBs)& .

Taking ks :=hsQT1
U l

T1
in this formula implies Eq. (7.13) which proves the

theorem. K

Remark 7.8. In a more general setting, it is possible to develop higher
derivative formulas in the following situation. Let D1 : 1(E) � 1(E$) be a
``Dirac type'' operator such that D1L&L$D1=0, assuming conditions to
ensure that D1e&tL�2=e&tL$�2D1 . Let D2 : 1(E$) � 1(E") be another Dirac
type operator such that D2L$&L"D2=\. Then using the ideas described
above, one can derive a stochastic representation formula for D2D1 e&tL�2.

APPENDIX A: DIFFERENTIAL GEOMETRIC NOTATION
AND IDENTITIES

A.1. Conventions on Differential Forms

Let V and W be finite dimensional vector spaces and let 4V* :=
�k 4kV* be the exterior algebra over V*. As is usual, we will identify
elements of 4kV*�W and alternating k-forms on V with values in W. Our
convention for doing this is to define, when :=:1 7 :2 7 } } } 7 :k �w,

:(v1 , v2 , ..., vk) :=det[[:i (vj)]k
i, j=1] w (A.1)

for all [vi]k
i=1 in V. Eq. (A.1) gives rise to the pairing ( } , } ): 4kV*_

4kV � R determined by

(:, v1 7v2 7 } } } 7 vk)=:(v1 , v2 , ..., vk). (A.2)

This pairing allows us to identify (4kV)* with 4kV*.
Suppose V and W are equipped with inner products ( } , } )V and ( } , } )W

respectively. Given this data, we may define the inner product of : #
4kV*�W and ; # 4lV*�W by
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(:, ;)=$k, l

1
k !

:
v1, v2 , ..., vk # 1

(:(v1 , v2 , ..., vk), ;(v1 , v2 , ..., vk))W

=$k, l :
1�i1<i2< } } } <ik�n

(:(ei1 7 ei2 7 } } } 7 eik),

;(ei1 7 ei1 } } } 7 eik))W , (A.3)

where 1=[e1 , e2 , ..., en] is any orthonormal basis of V. It may be checked
that ( } , } ) on 4kV*�W is the unique inner product with the property that

(:1 7 } } } 7 :k �w, ;1 7 } } } 7;l �w$)

=$k, l det[[(:i , ; j)V*]k
i, j=1] (w, w$)W

for all :i , ;j # V* and w, w$ # W. The dual inner product on 4V relative to
the pairing in Eq. (A.2) is determined by

(!1 7 !2 7 } } } 7 !k , '1 7'2 7 } } } 7'l)=$k, l det[[(!i , 'j)V]k
i, j=1]

as is easily checked because, by Eq. (A.3),

[ei1 7 ei2
7 } } } 7 eik : 1�i1<i2< } } } <ik�n]

is an orthonormal basis for 4kV.

Definition A.1. For v # V, the creation (exterior product) operator Cv

is the linear operator on 4V�4V* given by Cv!=v 7 ! and Cv: :=
(v, } )V 7 : for ! # 4V and : # 4V*. The annihilation (interior product)
operator Av is the linear operator on 4V�4V* given by the adjoint of Cv .
Notice that Cv(4kV�4kV*)=4k+1V�4k+1V* and Av(4kV�4kV*)=
4k&1V�4k&1V*.

We have the following well known (and easily checked) facts about C
and A.

Lemma A.2. Let A be as in Definition A.1, then

1. (Formula for Av) For v, v1 , v2 , ..., vk # V and : # 4V*, Av: :=
:(v, } , ..., } ) and

Av(v1 7 v2 7 } } } 7 vk)= :
n

i=1

(&1) i+1 (v, vi) v1 7 v2 7 } } } 7 v̂i } } } 7 vk .

2. (Derivation Property) For each v # V,

Av(: 7 ;)=Av: 7 ;+(&1)k : 7Av;

where : # 4kV* and ; # 4V* or : # 4kV and ; # 4V.
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3. (Multiplicative Property) For each v # V,

Cv(: 7;)=(&1)k : 7 Cv;

for : # 4kV* and ; # 4V* or : # 4kV and ; # 4V.

4. (Transposes) The pairing in Eq. (A.2) allows us to identify 4V*
with (4V)* and hence (4V*)* with (4V)**$4V. Under these identifica-
tions, C tr

v =Av .

5. (Commutation Relations) For all v, w # V,

CvCw+CwCv =0,

AvAw+AwAv=0, and

AvCw+CwAv=(v, w) id4V�4V* .

Let #v :=Cv&Av , an operator on E :=4kV* for all v # V. Then

#v*=C v*&Av*=Av&Cv=&#v

and by property 5 above,

#v#w+#w#v=&2(v, w)V id. (A.4)

Notation A.3. If W is another vector space, we will abuse notation by
using Av and Cv to denote the operators Av� idW and Cv� idW on
(4V�4V*)�W.

Definition A.4 (Clifford Multiplication). Let V and E be inner
product spaces, a multiplication map #: V*�E � E is called a Clifford
multiplication provided #v*=&#v for all v # V and

#v#w+#w#v=&2(v, w)V idE

holds for all v, w # V.

A.2. Curvature
Suppose that E � M is a vector bundle and that TM and E are equipped

with covariant derivatives {E and {TM respectively. As in Section 2.2, these
covariant derivatives induce a covariant derivative on T*M�E as well.
For a # 1(E) and v, w # TxM, let {2

v�wa=({T*M�E{Ea)(v, w). Using this
notation, we have the following useful formula for the curvature of {E.

Lemma A.5. For v, w # Tx M,

{2
v�wa&{2

w�va=RE (v, w) a&{E
T(v, w) a,
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where RE is the curvature tensor of {E and T is the torsion tensor of {TM.
Hence if {TM is torsion free, as is the Levi�Civita connection, then

{2
v�wa&{2

w�va=RE (v, w) a.

Proof. Let X, Y # 1(TM), then

{2
X�Y a={E

X{E
Y a&{E

{X
TMY a

and hence

{2
X�Y a&{2

Y�Xa={E
X{E

Ya&{E
{X

TMYa&{E
Y{E

Xa+{E
{Y

TMXa

={E
X{E

Ya&{E
Y{E

X a&{E
[X, Y] a

&{E
({X

TMY&{Y
TMX&[X, Y]) a

=RE (X, Y) a&{E
T(X, Y)a. K

A.3. Weitzenbo� ck Formulas for Generalized Dirac Operators
Suppose that E � M is a Riemannian vector bundle with metric com-

patible covariant derivative. Suppose further that #: T*M�E � E is a
Clifford multiplication map, i.e. #v#w+#w#v=&2(v, w) for all v, w # Tx M
and x # M. We also assume that # is compatible with the covariant
derivative on E and that #v acts as a skew adjoint operator on Ex for all
x # M. This implies by Lemma 2.16 that the formal adjoint of D# is D# . Let
L :=&D2

# , then the following Weitzenbo� ck formula holds,

L=g& 1
2 :

i, j

#ei #ej R
E (ei , ej), (A.5)

where [ei]n
i=1 is any local orthonormal frame of TM. Fixing x and choos-

ing [ei]n
i=1 such that ({e i)x=0 for all i, this is verified by the computation

D2
# =:

i

#ei {ei #{=:
i

#ei #{ei {

=:
i, j

#ei #ej {
2
ei �ej

= 1
2 :

i, j

(#ei#ej {
2
ei �ej

+#ej #ei {
2
ej�ei

)

= 1
2 :

i, j

(&#ej #ei {
2
ei �ej

&2$i, j{
2
ei �ej

+#ej #ei {
2
ej�ei

)

=&g+ 1
2 :

i, j

#ej #ei ({
2
ej �ei

&{2
ei �ej

)

=&g+ 1
2 :

i, j

#ej #ei R
E(ej , ei),
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where the last equality is a consequence of Lemma A.5. Clearly we also
have that D#L=LD# .

A.3.1. Dirac operator on an spinor bundle. If M is a spin manifold,
E=S is a spinor bundle over M, and {S is the spin connection on S, then
the previous formula reduces to D2

#=&g+ 1
4 scal, where scal is the scalar

curvature of M, see p. 126 in [4].

A.3.2. Vector-valued differential forms. Let M be a Riemannian
manifold with Levi�Civita connection and E � M be a Riemannian vector
bundle over M, endowed with a Riemannian linear connection. Let
A p(E)=1(4 pT*M�E) be the space of p-forms on M with values in the
vector bundle E and let

A(E)=1(4T*M�E)= �
p�0

A p(E).

The same symbol { will be used to denote various covariant derivations
induced naturally from the Riemannian metric on M and the metric con-
nection in E. Let C: T*M� (4T*M�E) � 4T*M�E be the creation
multiplication operator and define d{ : A(E) � A(E) by d{ :=DC=C{.
The explicit formula for d{ is

d{a(v1 , ..., vp+1)= :
p+1

i=1

(&1) i+1 ({vi a)(v1 , ..., v̂i , ..., vp+1),

where a # A p(E) and v1 , ..., vp+1 # TxM for some x # M.
Since

{X (C(:�a))={X (: 7 a)={X :7 a+: 7 {X a

=C({X:�a+:�{X a) (A.6)

the exterior multiplication C is compatible with {. The following properties
of d{ (see [20, 21]) follow from the product rule for {, Eq. (A.6), and basic
properties of C:

1. d{a={a for a # A0(E)=1(E).

2. d{(: 7 a)=d: 7 a+(&1)deg (:) : 7 d{a for all homogeneous dif-
ferential forms : on M and a # A(E).

3. d2
{(: 7 a)=: 7d2

{a for all homogeneous differential forms : on M
and a # A(E).
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4. If a # A0(E) :=1(E), then d2
{ a=REa because

d2
{a=C{C{a

= :
n

i, j=1

Cei Cej{
2
ei �ej

a

= 1
2 :

n

i, j=1

[Cei Cej ({
2
ei�ej

a&{2
ej �ei

a)]

= 1
2 :

n

i, j=1

Cei Cej R(ei , ej) a=REa,

wherein we have used Lemma A.5.

5. Property 4 may be extended to all a # A(E) to read d2
{a=RE 7 a,

where RE 7 is the linear operator on 4(T*M)�E determined by
RE 7 (:�b)=: 7 REb for : # 4(T*M) and b # A0(E). Alternatively,

d2
{a= 1

2 :
n

i, j=1

Cei Cej R(ei , ej) a (A.7)

where now R is the curvature tensor for the induced connection on
4(T*M)�E.

Remark A.6. If E=M_R is the trivial vector bundle so that RE=0
and hence d2

{=0, then d{ is precisely the exterior differential d on differen-
tial forms on M.

Relative to the Riemannian structures on E and TM, the co-differential
operator d*{ : A p(E) � A p&1(E) is characterized as the adjoint of d{ via

|
M

(d{a(x), b(x))4 p(T*M)�E vol(dx)

=|
M

(a(x), d*{b(x))4p&1(T*M)�E vol(dx) (A.8)

for a # A p&1(E) of compact support and b # A p(E). By Lemma 2.16 and
the fact that C v*=Av ,

d*{a=&:
i

Aei{ei a for a # A p(E) (A.9)
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see [21], p. 8. Since d2
{ is a zero order operator, see Eq. (A.7), it follows

that d*2
{ is the zero order operator:

d*{
2b= 1

2 :
n

i, j=1

RE(ei , ej) Aei Aej b

= :
1�i< j�n

RE (ei , ej) Aei Aej b, (A.10)

because

(RE 7 a, b)= 1
2 :

n

i, j=1

(Cei Cej R
E (ei , ej) a, b)

= 1
2 :

n

i, j=1

(RE (ei , ej) a, Aej Aei b)

=& 1
2 :

n

i, j=1

(a, RE (ei , e j) Aej Aei b)

= 1
2 :

n

i, j=1

(a, RE (ei , ej) Aei Aej b).

There are now different Laplacians on E-valued differential forms, e.g.,

2=&(d{d*{+d*{ d{) and 2$=&(d{+d*{)2=&D2
# , (A.11)

where # is the Clifford multiplication defined by #v=Cv&Av . The
Laplacians 2 and

2$=2&d2
{&d*{

2=2& :
1�i< j�n

RE (ei , ej)(Aei Aej+Cei Cej) (A.12)

do not coincide on A v(E), except in the case of flat bundles. Both 2 and
2$ are elliptic, negative, and essentially self-adjoint on complete manifolds.
The operator 2 is the most popular choice since it has the advantage of
being homogeneous, i.e. 2: A p(E) � A p(E). For our purposes however, 2$
seems to be more natural.

Proposition A.7 (Weitzenbo� ck's Formula). The relation between 2 and
g is 2=g&R, where

R=& :
n

i, j=1

Cei Aej R(ei , ej). (A.13)
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Alternatively, R may be described by requiring

(Ra)(v1 , ..., vp)= :
p

k=1

:
n

j=1

(&1)k (R(vk , ej) a)(ej , v1 , ..., v̂k , ..., vp)

for all a # A p(E), v1 , ..., vp # TxM, x # M and p�1 and Ra=0 if a # A0(E).
Similarly (using Eq. (A.12)), 2$=g&R$, where

R$=R+ :
1�i< j�n

RE (ei , ej)(Aei Aej+Cei Cej) (A.14)

Proof. By the definition of 2,

2=C{A{+A{C{

=Cei {ei A{+Aei {ei C{

=Cei A{ei{+Aei C{ei {

=Cei Aej{
2
ei �ej

+Aej Cei {
2
ej�ei

=Cei Aej{
2
ei �ej

+($ij&Cei Aej) {2
ej �ei

=g+Cei Aej ({
2
ei �ej

&{2
ej �ei

)

=g+Cei Aej R(ei , ej),

where we are summing on repeated indices. This proves 2=g&R where
R is given as in Eq. (A.13). For v1 , ..., vp # TxM,

&(Ra)(v1 , ..., vp)

=((ei , } ) 7 Aej R(ei , ej) a)(v1 , ..., vp)

= :
p

k=1

(&1)k+1 (ei , vk)(Aej R(ei , ej) a)(v1 , ..., v̂k , ..., vp)

= :
p

k=1

(&1)k+1 (R(vk , ej) a)(ej , v1 , ..., v̂k , ..., vp)

which proves Eq. (A.14). K

Remark A.8. Because 2, 2$, and g are symmetric operators on com-
pactly supported smooth sections, it follows that R and R$ are fiberwise
symmetric operators as well. In particular it follows that

R=R*= & :
n

i, j=1

(R(ei , ej))* A*ej C*ei

= :
n

i, j=1

R(ei , ej) Cej Aei=& :
n

i, j=1

R(e j , e i) Cej Aei . (A.15)
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The derivative formulas that appear in the body of this article often
involve the operator Rtr rather than R.

Lemma A.9. The transpose Rtr of R # 1(End(4(T*M)�E)) in
Eq. (A.13) is formally given by the same formula as R,

Rtr=& :
n

i, j=1

Cei Aej R(ei , ej)=& :
n

i, j=1

R(ej , ei) Cej Aei , (A.16)

but now acting on 4(TM)�E*. In particular when E=M_R (so
4(T*M)�E=4(T*M)), if v # TM=41TM/4TM, then

Rtrv= :
n

i, j=1

R(ei , ej) ej (v, e i)=Ric v. (A.17)

Proof. Since R is the curvature tensor induced by the covariant
derivatives on E and TM, it follows that R(v, w)tr | (4(TM)�E*)=
&R(v, w) | (4(T*M)�E). Hence starting with Eq. (A.13) and using
Lemma A.2 we find,

Rtr=& :
n

i, j=1

R(ei , ej)
tr A tr

ej
C tr

ei

= :
n

i, j=1

R(ei , ej) Cej Aei=& :
n

i, j=1

R(ej , e i) Cej Aei .

An analogous computation starting with Eq. (A.15) shows

Rtr=& :
n

i, j=1

Cei Aej R(ei , ej). K

Proposition A.10. Let a # A0(E)=1(E) and v # TM, then

[g, {]v a={Ric va+({ } RE)v a&2 :
n

i=1

RE (v, ei) {ei a, (A.18)

where Ric v#�n
i=1 RTM(v, ei) ei and ({ } RE)v #�n

i=1 ({ei R
E)(ei , v).

Proof. We start with the relation,

2d{&d{2=d{(d*{d{+d{ d*{)&(d*{d{+d{ d*{) d{

=d2
{d*{&d*{d2

{=R 7 d*{&d*{R 7 .

98 DRIVER AND THALMAIER



Applying this relation to a # A0(E) gives

(g&R) {a&{ga=2d{a&d{ 2a=&d*{(R7 a)

= :
n

i=1

Aei{ei (Ra)= :
n

i=1

Aei ({ei Ra+R{ei a)

= :
n

i=1

[({ei R)(ei , } ) a+R(ei , } ) {ei a]

=({ } R) a&R } {a,

where R is defined in Proposition A.7 above. Adding this equation to the
formula for R{a,

(R{a)(v)= & :
n

i=1

(R(v, ei) {a)(ei)

= & :
n

i=1

RE (v, ei) {ei a+ :
n

i=1

{R(v, ei) ei a

= &R } {a+{Ric va,

completes the proof. K

APPENDIX B: SEMIGROUP RESULTS

B.1. Some Spectral Theory for Vector-Valued Schro� dinger Operators
Let M be a Riemannian manifold and ?: E � M a Riemannian vector

bundle over M, endowed with a Riemannian connection. Recall that 1(E)
denotes the smooth sections, 1c(E) the compactly supported smooth sec-
tions, and L2-1(E) the smooth square-integrable sections of E. Finally,
L2(E) is the Hilbert space of square-integrable sections of E with the inner
product

(a, b)L2(E)=|
M

(a(x), b(x))Ex vol(dx). (B.1)

Lemma B.1. The operator g=tr {2 is non-positive and formally self-
adjoint. More precisely,

(ga, b)L2(E)=&({a, {b)L2(T*M�E) (B.2)

for a, b # 1(E) with a or b of compact support.
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Proof. Let m be the identity multiplication map from E to E� :=
T*M�E. Then Dm={E, mv*S=S(v) for S # 1(E� )$1(Hom(TM, E)) and
g=Dm*Dm and hence by Lemma 2.16,

(ga, b)L2(E) =(Dm*Dma, b)L2(E)

= &(Dma, Dm b)L2(T*M�E)

= &({a, {b)L2(T*M�E) . K

B.1.1. Self-adjoint extensions and elliptic regularity. Let L=g&R

where R # 1(End E) is assumed to be symmetric, i.e. Rx is a symmetric
linear transformation of Ex for each x # M. Suppose that (g&R) | 1c(E)
is bounded above, i.e.,

*0(R) :=sup {((g&R) a, a)L2

(a, a)L2
: 0{a # 1c(E)=<�. (B.3)

In this situation, there is a canonical self-adjoint extension of g&R, the
so-called Friedrichs extension, cf. [45]. We briefly sketch the construction:
Defining E(a, b) :=&({a, {b)L2&(Ra, b)L2 for a, b # D(E) :=1c(E), then
for any c>*0(R),

q(a, b) := &E(a, b)+c(a, b)L2 (B.4)

in a positive quadratic form on D(E). On completing D(E) in the q-norm
to D� (E) and extending E by continuity to a closed quadratic form E� on
D� (E), we get

E� (a, b)=((g&R) 7 a, b)L2 (B.5)

for some self-adjoint operator (g&R) 7 with form domain D� (E)/L2(E). The
operator (g&R) 7 is called the Friedrichs extensions of (g&R) | 1c(E).

Remark B.2. If the manifold M is complete, then (g&R) | 1c(E) is
essentially self-adjoint and (g&R) 7 =(g&R)& where (g&R)&

denotes the closure of (g&R) | 1c(E). See for example Strichartz [51]
and Davies [11].

In the following we are going to deal with the L2 semigroup

Pta=et(g&R) 7�2a, a # L2(E), (B.6)

defined by the spectral theorem. First, we note some consequences from
standard elliptic theory.
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Remark B.3 (Elliptic regularity). For a # L2(E) the following properties
hold:

(i) If a # ker (g&R) 7 then a # L2-1(E).

(ii) The map (t, x) [ Pt a(x) is smooth on ]0, �[_M, for a #
L21(E) even on [0, �[_M. In addition, there exists a kernel (t, x, y) [
p(t, x, y) # Hom(Ey , Ex) which is smooth on ]0, �[_M_M, such that

Pt a(x)=|
M

p(t, x, y) a( y) vol(dy) (B.7)

for the C� version of Pt a, see [11].

B.1.2. Semigroup domination and Feynman�Kac identities. Given \:
M � R continuous and a measurable function f on M, let

P\
t f (x)=E _exp \& 1

2 |
t

0
\(Xs(x)) ds+ f (Xt(x)) 1[t<`(x)]& (B.8)

when the right-hand side is well-defined.
Consider again L=g&R where R # 1(End E) is assumed to be sym-

metric, and let

R
�
(x)=min[(Rxv, v): v # Ex , |v|=1]. (B.9)

By uniform continuity, R
�

is a continuous function on M. If (Qt) is defined
by

d
dt

Qt=&
1
2

Qt R��t with Q0=idEx , (B.10)

then

|Qt |op�exp \& 1
2 |

t

0
R
�
(Xs(x)) ds+ . (B.11)

which can be seen, for instance, by representing the solution to (B.10) in
terms of a product integral ([13], p. 28) or by Gronwall's inequality.

Theorem B.4. Let g&R be as above where R # 1(End E) is a sym-
metric field of endomorphisms. Suppose that (g&R) | 1c(E) is bounded
from above. For a # L2(E) let

Pt a=et�2(g&R) 7a (B.12)
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be the C� version of the L2 semigroup. Then the formula

Pt a(x)=E[Qt ��&1
t a(Xt(x)) 1[t<`(x)]] (B.13)

holds for all a # L2(E) with PR
�t |a| (x)<�.

Proof. Since Pt a has an integral kernel, using a monotone class argu-
ment, it is sufficient to check (B.13) for a # L2(E) & 1c(E). Further, note
that any (connected) manifold M can be exhausted by a sequence of
relatively compact open domains Dn with smooth boundary. For instance,
let (.l)l # N be a partition of unity such that 0�.l # C �

c (M). Consider
,n :=�n

l=1 .l . Choosing numbers =n z0 such that [,n==n] are smooth
submanifolds of M (which is possible by Sard's theorem), then

D$n :=[,n>=n]ZM

gives a smooth exhaustion of M, since ,nZ1 pointwise. Finally, by fixing
a point x0 in M and defining Dn as the component of D$n containing x0 , we
get a sequence of connected sets Dn with the desired properties.

Now, fix an exhausting sequence DnZM as above, and let L� n denote
the Friedrichs extensions of (g&R) | 1c(E�Dn). Then, by monotone
convergence of the corresponding quadratic forms, see e.g. [36],
Theorem VIII-3.11, we get

P(n)
t a :=etL� n�2a � Pt a in L2. (B.14)

We use the following two properties of P(n)
t a:

1. the map (t, x) [ P (n)
t a(x) is smooth (in particular bounded) on

[0, T]_Dn ,

2. the semigroup P (n)
t a vanishes on �Dn .

Recall that for each t>0,

N (n)
s :=Qs ��&1

s P (n)
t&s a(Xs(x)) (B.15)

is a local martingale with lifetime t 7 {n(x) where {n(x) denotes the first
exit time of X(x) from Dn . Since N (n)

s in Eq. (B.15) is bounded, we may
conclude E[N (n)

0 ]=E[N (n)
t 7 {n(x)]. But note that

E[N (n)
t 7{n(x)]=E[N (n)

t 1[t<{n(x)]]+E[N (n)
{n(x)1[t�{n(x)]]

=E[N (n)
t 1[t<{n(x)]]=E[Qt��&1

t a(Xt(x)) 1[t<{n(x)]]
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and

|Qt��&1
t a(Xt(x)) 1[t<{n(x)] |�exp \& 1

2 |
t

0
R
�
(Xs(x)) ds+ |a| (Xt(x)) 1[t<`(x)] .

By assumption, the right-hand side is in L1, thus by dominated con-
vergence,

P(n)
t a(x)=E[N (n)

t 7 {n(x)] � E[Qt��&1
t a(Xt(x)) 1[t<`(x)]]

which combined with (B.14) gives the claim. K

Note that the above proof shows in particular semigroup domination,
see Theorem 4.3 of Donnelly and Li [14]:

|Pta| (x)�PR
�t |a| (x), (B.16)

see [3, 50] for a general account on this. Before discussing this point, let
us specialize Theorem B.4 to a Feynman�Kac identity on functions. The
following Corollary is well-known at least in the case \=0, e.g. [12].

Corollary B.5. Let M be a Riemannian manifold, 2M its Laplace�
Beltrami operator, and 2\

M :=2M&\ where \: M � R is continuous.
Suppose that 2\

M | C �
c (M) is bounded from above, i.e.,

*0(\) :=sup {(2\
M ., .)

(., .)
: 0{. # C �

c (M)=<�. (B.17)

Then P\
t | f |(x)<� for any f # L2(M) and x [ P\

t f (x) is continuous for
t>0. Let 2� \

M be the Friedrichs extension of 2\
M | C �

c (M). Then,

et2� \
M�2f =P\

t f (B.18)

for the L2 semigroup given by the spectral theorem.

Proof. Take the trivial bundle E=M_R, then 1(E)=C�(M) and
g f =2M f. Theorem B.4 gives the claim at least for smooth \, a restriction
which can easily be removed. K

Theorem B.6 (Semigroup Domination). For a field R # 1(End E) of
symmetric endomorphisms, let LR=g&R and 2R

�M=2M&R
�
. Then

*0(R)�*0(R
�

). (B.19)
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In particular, if 2R
�M | C �

c (M) is bounded from above, then LR | 1c(E) is also
bounded from above, and moreover the following estimate holds:

|Pt a|�PR
�t |a|. (B.20)

Proof. We may assume that *0(R
�

)<�. If *0(R)<�, then the
Friedrichs extension L� R of LR | 1c(E) is well-defined, and by Eq. (B.16),

e*0(R)�2= sup
a # 1c(E)"[0] {

(a, eL� R�2a)
(a, a) =

� sup
a # 1c(E)"[0] {

( |a|, e2� M
R

� �2 |a| )
( |a|, |a| ) =�e*0(R

�
)�2.

To see that *0(R
�

)<� implies *0(R)<�, we note that the above argu-
ment can be applied first to give *0(R | Dn)�*0(R

�
) for each Dn of a

sequence of smoothly bounded, relatively compact open domains DnZM.
From this the claim follows obviously. K

B.2. A Commutativity Result
In this subsection, we investigate conditions under which a Dirac type

operator D commutes with the L2 semigroup generated by the Friedrichs
extension of D2. In particular, we shall recover the fact that d and d* com-
mute with et2� when M is complete. The precise statement is given in
Remark B.9 below. Similar discussions may be found in Bru� ning and Lesch
[7], Xue-Mei Li [40, 41] and in Bueler [8].

Theorem B.7. Let D be a closable densely defined operator on a Hilbert
space H. Then D*D� and D� D* are densely defined, self-adjoint and �0.
Furthermore

D*e&tD� D* | D(D*)=e&tD*D� D* and

D� e&tD*D� | D(D� )=e&tD� D*D� . (B.21)

Proof (By ``Nelson's trick'', as in [57], Section 5.2). The operator

Q :=\ 0
D�

D*
0 +

on H�H is self-adjoint (see [57], Lemma 5.3). Thus, by the spectral
theorem,

Q2=\D*D�
0

0
D� D*+
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is densely defined, self-adjoint and non-negative and hence are its com-
ponents D*D� respectively D� D*. By the spectral theorem, Qe&tQ2

| D(Q)=
e&tQ 2Q. It makes no difference applying the spectral theorem to Q2 as a
whole or to its components. Hence

\ 0
D� e&tD*D�

D*e&tD� D

0 +=\ 0
D�

D*
0 +\e&tD*D�

0
0

e&tD� D+
=\e&tD*D�

0
0

e&tD� D*+\ 0
D�

D*
0 +

=\ 0
e&tD� D*D�

e&tD*D� D*
0 + . K

Remark B.8. In Theorem B.7, the operator D*D� is the Friedrichs
extension of D2, e.g. Reed�Simon [45]. In particular, if D is essentially self-
adjoint, i.e. D� =D*, then D� commutes (on the domain of D� ) with the semi-
group generated by the Friedrichs extension of &D2.

Remark B.9. Let E=4T*M and D=d+$ on compactly supported
smooth sections of E, where d and $ denote the exterior differential and its
formal adjoint, both restricted to smooth sections of compact support.
Under the assumption that M is complete, D=d+$ and all its powers are
known to be essentially self-adjoint on 1c(E)/L2(E), see [9], also [51],
Theorem 2.4. An immediate consequence is

d+$=d� +$� =$*+d*. (B.22)

Hence, the Hodge�de Rham Laplacian L=&D2 is essentially self-adjoint
on 1c(E)/L2(E). Thus, on a complete manifold,

d� Pt =Ptd� on the domain on d� , and

d*Pt=Ptd* on the domain of d*,

where Pt is the semigroup generated by L� =L� =&D*D� =&D� D*. Indeed,
this follows from Theorem B.7, together with Eq. (B.22), by taking into
account that Pt , d, d* are homogeneous respectively of degree 0, 1, &1.

Remark B.10. For non-complete manifolds M there are in general
several different self-adjoint extensions of &D2=&(d+$)2 | 1c(E), see
[10, 31, 32] for details.
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