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1 Introduction

The purpose of these notes is to first provide some basic background to Riemannian
geometry and stochastic calculus on manifolds and then to cover some of the more
recent developments pertaining to analysis on “curved Wiener spaces.” Essentially no
differential geometry is assumed, however, it is assumed that the reader is comfortable
with stochastic calculus and differential equations on Euclidean spaces. Here is a brief
description of what will be covered in the text below.

Section 2 is a basic introduction to differential geometry through imbedded sub-
manifolds. Section 3 is an introduction to the Riemannian geometry that will be needed
in the sequel. Section 4 records a number of results pertaining to flows of vector fields
and “Cartan’s rolling map.” The stochastic version of these results will be important
tools in the sequel. Section 5 is a rapid introduction to stochastic calculus on manifolds
and related geometric constructions. Section 6 briefly gives applications of stochastic
calculus on manifolds to representation formulas for derivatives of heat kernels. Sec-
tion 7 is devoted to the study of the calculus and integral geometry associated with the
path space of a Riemannian manifold equipped with a “Wiener measure.” In particular,
quasi-invariance, Poincaré and logarithmic Sobolev inequalities are developed for the
Wiener measure on path spaces in this section. Section 8 is a short introduction to Malli-
avin’s probabilistic methods for dealing with hypoelliptic diffusions. The appendix in
section 9 records some basic martingale and stochastic differential equation estimates,
which are mostly used in section 8.

Although the majority of these notes form a survey of known results, many proofs
have been cleaned up and some proofs are new. Moreover, Section 8 is written using
the geometric language introduced in these notes, which is not completely standard in
the literature. I have also tried (without complete success) to give an overview of niany
of the major techniques that have been used to date in this subject. Although numerous
references are given to the literature, the list is far from complete. I apologize in advance
to anyone who feels cheated by not being included in the references. However, I do
hope the list of references is sufficiently rich that the interested reader will be able to
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find additional information by looking at the related articles and the references that they
contain.

-

2 Manifold primer

Conventions

1. If A, B are linear operators on some vector space, then [A, B] := AB — BA is the
commutator of A and B.

2. If X is a topological space we will write A C, X, AC X and A CC X to mean
A is an open, closed, and respectively a compact subset of X.

3. Given two sets A and B, the notation f : A — B will mean that f is a function
from a subset D(f) C A to B. (We will allow D(f) to be the empty set.) The set
D(f) C A is called the domain of f and the subset R(f) := f(D(f)) C B is
called the range of f.If f isinjective, let f~! : B — A denote the inverse function
with domain D(f 1) = R(f) and range R(f™ ) = D(f).If f : A > B and
g : B — C, then g o f denotes the composite function from A to C with domain
D(gof) := f~'(Dlg)) andrange R(go f) := go f(D(gof)) = g(R(/IND(g)).

Notation 2.1. Throughout these notes, let E and V denote finite dimensional vector
spaces. A function F : E — V is said to be smooth if D(F) is open in E (D(F) = @
is allowed) and F : D(F) — V is infinitely differentiable. Given a smooth function
F : E — V, let F'(x) denote the differential of F at x € D(F). Explicitly, F/(x) =
DF (x) denotes the linear map from E to V determined by

d
DF (x)a = F'(x)a = EloF(x—i-ta)VaeE. @2.D
We also let

d d
F"(x) (v, w) = F" (x) (v, w) := (33, F) (x) = E|O£'OF (x +rv+sw). 2.2)

2.1 Imbedded submanifolds

Rather than describe the most abstract setting for Riemannian geometry, for simplicity
we choose to restrict our attention to imbedded submanifolds of a Euclidean space
E = RN .! We will equip R" with the standard inner product,

N
{a,b) = {a,b)py = Za,-b,a
i=l

In general, we will denote inner products in these notes by (-, -).

1 Because of the Whitney imbedding theorem (see for example Theorem 6-3 in Auslander and
MacKenzie [9]), this is actually not a restriction.
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Definition 2.2. A subset M of E (see Figure 1) is a d-dimensional imbedded subman-
ifold (without boundary) of E iff for all m € M, there is a function z : E — R¥ such
that:

1. D(z) is an open neighborhood of E containing m,

2. R(z) is an open subset of RY,

3. z : D() - R(z) is a diffeomorphism (a smooth invertible map with smooth
inverse), and

4. Z(MND(2)) = R N (RY x (0}) c RV

(We write M if we wish to emphasize that M is a d-dimensional manifold.)

2D(2)N

Figure 1. An imbedded one dimensional submanifold in R2.

Notation 2.3. Given an imbedded submanifold and diffeomorphism z as in the above
definition, we will write z = (z<, z>) where z is the first d components of z and z..
consists of the last N — d components of z. Also let x : M — R? denote the function
defined by D(x) := M ND(z) and x := z.|p(,). Notice that R(x) := x(D(x)) is
an open subset of R? and that x~1 : R(x) —» D(x), thought of as a function taking
values in E, is smooth. The bijection x : D(x) — R(x) is called a chart on M. Let
A = A(M) denote the collection of charts on M. The collection of charts 4 = A(M)
is often referred to as an atlas for M.

Remark 2.4. The imbedded submanifold M is made into a topological space using the
induced topology from E. With this topology, each chart x € A(M) is a homeomor-
phism from D(x) C, M to R(x) C, RY.

Theorem 2.5 (A Basic Construction of Manifolds). Let F : E — RY~? be a smooth
function and M := F~1({0}) C E which we assume to be non-empty. Suppose that
F'(m) : E - RN~ s surjective forallm € M. Then M is a d-dimensional imbedded
submanifold of E.
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Proof. Letm € M, we will begin by constructing a smooth function G : E — R4 such
that (G, F)'(m) : E - RY = R? xRN~?is invertible. To do this, let X = Nul(F’(m))
and Y be a complementary subspace so that E = X © Y and let P : E — X be the
associated projection map (see Figure 2). Notice that F'(m) : ¥ — RN~ s a linear
isomorphism of vector spaces and hence

dim(X) = dim(E) —dim(¥Y) = N — (N —d) =d.

In particular, X and R? are isomorphic as vector spaces. Set G(m) = APm where
A : X — R? is an arbitrary but fixed linear isomorphism of vector spaces. Then for
xeXandyey,

(G, FY (m)(x +y) = (G'(m)(x + y), F'(m)(x + ¥))
= (AP(x +y), F/(m)y) = (Ax, F'(m)y) € R? x RN 4

from which it follows that (G, F)'(m) is an isomorphism.

RN-d  (Gle),Fe))

Figure 2. Constructing charts for M using the inverse function theorem. For simplicity of the
drawing, m € M is assumed to be the originof E = X @ Y.

By the inverse function theorem, there exists a neighborhood U C, E of m such that
V= (G, F)U) C, R¥ and (G, F): U = Vis a diffeomorphism. Let z = (G, F)
withD(z) = U and R(z) = V, then z is a chart of E about m satisfying the conditions
of Definition 2.2. Indeed, items 1) - 3) are clear by construction. If p € M ND(z) then
z2(p) = (G(p), F(p)) = (G(p), 0) € R(z) N (R? x {O}). Conversely, if p € D(z) is a
point such that z(p) = (G(p), F(p)) € R(z) N (R4 x {0}), then F(p) = 0 and hence
p € M N D(z); so item 4) of Definition 2.2 is verified. ]

Example 2.6. Let gl(n, R) denote the set of all #n x n real matrices. The following are
examples of imbedded submanifolds.

1. Any open subset M of E.
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2. The graph,
L (f) = [(x,f(x)) eR? x RV=4 . & eD(f)] CD(f)xRN-4 C RV,

of any smooth function f : RY — R¥~¢ as can be seen by applying Theorem 2.5
with F (x,y) := y — f (x). In this case it would be a good idea for the reader
to produce an explicit chart z as in Definition 2.2 such that D (z) = R(z) =
D(f) x RN-4,

3. The unit sphere, S¥~! := {x € R : (x,x)gv = 1}, as is seen by applying
Theorem 2.5 with E = RN and F(x) := (x, x)gv — L. Alternatively, express
§N=1locally as the graph of smooth functions and then use item 2.

4. GL(n,R) := {g € gl(n, R)| det(g) # 0}, see item 1.

5. SL(n,R) := {g € gl(n, R)|det(g) = 1} as is seen by taking E = gi(n, R) and
F(g) := det(g) and then applying Theorem 2.5 with the aid of Lemma 2.7 below.

6. O(n) := {g € gl(n,R)|g"g = I} where g" denotes the transpose of g. In this
case take F(g) := g'"g — I thought of as a function from E = gl(n, R) to S(n),
where

S(n):={A €gl(n,R) : A" = A}

is the subspace of symmetric matrices. To show F’(g) is surjective, show
F'()(gB) =B + B" forallg € O(n) and B € gi(n, R).

7. §O(n) :={g € O(n)|det(g) = 1}, an open subset of O(n).

8 M xN C E xV, where M and N are imbedded submanifolds of E and V
respectively. The reader should verify this by constructing appropriate charts for
E x V by taking “tensor” products of the charts for E and V associated to M and
N respectively.

9. The n-dimensional torus,

T":={zeC":|zu|=1fori=12,...,n} = (SH,

where z = (z1, ..., Z) and |z;| = 4/2;z;. This follows by induction using items 3.
and 8. Alternatively apply Theorem 2.5 with F (z) := (|21|2 —1,..., |zs? = 1) .

Lemma 2.7. Suppose g € GL(n, R) and A € gl(n, R), then

det’(g)A = det(g)r(g~' A). 23)
Proof. By definition we have
, d d -1
det "(g)A = E'O det(g +rA) = det(g)zio det(I + g7 A).

So it suffices to prove j—1|0 det(I + tB) = tr(B) for all matrices B. If B is upper
triangular, then det(I + tB) = []/_; (1 + ¢ B;;) and hence by the product rule,
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d n
~lodet(I +1B) =3 Bii = tr(B).
i=1

This completes the proof because 1) every matrix can be put into upper triangular
form by a similarity transformation, and 2) “det” and “tr” are invariant under similarity
transformations. 0

Definition 2.8. Let E and V be two finite dimensional vector spaces and M? C E and
N* C V be two imbedded submanifolds. A function f : M — N is said to be smooth
if for all charts x € A(M) and y € A(N) the function y o f o xR > RFis
smooth.

Exercise 2.9, "Let M% ¢ E and N* C V be two imbedded submanifolds as in
Definition 2.8.

1. Show that a function f : R¥ — M is smooth iff f is smooth when thought of as a
function from R¥ to E.

2. If F : E — V is a smooth function such that F(M ND(F)) C N, show that
f :=F|y : M — N is smooth.

3. Show the composition of smooth maps between imbedded submanifolds is smooth.

Proposition 2.10. Assuming the notation in Definition 2.8, a function f : M — N is
smooth iff there is a smooth function F - E — V such that f = F|y.

Proof. (Sketch.) Suppose that f : M — N is smooth, m € M and n = f(m). Let z be
as in Definition 2.2 and w be a charton N such thatn € D(w), by shrinking the domain
of z if necessary, we may assume that R(z) = U x W where U C, RYandW c, RV
in which case (M N D(z)) = U x {0}. For £ € D(z), let F(§) := f(z~!(z<(€), 0))
with z = (z<, z>) as in Notation 2.3. Then F : D(z) — N is a smooth function such
that F|ynpe) = fIMAD()- The function F' is smooth. Indeed, letting x = z<|p(z)nM.»

weoF=w<o f(z ' 2<(§),0)) =w<o fox" o(z<(-),0)

which, being the composition of the smooth maps w< o f ox~! (smooth by assumption)
and £ > (z<(£), 0), is smooth as well. Hence by definition, F' is smooth as claimed.
Using a standard partition of unity argument (which we omit), it is possible to piece this
local argument together to construct a globally defined smooth function F : E — V
such that f = F|u. [m]

Definition 2.11. A function f : M — N is a diffeomorphism if f is smooth and has a
smooth inverse. The set of diffeomorphisms f : M — M is a group under composition
which will be denoted by Diff (M).

2.2 Tangent planes and spaces

Definition 2.12. Given an imbedded submanifold M C Eandm € M, let t,, M C E
denote the collection of all vectors v € E such that there exists a smooth path o :
(—&,8) > Mwitho(0) =mandv = f—:|oa(s). The subset t,, M is called the tangent
plane to M at m and v € 1, M is called a tangent vector, see Figure 3.
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Figure 3. Tangent plane, t,, M, to M atm and a vector, v, in 7, M.

Theorem 2.13. For each m € M, tyM is a d-dimensional subspace of E. If 2 : E —
RY is as in Definition 2.2, then 1y M = Nul(z. (m)). If x is a chart on M such that
m € D(x), then

(L lox~" (x(m) + sen?
ds #li=1
is a basis for T, M, where {ei]le is the standard basis for Re.
Proof. Let o : (—¢, €) —> M be a smooth path with  (0) = m and v = f—sloo(s) and z

be a chart (for E) around m as in Definition 2.2 such that x = z.. Then z.. (o (s)) =0
for all s and therefore,

d ’
0= d—|02>(0(5)) =z (m)v
s

which shows that v € Nul(z, (m)), i.e., T M C Nul(z, (m)).

Conversely, suppose that v € Nul(z/ (m)). Let w = z_(m)v € R? and o (5) =
x~l(z<(m) + sw) € M defined for s near 0. Differentiating the identity zloz=id
at m shows

(Z_l)/ (z(m)Z'(m) =L
Therefore,

’ d -1 d -1
o' (0) = Elox (z<(m) + sw) = E;Ioz (z<(m) +sw,0)

= (271 (@<m), 0)Ee(myv, )

= (1) (@elm, )L imw, 2L (m)v)
= (2_1)’ @m)Z (m)v = v,

and so by definition v = ¢’(0) € 7, M. We have now shown Nul(z), (m)) C M
which completes the proof that 7,,M = Nul(z, (m)).



50 B.K. Driver

Since z/_(m) : T, M — R? is a linear isomorphism, the above argument also shows

d _
alox_l(x(m) + sw) = (2. (M5, M) lwe MY weR%

In particular it follows that

d ) -
(£ lox ™" xm) + seloy = (- 0m)ler) Yoyl

is a basis for 7,, M (see Figure 4 below). m]
The following proposition is an easy consequence of Theorem 2.13 and the proof
of Theorem 2.5.

Proposition 2.14. Suppose that M is an imbedded submanifold constructed as in
Theorem 2.5. Then 1w M = Nul(F’(m)).

Exercise 2.15. Show:

.M = E, if M is an open subset of E.
7,GL(n,R) = gl(n,R), forall g € GL(n, R).
TSV = {m}L forallm e SN-1,

Let sl(n, R) be the traceless (zero trace) matrices,

Ealb ol Ml

sl(n,R) := {A € gl(n, R)|tr(A) = 0}. 2.4

Then
1,SL(n,R) = {A € gl(n,R)ig ™' A € 51(n, R)}

and in particular 7y SL(n, R) = si(n, R).
5. Let so (n, R) be the skew symmetric matrices,

so(n,R) :={A egl(n,R)|A = —A"}.

Then
7,0(n) = {A € gl(n,R)|g"' A € 50 (n,R)}
and in particular t; O (n) = so (n, R) . Hint: g l=g"forallg € O(n).
6. If M C E and N C V are imbedded submanifolds then
Ty (M X N)=tyM x N CEX V.

It is quite possible that 7,, M = t,v M for some m # m', with m and m’ in M (think
of the sphere). Because of this, it is helpful to label each of the tangent planes with their
base point.

Definition 2.16. The rangent space (T,, M) to M at m is given by

TuM ={m}xt,M CM xE.
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TM :=UpnenTnM,

and call T M the tangent space (or tangent bundle) of M. A tangent vector is a point
Um := (m,v) € TM and we let m : TM — M denote the canonical projection by
7(vm) = m. Each tangent space is made into a vector space with the vector space
operations being defined by: c(vy,) := (cv),, and vy + Wi 1= (V + W),

Exercise 2.17. Prove that T M is an imbedded submanifold of E x E. Hint: suppose
that z : E — RY is a function as in the Definition 2.2. Define D(Z) :=D(z) x E and
Z:D(Z) -» R¥Y xRV by Z(x, a) := (z(x), 2’ (x)a). Use Z’s of this type to check
T M satisfies Definition 2.2.

Notation 2.18. In the sequel, given a smooth path o : (—¢, &) — M, we will abuse
notation and write ¢’ (0) for either

d
E|OU(5) € ;)M

or for 4
(0 (0), d—s-loff(s)) € ToyyM = {0(0)} x t,) M.

Also given a chart x = (x!, x2, .. . xyonMandm € D(x), let a/ax"[,,, denote the
element 7,, M determined by 8/3x*|,, = 0'(0), where o(s) := x~ ! (x (m) + se;), ie.,
ad

W,m = (m, :—slox_l(x(m) + sei)), (2.5)

see Figure 4.

Figure 4. Forming a basis of tangent vectors.

The reason for the strange notation in Eq. (2.5) will be explained after Notation
2.20. By definition, every element of 7,, M is of the form o’ (0) where o is a smooth
path into M such that o (0) = m. Moreover by Theorem 2.13, {3/3xi lm}f=1 is a basis
forT,,M.
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Definition 2.19. Suppose that f : M — V is a smooth function, m € D(f) and
Um € Ty M. Write
d
Umf = df (m) = —lof(o(s)),

where o is any smooth path in M such that ¢'(0) = vy,. The functiondf : TM — V
will be called the differential of f.

Notation 2.20. If M and N are two manifolds f : M x N — V isasmooth function, we
will write dps f (-, n) to indicate that we are computing the differential of the function
meM— f(m,n) eV forfixedn € N.

To understand the notation in (2.5), suppose that f = F ox = F(x!,x2,...,x%)
where F : R? — R is a smooth function and x is a chart on M. Then
af (m) a
/ — 1= ——|mf = (DiF)(x(m)),
ax! axt

where D; denotes the i"-partial derivative of F. Also notice that dx/ (%1,,,) = b;; s0

that {dxilrmM];i is the dual basis of {3/3x"|,,}?_, and therefore if v, € T;, M then

dx (Um) —Im 2.6)

II'M&

This explicitly exhibits v, as a first order differential operator acting on “germs” of
smooth functions defined near m € M.

Remark 2.21 (Product Rule). Suppose that f : M — V and g : M — End(V) are
smooth functions, then

d
vmlgf) = d—slo (o () f(o ()] = vmg - f(m) + g(m)vy f

or equivalently
d@f)(vm) = dg(vm) f (m) + g(m)df (vm).

This last equation will be abbreviated as d(gf) = dg - f + gdf.

Definition 2.22. Let f : M — N be a smooth map of imbedded submanifolds. Define
the differential, f, of f by

fsvm = (f 00 (0) € TyemN,

where v, = 0’ (0) € T, M, and m € D(f).

Lemma 2.23. The differentials defined in Definitions 2.19 and 2.22 are well defined
linear maps on T,y M for each m € D(f).
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frvn=(fo0)'(0)

Figure 5. The differential of f.

Proof. 1 will only prove that f, is well defined, since the case of df is similar. By
Proposition 2.10, there is a smooth function F : E — V, such that f = Fly.
Therefore by the chain rule

d
fivm = (f 00) (0) := [Emf(a(s»] =[Fm],e,. @D

fe Oy
where ¢ is a smooth path in M such that ¢'(0) = v,,. It follows from (2.7) that fyv,,

does not depend on the choice of the path o. It is also clear from (2.7), that f, is linear
onT,, M. O

Remark 2.24. Suppose that F : E — V is a smooth function and that f := F|y,.
Then as in the proof of Lemma 2.23

df (vm) = F'(m)v (2.8)

for all v, € T,, M, and m € D(f). Incidentally, since the left hand sides of (2.7) and
(2.8) are defined “intrinsically,” the right members of (2.7) and (2.8) are independent
of the possible choices of functions F which extend f.

Lemma 2.25 (Chain Rules). Suppose that M, N, and P are imbedded submanifolds
and V is a finite dimensional vector space. Let f : M — N, g : N —> P, and
h : N — V be smooth functions. Then:

(80 fim = gu(favm) VYvneTM 2.9)

and
dho f)(vy) = dh(fivm), YumeTM. 2.10)

These equations will be written more concisely as (go f)x = gy« frandd(ho f) = dhf,
respectively.
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Proof. Let o be a smooth path in M such that v,, = o”(0). Then, see Figure 6,

(80 avm :=(g0 foo)0) =g«(fo0c)(0)
=g*f*0,(0) = gy faUm.

Similarly,

d(ho f)(vm) = ;—slo(h o foo)(s) =dh((f c0)(0))
= dh(fi0'(0)) = dh(favm).

f*’Um=(f00)'(0)

9, f0m=(g0 fo0) (0)=(go N, |

Figure 6. The chain rule.

If f: M — Visasmooth func_tion, x isacharton M, and m € D(f) ND(x), we
will write 8f (m)/8x’ for df (8 /ox! |,,,) . Combining this notation with Eq. (2.6) leads

to the pleasing formula,
d

df=2%dxi, 2.11)
i=1
by which we mean
d
df (vm) =) —a%dx"(vm).

i=1
Suppose that f : M4 — N* is a smooth map of imbedded submanifolds, m € M,

x is a chart on M such that m € D(x), and y is a chart on N such that f(m) € D(y).

Then the matrix of
fem = filt,pt : TuM — Ty N
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relative to the bases (3/8x'|,,}2_, of T, M and (3/3y/| fem¥isy of TrmN is (3(y/ o
£)(m)/3x"). Indeed, if v, = 3%, v'3/3x" |y, then

k
fievm =Y dy! (fuevm)3/3Y7 | (my

-~
—_—

d(y o £)(m)d/3y7| fem)

I
™M=

(by Eq. (2.10))

S~
Il
_

3y’ o f)(m)

s 45 Wm)d/8y ey (by Eg. 2.11))

Il
.M’“
.M“-

A
Il
-
1l
-

30y o H(m)

. i9/0y .
Fpr v'd/dy |f(m)

l
'M’“‘
.M“‘“

-~
Il

—_
i

—_

Example 2.26. Let M = O(n), k € O(n), and f : O(n) — O(n) be defined by
f(g) := kg. Then f is a smooth function on O(n) because it is the restriction of a
smooth function on gi(n, R). Given A, € T,0(n), by Eq. 2.7),

fodg = (kg, kA) = (kA)kg

(In the future we denote f by Ly; Ly is left translation byk € O(n).)

Definition 2.27. A Lie group is a manifold, G, which is also a group such that the
group operations are smooth functions. The tangent space, g := Lie (G) := T,G, to G
at the identity e € G is called the Lie algebra of G.

Exercise 2.28. Verify that GL(n, R), SL(n, R), O(n), SO(n) and T" (see Example
2.6) are all Lie groups and

Lie (GL(n, R)) = gl(n, R),
Lie (SL(n, R))) = sl(n, R)
Lie (O (n))) = Lie (S0 (n))) = so(n, R) and
Lie (T™) = (R)" c C".
See Exercise 2.15 for the notation being used here.

Exercise 2.29 (Continuation of Exercise 2.17). Show for each chart x on M that the
function
& (vm) == (x(m), dx(vy)) = XsUp

is a chart on TM. Note that D(¢) := UneDx)ITmM.

The following lemma gives an important example of a smooth function on M which
will be needed when we consider M as a “Riemannian manifold.”
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Lemma 2.30. Suppose that (E, {-,-)) is an inner product space and the M C E is an
imbedded submanifold. For eachm € M, let P(m) denote the orthogonal projection
of E onto tu M and Q(m) := I — P(m) denote the orthogonal projection onto T, ML,
Then P and Q are smooth functions from M to gl(E), where gl(E) denotes the vector
space of linear maps from E to E.

Proof. Let z : E — RY be as in Definition 2.2. To simplify notation, let F (p) := z(p)
for all p € D(z), so that r,, M = Nul (F’(m)) for m € D(x) = D(z) N M. Since

F'(m) : E - RN¥~4 is surjective, an elementary exercise in linear algebra shows
(F'(m)F'(m)*) : RV=4 —» RVN~¢
is invertible for all m € D(x). The orthogonal projection Q (m) may be expressed as;
Q(m) = F'(m)* (F' (m)F' (m)*)"' F'(m). (2.12)

Since being invertible is an open condition, (F ’(-)F’(:)*) is invertible in an open neigh-
borhood A C E of D(x). Hence Q has a smooth extension 0 to N given by

O(x) := F'(x)*(F () F' ()" ' F'(x).

Since Qlpi) = le(x) and Q is smooth on N, Q|p(,) is also smooth. Since z, as
in Definition 2.2, was arbitrary and smoothness is a local property, it follows that @ is
smooth on M. Clearly, P := I — ( is also a smooth function on M. ]

Definition 2.31. A local vector field Y on M is a smooth function Y : M — T M such
that Y (m) € T,M for all m € D(Y), where D(Y) is assumed to be an open subset
of M. Let ['(T M) denote the collection of globally defined (i.e., D(Y) = M) smooth
vector fields Y on M.

Note that 3/3xi are local vector fields on M for each chart x € AM) and i =
1,2,...,d. The next exercise asserts that these vector fields are smooth.

Exercise 2.32. Let Y be a vector field on M, x € A(M) be a chart on M, and
Y! :=dx'(Y), then

d
Y(m):= ZYi (m)3/3x' |m Vm € D(x),
i=1

which we abbreviate as ¥ = Z, _; Y'3/3x'. Show the condition that Y is smooth
translates into the statement that each of the functions ¥ t {s smooth.

Exercise 2.33. LetY : M — T M, be a vector field. Then
Y(m) = (m, y(m)) = y(m)m

for some function y : M — E such that y(m) € t,M forallm € DY) = D).
Show that Y is smooth iff v : M — E is smooth.
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Example 2.34. Let M = SL(n,R) and 4 esliin,R)=1;SL(n,R),i.e. Aisanxn
real matrix such that tr (A) = 0. Then A(g) := Ly A, = (g, gA) forg € Misa
smooth vector field on M.

Example 2.35. Keep the notation of Lemma 2.30. Let y : M — E be any smooth
function. Then Y (m) := (m, P(m)y(m)) for all m € M is a smooth vector field on M.

Definition 2.36. Given Y € I'(TM) and f € C®(M), let Y € C°°(M) be defined
by (Yf)(m) := df (Y (m)), for all m € D(f) N D(Y). In this way the vector field Y
may be viewed as a first order differential operator on C*(M).

Notation 2.37. The Lie bracket of two smooth vector fields, Y and W, on M is the
vector field [Y, W] which acts on C*°(M) by the formula
Y, Wif :=Y(Wf) —W(If), VY [feC?M). (2.13)

(In general one might suspect that { Y, W]is a second order differential operator, however
this is not the case, see Exercise 2.38.) Sometimes it will be convenient to write Ly W
for [Y, W].

Exercise 2.38. Show that [Y, W] is again a first order differential operator on C*° (M)
coming from a vector field. In particular, if x isacharton M, ¥ = ¥°¢_, y?3/3x' and
W= Zﬁi:l Wia/dx!, then on D(x),

d
Y, W] = Z(YW" —wr¥Ha,oxt. (2.14)

Proposition 2.39. If Y(m) = (m, y(m)) and W(m) = (im, wim))andy, w : M — E
are smooth functions such that y(m), w(m) € t, M, then we may express the Lie
bracket, [Y, W](m), as

[Y, Wiim) = (m, (Yw — Wy)(m)) = (m, dw(¥Y (m)) —dy(W(m))).  (2.15)

Proof. Let f be a smooth function M which we may take, by Proposition 2.10, to be
the restriction of a smooth function on E. Similarly we may assume that y and w are
smooth functions on E such that y(m), w(m) € 1,,M forallm € M. Then

YW -WY)f =Y [f'w]-W[f'y]
=f",w) - f"w, )+ f Yw)— f (Wy)
=f ' (Yw—Wy) (2.16)

wherein the last equality we have used the fact that mixed partial derivatives commute
to conclude

Fu,v) — f7(v,u) := (8,8, — ,0,) f =0Vu,veE.

Taking f = z. in Eq. (2.16) with z = (z, z>) being a chart on E as in Definition 2.2,
shows
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0=FW-—-WY)z. (m) =7, [dw¥(m))—dy(W(m)))
and thus (m, dw(Y (m)) — dy(W(m))) € T,,M. With this observation, we then have

f'(Yw = Wy) = df ((m, dw(Y(m)) — dy(W (m))))

which combined with Eq. (2.16) verifies Eq. (2.15). o

Exercise 2.40. Let M = SL(n,R) and A, B € s/(n, R) and A and B be the associated
left invariant vector fields on M as introduced in Example 2.34. Show [/i, E] = [A, B]
where [A, B] := AB — BA is the matrix commutator of A and B.

2.3 More references

The reader wishing to learn about manifolds is referred to [1, 9, 19, 41, 42, 95, 111,
112,113, 114, 115, 164]. The texts by Kobayashi and Nomizu are very thorough while
the books by Klingenberg give an idea of why differential geometers are interested in
loop spaces. There is a vast literature on Lie groups and their representations. Here are
just two books that I have found very useful, [24, 178].

3 Riemannian geometry primer

This section introduces the following objects: 1) Riemannian metrics, 2) Riemannian
volume forms, 3) gradients, 4) divergences, 5) Laplacians, 6) covariant derivatives, 7)
parallel translations, and 8) curvatures.

3.1 Riemannian metrics

Definition 3.1. A Riemannian metric, (-, -) (also denoted by g), on M is a smoothly
varying choice of inner product, g, = (-, -),s, on each of the tangent spaces T, M,
m € M. The smoothness condition is the requirement that the functionm € M —
(X (m), Y (m))m € R is smooth for all smooth vector fields X and Y on M.

It is customary to write ds? for the function on TM defined by
dsz(vm) = (Um, Un)m = &m (Um, Um) . 3.1

By polarization, the Riemannian metric (-, -) is uniquely determined by the function
ds?. Given a chart x on M and v € T, M, by equations (3.1) and (2.6) we have

d
ds?(up) = ) (3/0x' |, 3/0x! ) mdx’ (vp)dx! (vpr). 3.2)
i,j=1

We will abbreviate this equation in the future by writing
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d
ds* =) gfdx'dx (3.3)
ij=l1

s

where
&5 5m) = (0/0x" 1, /0% ) = g (8/3x! 1, 8/0% )

Typically g; ; Will be abbreviated by g;; if no confusion is likely to arise.

Example 3.2. Let M = RV and let x = (x!,x2, ..., xV) denote the standard chart
on M, ie, x(m) = m for all m € M. The standard Riemannian metric on R¥ is
determined by

N N
ds? = Z(d}c")2 = dei dxt,
i=1 i=1

and so g* is the identity»matlrix. The general Riemannian metric on R" is determined
by ds? = Z%‘:l gijdx'dx’, where g = (g;;) is a smooth gI(N, R)-valued function
on R¥ such that g(m) is positive definite matrix for all m € RV.

Let M be an imbedded submanifold of a finite dimensional inner product space
(E, (-, -)). The manifold M inherits a metric from E determined by

ds*(vm) = (v, V) Vo, € TM.

It is a well known deep fact that all finite dimensional Riemannian manifolds may
be constructed in this way, see Nash [143] and Moser [138, 139, 140]. To simplify the
exposition, in the sequel we will usually assume that (E, (-, -)) is an inner product space,
M? C E is an imbedded submanifold, and the Riemannian metric on M is determined
in this way, i.e.,

(U, W) = (v, W)gy, Y v, wym €T,,Mandm € M.

In this setting the components g7 ; of the metric ds? relative to a chart x may be
computed as gi j(m) = (¢.i(x(m)), ¢, (x(m))), where {e,-];i=1 is the standard basis for
Rd
-1 d
¢ :=x"" and ¢;;(a) := d_t|0¢(a + te;).
Example 3.3. Let M = G := SL(n,R) and Ag e T, M.

1. Then
ds?(Ag) == tr(A*A) (3.4)

defines a Riemannian metric on G; this metric is the inherited metric from the inner
product space E = gl(n, R) with inner product (A, B) := tr(A*B).
2. A more “natural” choice of a metric on G is

ds?(Ap) = tr((g 71 A)* g A). (3.5)
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This metric is invariant under left translations, i.e., ds*(LisAg) = ds*(Ay), for
allk € G and A; € TG. According to the imbedding theorem of Nash and Moser,
it would be possible to find another imbedding of G into a Euclidean space, E, so
that the metric in (3.5) is inherited from an inner product on E.

Example 3.4. Let M = R3 be equipped with the standard Riemannian metric and
(r, p, 6) be spherical coordinates on M (see Figure 7). Here r, ¢, and 6 are taken

Figure 7. Defining the spherical coordinates, (r, 8, ¢) on R3.

to be functions on R3\ {p € R? : p, = 0 and p; > 0} defined by r(p) = |pl,
¢(p) = cos™!(p3/|pl) € (0, 7),and6(p) € (0, 27)is given by 6(p) = tan™' (p2/p1)
if py > 0 and p, > 0 with similar formulas for (pi, p2) in the other three quadrants
of R2. Since x! = rsingcosé, x2 = rsinpsin 6, and x> = r cos g, it follows using
(2.11) that,

= sin g cosfdr 4 r cos g cos dy — r sin ¢ sin 0d0,

dx? = sin @ sin6dr + r cos ¢ sin@dg + r sin ¢ cos 840,

and
dx® = cos pdr — rsinpdey.

An elementary calculation now shows that

3
ds? = X:(dxi)2 =dr + r?'d(,o2 + r?sin® (pd92. (3.6)
i=1

From this last equation, we see that

1 0
g9 =|o 2 o | 3.7)
0 0 rZsin’g
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Exercise 3.5. Let M := {m € R : |m|? = p?}, so that M is a sphere of radius p in
R3. Since r = p on M and dr (v) = O for all v € T,, M, it follows from (3.6) that the
induced metric ds? on M is given by

' ds? = p*de® + p* sin® pd6?, (3.8)
and hence 2
wo) _|P° 0
8 - [ 0 p?sin? rp] ’ (3-5)

3.2 Integration and the volume measure

Definition 3.6. Let f € C2°(M) (the smooth functions on M¢ with compact support)
and assume the support of f is contained in D(x), where x is some chart on M. Set

/ fdx = fox"l(a)da,
M R(x)

where da denotes Lebesgue measure on R4.

The problem with this notion of integration is that (as the notation indicates) f, y fdx
depends on the choice of chart x. To remedy this, consider a small cube C (8) of side &
contained in R (x), see Figure 8. We wish to estimate “the volume” of ¢ (C(8)) where
¢ =x"1:Rx) - D). Heuristically, we expect the volume of ¢(C(8)) to be
approximately equal to the volume of the parallelepiped, C (), in the tangent space
T M determined by

d

C®) := {Zs,-s i (x ()]0 < 5; <1, fori = 1,2,.‘.,(1], (3.10)
i=1

where we are using the notation proceeding Example 3.3, see Figure 8.

Since T, M is an inner product space, the volume of C(8) is well defined. For
example choose an isometry 8 : T, M — R4 and define the volume of C (8) to be

m (0(6‘(5))) where m is Lebesgue measure on R?. The next elementary lemma will
be used to give a formula for the volume of C ().

Lemma 3.7. If V is a finite dimensional inner product space, {v; }?i__"} V. is any basis for
Vand A : V — V is a linear transformation, then

det[(Av,-, vj)]
det [(vi, v;)]

where det [(A vi, vj)] is the determinant of the matrix with i-j’h-entry being (Av;, vj).
Moreover if

det (A) = @3.11)

d
C®) := [Z&si‘vi:05s,~51,f0ri=1,2,...,d}

i=1

then the volume of C (8) is 8¢, /det [{v;, v;)].
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¢.Az(m))

(P:;l;'l

Figure 8. Defining the Riemannian “volume element.”

Proof. Let {e,-]?i=“{ V be an orthonormal basis for V, then

(Avi,vj) = Y (v, er)(Aer, ex)ex, v))
Lk
and therefore by the multiplicative property of the determinant,
det [(Avi, vj)] = det [{(v;, e1)] det [(Aer, ex)]det [(ex, vj)]
= det (A) det [(v;, e1)] - det [ (e, v;)]. (3.12)

Taking A = I in this equation then shows that the

det [(vi, vj)] = det [(v;, ;)] - det [(ek, vj)] . (3.13)

Dividing (3.13) into (3.12) proves (3.11).

For the second assertion, it suffices to assume V = R? with the usual inner-product.
Define T : R4 — R so that Te; = v; where {¢;}2_, is the standard basis for R, then
C (8) = T ([0, 6]%) and hence

m (é (3)) = |det T|m ([0, a]d) = 54 |det T| = §%/det(T*T)

= 8%\ /det [(T"Te;, ;)] = 8%, /det [(Ter, Tej)] = 8¢ Jdet [(ui, v))]

Using the second assertion in Lemma 3.7, the volume of € (§) in Eq. 3.10) is
§4./det g*(m), where gfj (m) = (¢,; (x(m)), ¢, j (x(m))} . Because of the above com-
putations, it is reasonable to try to define a new integral on D (x) C M by

f f dipey = f f/erdx,
Dix) D(x)
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letting Ap(x) be the measure satisfying
dip@y = /g%dx (3.14)

where /g% is shorthand for ./det g*.

Lemma 3.8. Suppose that y and x are two charts on M, then

d . .
ax' axJ
Yy i
8ix = Z 8ij ayk 3yl 3.15)
i,j=1
Proof. Inserting the identities
d i d i
. Ix! . ax’
[ gLk j_ hdadilr N
dx' =) aykdy anddx/ =) 5 dy
k=1 =1
and into the formula ds? = ;i,j=1 gijdxidxj gives

from which (3.15) follows. o

Exercise 3.9. Suppose that x and y are two chartson M and f € C2°(M) such that
the support of f is contained in P(x) N D(y). Using Lemma 3.8 and the change of
variable formula show,

f fVeg*dx =f fJ/gdy.
DEIND () DE)ND(Y)

Theorem 3.10 (Riemann Volume Measure). There exists a unique measure, Ay on
the Borel o -algebra of M such that for any chart x on M,

diy (x) = dAp(x) = /8*dx on D (x). (3.16)

Proof. Choose a countable collection of charts, {x;}{2, such that M = U2, D (x;) and
let Uy :=D(x1) and U; :=D(x;i) \ (U;;llD(xj)) fori > 1. Thenif B C X is a Borel
set, define the measure Ay (B) by

Ay (B) =) Apge) (BNUY). (3.17)
i=1

If x is any chart on M and B C D (x), then BNU; C D (x;)ND (x) and so by Exercise
3.9, Ap;) (B NUi) = Ap)(B). Using this identity in (3.17) implies
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Ay (B) =) Ape) (BNU;) = Apg) (B)

i=1

and hence we have proved the existence of Ajs. The uniqueness assertion is easy and
will be left to the reader. O

Example 3.11. Let M = R3 with the standard Riemannian metric, and let x denote
the standard coordinates on M determined by x(m) = m for all m € M. Then Aps is
Lebesgue measure which in spherical coordinates may be written as

digs = r’sin pdrdedf
because /g"#® = r?sin ¢ by (3.7). Similarly using (3.9),
dAy = p* sin pdpd8
when M C RR? is the sphere of radius p centered at 0 € R3.
Exercise 3.12. Compute the “volume element,” d Ag3, for R3in cylindrical coordinates.

Theorem 3.13 (Change of Variables Formula). Let (M, (-, -)y) and (N, (-, -)n)
be two Riemannian manifolds, v : M — N be a diffeomorphism and p €
C® (M, (0, 00)) be determined by the equation

p (m) = /det [V, Vum | forallm € M,

where Yt denotes the adjoint of V., relative to Riemannian inner products on Ty M
and TyomyN. If f : N — Ry is a positive Borel measurable function, then

/NfdAN=/Mp-(fow>dxM.

In particular if  is an isometry, i.e., Yyn : TnM — Ty(m)N is orthogonal for all m,
then
/ fdAN=/ foyrdiy.
N M

Proof. By a partition of unity argument (see the proof of Theorem 3.10), it suffices to
consider the case where f has “small” support, i.e., we may assume that the support
of f o is contained in D (x) for some chart x on M. Letting ¢ := x~1 by (3.11) of
Lemma 3.7,

det [(3i Wod)(t),8; (Yod) (t)>1v]
det [(;¢ (£), 30 (D)) p]
_ det[('ﬂ*aid)(t) , U0 (t)>N] _ det[(wi‘w*affb(t),3j¢(t))M]
T det [(3i¢ ), 99 (t))M] det [(8i¢ (t),9;¢ (t))M]
= det [¥ 5 s | = 7 6 (1))
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This implies

/I-Vfdkzv = /;2( )f o(Yog) (t)\/det [(8: (W o) (), 3; (¥ 0 ¢) (1)) n]dr

=/R() (f o %) 0 () - p (# 1)/det [(i (1), 3,0 (D)) ]de

=/ (fow)-p-\/g_xdxzf p-fowdiy.
D(x) M

Example 3.14. Let M = SL(n, R) as in Example 3.3 and let (-, -}5s be the metric
given by (3.5). Because L, : M — M is an isometry, Theorem 3.13 implies

/ fgx)dig (x) = / f(x)drig (x) forall g € G.
SL(n,R) SL(n,R)

Thus A is invariant under left translations by elements of G and such an invariant left
invariant measure is called a “left Haar” measure on G.

Similarly if G = O (n) with Riemannian metric determined by (3.5), then, since
g € G is orthogonal, we have

ds*(Ag) = ((g7' 4)"g ™" A) = ir((g*A)*g ' A) = tr(A*gg ! 4) = r(A*A)
and
tr((Ag)*Ag™!) = tr(gA*Ag™") = tr(A*Ag ' g) = tr(A*A).

Therefore, both left and right translations by element g € G are isometries for this
Riemannian metric on O (i) and so by Theorem 3.13,

£ (gx)dhg (x) = / £ () dig (x) = / f (xg) drg (x)
O(n) O(n) O(n)

forall g € G.

3.3 Gradients, divergence, and Laplacians

Inthe sequel, let M be a Riemannian manifold, x be acharton M, gij = (a/ax" , 3/3xj Y,
and ds? = ZZj:l gijdx'dx’.

Definition 3.15. Let g’/ denote the i- /" — matrix element for the inverse matrix to the
matn'x, (g,'j).

Given f € C®°(M) and m € M, dfy, := df|7,um is a linear functional on 7,, M.
Hence there is a unique vector vy, € T,, M such thatdf,, = (v, ).

Definition 3.16. The vector v,, above is called the gradient of f at m and will be
denoted by either grad f(m) or V f (m).
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Exercise 3.17. If x isacharton M andm € D(x) then

d
. af(m) 0
Vfm) =gradf(m)= )  g"(m)——"—|n, (3.18)
i,jZ=1 dx' oxJ

where as usual, g;; = g, and g = (gij)_l . Notice from Eq. (3.18) that V f is a
smooth vector field on M.

Exercise 3.18. Suppose M C R" is an imbedded submanifold with the induced Rie-
mannian structure. Let F : RY — R be a smooth function and set f := F|p. Then
grad f(m) = (P(m)V F(m)),,, where V F (m) denotes the usuat gradient on R¥, and
P (m) denotes orthogonal projection of RY onto M.

We now introduce the divergence of a vector field ¥ on M.

Lemma 3.19 (Divergence). To every smooth vector field Y on M there is a unique
smooth function, V - Y = divY, on M such that

/ Yfdiy = —/ divY - fdiy, VY feCP(M). (3.19)
M M

(The function, V - Y = divY, is called the divergence of Y.) Moreover if x is a chart
on M, then on its domain, D(x),

d ; d .
1 9(/gY' Yl 4l |
Vor=dvy=) L 2B g v dloeg
i=1 «/? ax! ox! ax!

(3.20)
i=1

where Y' := dx'(Y) and /g = /g¥ = (det(g}))-

Proof. (Sketch) Suppose that f € CZ°(M) such that the support of f is contained in
D(x). Because Yf = 4 Yaf/ax’,

ox?

Ny & Y
./MdekM_./MEY 3f/ox .ﬁdx_—'/M;f‘dx

d

1 3(J§Yi)
= - ———dA ,
-/Mfgﬁ axi M

where the second equality follows from an integration by parts. This shows that if div ¥
exists it must be given on D(x) by (3.20). This proves the uniqueness assertion. Using
what we have already proven, it is easy to conclude that the formula for div Y is chart
independent. Hence, we may define a smooth function div ¥ on M using (3.20) in each
coordinate chart x on M. It is then possible to show (again using a smooth partition of
unity argument) that this function satisfies (3.19). a
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Remark 3.20. We may write (3.19) as

/ (Y, grad f)dhy = —/ divY - fdiy, Y feCPM), (3.21)
M M

so that “div* is the negative of the formal adjoint of “grad.*
Exercise 3.21 (Product Rule). If f € C®° (M) and Y € T' (T M) then
V- (fNH=(VLi+fV.T

Lemma 3.22 (Integration by Parts). Suppose that Y € T(TM), f € CZ(M), and
he C®(M), then

f Yf.hdAMz'/ fl=Yh —h-div¥}dAy.
M M

Proof. By the definition of div Y and the product rule,
/ FfhdivYdiy = —/ Y(fh)diy = —/ {hYf + fYh}dAy.
M M M
Definition 3.23. The Laplacian on M is the second order differential operator, A :

C®(M) - C*®(M), defined by

Af :=div(grad f) =V -V £ (3.22)

In local coordinates,

d
1 .
— ¥ a(vzs78;5), (3.23)
L=

where 0; = B/Bxi, g=g" /g =+/detg, and (g = (g,?‘j)‘l.
Remark 3.24. The Laplacian, Af, may be characterized by the equation:

Af =

f Af-hdAM=—/ (V f, Vh) dhy,
M M

which is to hold for all f € C*®°(M) and h € C°(M).

Example 3.25. Suppose that M = RV with the standard Riemannian metric ds?* =
SN | (dx*)?, then the standard formulas:

N

N _ . N 3% f
grad f = ) 8f/dx' -8/dx', divy =) 8Y'/ox' and Af = ; @2

i=l1 i=1

. N ; P
are easily verified, where f is a smooth function on RN and ¥ = Yo Yid/dxtisa
smooth vector field.
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Exercise 3.26. Let M = R3, (r, ¢, 6) be spherical coordinates on R>, 3, = 3 /or,

dp, = 3/3¢p, and 39 = 3/dy. Given a smooth function f and a vector field ¥ =
Y9, + Y,d, + Y53 on R? verify:

1 1
grad f = (9, /)3, + r-z(a(pf)atp + m(aef)ae,

divy =

sing {0y (r2 sin pY,) + 9, (r2 singY,) + r?sin ©dpYp}

1 1 .
= r—zar(rer) + ——0,(sing@¥,) + 95 ¥s,
sin g

and
1

Rf
r2sin? ¢ 2

3y, (sindy, f) +

1
Af = 50.(r%0, f) + 5=
r r<sing

Example 3.27. Let M = G = O (n) with Riemannian metric determined by (3.5) and
for A € g:=T,G let A € I (T G) be the left invariant vector field,

d
A(x):=LisA= mee"‘

as was done for SL(n, R) in Example 2.34. Using the invariance of dAg under right
translations established in Example 3.14, we find for f, # € C! (G) that

- d
/G Af () h(n)dig (x) = /G Zlof (xe') b (x) g (x)

d A
= o [ £ (xe*) hw dr )
d
710
d
= /G £ )+ Zoloh (xe*) dig ()

/G F@)-h (xe—“‘) dir (%)

= —'/Gf(x) - Ah (x)dAg (x).
Taking & = 1 implies
0= / Af (0 dig (x) = / (A, Vs @)dre @
G G
=—/GV-A(x)-f(x>dAG(x>
from which we learn V - A = 0.

Now letting Sp C g be an orthonormal basis for g, because L, is an isometry,
{A (g) : A € Sp} is an orthonormal basis for T, G for all g € G. Hence
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Vie=Y (Vi@ A®)ie =) (if) @i@.

’ A€ Sy A€Sy

and, by the product rule and V - A = 0,

Af=V.Vf= ZV.[(Af)A]z Z(VAf,A): 3 Ay

AeSg AeSg A€eSo

3.4 Covariant derivatives and curvature

Definition 3.28. We say a smooth path s — V(s) in TM is a vector field along a
smoothpaths — o(s)in M if m o V(s) =0 (s), i.e. V(s) € Ty(5)M for all 5. (Recall
that  is the canonical projection defined in Definition 2.16.)

Note: if V is a smooth path in T M then V is a vector field along o := 7 o V. This
section is motivated by the desire to have the notion of the derivative of a smooth path
V(s) € TM. On one hand, since T M is a manifold, we may write V'(s) as an element
of TT M. However, this is not what we will want for later purposes. We would like
the derivative of V to again be a path back in TM, not in TT M. In order to define
such a derivative, we will need to use more than just the manifold structure of M, see
Definition 3.31 below.

Notation 3.29. In the sequel, we assume that M? is an imbedded submanifold of
an inner product space (E = RY, (.,-)), and that M is equipped with the inherited
Riemannian metric. Also let P (yn) denote orthogonal projection of E onto t,, M for all
m € M and Q(m) := I — P (m) be orthogonal projection onto (T, M L.

The following elementary lemma will be used throughout the sequel.
Lemma 3.30. The differentials of the orthogonal projection operators, P and Q, satisfy

0=dP+4dQ,
PdQ =—dPQ=dQQ and
QdP =—-dQP =dPP.

In particular,

QdPQ = QdQQ = PdPP = PdQP = 0.

Proof. The first equality comes from differentiating the identity, I = P+ Q, the second
from differentiating 0 = P Q and the third from differentiating 0 = Q P. O

Definition 3.31 (Levi-Civita Covariant Derivative). Let V(s) = (o(s), v(s)) =
v(s)s(s) be a smooth path in TM (see Figure 9), then the covariant derivative,
VV(s)/ds, is the vector field along o defined by

d
V) os), Plos)Luis)). (3.24)
ds ds
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VWs)_ dW
0-re L

Figure 9. The Levi-Civita covariant derivative.

Proposition 3.32 (Properties of V/ds). Let W(s) = (o(s), w(s)) and V(s)
(o (s), v(s)) be two smooth vector fields along a path o in M. Then:

1. VW (s)/ds may be computed as:

W d Ao’ 325
I (0 (s), aw(SH-( Q(o’(5)))w(s)). (3.25)

2. V is metric compatible, i.e.,

VW(s) VV(s)
- VO (W), =0

%(W(S), Vi(s) =( ). (3.26)
Now suppose that (s,t) — o(s,1) is a smooth function into M, W(s,t) =
(0 (s, 1), w(s, 1)) is a smooth function into TM, o'(s, t) := (o(s,1), L—%o(s, 1)
and 6(s,t) = (0 (s, 1), “f—to(s, 1)). (Notice by assumption that w(s,t) € TosnM
forall (s,1).)

3. V has zero torsion, i.e.,

Vo' V& 327
dt ~ ds’ 327
4. If R is the curvature tensor of V defined by
R(@um, vm)wm = (m, [dQ(um), d Q(vm)]w), (3.28)
then
Y Vlw =YY _Y Y\ re, o)W (3.29
ads | TG Tdsa T 29

Proof. Differentiate the identity, P(o (s))w(s) = w(s), relative to s implies

d d
@dP (o’ (s)w(s) + P(U(S))gW(S) = d—SW(S)
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from which (3.25) follows.

For (3.26) just compute:

= :—s {w(s), v(s))

= <:—sw(S), v(S)> + <w(S), %v(S)>

d
(W(s), V()

s

d
= <—d w(s), P(U(S))U(S)> + <P(U(S))w(s), —U(S)>
ds ds

d d
= <P(0 (S))gw(S), v(S)> + <w(S), P(o (S))Es—v(S)>

_[VW() VV(s)
__< 7 ,V(s)>+<W(s), s >‘

where the third equality relies on v(s) and w(s) being in T5¢;y M and the fourth equality
relies on P (o (s)) being an orthogonal projection.

From the definitions of o’, &, V/dt, V /ds and the fact that mixed partial derivatives
commute,

Vo'(s, 1) _

- %(o(r, $),0'(s, 1) = (@(t,5), PO, t))%%o(t, $))
= (o(t,s), P(a(s, t))i—d—o(t, §)) =Vé(s,t)/ds,
ds dt

which proves (3.27).
For (3.29) we observe,

vV v d )
Z Ve, H=—-00, LYt dQ(o’'(s,)w(s, 1)

= (0 (s, 1), n+(5,1))

where (with the arguments (s, t) suppressed from the notation)

N4 = % [;—sw +dQ(0’)w] +dQ(5) [:—sw +dQ(0’)w]
dd d , . d N . ,
= w (E [dQ(o )]) w+dQe)w +dQ@) Jow +dQ(6)dQ(0)w.
Therefore

vV V W= ( )
E;;% = (0, N+ n-)>,

where 7_ is defined the same as 4. with all s and ¢ derivatives interchanged. Hence, it
follows (using again % 3‘% w = j—s % w) that

vV Vv d , d . . ,
[E’ %] W= (0[5 @0 v = [ (dOE)w + [dQ(6),dQ(0)]w).
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The proof of (3.28) is finished because
d d d d d d
—(d ) g d ’ = — —_——— =
dt( Q(a) ds( Q@) dtds(QOG) 7s dt(QOG) 0.

Example 3.33. Let M = {m e RN : |m| = p} be the sphere of radius p. In this case

Q(m) =;17mm" for all m € M. Therefore

1
dQ(vy) = p{vm“ +mv*} Vv, € T,M
and hence

dQUm)dQ(vy) =

1
s {um" + mu"}{vm" + mo¥}
1 2 . tr
= F{p uv® + (u, v)Q(m))}.
So the curvature tensor is given by
1 tr tr 1

R(um, vm)wm = (m, p{uv —vuw) = (m, ?{(v, w)u — (u, w)v}).

Exercise 3.34. Show the curvature tensor of the cylinder
M:{(x,y,z)eR3:x2+y2= 1}

is zero.

Definition 3.35 (Covariant Derivative on I'(TM)). Suppose that Y is a vector field
on M and v,, € T,, M. Define Vi, Y € TnM by

VY(o (s
VUmY = ( ()) |S=0!
ds

where o is any smooth path in M such that o’ ) = vp,.

If Y (m) = (m, y(m)), then

Vou Y = (m, P(m)dy(vm)) = (m, dy(vm) + d Q(vp)y(m)),

from which it follows V,, Y is well defined, i.e. Vu. Y is independent of the choice of
o such that 6’ (0) = v,,. The following proposition relates curvature and torsion to the
covariant derivative V on vector fields.

Proposition 3.36. Lerme M,ve T,M, X,Y,Z ¢ '(TM), and f € C®(M), then
the following relations hold.

1. Product Rule V,(f -X) =df(v) - X(m) + f(m) -V, X.
2. Zero Torsion VyY — Vy X —[X, Y] = 0.
3. Zero Torsion For all vy, w,, € Ty M, dQ(Wm) Wy = d QW) vp,.
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4. Curvature Tensor R(X, Y)Z = [Vx, Vy1Z — Vix,v1Z, where
' [Vx, Vy1Z := Vx(Vy Z) — Vy(Vx 2).

Moreover ifu, v, w, z € Ty M, then R has the following symmetries

a: R(um7 vm) = _R(UMv um)
b [R(um, vm)]™ = —R(um, vm) and
¢ ifzm € tTWM, then

(R(um, Vi)W s Zm) = (R(Win, Zm)m, Vm)- (3.30)
5. Ricci Curvature Tensor For each m € M, let Ricy, : Ty M — T,y M be defined by

Ricy, v 1= Z R(vp, a)a, (3.31)

aes

where S C T,,M is an orthonormal basis. Then Ric}{l = Ric,, and Ric,, may be
computed as

(Ricuu, v) = te(dQ(dQu)v) —dQw)YdQWw)) forallu,v e T,,M. (3.32)

Proof. The product rule is easily checked and may be left to the reader. For the second
and third items, write X (m) = (m, x(m)), Y(m) = (m, y(m)), and Z{m) = (m, z(m))
where x, v,z : M — R¥ are smooth functions such that x(m), y(m), and z(m) are in
T, M for all m € M. Then using (2.15), we have

(VxY = VyX)(m) = (m, P(m)(dy(X (m) — dx(¥ (m))))
= (m, (dy(X(m)) —dx(Y(m)))) = [X, Y](m), (3.33)
which proves the second item. Since (VxY)(m) may also be written as
(VxY)(m) = (m, dy(X(m)) + dQ(X (m))y(m)),

(3.33) may be expressed as d Q (X (m)) y(m) = d Q (Y (m))x (m) which implies the third
item.
Similarly for the fourth item:

VxVyZ =Vx(-, Yz + (Y Q)2)
= XY+ (XYQz+ (YO Xz + (XO)(Yz + (Y Q)2)),

where YQ :=dQ(Y) and Yz := dz(Y). Interchanging X and Y in this last expression
and then subtracting gives:
[Vx, Vy1Z = (., [X, Y]z + (X, Y1Q)z + [XQ, Y Q]2)
= V[X,Y]Z +R(X,Y)Z.

The anti-symmetry properties in items 4a) and 4b) follow easily from (3.28). For ex-
ample for 4b), dQ (u,,) and d Q (v),) are symmetric operators and hence
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[R(Wm, vm)]" = [dQ (), dQ(vm)]* = [dQWr)", dQ(m)"]
=[dQ(vm), dQum)] = —[dQ(um), dQ(Wm)] = —R(Um, vp).

To prove (3.30) we make use of the zero-torsion condition d Q (V) Wm = d Q (W) vy,
and the fact that d Q (uy,) is symmetric to learn

(R(Um, vm)w, 2) = {[d Q(Um), d Q(Vm)]W, 2)

= ([dQum)dQ(vm) — dQ(Vm)d Q(um)w, z)

= (dQm)w, dQum)z) — (dQum)w, dQ(v)2)

= (dQw)v,dQ(Ju) — (dQ(w)u, dQ(z)v) (3.34)
= ([dQ (@), dQ(w)]v,u) = (R (z, w)v,u) = (R(w, ) u, v)
where we have used the anti-symmetry properties in 4a. and 4b. By (3.34) with v =
w=a,

(Ricu,z) = Y (R(u,a)a,z)

a€s

= Z [(dQ(a)a, dQu)z) — (dQ(u)a, dQ(a)z)]

aes

=Y _[{a,dQ(@)dQu)z) — (dQ(u)a, dQ(z)a)]
acs

=Y [(a,dQEQW)2)a) — (dQ()dQ(w)a, )]
aes

=tr(dQ(dQu)z) —dQ(2)dQ(u))

which proves (3.32). The assertion that Ric,, : T, M — T,, M is a symmetric operator
follows easily from this formula and item 3. o

Notation 3.37. To each v € RY, let 8, denote the vector field on RY defined by
d
dy(atx) =v, = d_t|0(x + tv).
Soif F € C*®(RY), then
d
(B F)(x) := E|OF(x +1v) = F' (x)v

and
(33w F) (x) = F" (x) (v, w),
see Notation 2.1.
Notice that if w : RY — R¥ is a function and v € R¥, then
(33 F) (x) = 3 [F' (OYw ()] () = F' (x) dyw (x) + F” (x) (v, w (x)).

The following variant of item 4. of Proposition 3.36 will be useful in proving the key
Bochner-Weitenbock identity in Theorem 3.49 below.
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Proposition 3.38. Suppose that Z e T (TM),v,w € Ty,M andlet X,Y € T (TM)
such that X (m) = vand Y (im) = w. Then

1. V2g,,Z defined by
VigwZ = (VxVyZ — Vy,y Z) (m) (3.35)

is well defined, independent of the possible choices for X and Y.
2. IfZ(m) = (m, z(m)) withz : RY > RY a smooth function such that 7 (m) € T, M
forallm € M, then

VegwZ =dQ () dQ (w)z (m)+P (m)z" (m) (v, w)—P (m) 2’ (m) [dQ (v) w].
(3.36)

3. The curvature tensor R (v, w) may be computed as
VigwZ — Vag,Z = R (v, w) Z (m). (3.37)

4. If V is a smooth vector field along a path o (s) in M, then the following product

rule holds,
v

— 2
—(Wvi2) = (ViveZ) + VpeveZ- (3.38)

Proof. We will prove items 1 and 2 by showing the right sides of (3.35) and Eq. (3.36) are
equal. To do this write X (m) = (m, x(m)), Y (m) = (m, y(m)), and Z(m) = (m, z(m))
where x, y, z : R¥ — R¥ are smooth functions such that x (m), y(m), and z(m) are
in T, M for all m € M. Then, suppressing m from the notation,

VxVyZ — VyyyZ = P3, [Pdyz] — Pdps,yz
= P (3;P)dyz + Pd,dyz — Pdpy,yz
= P (3:P)dyz + Pz" (x,y) + PZ'[3,y — Pdy]
= (8: P) Qdyz + PZ" (x,y) + PZ' [Qd,)].

Differentiating the identity, @y = 0 on M shows Q3,y = — (3, Q) y which combined
with the previous equation gives

VxVyZ — Vy,vZ = (8:P) Qdyz + PZ" (x,y) — PZ'[(3: Q) Y] (3.39)
=—(P)(8,Q0)z+ PI"(X,Y) — PZ[(3: Q) Y].

Evaluating this expression at m proves the right side of (3.36).

Equation (3.37) now follows from (3.36) and (3.28), item 3 of Proposition 3.36 and
the fact the 7" (v, w) = z” (w, v) because mixed partial derivatives commute.

We give two proofs of (3.38). For the first proof, choose local vector fields { E; }f=1
defined in a neighborhood of o (s) such that {E; (o (s))}j.i=1 is a basis for Ty ;)M for
each s. We may then write V (s5) = ZLI Vi (s) E; (o (s)) and therefore,

d
V()= {V/ ) Ei 0 () + Vi ) Voro) Ei } (3.40)

i=1

\%
ds
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and
v v Z v -
Z (W) 3—2 i () (VE Z) (0 (5))
d d
= Vi) (VEZ) @ )+ Y Vi (5) Yoris) (VE Z) -
i=1 i=1
Using (3.35),

2
Vo) (VE Z) = VorwoE@enZ T (Vva’mEf Z)
and using this in the previous equation along with (3.40) shows

d

\%
ds (VV(S)Z) Zd {v ($)E; (o ()+V; (J)Va'(:)Er Z + Zl Vi (5) Vu "(IQE; (a(s))Z
H

— 2
= (V% V(s)Z) + Vomeve 2
For the second proof, write V (s) = (o (s),v(s)) = V(S)g(sy and p(s) :=
P (o (s)), then

EV; (WwZ) - (V%VZ) = p% (pz' (v)) — p2 (pv')
=p[p'Z (v)+ p" (¢'. v) + p2' (v)] - pZ (pV')
= pp'? (v) + p2" (¢, v} + pz’ (qV)
=p'q7 (v) + pz" (o', v) — p7’ (¢'v)

"(qv
p'(
=v2 V4

a’(5)®V(s)

wherein the last equation we have made use of (3.39). O

3.5 Formulas for the divergence and the Laplacian
Theorem 3.39. Let Y be a vector field on M, then
divY = (VY). (3.41)

(Note: (v, — V,, Y) € End(T,, M) for each m € M, so it makes sense to take the
trace.) Consequently, if f is a smooth function on M, then

Af =tr(Vgrad f). (3.42)

Proof. Let x be achart on M, 9; := 3/8x", V; := Vj,, and Y’ := dx*(Y). Then by the
product rule and the fact that V is torsion free (item 2 of Proposition 3.36),
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d d
Vi¥ =) V(Y78 =) (aYI9; +Y/Vid;),
j=1 j=1
and V,'aj = Vja,-. Hence,

d d d
w(VY) =Y dx' (Vi) =) aY 4+ ) dx'(¥/Vi))

i=1 i=1 i,j=1
d d )

=) Y+ ) X' (¥IV;a).
i=l1 i,j=1

Therefore, according to (3.20), to finish the proof it suffices to show that

d
de"(vja,») = 3;log /2.

i=1

From Lemma 2.7,

d
1 | 1
3;log /& = 0; log(det g) = ~tr(s™'3;8) = 5 D £";zu,
k=1

and using (3.26) we have
88kt = (3K, ) = (V. 3r) + (0, V;0r).

Combining the last two equations along with the symmetry of g* implies

d d
dilog V& = D &(V8k. &) = ) dx*(V; ),

k=1 k=1

where we have used J
Yooy =dxt
k=1

This last equality is easily verified by applying both sides of this equation to d; for
i=1,2,...,n. 0

Definition 3.40 (One forms). A one form @ on M is a smooth functionw : TM — R
such that wp, := |1, M is linear for all m € M. Note: if x is a chart of M with

m € D(x), then
d

om =Y _ wi(m)dx'1,u.
i=1
where w; = w(3/ 3x'). The condition that w is smooth is equivalent to the condition
that each of the functions w; is smooth on M. Let 21 (M ) denote the smooth one-forms
on M.
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Given a one-form, w € Q'(M), there is a unique vector field X on M such that
wpy = (X (m), ) forall m € M. Using this observation, we may extend the definition
of V to one-forms by requiring

Vi = (V, X, ) € TM = (T, M)*. (3.43)

Lemma 3.41 (Product Rule). Keep the notation of the above paragraph. Let Y €
C(TM), then
U [0(¥)] = (Vo w) (Y (1)) + 0(V,, ¥). (344

Moreover, if 6 : M — (RN)* is a smooth function and
@ (V) = G (mv
forall v,, € TM, then
(Vo 0)(Wm) = db(vm)w — 8(m)d Q(vp)w = (d(O P)(vm))w, (3.45)

where (6 P)(m) := 8(m)P (m) ¢ (RV)*,

Proof. Using the metric compatibility of V,

vm(@(Y)) = vm ((X, ¥)) = (V,, X, Y(m)) + (X (m), V,, ¥)
Vo, 0)(¥Y (m)) + w(V,,, Y).

i

Writing Y (m) = (m, y(m)) = y(m),, and using (3.44), it follows that

(Vy, @) (Y (m)) = vm(w(Y)) — w(V,,Y)
= U (6(-)y()) — 6(m)(dy(vp) + dQ(vm)y(m))
= (d8(vm))y(m) — 0 (m)(d Q(vm))y(m).

Choosing Y such that Y(m) = w,, proves the first equality in (3.45). The second
equality in (3.45) is a simple consequence of the formula

d@P)=d0(-)P +6dP =dé()P —6dQ.
Before continuing, let us record the following useful corollary of the previous proof.

Corollary 3.42. To every one-form w on M, there exists f;,g; € C®(M) fori =
1,2,..., N such that

N
o= fidg. (3.46)
=1

Proof. Let f; (m) := 6(m)P(m)e; and g; (m) = x* (m) = (m, e;)gy wWhere {e,'}fY__l is
the standard basis for RV and P () is orthogonal projection of R" onto 1,, M for each
meM. O
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Definition 3.43. For f € C®(M) and v, Wy, in T, M, let
Vdf(va wm) = (Vv,,,df)(wm)a

so that
Vdf : Upem(TuM x T, M) — R.
We call Vdf the Hessian of f.

Lemma 3.44. Let f € C®°(M), F € C®RY) such that f = Fly, X, Y € T(TM)
and vy, Wy, € TyM. Then:

1. Vdf(X,Y)y=XYf —df(VxY).
2. Vdf (vm, wm) = F"(m)(v, w) — F'(m)d Q(vm)w.
3. Vdf (vm, wm) = Vdf (W, vym), this is another manifestation of zero torsion.

Proof. Using the product rule (see (3.44)):
XYf=Xdf(Y))=(Vxdf)(Y) +df(VxY),
and hence
Vdf(X,Y) = (Vxdf)(Y) = XYf —df (VxY).

This proves item 1. From this last equation and Proposition 3.36 (V has zero torsion),
it follows that

Vdf(X,Y)—-Vdf({Y,X)=1[X,Ylf —df(VxY — VyX) =0.

This proves the third item upon choosing X and Y such that X (m) = v,, and Y(m) =
Wy, ltem 2 follows easily from Lemma 3.41 applied with § := F’. O

Definition 3.45. Given a point m € M, a local orthonormal frame {E,‘};i=1 atmis a
collection of local vector fields defined near m such that { E; ( p)};i=1 is an orthonormal
basis for T, M for all p near m.

Corollary 3.46. Suppose that F € C®RN), f:= F|y,andm € M. Let {e,-};i 1 be

an orthonormal basis for t,, M and let {E,-};iz | be an orthonormal frame nearm € M.
Then

Af(m) = i Vdf(E;(m), Ei(m)), (347)
, i=1
Af(m) =) (EE; f)m) — df (Ve,em E)}, (3.48)
and J -
Af(m) = F"(m)(ei, e;) — F'(m)(d Q(E; (m))e;) (3.49)

i=1

where E; (m) :== (m, ¢;).
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Proof. By Theorem 339, Af = Y%, (Vg, grad f, E;} and by (3.43), Vedf =
(VE, grad f, -}. Therefore

d d
Af =) (Vgdf)E) =Y Vdf(E, E),

i=1 i=1

which proves (3.47). Equations (3.48) and (3.49) follows from (3.47) and Lemma 3.44.
[m]

Notation 3.47. Let {e;})Y | be the standard basis on R¥ and define X i (m) ;== P (m) ¢;
forallm e Mandi =1,2,..., N.

. In the next proposition we will express the gradient, divergence and the Laplacian
in terms of the vector fields, {X ,-}fv=' 1 - These formulas will prove very useful when we
start discussing Brownian motion on M.

Proposition 3.48. Let f € C®° (M) and Y € I' (T M) then

U = Z.devm, Xi (m))X; (m) for all v,, € T, M.
Vi=gradf =YV Xif X,

L VY =div(y) = YN vy Y, X))

. ZzN=1 Vx, Xi =0

Af =3 X2

I N N

Proof. 1. The main point is to show

N d
DXimXim) =Y ui®u (3.50)

i=1 i=1

where {u; }:.i=1 is an orthonormal basis for T, M. But this is easily proved since

N N
D XimBXi(m)=Y P(m)e;® P (m)e;

i=1 =]

and the latter expression is independent of the choice of orthonormal basis {e,-}fv= | for
R . Hence if we choose {e,-}f\'=1 sothate; = u; fori = 1,...,d, then

N d
ZP(m)e,- ® P (m)e; = Zui ® u;
i=1 i=1

as desired. Since Z,N:I (U, X; (m))X; (m) is quadratic in X;, it now follows that

N d
D (om, X ) Xi 1) = (U, )1t = vy,
i=1

i=1
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2. This is an immediate consequence of item 1:

N

v N
grad f (m) =) (grad f (m), X; (m)X; (m) = Y_ X; f (m) - X; (m).

i=l i=1

3. Again Zfil(vx,. Y, X;) (m) is quadratic in X; and so by (3.50) and Theorem

3.39,
N d

D (VR Y, Xi) (m) = Y (Vi Y, wi) (m) = div(Y).
i=1 i=1

4. By definition of X; and V and using Lemma 3.30,

N N
(Vx.Xi) (m) = Y P (m)dP (X; (m))ei = Y_dP (P (m)e;) Q (m)er. (3.51)

N
=1 i=] i=1

1

The latter expression is independent of the choice of orthonormal basis {ei}f\': | for RYV.
So again we may choose {e,-}fv=1 so that ¢; = u; fori = 1,...,d, in which case

P (m)e; = 0for j > d and so each summand in the right member of (3.51) is zero.
5. To compute Af, use items 24, the definition of V f and the product rule to find

N
Af =V (V=) (Vx,Vf Xi)
i=1
N N N
=) Xi(VAEX) - Y VAV, X) =D XiXif.
i=1 i=1

i=1
The following commutation formulas are at the heart of many of the results to appear

in the latter sections of these note.

Theorem 3.49 (The Bochner-Weitenbick Identity). Let f € C®° (M) anda, b,c €
T.M, then

(V2epV i C) = (Vi V . b) (3.52)
and if S C T,,M is an orthonormal basis, then
Y V2.V f = (grad Af)(m)+RicVf (m). (3.53)
aes

This result is the first indication that the Ricci tensor is going to play an important
role in later developments. The proof will be given after the next technical lemma,
which will be helpful in simplifying the proof of the theorem.

Lemma 3.50. Given m € M and v € T,M there exists V € I' (TM) such that
V(m) =vandV,V = 0forallw € T,, M. Moreover if{e,~}:.’l=1 is an orthonormal basis
Jor TuM, there exists a local orthonormal frame {E,‘}?l=1 near m such that V,E; =0
forallwe T, M.
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Proof. In the proof to follow it is assumed that V, Q and P have all been extended off
M to smooth function on the ambient space. If V is to exist, we must have

0=VyV=V imw+23,0@m)v,
such that
Vm)w=-38,0@m)vforallw € T,, M.
This helps to motivate defining V by

V) =Px)(v—(0x—mQ)m)v) e T Mforallx e M.
By construction, V (m) = v and making use of the identities in Lemma 3.30,

VyV =3dy [P (x) (v = (8x-m Q) (m) v)] lx=m + (8w Q) (M) v
=@BwP)(m)v— P (m)(0,0Q) (M)v+ (3,0) (M) v
= (8w P)(m)v + Q (m) (8, Q) (M) v = (3, P) (m) v + (3, Q) (M) v =0
as desired.
For the second assertion, choose a local frame { V,-}f=1 such that V; (im) =
and V,,V; = 0 for all i and w € T,,M. The desired frame {E }l | is now con-

structed by performing Gram-Schmidt orthogonalization on {V} . The resulting

orthonormal frame, {E; }t 1 still satisfies V,E; = O forall w € T M For example,
E1 = (Vi, Vi)~12V} and since

w(Vy, V1) =2(V, V1, Vi (m)) =
it follows that
VoE| = w ((Vl, vl)—l/z) Vi (m) + (Vi, Vi)™V m) Y Vi (m) = 0.

The similar verifications that V,, E j=0forj=2,...,d will be left to the reader. O

Proof of Theorem 3.49. Let a,b,c € T,,M and suppose A, B,C € .F (T M) have
been chosen as in Lemma 3.50, so that A ) = a, B(m) = b and C (m) = c with
VwA =VyB =V,C=0forallw € T,, M. Then

ABCf = AB(Vf,C) = A(VBVf,C) + A(V f, V5C)
=(VaVeVf C)+(VpV [, V4C) + A(V £, V5C)

which evaluated at m gives
(ABCf) (m) = ((VaVsV f, C) + A(V f, V5C)) (m)
= (V2euV f, ¢) + (A(V £, V5C)) (m)

wherein the last equality we have used (V4 B) (m) = 0. Interchanging B and C in this
equation and subtracting then implies
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(A[B, C1 f) (m) = (V2 V f, ¢) — (V2. V f. b) + (A(V f, V5C — Vc B)) (m)
= (V25 V f, ) — (V2. V £, b) + (A(V £, [B, C]) (m)
= (V2o V f, ¢) — (V2. V £, b) + (AIB, C1f) (m)

and this equation implies (3 52).
Now suppose that { E; } _; C Ty M is an orthonormal frame as in Lemma 3.50 and

¢; = E; (m) . Then, using Proposition 3.38,

d d d

Z 20a Vi)=Y (Vig Vfe) =) (Vig, VI +R(e.)Vf(m),e).

i=1 i=1 i=1 (354)
Since

=%

=1 i=l1

= (CAf) (m)=((VASf) (m),c)

d d
Y (V. VS i) Z (VeVEVf E)) m) =Y (C(VEV S, Ei)) (m)
i=1

and (using R (e;, ©)" = R (c, &)

d d
S (R (e, )V (m), &) =) (Vf(m),Ric,e)e)
i=l 1

i=

= (Vf (m),Ricc) = (RicV f (m),c),

(3.54) implies

(V2. V f, ¢) = (VAS) (m) +Ric V f (m) , c)

M'Mn

which proves (3.53) since ¢ € T,, M was arbilrary.

3.6 Parallel translation

Definition 3.51. Let V be a smooth path in T M. V is said to be parallel or covariantly
constant if VV (s)/ds =0

Theorem 3.52. Let o be a smooth path in M and (v0)o(0) € Ty (0)M. Then there exists
a unigue smooth vector field V along o such that V is parallel and V (0) = (v0)o(0)-
Moreoverif V (s) and W (s) are parallel along o, then (V (s), W(s)) = (V(0), W (0))
foralls.

Proof. If V and W are parallel, then

%(V(S), W(S))=<%V(S),W(S)> <V(S) W(S)>
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which proves the last assertion of the theorem. If a paralle] vector field V(s) =
(o (s), v(s)) along o (s) is to exist, then

du(s)/ds +dQ(0’'(s))v(s) =0 and v(0) = vp. (3.55)

By existence and uniqueness of solutions to ordinary differential equations, there is
exactly one solution to (3.55). Hence, if V exists it is unique.

Now let v be the unique solution to (3.55)and set V (s) := (o (s), v(s)). To finish the
proof it suffices to show that v(s) e To(syM. Equivalently, we must show that w(s) ;=
q(s)v(s) is identically zero, where q(s) := Q(o(s)). Letting v'(s) = dv(s)/ds and
p(s) = P(o(s)), then (3.55) states v/ = —g’v and from Lemma 3.30 we have pq =
¢’q. Thus the function w satisfies

w = qlv + qv/ — q/v _ qq/v — pq/v — q/qv — q/w

with w(0) = 0. But this linear ordinary differential equation has w = 0 as its unique
solution. O

Definition 3.53 (Parallel Translation). Given a smooth patho,let//s(0) : Toio)M —
T5(s)M be defined by // (0) (Vo)) = V(s), where V is the unique parallel vector
field along o such that V (0) = (v0)o(0y- We call //s(c) parallel translation along o
up to time s.

Remark 3.54. Notice that [ls(@Yvg0) = (u(s)v)o@), where s — u(s) e
Hom (7, 0y M, R¥) is the unique solution to the differential equation

W) +dQ@' ()u(s) =0 with u(0) = P (c (0)). (3.56)

Because of Theorem 3.52, u(s) : .yyM - RY is an isometry for all s and the range
of u(s) is 7, ;) M. Moreover, if we let i (s) denote the solution to
i (s)— u(s)dQ(o’(s)) = O with iz (0) = P (o (0), 3.57

then

d
o [ uI=a ()u(s) +i(s)u (s)
=u(s)dQ(o'(s)u(s) —a (5)d Qo' (s))u(s) = 0.

Hence it (s)u(s) = P (o (0)) for all s and therefore i (s) is the inverse to u (s) thought
of as a linear operator from To©)M 10 755y M. See also Lemma 3.57 below.

The following techniques for computing covariant derivatives will be useful in the
sequel.

Lemma 3.55. Suppose Y € T (TM), o (s)isapathin M, W &)= (o (), w(s)is
a vector field along o andlet |/, = |/, (o) be parallel translation along o. Then

LW ©) = /1417w ).
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2. Foranyv € T, oM,

v 2 3.58)
av//xvy = Vo'(s)@//qu' (

. tion 3.38.
where Vg,(sm//va was defined in Proposition 3.3

Proof. Let i be as in (3.57). From (3.25),

VW(s) — <iLU(S) +dQ(o—/(s)))w(s))
ds ds °©

while, using Remark 3.54,

drp (d )
Slimwol=(gaowen)
= (@ )W) +a©) w (),
=(@8©dQ (@) wE) +aE W ),

_ _1VW(s)
_//S R

This proves the first item. We will give two proofs of the second item, the first Plrlogf
being extrinsic while the second will be intrinsic. In each of these proofs there will be

an implied sum on repeated indices.
First proof. Let {X,-}I.V L CT(TM) be as in Notation 3.47, then by Proposition 3.48,
. i

[/sv = {//sv, Xi (0 (M Xi (@ (9) = (v, /7 Xi (6 ($))Xi (@ () (3.59)

and therefore,

—V—V//A,,Y = dz [(//sv, X; (o (8))) - (Vx,-Y) (o (S))]
ds " s
= (//va Xi (0 (S))) . VO'(S) (VX; Y) + (//va VO/(S)Xi) N (VX,' Y) (G((:;g)6)0)
N
ow Vo) (Vx.Y) = Vaioex, Y + Vorx ¥

and so again using Proposition 3.48,

; Vorsyx, Y-
(//s0, Xi (0 ) - Voris) (Vi,Y) = Vorggyp¥ + /150, Xi (0 () Ry

Taking V /ds of (3.59) shows
0= (//sv, Vory Xi) Xi (0 (8)) + {//sv, Xi (0 (s))) Vo sy Xi-

and so
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{//sv, Xi (0 (s))) - vcr’(s)X,'Y = —{//sv, vo’(s)Xi) : (VX,- Y) (@) (s). (3.62)
Assembling (3.59), (3.61) and (3.62) proves (3.58).

Second proof. Let {E; };izl be an orthonormal frame near o (s) , then

v Vi Y = v i Y
Syt = — [0, Ei @ ©) - (V£ Y) @ )]

= (//sv, Vore)Ei) - (VEY) (@ () + {//59, Ei (0 5))) - Vor(s) VE, Y-
(3.63)

Working as in the first proof,

/50, Ei (0 D) - Varo VEY = {//s0, Ei @ O) - (Vs Y + V9, 5Y)
2
= Vowe/w! T Ve EGoN,, 6

and using

v
0=—/lsv={/]sv, Vo) Ei} - Ei (0 (8)) + (//sv, Ei (0 (5))) - Vor(s) Ei
we find

(59, Ei @ D) - Vore) VEY = Viiosari oY = /s, Voo Ei) - (VEY) (0 ()

This equation combined with (3.63) again proves (3.58). O

The remainder of this section discusses a covariant derivative on M x RY which
“extends” V defined above. This will be needed in Section 5, where it will be convenient
to have a covariant derivative on the normal bundle:

N(M) = Upem({m} x tuM*) C M x RY.

Analogous to the definition of V on T'M, it is reasonable to extend V to the normal
bundle N (M) by setting

VV(s)
ds

= (0(5), Q@ ()Y () = (0(5), V' (s) +dP (0 () (s)),

for all smooth paths s — V(s) = (0 (s), v(s)) in N(M). Then this covariant derivative
on the normal bundle satisfies analogous properties to V on the tangent bundle T M.
The covariant derivatives on T M and N (M) can be put together to make a covariant
derivative on M x R¥ . Explicitly, if V (s) = (o (s), v(s)) is a smooth pathin M x RY,
let p(s) := P(0(s)), g(s) := Q(o(s)) and then define

\A% d d
7 ©) = (0(5), p(&)—{p)v()} + g () = {g(Hv(s)H}.
s ds ds

Since
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VV(s)
ds

v

= (0 (5), :—S{P(S)U(S)} +4'()p(s)v(s)

+ %{q(s)v(s)} + P/ (s)q(s)v(s))

= (0 (), V' (5) + ¢ ()p()v(s) + P'($)g(5)v(5))
= (0(5), v'(s) + d Q0" (5)) P (0 ())v(s) + dP(0'(s) Q0 ()v(5))

we may write VV (s)/ds as

= (0(s),v'(s) + (0" (s)v(s)) (3.64)

VVi(s)
ds
where

C(wm)v :=dQ@(wm)P (m)v + dP(wm)Q(@m)v (3.65)

forall w, ¢ TMandv € RY.

It should be clear from the above computation that the covariant derivative defined
in (3.64) agrees with those already defined on T M and N (M). Many of the properties
of the covariant derivative on T M follow quite naturally from this fact and (3.64).

Lemma 3.56. For each wm € TM, T'(wy,) is a skew symmetric N x N -matrix. Hence,
ifu(s) is the solution to the differential equation

W(s)+ T (sNus) =0 with u@ =1, (3.66)
then u is an orthogonal matrix for all s.
Proof. Since T' = dQP +dPQ and P and Q are orthogonal projections and hence
symmetric, the adjoint ' of T is given by

" =PdQ + QdP =-dPQ—-dQP =-T.

where Lemma 3.30 was used in the second equality. Hence " is a skew-symmetric
valued one form. Now let u denote the solution to (3.66) and A(s) :=T'(0’(s)). Then

diu“u = (—Aw)"u + 1" (—Au) = u"(A - Au =0,
N

which shows that 1" (s)u(s) = u* (0)u(0) = I. o
Lemma 3.57. Let u be the solution to (3.66). Then
u(s)(teyM) = To ()M (3.67)

and N
u($) oMt = oM™ (3.68)

In particular, if v € T, )M (v € ta(O)MJ-) then V (s) := (o (s), u(s)v) is the parallel
vector field along o in TM (N (M)) such that V(0) = vs()-
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Proof. By the product rule,

dis{u"P (@)u} =u™{[ (¢') P (6) +dP (') ~ P (o) T (o')}u. (3.69)
Moreover, making use of Lemma 3.30,
F'(¢’)P(0) = P(0)T (¢') +dP (o)
=dP(¢') + [dQ(¢")P(s) + dP(0’)Q(0)] P (o)
— P (0)[dQ(c")P(0) +dP(c")Q(0)]
=dP(0')+dQ(0")P(6) — dP(¢')Q(0)
=dP(0')+dQ(c') =0,

which combined with (3.69) shows % {u"P (c)u} = 0. Therefore,
u"(s)P (o (s)) u(s) = P(o (0))

for all s. Combining this with Lemma 3.56, shows
P (o (s))u(s) = u(s)P(o (0)).

This last equation is equivalent to (3.67). (3.68) has completely analogous proof or can
be seen easily from the fact that P + Q = [. o

3.7 More references

I recommend [86] and [42] for more details on Riemannian geometry. The references,
[1, 19, 41,42, 86,95, 111, 112, 113, 114, 115, 149] and the complete five volume set
of Spivak’s books on differential geometry starting with [164] are also very useful.

4 Flows and Cartan’s development map

The results of this section will serve as a warm-up for their stochastic counter parts.

These types of theorems will be crucial for the path space analysisresults to be developed
in Sections 7 and 8 below.

4.1 Time-dependent smooth flows

Notation‘4.1. Given a smooth time dependent vector field, (t,m) - X, (m) € T, M
on a manifold M, let T,X (m) denote the solution to the ordinary differential equation,

d
ET,X(m) = X; o T (m) with T (m) = m.

If X is time independent we will write ¢/ X (m) for T,X (m). We call TX t‘he flow of X.
See Figure 10.
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TXm)

Figure 10. Going with the flow. Here we suppose that X is a time independent vector field which
is indicated by the arrows in the picture and the curve is the corresponding flow line starting at
meM.

Theorem 4.2 (Flow Theorem). Suppose that X, is a smooth time dependent vector
field on M. Then for each m € M, there exists a maximal open interval J,, C R
such that 0 € J, andt — T,X(m) exists for t € J,. Moreover the set D (X) :=
Un (Jm x {m}) C R x M is open and the map (t,m) € D(X) - TX(m) € M isa
smooth map.

Proof. Let ¥; be asmooth extension of X, to a vector field on E where E is the Euclidean
space in which M is imbedded. The stated results with X replaced by Y follow from the
standard theory of ordinary differential equations on Euclidean spaces. Let T,Y denote
the flow of Y on E. We will construct TX by setting T,X (m) := T,Y (m) forallm ¢ M
and ¢ € Jp,. In order for this to work we must show that T,Y (m) € M wheneverm € M.

To verify this last assertion, let x be a chart on M such that m € D (x), then o ()
solves ¢ (t) = X, (o (¢)) with o (0) = m iff

:—t [x 00 (] =dx 6 (1) = dx (X, (o (1)) = dx (X, oxl(xoo (t)))

with x o o (0) = m. Since this is a differential equation for x o o () € R (z) and R (2)
is an open subset R?, the standard local existence theorem for ordinary differential
equations implies x o o (t) exists for a small time. This then implies o (t) € M exists
for small ¢ and satisfies

& (1) =X (0 (1)) = Y, (0 (t)) with o (0) = m.

By uniqueness of solutions to ordinary differential equations, we must have T,Y (m) =
o (t) for small ¢ and in particular T,Y (m) € M for small ¢. Let

r:=sup{teJm:Tf(m)erorOssst}

and for the sake of contradiction suppose that [0, ] C J,,. Thenby continuity, .Y (m) €
M and by repeating the above argument using a chart x on M centered at T} (m) , we
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would find that T,Y (m) € M fort in a neighborhood of . This contradicts the definition
of 7 and hence we may conclude that 7 is the right end point of Jy,. A similar argument
works for ¢ € Jp, with t < 0 and hence T,Y (m) € M forall t € J,,. o

Assumption 1 (Completeness). For simplicity in these notes it will always be assumed
that X is complete, i.e., J,, = R for allm € M and hence D (X) =R x M. This will
be the case if, for example, M is compact or M is imbedded in RN and the vector field
X satisfies a Lipschitz condition. (Later we will restrict to the compact case.)

Notation 4.3. For g, h € Diff (M) let Adgh := g o h o g~1. We will also write Ad,
for the linear transformation on I' (T M) defined by

d d _ _
AdgY = loAdge’” = E'°g°esy°g =g, (Y°g 1)

forallY € I' (T M). (The vector space I' (T M) should be interpreted as the Lie algebra
of the diffeomorphism group, Diff (M).)
In order to verify T,X is invertible, let T,Xs denote the solution to

d
S TA =X o TX with T = ia.

Lemma 4.4. Suppose that X, is a complete time dependent vector field on M, then
TX € Diff(M) for all t and

—1 ~Ad X _|X
(Txx) =Tgy =T, S @.1)

where

(Ad(Tx)flx)t = Ad_y 1 X,.

(T*)”
Proof If s,t,u € R, then §; := TX o TX, solves
$i = X, 0§, with §, = T,

which is the same equation that + — T,"f‘ solves and therefore TX, = TX o TX,.In
particular, TO’,‘, is the inverse to T,X . Moreoverif welet T; := T,X and §; := T,_1 then

d d .
0= —jid=—IToS]=X 0T 08 +T.5,.

So it follows that S; solves

St = —T}:lXt [e] T} [o] S; = - (AdTl*IXt) o St

which proves the second equality in (4.1).
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4.2 Differentials of T;X

In the later sections of this article, we will make heavy use of the stochastic analogues
of the following two differentiation theorems.
Theorem 4.5 (Differentiating m — T,X (m)). Suppose V is the Levi-Civita* covariant
derivative on TM and T; = T,X as above, then

v
ZTMU = Vg, X forallve TM. 4.2)

Ifweﬁt;ther letmeM, /], =//i (t = T (m)) be parallel translation relative to V
along the flow line t — T; (m) and z; .= //,—IT,*,,,, then

E-z;v = //,_IV//,Z,,,X,for allve T, M. 4.3)
dt
(This is a linear differential equation for z; € End (T, M) .)

Proof. Let o (s) be a smooth path in M such that o’ (0) = v, then
\Y% \Y%

d v d
— = —— = —lo—T: (o (s)
dth*v—dtdsloTx(G(S)) ZalogTi ¢ ()

%
= d_|0X’ (T; (0 (5))) = VL, X:
s
wherein the second equality we have used V has zero torsion. Equation (4.3) follows
i r 0
directly from (4.2) using % =// %//, 1 see Lemma 3.55.

Remark 4.6. As a warm up for writing the stochastic version of (4.3) in It6 form let
us pause to compute 3 (Vr,,,Y) for Y € T (T M) . Using (3.38), (3.37) and (3.35) of
Proposition 3.38,

v 2
2 VoY = Vimena? T V51.Y = Vaamenot + Venx Y
=VZ oxiTmyY + R X (T (), Tu0) Y (T: (m)) + Vg, x, ¥
tk

= RY (X, (T, (m)) , T1sv) Y (T; (m)) + V1, (Vx, ) - (44)

Theorem 4.7 (Differentiating 7,X in X). Suppose (t,m) — X, (m) and (t,m) —
Y, (m) are smooth time dependent vector fields on M and let

d X+sY 4.5
ayTtX = ZsleTt st 4.5)
Then . » [
oyTX =T / (%) YeoT¥ar =T} /0 AdZL Y dr. (4.6)
0

This formula may also be written as

t t X
oy TX = (/ Adyx Y,dr) oTX = (/O AdTlxo(Ttx),IY,dr) oTX. @0
s

2 Actually, for those in the know, any torsion zero covariant derivative could be used here.
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Proof. To simplify notation, let 7; := T,X and define V, := (TX )_1 dyTX.Then Vp =0
and 3y T,X = T,XV, or equivalently, for all f € C®(M),

Sof ST = (T3V) £ = Vi (£07Y).

Given f € C*°(M), on one hand we have

d d g d :
a0 e T = ZVi(f o TH] = Vil o T + VK, f 0 T

= (TXV.) f + VX f o T)

while on the other hand

d d d
25105 o T = Tl [( + 5% ) 0 T¥H]

ds " dt ds
= N oTF + v (Xif o )
=(YioT¥) f 4+ v, (x:f01Y).

. d d .
Since [}Z{fr’ Zslo] = 0, the previous two displayed equations imply (TXV) f =
(Y: o TX) f and because this holds for all f € C®(M),

TXV, =Y, o TX. 4.8)

Solving (4.8) for V; and then integrating on ¢ shows

! -1
v, =f0 (TX) YeoTXdr.

which along with the relation, 9y X = TXv,, implies (4.6).
We may now rewrite the formula in (4.6) as

t
X _ -1 x\7! !
T, (/é AdTerrdT)O(T, ) OT,X=AdTrx (/(; Ad;}Yrdt)oTtX

T
t 1 t

(A AdT’X AdT.[X Yrd'[) o T;X = <-/(; AdT,XO(TTX)_l Yrd'[) o 7}X
t

U

Adrx Y,dr) oTX

which gives (4.7). ]

Example 4.8. .Suppose that G is a Lie group, g := Lie (G), A, and B; are two smooth
g-valued functions and g,A € G solves the equation ‘

d

A = .
d—tg' = A, (g;'*) with g(‘;* =eecCG
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where A, (x) := L« A, is the left invariant vector field on G associated to A; € g, see
Examples 2.34 and 3.27. Then

t
(‘)Bg;‘x = Rng*_/(; AdgéqBrdT

where
Ad A = Rg_n*Lg*A forallg e Gand A € g.

Proof. Let T,A denote the flow of A,. Because A; is left invariant,
A A
T;% (x) = xg7 = Ryax

as the reader should verify. Thus
t -1 .
agg;“ = aBT,A (e) = Rg{;*-/(; (Rg¢*> B, o Rg;a (e)drt
t -1 . 4 t -1
=R&A*f0 (Rg¢*> B, (g,)dr = Rg’,a*-/(; (Rg;,*) LgsyBedr
t
= Rg‘A*-/(; Adg;aBrdT. a

The next theorem expresses [X;, Y] using the flow TX. The stochastic analog of
this theorem is a key ingredient in the “Malliavin calculus,” see Proposition 8.14 below.

Theorem 4.9. If X; and TX are as above and Y € T (T M) , then

d -1 -l
i@ ren]= @) wenenr
or equivalently put
d  _ -
EAth,} = AdTI} Ly, (4.10)

where LyY :=[X,Y].

Proof. Let V; = (TX )—1 Y o TX which is equivalent to T,XV; = Y o T,%, or more
explicitly to

YfoTX = (YoT,X)f - (T,{fV,)f: Vi (foT,X) forall f € C®(M).
Differentiating this equation in ¢ then shows
X o TX =V, (£ o TX) + Vi (Xef o T)
= (129) £+ (T2V) Xef
= (TXV) £+ (Yo T¥) Xuf

= (thvt) f+XX, fo Ttx-
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Therefore )
(TX%) £ = @ 1o T

from which we conclude 7XV, = [X,, Y] o T;X and therefore

. -1
v, = (th) [X,, Yo TX. 0

4.3 Cartan’s development map

For this section assume that M is compact3 Riemannian manifold and let W (To M ) be
the collection of piecewise smooth paths, b : [0, 1] — T, M suchthat b (0) = 0, e T, M
and let W°(M) be the collection of piecewise smooth paths, & : [0, 1] — M such that
c(=o0eM.

Theorem 4.10 (Development Map). 7o each b W (ToM) there is a unique o €
W2° (M) such that

a'(s) := (o (s), do(s)/ds) = //s(@)b'(s) and c(0) =o, “.10D

where /[(0) denotes parallel translation along o.

Proof. Suppose that o is a solution to (4.11) and //s(0)v, = (0, u(s)v), where u(s) :
7,M — RN . Then u satisfies the differential equation

W (s)+dO(c'(s)u(s) =0 with u(0) = uyg, 4.12)

where ugv := v for all v € t,M, see Remark 3.54. Hence (4.11) is equivalent to the
following pair of coupled ordinary differential equations

o' (s) =u(s)b'(s) with o(0) = o, (4.13)

and
u' (s) + dQ((a(s), u()b'(s)u(s) =0  with u(0) = uy. 4.14)

Therefore the uniqueness assertion follows from standard uniqueness theorems for
ordinary differential equations. The slickest proof of existence to (4.11) is to first intro-
duce the orthogonal frame bundle, O (M ), on M defined by O (M) := Upepr O (M)
where O, (M) is the set of all isometries, u .M — T, M.1tisthen possible to show
that O (M) is an imbedded submanifold in RY x Hom (r,,M ,RY ) and that coupled pair
of ordinary differential equations (4.13) and (4.14) may be viewed as a flow equation
on O (M). Hence the existence of solutions may be deduced from the Theorem 4.2, see,
for example, [47] for details of this method. Here I will sketch a proof which does not
require us to develop the frame bundle formalism in detail.

3 1t would actually be sufficient to assume that M is a complete Riemannian manifold for this
section.
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Looking at the proof of Lemma 2.30, Q has an extension to a neighborhood in R¥
of m € M in such a way that Q(x) is still an orthogonal projection onto Nul(F’(x)),
where F(x) = z..(x) is as in Lemma 2.30. Hence for small s, we may define o and u
to be the unique solutions to (4.13) and (4.14) with values in RY and Hom(7, M, ]RN. )
respectively. The key point now is to show that o(s) € M and that the range of u(s) is
Ta(;)M. .

Using the same proof as in Theorem 3.52, w(s) := Q(o (s))u(s) satisfies,

w' =dQ(cYu+ Q@) =dQ(¢")u— Q(c)dQ(c")u
=P(0)dQ(c')u=dQ (¢")Q)u=dQ (") w,

where Lemma 3.30 was used in the last equality. Since w(0) = 0, it follows by unique-
ness of solutions to linear ordinary differential equations that w = 0 and hence

Ran [u(s)] C Nul [Q(0(s))] = Nul [F'(a(5))].
Consequently
dF(c(s))/ds = F'(a(s))do(s)/ds = F'(c(s))u(s)b' (s) =0

forsmall s and since F (o (0)) = F(0) = 0, it follows that F (o (s)) = 0,i.e.,0(s) € M.
So we have shown that there is a solution (o, u) to (4.13) and (4.14) for small s such that
o stays in M and u(s) is parallel translation along s. By standard ordinary differential
equation methods, there is a maximal solution (o, #) with these properties. Notice that
(o, ) is a path in M x Iso(T,M, RN), where Iso(T,M, RY) is the set of isometries

Figure 11. Monsieur Cartan is shown here rolling, without “slipping,” a manifold M along a
curve, b, in T, M to produce a curve, g, on M.
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from 7, M to RV. Since M x Iso(T,M, RV} is a compact space, (o, u) can not explode.
Therefore (o, u) is defined on the same interval where b is defined. u}

The geometric interpretation of Cartan’s map is to roll the manifold M along a
freshly painted curve b in T, M to produce a curve o on M (see Figure 11).

Notation 4.11. Let ¢ : W(ToM) — WX (M) be the map b — o, where ¢ is the

solution to (4.11). Itis easy to construct the inverse map ¥ ;= ¢1, Namely, ¥(c) = b,
where

¥,(0) = b(s) = / o)l (r.
0

We now conclude this section by computing the differentials of ¥ and ¢. For more

details on computations of this nature the reader is referred to [46, 47] and the references
therein.

Theorem 4.12 (Differential of W). Let (¢, 5) — E(t, 5) be a smooth map into M such
that £(t, ) € W (M) forallt. Let

H(s) = 2(0,5) 1= (3(0,5),d T (1, 5) /dt |, 0),
50 that H is a vector field along o := (0, ). One should view H as an element of
the “tangent space” to WX (M) at o, see Figure 12. Let u(s) = //s(0), h(s) =
//x(o)_lH(s) b:= V(o) and, forall a, c € T,M, let

(Ru(a, 0))(s) == u(s)_lR(u(s)a, u(s)c)u (s) (4.15)
Then

0 0

where 8b(s) is short hand notation Sfor ¥ (s)ds, and fo f8b denotes the function s —
fg F)B (r)dr when [ is a path of matrices.

Figure 12. A variation of & giving rise to a vector field along o.
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Proof. To simplify notation let “ - "= Lo, “/ 7= L B(1,s5) := W(T(, ))(s),
U, s) == //s(Z(, ), u(s) = //s(c) = U0, s) and

b(s) := (@Y (H))(s) := dB(t, 5)/dt|i=0.
I will also suppress (¢, s) from the notation when possible. With this notation

Y =UB, ¥ =H=uh, (4.17)

e YU _o. (4.18)

ds
In(4.18), Y2 : T,M — Tx M is defined by Y2 = P () U’ or equivalently by
18), ¥

vU V (Ua)
—a =
ds ds

Taking V/dt of (4.17) at t = 0 gives, with the aid of Proposition 3.32,

foralla € T,M.

Vd—U|,=ob’ +ub' = VX' /dt|—o = VI /ds = uh'.
t
Therefore, P Av. @19
where A := —U‘lvd—ltjlmo, ie.,
E(O, ) = —~uA.
dt

Taking V /ds of this last equation and using Vu/ds = 0 along with Proposition 3.32
, VV
—uld = —

gives
\%
dsdt |, ds dt

and hence A’ = R, (h, b"). By integrating this identity using A(0) = 0(VU (¢, 0)/dt =
O since U(t,0) := //o(X (¢, -)) = I is independent of ¢) shows

= R(c’, H)u
t=0

A= / R, (h,8b) (4.20)
0
The theorem now follows by integrating (4.19) relative to s making use of (4.20) an[(:]i
the fact that E(O) = 0.

Theorem 4.13 (Differential of ¢). Let b, k € WX (ToM) and (t,s) — B({, s) be a
smooth map into TyM such that B(t, -) € WX (TyM) , B(0,s) = b(s), and B(0, s) =
k(s). (For example take B(t, s) = b(s) + tk(s).) Then

Pu(kp) = j—tlotb(B(t, ) =//(0)h,
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where 6 = ¢(b) and h is the first component in the solution (h, A) to the pair of
coupled differential equations:

K=H+Ab, with h0)=0 (4.21)

and
A =Ry(h, b)Y with A(0) =0. 4.22)

Proof. This theorem has an analogous proof to that of Theorem 4.12. We can also deduce
the result from Theorem 4.12 by defining ¥ by T (¢, 5) 1= ¢;(B(t, -)). We now assume
the same notation used in Theorem 4.12 and its proof. Then B(z, -) = W (X (¢, -)) and
hence by Theorem 4.12

k= Low (s, ) =avin =h + [ Ruth b0,
t 0 JO

Therefore, defining A := fo Ry (h, 6b) and differentiating this last equation relative to
s, it follows that A solves (4.22) and that 4 solves (4.21). O

The following theorem is a mild extension of Theorem 4.12 to include the possibility
that (¢, -) ¢ W°(M) when ¢ # 0, i.e., the base point may change.

Theorem 4.14. Let (1, s) — X(t, s) be a smooth map into M such that o := (0, ) €
WX (M). Define H(s) :== d%(t, s)/dt|i=0, 0 := (0, ), and h(s) := //s(a)_lH(s).
(Note: H(0) and h(0) are no longer necessarily equal to zero.) Let

UG, s):=//s(E@, N//[(ZC0): ToM - Ty oM,

sothatVU(t,0)/dt = 0and VU (t,5)/ds = 0.Set B(t,s) := [ U(t,r)"' B¢, r)dr,
then

b(s) := i|(,1sz(t, s) = hy +f (f R,,(h,éb)) 8b, 4.23)
dt 0 0
where as before b .= ¥ (o).

Proof. The proof is almost identical to the proof of Theorem 4.12 and hence will be
omitted. O

5 Stochastic calculus on manifolds

In this section and the rest of the chapter the reader is assumed to be well versed in
stochastic calculus in the Euclidean context.

Notation 5.1. In the sequel we will always assume there is any underlying filtered
probability space (2, {F;}s»0, F, 1) satisfying the “usual hypothesis.” Namely, F is
u-complete, F; contains all of the null sets in F, and F; is right continuous. As usual
[E will be used to denote the expectation relative to the probability measure .
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Definition 5.2. For simplicity, we will call a function T : Ry x @ — V (V a vector
space) a process if T; = L(s) := (s, -) is Fy-measurable for all 5 € Ry := [0, 00),
i.e., a process will mean an adapted process unless otherwise stated. As above, we will
always assume that M is an imbedded submanifold of R¥ with the induced Riemannian
structure. An M-valued semi-martingale is a continuous RY -valued semi-martingale
(T) such that T(s, w) € M for all (s, w) € Ry x . It will be convenient to let A be
the distinguished process: A (s) = A; :=s.

Since f € C% (M) is the restriction of a smooth function F on R¥, it follows by
It&’s lemma that f o & = F o I is a real-valued semi-martingale if X is an M-valued
semi-martingale. Conversely, if T is an M-valued process and f o I is a real-valued
semi-martingale for all f € C®(M) then X is an M-valued semi-martingale. Indeed,
let x = (x!,..., x¥) be the standard coordinates on RV, then T’ := x' o T is a real
semi-martingale for each i, which implies that X is a R¥ -valued semi-martingale.

Notation 5.3 (Fisk—Stratonovich Integral). Suppose V is a finite dimensional vector
space and
7={0=s5y <8 <S52<-}

is a partition of R with lim,, « s, = 00. To such a partition 7, let {7 | := sup; |s;+1 —
si| be the mesh size of w and s As; := min{s, 5;}. To each Hom (]RN, V) —valued semi-
martingale Z, and each M-valued semi-martingale X, the Fisk-Stratonovich integral
of Z relative to X is defined by

s 1
/ Z5Y = lim A (ZsAs,- + ZsAs,-_H) (EsAs,-H - E:As,-)
0 Im|~>04=5 2

s 1 s
=/ ZdE-i——/ dZdT eV
0 2 Jo
where

5 oo
fo 24z = Jifi‘o; Zons (Zsnos — Tsng) €V

is the 1t6 integral and
s )
(Z,X]; = /(; dZdY = |7£1|r’—r’10§ (ZsAs,- - ZsAs,~+1) (Bsnsip — Tsas) €V

is the mutual variation (or co-variation) of Z and . (All limits may be taken in the
sense of uniform convergence on compact subsets of R in probability.)

5.1 Stochastic differential equations on manifolds

Notation 5.4. Suppose that {X;}? ; C T' (T M) are vector fields on M. Fora € R” let

X, (m) =X (m)a = Za,-x,- (m)

i=1

With this notation, X (m) : R" — T,, M is a linear map for eachm € M.
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Definition 5.5. Given an R”-valued semi-martingale, f;, we say an M-valued semi-
martingale X; solves the Fisk—Stratonovich stochastic differential equation

8Ts = X (80) 8 + Xo (Tp)ds i= ) X; (5) 86 + Xo (Z)ds  (5.1)

i=1

if forall f € C®(M),

8f (T) =Y (Xi f) (85) 8BL + Xof (55)ds,

i=1

ie,if

f&) = f(20)+2[0 Xif) (Zr) 88! +[:X0f(2r)dr-
i=1 0

Lemma 5.6 (Itd Form of (5.1)). Suppose that B = B is an R"-valued Brownian motion
andlet L := % ZLI X,.2 + Xo. Then an M-valued semi-martingale ¥; solves (5.1) iff

FEI=fE+Y [0 (X: ) (Z) dB! + f LGy 652
i=l 0
Jorall f € C®(M).

Proof. Suppose that I solves (5.1), then

dl(Xi ) (E)] = Z (X, Xi f) (Z) 8B] + XoX; f (%) ds
Jj=1

=D _(X;Xif)(£)dB! +d (BY)
j=1

where BV denotes a process of bounded variation. Hence

/0 (Xi f) (S,) 8B =Z[0 X f) (zr>dB:'+%[sd[(xif> (Z)1dB;
i=1 0

> [0 (X;Xif) (Z,)dBldB

i, j=1

=Y [ ineoasi+ g
i=1 0 2

n s n
, 1 s
= [[xp@nasi+ 3 | s @ar
i=1 i=1
Similarly if (5.2) holds for all f € C® (M) we have

d((X: £)(T)) = (X;Xi ) (E,) dB! + LX; f (Z,) ds
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and so as above
s . n 5 ) 1 s B 5
[ xn@isr=Y [(wneiasi+; [ Y xirmar
0 =170 i=1
Solving for f; (X f) (,)d B and putting the result into (5.2) shows

£ (E) =1 (To) + Z[O (Xi ) (5,) 8B
i=1

_l[szxizf():,)dr—{-[st(E,)dr
2Jo 5 0

=f(>:o>+2[0 (X,-f>(z,>aB:'+[0 Xof (S,)dr.
=1

To avoid technical problems with possible explosions of stochastic differential equa-
tions in the sequel, we make the following assumption.

Assumption 2. Unless otherwise stated, in the remainder of these notes, M will be a
compact manifold imbedded in E :== RN .

To shortcut the development of a number of issues here it is useful to recall the fol-
lowing Wong and Zakai type approximation theorem for solutions to Fisk—Stratonovich
stochastic differential equations.

Notation 5.7. Let {B;}c[o 71 be a standard R"-valued Brownian motion. Given a
partition
T={0=sy<s1<s$p<..<8=T}

of [0, T], let
7| =max{s; —si—1:i=1,2,...,k}

and AB
B (s) = B(si-1) + (s — si_nz'_—s if s € (si—1, sil,
1

where A; B := B(s;)— B(s;—;) and A;s := s; —s;_1. Notice that B, (s) is a continuous
piecewise linear path in R".

Theorem 5.8 (Wong—Zakai type approximation theorem). Lefa € RY,
fiR*xRY - Hom(R*, RY) and fy: R* x RN —» RY

be twice differentiable functions with bounded continuous derivatives. Let m and By be
as in Notation 5.7 and &, (s) denote the solution to the ordinary differential equation:

£,(5) = f(Br(5), Ex () By (s) + fo(Br(5),62(5)),  &x(0)=a (5.3)

and § denote the solution to the Fisk—Stratonovich SDE,
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d&s = f(Bs, &)8B; + fo(By, &5)ds, fo = a. 5.4

Then, for any y € (0, %) and p € [1, 00), there is a constant C(p, y) < oo such that

II}molE [SUP €7 (s) — 5:!”] =C(p, V= ["P. (5.5)

s<T

This theorem is a special case of Theorem 5.7.3 and Example 5.7.4 in Kunita [1 16].
Theorems of this type have a long history starting with Wong and Zakai [180, 181]. The
reader may also find this and related results in the following partial list of references:
(7, 10, 11, 20, 22, 44, 68, 94, 103, 107, 108, 118, 117, 126, 129, 132, 134, 135, 141,
142,151, 166, 174, 167, 175, 177]. Also see [8, 53] and the references therein for more
of the geometry associated to the Wong and Zakai approximation scheme.

Remark 5.9 (Transfer Principle). Theorem 5.8 is a manifestation of the transfer prin-
ciple (coined by Malliavin) which loosely states: to get a correct stochastic formula one
should take the corresponding deterministic smooth formula and replace all derivatives
by Fisk-Stratonovich differentials. We will see examples of this principle over and over
again in the sequel.

Theorem 5.10. Given a point m € M there exists a unique M-valued semi martingale
T which solves (5.1) with the initial condition, o = m. We will write Ts (m) for =
if we wish to emphasize the dependence of the solution on the initial starting point
meM.

(Proof of Existence.) If for the moment we assumed that the Brownian motion B were
differentiable in s, (5.1) could be written as

Tl = X, (Z;) with Tg =m
where

X, (m)i= Y X om) (B') () + Xo (m)
i=1

and the existence of X; could be deduced from Theorem 4.2. We will make this rigorous
with an application of Theorem 5.8.

Let {¥;}7_, be smooth vector fields on E with compact support such that ¥; = X;
on M for each i and let B, (s) be as in Notation 5.7 and define

X7 (m) = 3 X; (m) (Bf,)/ () + Xo (m) and
i=1

YE ) =Y 5 m) (BL) () + Yo (m).
i=1

Then by Theorem 4.2 we may use X™ and Y7 to generate (random) flows T™ := TX"
onMand T™ :=TY on E respectively. Moreover, as in the proof of Theorem 4.2 we
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know T (m) = Ts” (m) for all m € M. An application of Theorem 5.8 now shows that
% = Ty (m) = limjz |0 Ts” (m) = limz 0T (m) e M exists* and satisfies the
Fisk-Stratonovich differential equation on E,

n
dZ; = Y ¥; (5) 8BL + Yo (E;) ds with Zg = m. (5.6)

i=1

Given f € C®(M), let F € C™®(E) be chosen so that f = F|. Then (5.6) implies

d[F (£)]1 =Y YiF (Z5) 8B} + YoF (35) ds. .7

i=1
Since we have already seen £; € M and by construction ¥; = X; on M, we have
F(Z;) = f(Z5)and Vi F (Z5) = Xi f () . Therefore (5.7) implies

dlf (Z)1=D_ X f () 8B] + YoF (£,)ds,
i=1
i.e., I solves (5.1) as desired.

Proof of uniqueness. If Z is a solution to (5.1), then for F € C*°(E), we have

dF (%,) = Z X;F () 8B + XoF () ds
i=1

n
=Y Y;F (35)8Bi + YoF () ds
i=1
which shows, by taking F to be the standard linear coordinates on E, X; also solves
(5.6). But this is a stochastic differential equation on a Euclidean space E with smooth
compactly supported coefficients and therefore has a unigue solution. O

5.2 Line integrals

Fora,b € RN, let (a, b)gn := Y.V, a;b; denote the standard inner product on R¥.
Also let g/(N) = gl(N, R) be the set of N x N real matrices. (It is not necessary to
assume M is compact for most of the results in this section.)

Theorem 5.11. As above, for m € M, let P (m) and Q (m) denote orthogonal p.rojec-
tion or RN onto t,, M and t,, M+ respectively. Then for any M-valued semi-martingale
2,

0=Q(X)dTanddx = P (E)5%,

ie.,

s
Yy — g = / P(Z)8%,.
0

4 Here we have used the fact that M is a closed subset of RV .
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Proof. We will first assume that M is the level set of a function F as in Theorem 2.5.
Then we may assume that

Q) = ¢MF' ) (F ) F ()™ F (v),

where ¢ is smooth function on RY such that ¢ := 1 in a neighborhood of M and the
support of ¢ is contained in the set: {x € RV |F’(x) is surjective}. By 1td’s lemma

0=d0=d(F(X)) = F/(T)8%.

The lemma follows in this special case by multiplying the above equation through by
¢ (ZYF'(D)*(F'(Z)F'(T)*)~! (see the proof of Lemma 2.30).

For the general case, choose two open covers {V;} and {U;} of M such that each Vi
is compactly contained in U;, there is a smooth function F; € CZ(U; - R¥N 9y such
that VN M =V, N {Fi_1 ({0})} and F; has a surjective differential on V: N M. Choose
¢ € CX (RY) such that the support of ¢; is contained in V; and Y ¢ =1onM, with
the sum being locally finite. (For the existence of such covers and functions, see the
discussion of partitions of unity in any reasonable book about manifolds.) Notice that
¢; - F; =0 and that F; - ¢ = 0 on M so that

0 =d{gi(2)F;(T)) = ($)(T)ST)Fi (T) + ¢ (B)F/(T)S T
= ¢;(2)F/(Z)3%.

Multiplying this equation by Vi (Z)F(Z)*(F{(2)F/(2)*)~!, where each ¥ is a
smooth function on RV such that ¥; = 1 on the support of ¢; and the support of
W; is contained in the set where F! is surjective, we learn that

0= ¢i(D)F/(Z)"(F/(2)F/(Z))"'F/(£)5T = ¢;()Q(T)s% (5.8)

for all i. By a stopping time argument we may assume that ¥ never leaves a com-
pact set, and therefore we may choose a finite subset I of the indices {i} such
that }:ie] ¢ (Z)Q(X) = Q(X). Hence, summing over i € I in (5.8) shows that
0= Q(¥)8X. Since Q + P = I, it follows that

d¥ =18 = [Q(T) + P(2)]6% = P (T) 5. O
The following notation will be needed to define line integrals along a semi-
martingale X.
Notation 5.12. Let P (m) be orthogonal projection of RY onto ™m M as above.

1. Givenaone-forma on Mletd : M — (RY)* be defined by

a(m)v := a((P(m)v),) (3.9

forallm € M and v € R¥Y,
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2. Let I'(T*M ® T*M) denote the set of functions p : UpepmTrnM ® T,,M - R
such that p,, := p|1, MeT, M is linear, and m — p(X(m) ® Y(m)) is a smogth
function on M for all smooth vector fields X, Y € T'(T M). (Riemannian metrics
and Hessians of smooth functions are examples of elements of I'(T*M ® T*M).)

3. Forp e '(T*M @ T*M), let 5 : M — (R ® RV)* be defined by

plm)(v @ w) := p((P(M)V)m @ (P(m)w)m). (5.10)

Definition 5.13. Let o be a one form on M, p € I'(T*M ® T*M), and ): be an
M-valued semi-martingale. Then the Fisk—Stratonovich integral of « along I is:

/.a(s}:) :=/ a(x)sxL, (5.1D)
0 0
and the /16 integral is given by:
/.a(J}D) = /.&(}:)d}:, (5.12)
0 0

where the stochastic integrals on the right hand sides_ of (5.11) and (5.12) are Fisk—
Stratonovich and It6 integrals respectively. Formally, dT ;= P(Z)d T. We also define
a quadratic integral:

. . N . ) )
/p(dE@dE) ;=/ A(E)AERLT) = ) /0 H(Z)(e;®e))d[TF, £I], (5.13)
0 0

ij=1

where {e;}!" | is an orthonormal basis for RV, 2i = (ei, £), and d[X¢, £/] is the
differential of the mutual quadratic variation of * and /.

So as not to confuse [Z/, £/] with a commutator or a Lie bracket, in the sequel we
will write dX'd X/ for d[Z¢, ©/].

Remark 5.14. The above definitions may be generalized as follows. Suppose that « is
now a T*M-valued semi-martingale and E is the M -valued semi-martingale such that
g € Ty M for all s. Then we may define

sv 1= as((P(Es)v)E:)y

/.a(s}:) = /.&82, (5.14)
0 0

/' «(dT) = / GdE. (5.15)
0 0
Similarly, if p is a process in T*M ® T*M such that p, € T;:‘:M ® T)i; M, let

and

/ﬁ(d}:@d}:) :f;;(dz ®dx), (5.16)
0 0
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where
bs(v @ w) := p;((P(Z5)v)x, ® (P(Z5)v)x,)
and
N
dE®dE = ) ¢ ®e;dr dy/ .17
i,j=1
asin (5.13).

Lemma 5.15. Suppose that o = fdg for some functions f, g € C®(M), then
[ e0m = [ s
0

Since, by Corollary 3.42, any one-form a on M may be written asa = Z,N=1 fidgi with
_fh 8i € C™(M), it follows that the Fisk-Stratonovich integral is intrinsically defined
independent of how M is imbedded into a Euclidean space.

Proof. Let G be a smooth function on RV such that ¢ — i
g& = G|u. Then a(m) =
f(m)G'(m)P(m), so that (m)

f()'a(az) - /O F(E)G(S)P ()55
- fo‘f(E)G’(E)éE (by Theorem 5.11)
= fo FEBIGE)] by 6's Lemma)
= fo FEMEL () =6
Lemma 5.16. Suppose that p = fdh ® dg, where f, g, h € C®(M), then
f()'p(dz ®dx) = fo F(E)AE), g(5)] = fo F (DA d[g(S)].

Sin.ce, by an argument similar to that in Corollary3.42,anyp € T (T*MQT*M) may be
written as a finite linear combination p = Y. fidh; ®dg; with Jivhi, gi € C®(M), it
Jollows that the quadratic integral is intrinsically defined independent of the imbedding.
Proof. By Theorem 5.11, 8% = P(2)8%, so that
I =%+ f (ei, P(Z)dT) + B.V.
0

=Zh+ ). fo (er, P(D)en)dT + BV,
k
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where B.V. denotes a process of bounded variation. Therefore

d[T}, z/1= Z(ei, P(Z)ex)(e;, P(X)e))dTrds!. (5.18)
k,l

Now let H and G be in C*®(RY) such that & = H|s and g = Glpy. By It6’s lemma
and (5.18),

d[h(T), g(T)] = Z(H’(z)e,-)(G’(z)e,-)d[z') /]
= ]Z (H'(2)e)(G'(B)ej)(ei, P(L)ex) (i, P(T)e)dTkd T
i,jk,l
= i(H’(E)P(E)ek)(G’(E)P(‘Z)el)dEkdEl.
k1
Since
A(m) = f(m) - (H'(m)P(m)) ® (G'(m) P (m)),

it follows from (5.13) and the two above displayed equations that

fo f(D)IA(E), g(D)] i= fo Y FE)H (D) P(R)e) (G (E) P(S)endThds!
k.1

= /.5(2)(11‘2 ®dx) =: /‘lp(d).? ®dI).
0 0

Theorem 5.17. Let o be a one form on M, and T be an M-valued semi-martingale.
Then

/‘.a(sz) = /‘.Ol(t?}:) + 1 / Va(dZ ®dL), (5.19)
0 0 2 Jo

where Va (v @ wm) = (Vy,,a)(wy) and Va is defined in Definition 3.40, also see
Lemma 3.41. (This shows that the Itd integral depends not only on the manifold structure
of M but on the geometry of M as reflected in the Levi-Civita covariant derivative V .)

Proof. Let & be as in (5.9). For the purposes of the proof, suppose thata : M — (RVy*
has been extended to a smooth function from RY — (R¥)*. We still denote this
extension by «. Then using (5.18),

[.a(é)i) = [.&(E)SE
0 0
=f a(z>dz+1f & (2)dT)dT
0 2 Jo

=f'oz(¢2>:)+1 > /l&'(E)(ei)ej(ei, P()ex)(er, P(T)e)dTrd T!
0 2i,j,k,l 0
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_ | .
:/0 a(dE)-{-EZ/(; @ (Z)(P(T)ex) P(T)e;drrdT!
k1

- ) .
=/0 a(dE)-{—EZ/(; da((P(Z)ex)s) P(T)edT*d X!,
k1

But by (3.45), we know for all v,,, w,, € TM that
Va(vy ® wy,) = da(vy,)w

which combined with the previous equation implies

A S .
fo @(d%) = fo v@dB) +5 ) fo Va((P(2)er)s ® (P(T)e))p)dkds!
k.l

- | .
:/ a(dz)+_2/ Va(dZ ® dX).
0 2 7 /o

Corollary 5.18 (It6’s Lemma for Manifolds). If u € C® ((0, T) x M) and X is an
M -valued semi-martingale, then

dfu(s, L)l = Bsu) (s, Zy) ds
+dy [u (s, )] (dZs) + % (Vdpyu (s, ) (dZ; ® d%y), (5.20)

where, as in Notation 2.20, dyu (s, -) is being used to denote the differential of the
map:meM — u(s,m).

Proof. Let U € C*™((0, T) x RM) such that (s,) = U (s, ) |m- Then by It6’s lemma
and Theorem 5.11,

dlu(s, Z)]=d[U (s, Z)] = Qs U) (5, T5) ds + DU (s, T,)8 L,
= B5U) (s, Zy) ds + DsU(s, T,)P(Z,)8 5,
= (3su) (5, Bs) ds + dpr [u (s, )] 6Zy)
= (Bsu) (s, L5) ds + dag [u (s, )] (dZy)

1
+5 (Vdyu (s, ) (dZ; ® dXy),

wherein the last equality is a consequence of Theorem 5.17. o

5.3 M-valued Martingales and Brownian motions

Definition .5.19. An M-valued semi-martingale T is said to be a (local) martingale
(more precisely a V-martingale) if

o o
fo 4f @) = £(D) - /(o) - f Vdf(dS ®d¥) (5.21)
0
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is a (local) martingale for all f € C*(M). (See Theorem 5.17 for the truth of the
equality in Eq. (5.21).) The process I is said to be a Brownian motion if

1
F(E) = f(Xo) — 5/ Af(T)dAr (5.22)

0
is a local martingale for all f € C°°(M), where A(s) := s and fo Af(Z)dx denotes

the process s — [y Af(Z)dA.

Theorem 5.20 (Projection Construction of Brownian Motion). Suppose that B =
(Bl, B2, ..., BN) is an N-dimensional Brownian motion. Then there is a unique M-
valued semi-martingale T which solves the Fisk-Stratonovich stochastic differential
equation,

8X = P(X)SB with Zg=o0€eM, (5.23)

see Figure 13. Moreover, ¥ is an M-valued Brownian motion.

x3

Figure 13. Projection construction of Brownian motion on M.

Proof. Let {e,-]fv=1 be the standard basis for RY and X; (m) := P (m)e; € TyM for
eachi =1,2,..., N and m € M. Then (5.23) is equivalent to the SDE,

N
8% = ZX,-(E)SBi with Tp=o0€eM
i=1
which has a unique solution by Theorem 5.10. Using Lemma 5.6, this equation may be
rewritten in the Itd form as
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N | Y
dlf (D)1= Xif(Z)dB' + > > X} f(T)dsforall f € CP(M).
i=1 i=1
This completes the proof since Z,N=1 X,.2 = A by Proposition 3.48. a
Lem;na 5.21 (Lévy’s Criteria). Foreachm € M, let T(m) = Z?=1 E; ® E;, where
{E;}{_, is an orthonormal basis for T,M. An M-valued semi-martingale, 3, is a

Brownian motion iff X is a martingale and
dX ®@dX =I(X)dAx. (5.24)
More precisely, this last condition is to be interpreted as:

/(; pdEL ®dE) = ‘/; PE(ENAAY p e T(T*"M QT*M). (5.25)

Proof. (=) Suppose that X is a Brownian motion on M (so (5.22) holds
. and f,g €
C°°(M). Then on the one hand ) &

d(f(E)g(2)) =d[f(2)]-g(X) + (D) [g(D)] +d[f(%), g()]
1
= E{Af(z)g(z) + f(E)Ag(D)}dAr +d[f (X)), g(B)],
where “ =” denotes equality up to the differential of a martingale. On the other hand,
1
d(f(Z)g(X)) = EA(fg)(E)dk
1
= E{Af(E)g(E) + f(2)Ag(T) + 2(grad f, gradg)(T)}dA.
Comparing the above two equations implies that

d[f(%), g(E)] = (grad f, gradg)(T)dAr = df @ dg(Z(T))dx.
Therefore by Lemma 5.16,if p = h - df ® dg then

/0 pd% ®dT) = fh(ﬁ)d[f(z),g(z)]
0

=/0 h(X)(df ® dg)(T(X))dr = /IP(I(E))dk-
0

Since the general element p of I'(T*M ® T*M) is a finite linear combination of
expressions of the form hd f ® dg, it follows that (5.24) holds. Moreover, (5.24) implies

(Vdf) T ®dE) = (Vdf) (I(X))dAr = Af (E)dAr (5.26)

and therefore,
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.
£(E) - f(S0) - 5 /0 Vdf(dT 8 dX)
.
= f(E) ~ f(S0) — 5 /0 AF(Z)dA (5.27)

is a martingale and so by definition ¥ is a martingale.
Conversely assume I is a martingale and (5.24) holds. Then (5.26) and (5.27) hold
and they imply ¥ is a Brownian motion, see Definition 5.19. O

Definition 5.22 (§VV := P§V). Suppose « is a one formon M and V is a T M -valued
semi-martingale, i.e., Vs = (X5, vs), where T is an M-valued semi-martingale and v
is an RN -valued semi-martingale such that v; € Tg, M for all s. Then we define:

/. a@vV) = / a(X)dv = / a() (P (X)8v). (5.28)
0 0 0

Remark 5.23. Suppose that a(v,) = 6(m)v, where 0 : M — (RY)* is a smooth
function. Then

/.a(BVV) = /~9(E)P(E)8v = /.9(2){811 +dQ@T)v},
0 0 0

where we have used the identity:
YV = P(T)dv =8v+dQ(@BT)v. (5.29)

This last identity follows by taking the differential of the identity, v = P(Z)v, asin
the proof of Proposition 3.32.

Proposition 5.24 (Product Rule). Keeping the notation of above, we have
8 (V) =Va(dZ V) + advV), (5.30)
where Va(8X ® V) := y(8L) and y is the T*M-valued semi-martingale defined by
ys (W) := Va(w @ V) = (Vya) (Vy) forany w € Tg, M.
Proof. Let & : RY — (RV)* be a smooth map such that a(m) = 6(m)l, M for
allm € M. By Lemma 5.15, §(0(2)P(X)) = d(#P)(8%) and hence by Lemma

341, 8(0(Z)P(T))v = Va(8T ® V), where Va(v, & W) = (Vy,,00) (wr) for all
U, Wm € TM. Therefore:

8(@(V)) = 8(0(E)v) = §(B(T)P(T)v) = (d(BP)(3T))v + 0(X)P(E)év
= (dOP)GT)v + &)y = Va@BE ® V) +a@'V). O
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5.4 Stochastic parallel translation and development maps
Definition 5.25, A T M-valued semi-martingale V is said to be parallel if ¥V = 0,
ie., fya(8YV) = 0 for all one-forms a on M.

Proposition 5.26. A T M-valued semi-martingale V = (X, v) is parallel iff
/ P(Z)év = / {Bv+dQ@BT)v) =0. (5.31
0 0

Proof. Let x = (x!, ... xV ) denote the standard coordinates on RV . If V is parallel
then,

0= /.dx"(SVV) = /‘.(e,-, P(Z)év)
0 0

for each i which implies (5.3 1). The converse follows from Remark 5.23. o
In the following theorem, Vj is-said to be a measurable vector field on M if V; (m) =

(m,v(m)) withv : M - RV being a (Borel) measurable function such that v(m) €
M forallm e M.

Theorem 5.27 (Stochastic Parallel Translation on M x RV ). Let ¥ be an M-valued
semi-martingale, and Vo(m) = (m, v(m)) be a measurable vector field on M, then
there is a unique parallel T M-valued semi-martingale V such that Vo = Vo(Zg) and
Vs € Tx, M for all . Moreover, if u denotes the solution to the SDE

Su+T @2 u=0 with uo =1 € O(N), (5.32)

(where O (N) is asin Example 2.6 and T is as in (3.65)) then V,; = (%;, usv(Xg). The
process u defined in (5.32) is orthogonal for all s and satisfies P(E)us = ug P(Xp).
Moreoverif %9 =0 € M a.e. and v € t,Mandw L t,M, then Usv and usw satisfy
S[usv]-i-dQ(S)])u:v=P(2)8[u3v]=0 (5.33)
and
Sluswl +dP () uv = Q(Z) 5 [ugv] =0. (5.34)

Proof. The assertions prior to (5.33) are the stochastic analogs of Lemmas 3.56 and
3.57. The proof may be given by replacing :—s everywhere in the proofs of Lemmas
3.56 and 3.57 by & to get a proof in this stochastic setting. (5.33) and (5.34) are now
easily verified, for example using P () uv = uv, we have
S[uv] =8[P(Z)uvl = PSS )uv + P (Z) 8 [uv]
which proves the first equality in (5.33). For the second equality in (5.33),
P(E)3[uv)=-P ()T (6%) [uv]
=—-P(E)[dQOT)P(E) +dPBX)Q(E)] [uv]
=—-dQ(L)Q (£) P(T)s [uv] =0

where Lemma 3.30 was used in the third equality. The proof of (5.34) is completely
analogous. The skeptical reader is referred to Section 3 of Driver [47] for more details.

O
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Definition 5.28 (Stochastic Parallel Translation). Given v € R” and an M-valued
semi-martingale X, let //,(Z)vg, = (Xy, usv), where u solves (5.32). (Note: V, =
//s(Z)Vo.)

In the remainder of these notes, I will often abuse notation and write u; instead
of //s == //s(X) and v, rather than V; = (Z;, vs). For example, the r~eader shou}d
sometimes interpret usv as //;(X)vg, depending on the .conte).(t. Etc,sentlally, we will
be identifying 1,, M with T,, M when no particular confusion will arise. .

Convention. Let us now fix a base point 0 € M and unless otherwise noted, we will
assume that all M-valued semi-martingales, I, startato € M, i.e,, g =0 a.e.

To each M-valued semi-martingale, £, let ¥(X) := b where

b= /.//_18)]=/.u'18)] =/ u's Y.
0 0 0

Then b = W(Z) is a T,M-valued semi-martingale such that bg = 0, € T,M. The
converse holds as well.

Theorem 5.29 (Stochastic Development Map). Suppose thato € M is gl:ven ar}d bis
a TyM-valued semi-martingale. Then there exists a unique M-valued semi-martingale

X such that
8E; = //s6bs = us8b; with ZTg=o0 (5.35)

where u solves (5.32).

Proof. This theorem is a stochastic analog of Theorem 4.10 and the reader is again
referred to Figure 11. To prove the existence and uniqueness, we may follow the method
in the proof of Theorem 4.10. Namely, the pair (£, u) € M x O (¥N) solves a SDE of
the form

¥ =ubb with Xp=o0
Su=-T(E)u=-Twdb)u with uy=1¢ OWN)

which after a little effort can be expressed in a form for which Theorerp 5.10 may be
applied. The details will be left to the reader, or see (for example) Section 3 of Driver

[w}
[47].

Notation 5.30. As in the smooth case, define & = ¢ (b), so that
V() =7 ) = / I (D)7 8T,
0

In what follows, we will assume that by, u; (or equivalently //,(%)), and X, are
related by Equations (5.35) and (5.32), i.e., T = ¢ (b) an('i.u =//=//(2). Recall
that d¥ = P (X)d ¥ is the Ito differential of %, see Definition 5.13.

Proposition 5.31. Let T = ¢ (b), then

dY = P(2)dY = udb. (5.36)
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Also
d

AL ®dE =udb@udb:= Y ue; ® ue;db'db/, (5.37)
ij=1

where {e; };i=1 is an orthonormal basis forT,M and b = Z?:l ble;. More precisely

. . d
/Op(dE ®d)3)=/0 iglp(uei®u3j)dbidbj,

forall p e T(T*M ® T*M).

Proof. Consider the identity:
d¥% = udb = udb + %dudb

1 1
= udb — ET‘(SE)udb = udb — EF(udb)udb

where T” is as defined in (3.65). Hence

d
3 1 oo
dX¥ = P(2)dX = udb — EUE_I P(E)F((uei)z)uejdbldbl.

The proof of (5.36) is finished upon observing,
PI'P = P{dQP +dPQ}P = PdQP =PQdQ =0.
The proof of (5.37) is easy and will be left for the reader. O

F act5.32, If (M, g)isa complete Riemannian manifold and the Ricci curvature tensor
is bounded from _belows, then A = A, acting on CZ°(M) is essentially self-adjoint
Le., the closure A of A is an unbounded self-adjoint operator on L2(M, d)). (Here:
dr = Jgdx!'.. . dx" is being used to denote the Riemann volume measure on M B}

Moreover, the semi-group e'2/2 has a smooth integral kernel, p;(x, y), such that
Pi(x,y)>0forallx,y e M

/M Pr(x, y)dA(y) = 1 forall x € M and

(¢22f) @) = /M Pe(x, ) f (A for all £ € L2(M).

If f e C°(M), the function u @, x) = e“_VZf (x) is smooth fort > Oandx € M

and Le'2/2 f (x) is continuous for ¢ > Oand x € M for any smooth linear differential
operator L on C*° (M) . For these results, see for example Strichartz [165], Dodziuk
[43] and Davies [41].

5 . .
These assumptions are always satisfied when M is compact.
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Theorem 5.33 (Stochastic Rolling Constructions). Assume M is compact and let T,
us = //s, and b be as in Theorem 5.29, then:

1. X is a martingale iff b is a T, M -valued martingale.
2. X is a Brownian motion iff b is a T, M -valued Brownian motion.

Furthermore if ¥ is a Brownian motion, T € (0, 00) and f € C*°(M), then
M, = (7982 1) ()
is a martingale for s € [0, T'] and

aM; = (deT D32 ) (usdby)s, = (de 7952 £) (//dby). (5.38)
Proof. Keep the same notation as in Proposition 5.31 and let f € C*°(M). By Propo-
sition 5.31, if b is a martingale, then fo df(dx) = fo df (udb) is also a martingale and

hence ¥ is a martingale, see Definition 5.19. Combining this with Corollary 5.18 and
Proposition 5.31,

dLf (2)] = df dE) + %Vdf(d): ®d%)
= df (udb) + %Vdf(udb ® udb).

Since u is an isometry and if b is a Brownian motion, then udb ® udb = I(X)dA.
Hence 1
alf(¥)] = df (udb) + EAf(E)dl

from which it follows that T is a Brownian motion.
Conversely, if ¥ is an M-valued martingale, then

N . N . .
N :.21:/0 dx' (dX)e; =XI:/O (e;, udb)e; =/0 udb (5.39)

is a martingale, where x = (!, ... xN } are standard coordinates on RY and {ei}ih; |
is the standard basis for RY. From (5.39), it follows that b = fo u~'dN is also a
martingale.

Now suppose that X is an M-valued Brownian motion, then we have already proved
that b is a martingale. To finish the proof it suffices by Lévy’s criteria (Lemma 5.21) to
show that db @ db = Z(0)dAr. But T = N + (bounded variation) and hence

db®db=u"'dZ ®u'dE =u"'dN @u"'dN
= ' @u™)(dL ®dL)
= ™' @ u HI(T)dr = L(0)dA,
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wherein (5.24) was used in the fourth equality and the orthogonality of u was used in
the last equality.

To prove (5.38), let M; = u (s, £;) where u (s, x) ;= (e(T_s)‘Sﬂf) (x) which
satisfies |
dsu (s, x) + EAu (s,x) =0withu(T,x) = f (x)

By It6’s Lemma (see Corollary 5.18) along with Lemma 5.21 and Proposition 5.31,
- 1
dM; = 0su (s, T;)ds +dp [u (s, )] (dZ;) + EVdM [u (s, )1 (dZ; ® dXy)
1 -
= (s, o) ds + 3 Au (s, ) ds + (dMe(T_‘)Aﬂf) (usdby)z,)

_ (dMe(T—:)A/zf) ((usdby)s,). O

The rolling construction of Brownian motion seems to have first been discovered
by Eells and Elworthy [63] who used ideas of Gangolli [87]. The relationship of the
stochastic development map to stochastic differential equations on the orthogonal frame
bundle O (M) of M is pointed out in Elworthy [66, 67, 68]. The frame bundle point of
view has also been extensively developed by Malliavin, see for example [130, 129, 131].
For a more detailed history of the stochastic development map, see Elworthy [68], pp.
156-157. The reader may also wish to consult [74, 103, 116, 132, 171, 101].

Corollary 5.34. If = is a Brownian motion on M,
r={0=sp<s1 < <85, =T}
is a partition of [0, T] and f € C® (M"), then
n
Ef(Zs,...,25,) = '/M f(xl,xz,.--,xn)nPA,«s (xi—1, x;)dA (x;)  (5.40)
i=1

where Ajs :=s; —5i_1, x0 := o and A := Am- In particular T is a Markov process
relative to the filtration, {F,} where [, is the o-algebra generated by (Z; : v < 5}.

Proof. By standard measure theoretic arguments, it suffices to prove (5.40) when f is

a product function of the form f G, xa, . x) =TT fi ) with f; € C°(M).
By Theorem 5.33, M; := eT=94/2 £, (%) is a martingale for s < T and therefore

E[f(Zs.....3,)] =E [ﬁ fi () - MT:I =E ’:'ﬁf, (Zs,) - Ms"_J:,

Il

E []:[1 fi (2) - (Pans fa) (ESH)} . (5.41)
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In particular if n = 1, it follows that
E(i 0 =E[(¢"524) @0 = [ pro.xnfiomdrc.

Now assume we have proved (5.40) with n replaced by n — 1 and to simplify notation
letg (x1,x2,...,%Xp—~1) := ]_[;:11 fi (xi). It would then follow from (5.41) that

E[f(Zs,..., Z4)]

= f g xnmn) (€T A L) ) [ P Gt xi) d )
M i=1

= / g (x1,x2, ..., Xn-1) [/ Jn (Xn) PAs (Kn—1, Xn) dA (xn)}
M1 M
n—1

X l_[ Pas (xi—1, xi) dA (x;)

i=1
= f f o xa, x| pas (et x) d ().
M i=1

This completes the induction step and hence also the proof of the theorem. O

5.5 More constructions of semi-Martingales and Brownian motions

Let " be the one form on M with values in the skew symmetric N x N matrices defined
by’ =dQP +dPQ asin (3.65). Given an M-valued semi-martingale ¥, let # denote
parallel translation along X as defined in (5.32) of Theorem 5.27.

Lemma 5.35 (Orthegonality Lemma). Suppose that B is an RN -valued semi-martingale
and T is the solution to

83X =P(X)0B with Xg=o0€M. (542)
Let {e,-}fv=1 be any orthonormal basis for RN and define B! := (e;, B) then

N
P(2)dB® Q(D)dB = Y P(E)e; ® Q(D)e; (dBdB) =0.

i,j=1

Proof. Suppose {v; }fv= 1 is another orthonormal basis for RV . Using the bilinearity of
the joint quadratic variation,

[(ei, B), {ej, BYI =D _[{ei, vk){vk, B), {ej, v1){vi, B)]
k,!

=) (i, v {ej, w)[(vg, B), (v, B)I.
k!
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Therefore,

N
> P(D)e ® Q(E)e; -d [ B, 5]
i,j=1
N

Y. [P(D)e: @ Q(Drej] lei, vi) (e, vdl{vg, B), (v, B)]
i,jkI=1

N
Y [P(D)w ® Q(S)uldl{w, B), (u, B)]

k=1

which shows P(X)dB ® Q(XT)dB is well defined.
Now define

B :=f u~'dB and B’ := (¢;, B) =/ (ue;, d B)
0 0

where u is parallel translation along T in M x R¥ as defined in (5.32). Then

N

P(X)dB® Q(X)dB = Z P(Tuer ® Q(T)uele;, uex) (e, uep) (dBidBj)
i, j.k,l=1

N
= Y P(Duer ® Q(T)uey (dlé"dé’)
k,I=1

1

M=

uP(0)ex ® uQ(0)e; (dé"dé’)
k.l

—_

wherein we have used P(Z)u = uP(0) and Q(X)u = uQ(0), see Theorem 5.27. This
last expression is easily seen to be zero by choosing {e;} such that P(o)e; = ¢; for
i=12,...,dand Q (0)e; =e¢;forj=d+1,...,N. O

The next proposition is a stochastic analogue of Lemma 3.55 and the proof is very
similar to that of Lemma 3.55.

Proposition 5.36. Suppose that V is a T M-valued semi-martingale, ¥ = m (V) so
that T is an M-valued semi-martingale and Vs € Ts M for all s > 0. Then

1158 [1171Vs | = 87V, = P (20 8, (543)

where [ [; is stochastic parallel translation along . If Y € T (T M) isa time dependent
vector field, then

d
[/ @] = () Gods t vy s

and for w € T,M,

Curved Wiener Space Analysis 119
11585 [V1w¥s] = 8s [//IIV//;st]
d
n = =Y, )|ds. (545
= /17" Vize/w¥s + 115 [v//:w ( dsYs)] 5. (549)

Furthermore if L5 is a Brownian motion, then

{4
a [/ @) =115V Y + 115 (gn) (%) ds

d
1
+ 5 2117 Vi eiore Yods (5.46)

i=1
where [e,~};.i_1 is an orthonormal basis for ToM.

Proof. We will use the convention of summing on repeated indices and write i for
stochastic parallel translation //s, in T M along X. Recall that u; solves

Sus +dQ (8%;)us =0 withup = IT,m.
Define i, as the solution to:
ity = isdQ (8X;) withitg = It M.

Then i
8 (ugus) = —iusdQ (%) us + asdQ BL)us = 0

from which it follows that i us = I for all s and hence iy = u;l. This proves (5.43)
since

- -1
usds [u;1 Vs] _— [us 140 B Vs +14; avs]
=dQ () Vs +8Vs =87V,

where the last equality comes from (5.2.9).
Applying (5.43) to V; = Y, (E5) gives

b /1740 (B0)] = 117 P (B 8, ¥, (5]

d -1 ’
= //71 —_ Tods + s P (Zy) YS (Zs) 85 s
= /1; P(za(dsn)( yds + /]

=//;! (%Ys) (E5)ds + /15 ' Vs,5,Ys,

which proves (5.44). N
Togrove (5.45), let X; (m) = P (m)e; fori = 1,2,..., N. By Proposition 3.48,

V¥ = (//sw, Xi (29)) (Vx,Ys) (3s) (5.47)
= (w, //7'Xi (£)) (Vx, Ys) ()
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and
/1sw = {//sw, Xi ()X (B5) = (w, //7 X;i (Te)) X; (Ts)
or equivalently,
w=(w, /[ X (T)//7 Xi (). (5.48)
Taking the covariant differential of (5.47), making use of (5.44), gives

87 [Vyu¥s]

= {//sw, Vs,5,Xi) (Vx, ¥5) () + (//sw, X; (X5)) V5,5, Vx, Y5
+{//sw, X; (X)) (in (:—sYs)) (Z) ds

= {//sw, Va5, Xi) (Va,Xs) (E) + (//sw, X; (E))VE 5 ox. Vs
+{//sw, Xi (£:)) Vv, 5, x. ¥s + (V//Jw (%Y:)) (Es5) ds

= (Vi//sw. sy, XX B4/ 5w, Ko (B0 9,5, %, Vs) ()
+ Vi 50wl + (V//xw (%Ys)) (Zy) ds, (5.49)

Taking the differential of (5.48) implies

0=8w=(w,//; Va5, X)//7 Xi () + (w, /7' X; (B))//7 Vs, 5, X
which upon multiplying by //; shows

/15w, Vi, 5, X) Xi (T) + {/ /5w, X; ()} V5,5, X; = 0.

Using this identity in (5.49) completes the proof of (5.45).
Now suppose that I, is a Brownian motion and b = W; () is the anti-developed
T, M-valued Brownian motion associated to X. Then by (5.44),

d
a7 0] = /17 (d—sn) (Zo)ds + /17198, Y

=//7! (}Y) (0 ds + (/1,16 Y,) abi.
Using (5.45),
(//? "V e Y:) 8by = (//; "V e Y:) db + %d (//; 'V e Ys) db'
= /17" a6, Y5 + %//;lvgm//xei Yidb'
= /17" an Yy + %//; 'V e @0/e; Yedbidb]

_ 1, _
= //s IV//xdbsYS + 5//5 IV/2/JE,<®//S5,- stS.

Combining the last two equations proves (5.46). O
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Theorem 5.37. Let ¥, denote the solution to (5.1) with Lo = 0 € M, B = Band
by = W, () € T,M. Then

b, =/s /7N () X () 8B, + Xo (5,)dr]
0

= f N )X () dBy
0
C Ly Vy.X;) (S,)dBidB + Xo (E)dr |.  (5.50)
+[) //r zi,jX::l( Xi ])

Hence if B is a Brownian motion, then

b, =f: /17 (D)X (%) dB,
0

n

T i . 5.51
+f0//,1[EZ(VX,.XJ(E,HXO(E,)]dr (5.51)

i=l1
Proof. By the definition of b,
dby = //71(2) [X () 8Bs + Xo (Zs)ds]
1., _
=//7" (2) X () dB; + Xo () dsl + 3d [//: ! (z)X(zs)]st

1
— /7 (D) X (B0 dBs + Xo (8)ds] + 5 [/ (®) Vxw.pam X dB;

= /7 (D) X (B0 dB, +dsl+ 5//7 (D) Y (Vxi X)) (5 dB{dB]
Q=1

which combined with the identity,

ali7 X)), = [/ © Var,X] a8, = [//7" ) Vxczan.X] 4.
= 3 (Vx.X;) (%) dBjdB!
ij=1
proves (5.50). w}

] i jon, Xy is the solution to
Corollary 5.38. Suppose Bs is an R"-valued Brownian mqtlon, s i
(5.1) withyﬁ = Band ]5 pIya (ka Xk) + Xo = 0, then T is an M-valued martingale
with quadratic variation,

n
AT, ®dTs = Y Xi (E;) ® Xk (5;) ds. (5.52)
k=1
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Proof. By (5.51) and Theorem 5.33, ¥ is a martingale and from (5.1),

n n
dr'dT) = 3 X; (£) X/ (£)dB*4B' =) XL (%) X] ()ds
k,I=1 k=1

where {e;}¥ | is the standard basis for RY, T := (T, ¢;) and X: (D) = (X (D), &)

Using this identity in Eq. (5.17), shows

N n n
dZ, ®dE,= ) ) e ®e; X} (£) X} (D)ds = DXk (T) ® Xk (Ty)ds. O
ij=1k=1 k=1

Corollary 5.39. Suppose now that By is an RY -valued semi-martingale and X is the
solution to (5.42) in Lemma 5.35. If B is a martingale, then T is a martingale and if B
is a Brownian motion, then T is a Brownian motion.

Proof. Solving (5.42) is the same as solving (5.1) withn = N, 8 = B, Xp = 0 and
Xi(m)=P(m)e; foralli =1,2,..., N. Since

Vx,Xj=PdP (Xi)ej =dP (X;) Qej = dP (Pe;) Qej,

it follows from orthogonality Lemma 5.35 that

n
Y (Vx.X,) (5,)dBidB] =o0.
l,j=]

Therefore from (5.50), b, := fos /17 155, isa T, M-martingale, which is equivalent to
s being an M-valued martingale. Finally if B is a Brownian motion, then from (5.52),
2 has quadratic variation given by

N
dZ; ®d¥, = Z P (Z,) e ® P(Z,) eids (5.53)

i=1

Sigce Z;N=| P(m)e; ® P(m)e; is independent of the choice of orthonormal basis for
RY, we may choose {e;} such that {e,-};i=1 is an orthonormal basis for 7,, M to learn

N
> " P(m)e; ® P(m)e; = I(m).

i=1

Using this in (5.53) we learn that d £ ® d T; = I (T,) ds and hence ¥ is a Brownian
motion on M by the Lévy criteria, see Lemma 5.21. o
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Theorem 5.40. Let B be any RY -valued semi-martingale, T be the solution 1o (5.42),
b= f u 8T = / u~'P(Z)5B (5.54)
0 0
be the anti-development of T and
B = / u'Q(2)dB = Q(o)/ u~ldB (5.55)
0 0
be the “normal” process. Then
b= / u”'P(X)dB = P(o)/ u~ldB, (5.56)
0 0

i.e., the Fisk—Stratonovich integral may be replaced by the It6 integral. Moreover if B
is a standard RY -valued Brownian motion then (b, B) is also a standard RN -valued
Brownian and the processes, bs, T and [/ are all independent of B.

Proof. Let p = P(Z) and u be parallel translation on M x R (see (5.32)), then

du'P(E))-dB =u" ' [[(6Z)P(Z)dB + dP(5X)dB]
=u"'[dQEZ)P (£)+dP(ET)Q (T)) P(X)dB + dP(8%)dB]
=u"'[dQ(T)P(Z)dB — dQ(5%)dB]
= —u'dQUT)Q(2)dB = —u~'dQ(P (£)dB)Q(X)dB =0
where we have again used P (£)dB ® Q (X) dB = 0. This proves (5.56).

Now suppose that B is a Brownian motion. Since (b, 8) = | u~'dB and u is
an orthogonal process, it easily follows using Lévy’s criteria that (b, B) is a standard
Brownian motion and in particular, 8 is independent of b. Since (X, u) satisfies the
coupled pair of SDEs

dX =udband du + T'(udb)u = 0 with
To = o and uy = I € End(RY),

itfollows that (X, u) is a functional of » and hence the process (X, u) are independent
of B. O

5.6 The differential in the starting point of a stochastic flow

In this section let By be an R"-valued Brownian motion and for each m € M let
Ty (m) = Z; where Zj is the solution to (5.1) with X9 = m. It is well known, see
Kunita [116] that there is a version of T; (m) which is continuous in s and smooth in m,
moreover the differential of T (m) relative to m solves the SDE found by differentiating
(5.1). Let

Zy :=Tyoand z; := //7'Z; € End (T,M) (5.57)

where //; is stochastic parallel translation along Z; := T (0) .
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Theorem 5.41. Forallv € T,M
87 Zsv = (Vz,,X) 8B, + (Vz,, Xo) ds with Zov = v. (5.58)

Alternatively z; satisfies

dzsv = /[ (V)/,00X) 8Bs + /51 (V)20 Xo) dis. (5.59)

Proof. Equations (5.58) and (5.59) are the formal analogues (4.2) and (4.3) respectively.
Because of Proposition 5.36, (5.58) is equivalent to (5.59). To prove (5.58), differentiate
(5.1) in m in the direction v € T, M to find

8Zsv = DX; (%) Z;v 08B! + DX (E;) Zsvds with Zgv = v.

Multiplying this equation through by P (Z;) on the left then gives (5.58). u|

Notation 5.42. The pull back, Ric //,» of the Ricci tensor by parallel translation is
defined by

Ric//, := //7' Rics, //s. (5.60)
Theorem 5.43 (It form of (5.59)). The It6 form of (5.59) is

dzsv = //71 (V),2,0X) d By + asds (5.61)

where

N n 1 n
a5 = //;! [V/m (Z Vx, Xi + Xo) =5 2RV Uszev, Xi () X (zs)] ds.
i=1

i=1
(5.62)
[fweﬁ{rther assume thatn = N and X; (m) = P (m) e; (so that (5.1) is equivalent to
(5.42) if Xo = 0), then a; = —% Ric,/, zsvds, ie, (5.59) is equivalent to

_ _ 1
dzsv = //] lp (Z,)dP (//sz5v)dBs + l://s IV//szstO - ERiC//: z;v] ds. (5.63)

Proof. In this proof there will always be an implied sum on repeated indices. Using
Proposition 5.36,

—1 —
a[/1; (V/1.2X) | dBs = /5 [Vispuamoren X+ V2| dB;
— /-1 2
- //s [VX(Es)dBS®//:Z:UX + V(V//:Z:UX)dB-‘X] st
__ 71 2
- //S [VXi(E:)®//:ZSUXi + V(V//:Z:Uxi)xi] ds‘ (564)

Now by Proposition 3.38,

Curved Wiener Space Analysis 125

V0o Xi = Vi vex,@n Xids + RY (X; (), //525v) Xi ()
= V), cvexi(zy) Xids = RY (//szev, X; (T0)) X; (55)
= [V//:z:qui Xi — Vv, ..x Xi]
~ RV (//sz5v, Xi (£) Xi ()

which combined with (5.64) implies

d [//;1 (v//m,,x)] dB; = //7! [v//:z:UvX.- Xi — RY (//szsv, Xi () X (Ex)] ds.

(5.65)
Equation (5.61) now follows directly from this equation and (5.59).
If we further assume n = N, X; (m) = P (m) ¢; and Xg (m) = 0, then
(V//SZS,,X) dB; = //S_IP (%5)dP (//szsv)dB;. (5.66)

Moreover, from the definition of the Ricci tensor in (3.31) and making use of (3.50) in
the proof of Proposition 3.48 we have

RY (//s25v, Xi (E5)) Xi (Z5) = Ricy,, //szsv. (5.67)

Combining (5.66) and (5.67) along with Vy, X; = 0 (from Proposition 3.48) with (5.61)
and (5.62) implies (5.63). 0

In the next result, we will filter out the “redundant noise” in (5.63). This is useful
for deducing intrinsic formula from their extrinsic cousins, see, for example, Corollary
6.4 and Theorem 7.39 below.

Theorem 5.44 (Filtering out the Redundant Noise). Keep the same setup in Theorem
543 withn = N and X; (m) = P (m) e;. Further let M be the o-algebra generated
by the solution © = {Z; : s > 0}. Then there is a version, Z;, of E [z;|M] such that
§ —> Zg IS continuous and Z satisfies,

_ T, .
Zv=1v +/ [//, ! (V//,E,UXO) - ERIC//' z,v] dr. (5.68)
0
In particular if Xo = 0, then
d _ 1.
LE="; Ric,;, 75 withzg = id, (5.69)

Progf. In this proof, we let bs; be the martingale part of the anti-development map,
Y (D), ie.,

by 1= / //,‘IP(E,)SB,=/x//,_1P(}:,)dB,.
0 0

Since (X, us) solves the SDE
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8%s = us8bs + Xo (E;) ds with £g = o
Su=-T(6Z)u = —T (u8b) u with up=1¢e ON)

it follows that (X, u) may be expressed as a function of the Brownian motion, b.
Therefore by the martingale representation property, see Corollary 7.20 below, any
measurable function, f (Z), of T may be expressed as

1 1

f(®) =fo+/ ar,db,) = fo+/0 (@, //71 [P () dB,]).

(
0
Hence, using PAP = dPQ, the previous equation and the isometry property of the Itd
integral,

E [ / [P (Z,)dP (//rzrv)dBr]f(E)]
0
K 1
=E[ /0 [dP (//s2,v) Q (5,)dB,] /0 (P (Er)//,a,,dm]

_E UO [dP (//,2,v) O (%,) P (zr)//rar]dr] o

This shows that s
IEU P(Er)dP(//rzrv)dBrlM] =0
0

and hence taking the conditional expectation, E[-|[M], of the integrated version of
(5.63) implies (5.68). In performing this operation we have used the fact that (2, //)
is M-measurable and that z, appears linearly in (5.63). I have also glossed over the
technicality of passing the conditional expectation past the integrals involving a ds
term. For this detail and a much more general presentation of these ideas the reader is
referred to Elworthy, Li and Le Jan [71]. ]

5.7 More references

For more details on the sorts of results in this section, the books by Elworthy [69],
Emery [74], and Ikeda and Watanabe [104], Malliavin [132], Stroock [171], and Hsu
[101] are highly recommended. The following articles and books are also relevant,
(14, 20, 21, 40, 64, 63, 65, 110, 129, 137, 144, 154, 155, 156, 179).

6 Heat kernel derivative formula

In this short section we will illustrate how to derive Bismut type formulas for derivatives
of heat kernels. For more details and more general formulae see, Driver and Thalmaier
[58], Elworthy, Le Jan and Li [7 1], Stroock and Turetsky [173, 172] and Hsu [99] and the
references therein. Throughout this section s will be an M-valued semi-martingale,
//s will be stochastic parallel translation along ¥ and
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by = ¥, () :=/ //7L8%,.
0

Furthermore, let Q denote the unique solution to the differential equation:

49 = —leRiC//s with Qg = 1. 6.1)
ds 2

See (5.60) for the definition of Ric/, .

Lemma 6.1. Let f : M — R be a smooth function, t > 0 and for s € [0, 1] let
F(s,m) := ("2 ) (m). (6.2)

-1
If%; isan M -valued Brownian motion, then the processs € [0, t] — Q;//; VF(s, I;)
is a martingale and

d[0u//7'VF (s 2] = 0u//71)1.a6, VF 5, ). (63)
Proof. Let Wy := //7 'V F(s, ;). Then by Proposition 5.36 and Theorem 3.49,

aw, = [//S_IVBSF(s, ) + %//;lvf/se@//xeivp(s, .)] ds
+ /719, V (s, )db:
=117 [P Vs ) = (VAF(s, ) (5] ds
+//7'Y)),6,V F(s, )db!
1

=3/17' Rie VF(s, Z)ds + //7'V)1,e,VF (s, )b,

=% Ric,;, Wyds + //7'V),e, VF (s, -)db!

where {¢;}¢ | is an orthonormal basis for T, M and there is an implied sum on repeated
1=
indices. Hence if Q solves (6.1), then

1 . -1 RPTE
d[QsWs] = _%Qs Ric//s Wds + Qs l:i Rlc//s Wids + //s V//xe,-VF(sv )dbs]

= 05//;'V)/,eVF (s, )b
which proves (6.3) and shows that QW is a martingale as desired. O

Theorem 6.2 (Bismut). Let f : M — R be a smooth function and . be an M-valued
Brownian motion with g = o, thenfor0 <ty <t < 00,

fo
0 0
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Proof. The proof given here is modelled on Remark 6 on p- 84 in Bismut [21] and the
proof of Theorem 2.1 in Elworthy and Li [72]. Also see Norris [145, 144, 146]. For
(s,m) € [0, t] x M let F be defined as in (6.2). We wish to compute the differential of

ks := (fy Qrdb,) F(s, ;). By (5.38), d [F (s, £5)] = (V(F(s, ))(Z,), //sdbs) and
therefore

dk, = F(s, ,)Qsdbs + ( / ' Qrdbr) (V(F (s, ))(Sy), //sdbs)
1]

d
+ Y (VF(s, ))(Es), //se) Ose; ds.
i=1

From this we conclude that
) d
E[ki,] = E ko] + E f D UITIVAESs, (), e) Qse ds
0 o

to
_ /0 E[Qu//;'V(F(s, )(Zs)]ds

1]
= [ B[ 2015V F 0. (20 ds = 097 110

wherein the the third equality we have used (by Lemma 6.1) that s —
Qs//7 'V (F(s, ))(Z,) is a martingale. Hence

4
V(' (o) = tlolE [(/0 0 Qsdbs) (e(""’)“f)(‘ﬂro)]

from which (6.4) follows using either the Markov property of X or the fact that s —
(79472 £) (%) is a martingale. 0

The following theorem is an non-intrinsic form of Theorem 6.2. In this theorem
we will be using the notation introduced before Theorem 5.41. Namely, let {X ity C
I (T M) be as in Notation 5.4, B; be an R"-valued Brownian motion, and T (m) = X;
where I; is the solution to (5.1) with Yy;=meMand B = B.

Theorem 6.3 (Elworthy—Li). Assume that X (m) : R" = TuM (recall X (m)a :=
Y ie1 Xi (m) a;) is surjective for allm € M and let

X ) = [Xm) yugemyr ] ¢ TnM — R, (6.5)

where the orthogonal complement is taken relative to the standard inner producton R",
(See Lemma 7.38 below for more on X my*) Thenforallve TyM,0 <t, <t < oo
and f € C (M) we have

I
o(¢H2r) = k|12 / (X (2" Z,v,B,) 66
Iy 0

where Z; = Ty, as in (5.57).
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Proof Let L =37, X,.2 + 2Xo be the generator of the diffusion, {Ty (m)};>¢ . Since
X (m) : R" — T,, M is surjective for allm € M, L is an elliptic operator on C* (M) .
So, using results similar to those in Fact 5.32, it makes sense to define F; (m) :=
(e"=L/2£) (m) and NI = F; (T; (m)) . Then
1 .
o Fs + ELFS =0with F;, = f

and by It6’s lemma,

AN = d[F, (T, (m))] = 3 (XiFy) (T; (m))d Bl 6.7

i=1

This shows N7* is a martingale for all m € M and, upon integrating (6.7) on s, that
n t .
f (T m)) = et fm) +) / (Xi Fy) (T; (m))dB..
i=1 0

Hence if a; € R” is a predictable process such that E f(; lasi? ds < oo, then by the Itd
isometry property,

t t
E[f('n m) / <a,dB>]= / E ((X; Fy) (T, (m))a; ()] ds
0 1]
= / "E[(@uFy) X(Ty (m)a)]ds.  (68)
0

Suppose that £; € R is a continuous piecewise differentiable function and let
as =X (Z5)* Z,v. Then from (6.8) we have

t
E [f(z,)/'(e;X(zs)# st,st>] =/ LE [(dy Fy) (Zsv)lds. 6.9
0 0

Since N* = F; (T; (m)) is a martingale for all m, we may deduce that
v(m = N") = dy Fs (Tyaov) = dy Fs (Zv) (6.10)

is a martingale as well for any v € T, M. In particular, s € [0, t] — E [(dy F;) (Zsv)]
is constant and evaluating this expression at s = 0 and s = ¢ implies

E[(@yF) (Zs)] = v (2 £) = El(du ) (Zw)]. 6.11)
Using (6.11) in (6.9) then shows
t
E [f (Z1) / (X (Z)* Zyv, dB»] = @&~ to)v (112 1)
0

which, by taking £; = s A t, implies (6.6). O
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Corollary 6.4. Theorem 6.3 may be used 10 deduce Theorem 6.2.

Proof. Apply Theorem 6.3 with n = N,Xo=0and X;(m) = P (m)e; fori =
1,...,Ntoleam ’ -

anzey_ 1 fo 1 %0
v (ef f) = E]E ,:f (E[)-/O. (Zsv, st)] = EE [f (E,)/(; {//szsv, st)]

6.12)
where we have used L = A (see Proposition 3.48) and X (m)* = in thi ( i

R — P
By Thooten S40 (m) (m) in this setting.

1] o
[0 (//s25v, dB,) = [0 (/ /5250, P (Z) dBy)

f L]
- [0 (24, //7\P (T3 dBy) = [ (250, dby)

0
and therefore (6.12) may be written as

v (e:A/zf) = %]E [f():,)f()[(](zsu,dbs)].

Using Theorem 5.44 to factor out the redundant noise, this may also be expressed as

a2y 1 fo 1 f
v(¢27r) = =8 [f(E,)[O (Zv, dbs)] - -k [f(g,)[o o, Z;rdbs)] 613

where z, so_lt\rles (5.69). By taking transposes of (5.69) it follows that z¥ satisfies (6.1)
and hence Zg = Q;. Since v € T,M was arbitrary, Equation (6.4) is now an easy
consequence of (6.13) and the definition of V (¢!2/2 (o). o

7 Calculus on W (M)
In this section, (M, 0) is assumed to be either a com i i i i
_ - (M, pact Riemannian f
with a fixed pointo € M or M = R? witho — 0. manifold equipped

Notation 7.1. We will be interested in the following path spaces:
W(ToM) == {w € C([0, 1] > T,M)jw(0) = 0, € T,M},
H(T,M) ;= {h € W(T,M) : h(0) = 0, & (h,h)y := [1 Ih’(s)l%ons < oo}
and 0
W(M) = {o € C([0, 1] — M):0(0)=0¢€ M]}.

(By convention (h, hg = o0 if h € W(T, M) is not absolutely continuous.) We refer
to W(T,M) as Wiener space, W (M) as curved Wiener space and H (T,M) or H (]Rd)
as the Cameron—Martin Hilbert space.
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Definition 7.2. Let u and pw ) denote the Wiener measures on W (T, M) and W (M)
respectively, i.e., p = Law (b) and uwry = Law () where b and ¥ are Brownian
motions on 7, M and M starting at 0 € T, M and o € M respectively.

Notation 7.3. The probability space in this section will often be (W (M), F, pw( M)) ,
where F is the completion of the o-algebra generated by the projection maps, X :
W (M) — M defined by X, (c) = o, for s € [0, 1]. We make this into a filtered
probability space by taking F; to be the o-algebra generated by {X, : r < s} and the
null sets in F. Also let //, be a stochastic parallel translation along X.

Definition 7.4. A function F : W(M) — Riscalleda C "-cylinder Junction if there
exists a partition

n.={0=sp<s51 <853--- <5, =1} 7.1
of [0, 1] and f € C*(M™) such that
F(o) = f(os,...,05) forallo € W (M). (7.2)

If M = R?, we further require that f and all of its derivatives up to order k have at most
polynomial growth at infinity. The collection of C*-cylinder functions will be denoted
by FC* (W (M)).

Definition 7.5. The continuous tangent space to W (M) at 0 € W(M) is the set
CT, W (M) of continuous vector-fields along o which are zero ats =0 :

CT,WM)=(XeC(0,1],TM)|X; e To,MVs e[0,1]and X(0) =0}. (7.3)

To motivate the above definition, consider a differentiable pathin y € W (M) going
through o at r = 0. Writing y (t) (s) as y (¢, 5) , the derivative X; := %|0y(t, s) €
T5(syM of such a path should, by definition, be a tangent vector to W (M) at 0.

We now wish to define a “Riemannian metric” on W (M). It turns out that the
continuous tangent space C T, W (M) is too large for our purposes, see for example the
Cameron—Martin Theorem 7.13 below. To remedy this we will introduce a Riemannian
structure on an a.e. defined “sub-bundle” of CTW (M) .

Definition 7.6. A Cameron—Martin process, h, is a T,M-valued process on W (M)
such that s — A(s) isin H, pwm) a.e. Contrary to our earlier assumptions, we do not
assume that 4 is adapted unless explicitly stated.

Definition 7.7. Suppose that X is a T M-valued process on (W (M), uw( M)) such that
the process 7 (X,) = X; € M. We will say X is a Cameron—-Martin vector field if

hs = //5' X5 (7.4
is a Cameron—-Martin valued process and
(X, X)x :=El(h, h) ] < oo. (7.5)

A Cameron-Martin vector field X is said to be adapted if 4 := //~1X is adapted. The
set of Cameron—Martin vector fields will be denoted by X’ and those which are adapted
will be denoted by A,,.
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Remar.k 7.8. Notice that X is a Hilbert space with the inner product determined by
(-, ) x in (7.5). Furthermore, X, is a Hilbert-subspace of Y.

Nota.tion 7.9. Given a Cameron-Martin process k, let X* := //h. In this way we may
identify Cameron-Martin processes with Cameron—Martin vector fields.

We define a “metric”, G,% on X by
G(X", X"y = (h, h)y. (7.6)
With this notation we have (X, X)x =E[G(X, X)].

Remark 7.10. Notice, if o is a smooth path then the expression in (7.6) could be written
as

L sy v
G(X, X) = — -
X, X) /0 g(dsX(s), dsX(s))ds,

v . s .
where - denotes the covariant derivative along the path o which is induced from the

covariant derivative V. This is a typical metric used by differential geometers on path
and loop spaces.

No.tation 7.11. Given a Cameron-Martin vector field X on (W M), ,uW(M)) and a
cylinder function F € FC! (W (M)) asin Eq. (7.2), let X F denote the random variable

XF (o) := Z(grad,-F(a), X, (0)), an

i=l1
where
grad, F (o) := (grad,-f) (05, ...,05,) (7.8)
and (grad; f) denotes the gradient of f relative to the i variable.

thation 7.12. The gradient, DF, of a smooth cylinder function, F, on W(M ) is the
unique Cameron—Martin process such that G (DF,X) = XF forall X € X. The
explicit formula for D, as the reader should verify, is

i=1

(DF); = //s (ZS /\Si//s,-_lgrad,-F(a)) . (7.9)

The formulain (7.9) defines a densely defined o L2 i
perator, D : L< (u) - X withD (D) =
FCY(w (M)) as its domain. g @

The function G is to be loosely interpreted as a Riemannian metric on W(M).
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7.1 Classical Wiener space calculus

In this subsection (which is a warm up for the sequel) we will specialize to the case
where M = RY, 0 = 0 € RY. To simplify notation let W := W(R?), H := H (Rd) ,
1= Lw(Rd), b (w) = w; for all s € [0, 1] and w € W. Recall that {F; : s € [0, 1]}
is the filtration on W as explained in Notation 7.3 where we are now writing b for Z.
Cameron and Martin [25, 26, 27] and Cameron [28] began the study of calculus on this
classical Wiener space. They proved the following two results, see [26], Theorem 2, p.
387 and [28], Theorem II, p. 919, respectively. (There have been many extensions of
these results partly initiated by Gross” work in [90, 911].)

Theorem 7.13 (Cameron & Martin 1944), Let (W, F, w) be the classical Wiener
space described above and for h € W, define Tr, : W — W by T (w) = w + h for all
weW.IfhisC 1 then ,uTh_1 is absolutely continuous relative to (.

This theorem was extended by Maruyama [133] and Girsanov [88] to allow the
same conclusion for h € H and more general Cameron-Martin processes. Moreover
it is now well known uTh_IAu iff h € H. From the Cameron and Martin theorem one
may prove Cameron’s integration by parts formula.

Theorem 7.14 (Cameron 1951). Leth € Hand F,G € L™ (1) := Ni<p<oc LP (1)
such that op F = :—EF o Teple=0 and 8,G = :—EG o Te|e=0 where the derivatives are
supposed to exist’ in LP(u) forall 1 < p < 0o. Then

/8;,F~Gdu=/ Fo,Gdu,
w w

where 3t G = —3,G + z4G and z := [, (W (5) , dbs)ga.

In this flat setting parallel translation is trivial, i.e., //; = id for all 5. Hence, the
gradient operator D in (7.9) reduces to the equation,

(DF), (») = (Zs A Si grad,-F(ws)) )

i=1

Similarly the association of a Cameron-Martin vector field X on W(R?) with a
Cameron—Martin valued process k in (7.4) is simply that X = A.

We will now recall that adapted Cameron—Martin vector fields, X = k, are in the
domain of D*. From this fact it will easily follow that D* is densely defined.

Theorem 7.15. Let h be an adapted Cameron—Martin process (vector field) on W. Then
h € D(D*) and

1
D*h=/ (k' db).
0

7 The notion of derivative stated here is weaker than the notion given in [28]. Nevertheless
Cameron’s proof covers this case without any essential change.
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Proof. We start by proving the theorem under the additional assumption that

sup |hy| <C, (7.10)
s€[0,1]

wbere C is a non-random constant. For each 7 € R let b(t,s) = bs(t) = by + th,. By
Girsanov’s theorem, s — b, (t) (for fixed ¢) is a Brownian motion relative to YARNTR

where
1 1 1
z, :=exp(— f (k) dby) — 212 f <h;,h;>ds).
0 2 0

Hence if F is a smooth cylinder function on W,
E[F (b, ) - Z,) = E[F(b)].

Differentiating this equation in ¢ at t = 0, using

d d 1
DF h\y = — . “ _ '
( YH e loF (b (t,-)) and p l0Z; = .[o (h', db),

shows
1
EDF,hg] - E [Ff (0, db):l =0.
0
From this equation it follows that 4 * *h= o i
q th € D(D*) and D*h = f (i, db). So it now only

remains to remove the restriction placed on 4 in (7.10).
Let h be a general adapted Cameron-Martin vector field and for eachn € N, let

in(s) :=fo Hr) - Twyzadr. (7.11)

(Notice that h,,lis still adapted.) By the special case above we know that h, € D(D*)
and D*h,, = [ (h,, db). Therefore,

1
* 2
E|D*(hm — hy)| =1Ef by, — b}, 1*ds — O asm, n — oo
0

from which it follows that D*h,, is convergent. Because D* is a closed operator, h €
D(D*) and ,

) . ) ' 1 1
D*h = lim D*h, = lim (h, db) =f (h', db). O
0

n—oo n—-oo 0

Corollary 7.16. The operator D* is densely defined and hence D is closable. (Let D
denote the closure of D.)

Prloof. Let h € H and F and K be smooth cylinder functions. Then, by the product
rule,
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(DF,Kh)y =E[(KDF,hygl = E[(D (KF) — FDK, h)g]
=E[F-KD*h — F(DK, h)y].

Therefore Kh € D(D*) (D(D*) is the domain of D*) and
D*(Kh) = KD*h — (DK, h)q.
Since the subspace,
{Kh|h € H and K is a smooth cylinder function},

is a dense subspace of X', D* is densely defined. |

7.1.1 Martingale representation property and the Clark-Ocone formula

Lemma 7.17. Let F(b) = f(by,, ..., by,) be the smooth cylinder function on W as in

Definition 7.4, then
1

F:IEF+f (as, dbs), (7.12)
0

where a; is a bounded, piecewise-continuous (in s) and predictable process. Further-
more, the jumps points of as are contained in the set {sy, ..., s} and a; =0 if s > sp.

Proof. The proof will be by induction on »n. First assume that n = 1, so that F(b) =
f(b,) for some 0 < ¢ < 1. Let H(s,m) := (e¢~9%/2f)(m) for 0 < s < r and
m € R4. Then, by Itd’s formula (or see (5.38)),

dH(s, bs) = (grad H (s, by), db)

which upon integrating on s € [0, t] gives
t 1
F(b) = (22 f)(0) +/ (gradH (s, bs), dbs) = EF + / (as, dby),
0 0

where a;, = lsf,//;'l grad H (s, bs). This proves the n = 1 case. To finish the proof
it suffices to show that we may reduce the assertion of the lemma at the level n to the

assertion at the level n — 1.
Let F(b) = f(bs,.- .., bs,),

(A f)(x1, x2, ..., x3) = (Ag)(x,) and
(grad,, f)(x1,x2,...,%;) = Vg (xp)

where g(x) := f(x1,x2,..., Xn—1, X). (So A, f and grad,, f is the Laplacian and the
gradient of f in the n'"-variable.) It6’s lemma applied to the process,

5 € [Sn—1,8n) — H(s,b) 1= (™52 )by, ... by, |, bs)
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gives
dH(s, b) = (grad, e —)2/2 fypo bs, ., bs, dby)

and hence
F(b) = (e(Sn—Sn—I)An/Zf)(bsl, ceesbs, 1, bg, )

Sn
+ / (grad,eCn=8a/2 fyp bs,_,, bs, dby)
Sn—1

. Sn
= (e’ Sn—l)An/Zf)(bs], vy bs, g, bs, ) +/ (as, dbs), (7.13)
Sn—1
where Os = (gradn e(s"_:)A"/zf)(bﬂ 1y bSn-I » bs) fors e (Sn—l ’ Sn)' By induction

we know that the smooth cylinder function
(€382 £y b b, b, )

. 1
may.be written as a cpnstant plus fo {as, dbs), where a; is bounded and piecewise
cltl)ntmuous anda, = 0ifs > s,_1. Hence it follows by replacing a, by s+ 15, 1 550
that o

Fby=cC +/ " (as, dbs)
0

for some constant C. Taking expectations of both sides of this equation then shows
C=E[F(b)]. o

Remark 7.18. By being more careful in the proof of the Lemma 7.17 (as is done in

more generality later in Theorem 7.47) it is possible to show a, in (7.12) may be written
as

n
as =]E{le§sl.grad,-f(bn,...,bs,,)

i=1

}—s] . (7.14)

This will also be explained, by indirect means, in Theorem 7.21 below.

C.orollé'lry 7.1?. Let F be a smooth cylinder function on W, then there is a predictable,

gicewue continuously differentiable Cameron—Martin process h suchthat F = EF +
h.

Proof. Let h; = fos ardr where a is the process as in Lemma 7.17. O

?orollary 7.20 (Martingale Representation Property). Let F € L%(u), then there
is a predictable process, ag, such that E fol lag|?ds < oo, and

1
F=IEF-+-/ (a, db). (1.15)
0
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Proof. Choose a sequence of smooth cylinder functions {F,} such that F,, — F as
n — oo. By replacing F by F — EF and F, by F,, — EF,, we may assume that
EF =0and EF,, = 0. Let " be predictable processes such that F,, = fol (a", db) for
all n. Notice that

1
IE/ la® — a™*ds = E(F, — Fn)* - Oasm,n — oo.
0
Hence, if a := L2(ds x du) — lim,_, o0 ", then
1 1
Fy, =/ a*.-db— / {a,db) as n — oo.
0 0

This shows that F = [ (a, db). O
Theorem 7.21 (Clark-Ocone Formula). Suppose that F € D (D), then®

1 d _
F=EF + f <1E [— (DF), | ]—‘s] ,dbs>. (7.16)
0 ds s
In particular if F = (bsl, e, bs,.) is a smooth cylinder function on W (M) then
1 n
F =IEF+/ <IE [Z Li<sigrad; f (bs,, ..., bs,)| Fs ,dbs>. (7.17)
0 i=1

Proof. Let h be a predictable Cameron—Martin valued process such that E fol |h; ]2 ds <
00. Then using Theorem 7.15 and the It6 isometry property,

1
E(DF,h)y =E[FD*h] =E [F/ (r, dbs)]
0

1 1 1
=IE[(IEF-+—/ (a,db))fo (h;,dbs)]zlE[/(; (as,h;)ds:l (7.18)
0

where a is the predictable process in Corollary 7.20. Since A is predictable,

1
E(DF,h)y =E [/0 <;—s (DF), ,h§>ds]

-_—IE[/:(IE[;—S(DF)S ]-'s:l,h;>ds:l. (7.19)

Since h is an arbitrary predictable Cameron-Martin valued process, comparing (7.18)
and (7.18) shows

8 Here we are abusing notation and writing E [t—;-j; DF; (b)[ ]-'s] for the “predictable” projection

of the process s — %[—)Fs (b) . Since we will only really use (7.17) in these notes, this
technicality need not concern us here.
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a;:]E[‘%(DF):‘]-}:,

which combined with (7.12) completes the proof. O

Remark 7.22. As mentioned in Remark 7.18 it is possible to prove (7.17) by an in-

ductive procedure. On the other hand if we were to know that (7.17) was valid for all
F € FC!' (W), then forh ¢ X,

1 , 1 d 1 ,
]E,:F'/0 (hs,dbs):, —]E[(]EF-F[) (IE [E DF:lf:],dbx>)L (hs,dbs):,
1
=]El:/ (E[% DF:lf::,,h;>ds:,
0
1
=K l:/ (%DFX, h;>ds:, = (DF,h)y.
0

This identity shows # € D (D*) and that D*h = jbl (B}, dbs), i.e., we have recovered

Theorem 7.15. In this way we see that the Clark—Ocone formula may be used to recover
integration by parts on a Wiener Space.

Let £ be the infinite dimensional Ormnstein-Uhlenbeck operator defined as the self-
adjoint operator on L2(y) given by £ = D*D. The following spectral gap inequality
for £ has been known since the early days of quantum mechanics. This is because £ is
unitarily equivalent to a “harmonic oscillator Hamiltonian” for which the full spectrum
may be found, see for example [162]. However, these explicit computations will not in
general be available when we consider analogous spectral gap inequalities when RY is
replaced by a general compact Riemannian manifold M.

Theorem 7.23 (Ornstein Uhlenbeck Spectral Gap Inequality). The nuil space of L
consists of the constant functions on W and L has a spectral gap of size 1, i.e.,

<[.:F, F)Lz([.l,) Z <F, F)Lz([.l,) (720)
for all F € D(L) such that F € Nul(£)+ = {1}+.

Proof LetF ¢ D(D), then by the Clark—Ocone formulain (7.16), the isometry property
of the It6 integral and the contractive properties of conditional expectation,

E(F -EF)? =E UOI (IE [dis DF; ()| ]—'s:, , db:>:,2
JEUO1 E[dis DF, (b)]]—'s:, zds:I
([ Cllgon o)) ]

IA
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2
I}'s] dS]

2 - _
ds:| =(DF,DF)x.

IA

1 d -
]E[f E ‘—DFs(b)
0 ds

1 d -

2 DF,
E[fo S DF, ()

In particular if F € D(L), then (DF,DF)y = E[LF - F], and hence

<[.:F, F)Lz([.l,) Z <F—]EF,F'—]EF)L2(‘_L) (721)

Therefore, if F € Nul(£), it follows that F = EF, i.e., F is a constant. Moreover:]f

1 (i.e., EF = 0) then (7.20) becomes (7.21.). . :
F Jit tlfll'rfs out that using a method which is attributed tc.) Maurey and Neveu in [(2}9], 1E
is possible to use the Clark—Ocone formula as the stamng point for a proof of rt(l)lss
logarithmic Sobolev inequality which by general theory is known to be stronger than
the spectral gap inequality in Theorem 7.23.

; d
Theorem 7.24 (Gross’ Logarithmic Sobolev Inequality for W (R )). Forall F ¢
D(D),
E [F2 log Fz] <2E[(DF, DF)g] + EF? . log EF2. (1.22)

= d
Proof LetF € FC' (W), & > 0, H; i= F>+s € D(D) andas = E[, (DHo), |7).
By Theorem 7.21,

1
H, = EH, +f {a, db)
0

d hence
" M, = E(H|R]=E[F? +el5] > ¢

is a positive martingale which may be written as

s

M, = Mo + f (a, db)
0

Mo =EH,. B N
Whe]iit ¢0(x) = ex Inx so that ¢/ (x) = Inx 4+ 1 and ¢” (x) = x~1. Then by It&’s
formula,

1, 2
d ¢ (M) = ¢ (Mp) +¢' (My)dM; + Ed” (M;) lag|“ ds
/ M+ 1L |las|? ds
=¢ (Mp) +¢ (Ms)d s+2Ms 5 .

Integrating this equation on s and then taking expectations shows

l i 2 23
1E[¢(M1)]=¢(1EM1)+§IE[/O o ds]. 1.23)
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Since DH'g = ZFDF, (7.23) is equivalent to

1
E[H;|F]

E = ! 1 DF)
(6 (Ho)] ¢(EH8>+2EUO E[2F (bF), 17

2
ds} .
Schwarz inequality and the contractive properties of conditional
<4 4 5 :
=(2[r[zon.fi=])
<4E[FY7]-E 4 (bF)
ds §

Combining the last two equations, using

2
m].
E[F1 7] __E[FyF] 5
E[HF] - E[FIR]+e ' (7.24)

2
l]—'s] ds
2

ds.

Using the Cauchy-
expectations,

2

E [ZF% (DF)S |]:S}

gives,

' fa
EI0 (H)) < (BH) + 28 [ & U_ (BF)
0 ds s

d

ds

1
=¢(EH8>+21Ef
0

(DF),

g&.’e mz}-}_lcl‘lfszls.t £ ] 0in thi§ inequality to find (7.22) is valid for F ¢ Fc! (W)
ince is a core for D imiti i id
e » standard limiting arguments show that (7.22) is valid
. . . . D
The main objective for the rest of this section is to generalize the previous theorems
to the seiting of general compact Riemannian manifolds, Before doing this we need to

record the stochasti . . ¢
and 413 ic analogues of the differentiation formula in Theorems 4.7, 4.12,

7.2 Differentials of stochastic flows and developments

Notation 7.25. Let T (m) = %, whe i i
! =X re X is the solution to (5. i =
Bs is an R"-valued semi-martingale, i.e., ’ " 10 O Dwith ¥o = m and

n
8, = ) X (,) 88! + Xo (E,) ds with T = m.
i=1
The.orem 7.26 (Differentiating ¥ in B). Let Bs = B; be an R"-valued Brownian
motion and h be an adapted Cameron-Martin process, hy € R” with Ih’ | bounded
4 .

(Y;hei:)th;;e is a ve'rsion of TE+th lgm) whicg is continuous in s and differentiable in
,m) . Mor =
eover if we define 9, T (0) := Z1oTE+E (0) | then
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5 s

WTE (o) = zsf Z7 Xy (T dr = //szx[ 717 Xy (T dr - (1.25)
0 0

where Zs := (TE), . //s is stochastic parallel translation along T, and z; 1= /171 Zs.
(See Theorem 5.41 for more on the processes Z and z.) Recall from Notation 5.4 that

Xa(m) =) aiXi(m)=X(m)a.

i=1

Proof. This is a stochastic analogue of Theorem 4.7. Formally, if By were piecewise
differentiable it would follow from Theorem 4.7 with s = ¢, that

X (m) = X (m) B, + Xo (m) and Yy (m) = X (m) R

(Notice that %lo [X (m) (B; +th;) + Xo (m)] = ¥;.) For a rigorous proof of this
theorem in the flat case, which is essentially applicable here because M is an imbed-
ded submanifold, see Bell [12] or Nualart [148] for example. For this theorem in this
geometric context see Bismut [20] or Driver [47] for example. O

Notation 7.27. Let b be an T, M = R?-valued Brownian motion. A T, M-valued semi-
martingale Y is called an adapted vector field or tangent process to b if Y can be written
as

5 i)
Ys =f qrdb, +f a,dr (7.26)
0 0

where g, is an so(d)-valued adapted process and a; is a T, M such that

1
f |as|2ds < 00 a.e.
0

Akey point of a tangent process ¥ as above is that it gives rise to natural perturbations
of the underlying Brownian motion b. Namely, following Bismut (also see Fang and
Malliavin [78)), for ¢ € R let b! be the process given by

5 s
b= &b+t | a.dr .27
s 0 0

Then (under some integrability restrictions on &) by Lévy’s criteria and Girsanov’s
theorem, the law of b! is absolutely continuous relative to the law of b. Moreover
#9 = b and, with some additional integrability assumptions on g, % lob' =Y.

Let b be an T,M = R9-valued Brownian motion, T := ¢ (b) be the stochastic
development map as in Notation 5.30 and suppose that X* = //h is a Cameron—
Martin vector field on W (M) . Using Theorem 4.12 as motivation (see (4.16)), the pull
back of X under the stochastic development map should be the process Y defined by

5 r
Ys = b +f (f R//p(hp,sbp>) 8b, (7.28)
0 0
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where
Ry ths, 8bs) = //TR(/ /shs, //58bg)/ /s (7.29)
like in (4.15). Since
r r 1
(/0 Ry, (hy, 5bp)) 8b, = (/0 Ry, (hy, 8bp)) db, + ER//ﬂ(hp, dby)db,

d
’ 1
= (/0 Ry, (hy, abp)) db, + > ;R//ﬂ (hp, €i)e;dp

where {e,-}:.i=1 is an orthonormal basis for T, M, (7.28) may be written in Itd’s form as
Y. =/ Cydb; +-/ reds, (7.30)
0 0
where
s 1
C; :=/ Ry, (ho, 8by), 1y = h, + ERiC//: hs and (7.31)
0

Ric/j,a:=//7'Ric//saVa e T,M. (7.32)

By the symmetry property in item 4b of Proposition 3.36, the matrix C; is skew sym-
metric and therefore ¥ is a tangent process. Here is a theorem which relates ¥ in (7.30)
to X" = //h.

Theorem 7.28 (Differential of the development map). Assume M is acompact man-
ifold, o € M is Sfixed, b is T,M = Re-valued Brownian motion, ¥ = o), hisa

Cameron—Martin process with [hgl < K < 00 (K is a non-random constant) and Y is
asin(7.30). As in (7.27) let

s s
b = / e'“rdb, +1 / rudu. (7.33)
0 0

Then there exists a version of ¢ (b’ ) which is continuous in (s, 1), differentiable in t
and oo (b') = x4,

Proof. For the proof of this theorem and its generalization to more general A, the reader

is referred to Section 3.1 of [45] and to [47]. Let me Jjust point out here that formally
the proof is very analogous to the deterministic version inTheorems 4.12 and 4.13. O

7.3 Quasi-invariance flow theorem for W M)

In this section, we will discuss the W (M) analogues of Theorems 7.13 and 7.14.
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h
Theorem 7.29 (Cameron—Martin Theorem for M). Let h € H (T, M) and X" be the
Bwy) — a.e. well defined vector field on W (M) given by

X"@) = //5(0)hs fors € [0, 1], (7.34)

h .
where / /s (o) is stochastic parallel translation along 0 € W (M) . Then X" admits a
flow e’Xh on W(M) (see Figure 14) and this flow leaves the Wiener measure, KW M),
quasi-invariant.

/] 5(0)h(s)=X"4(c)

Figure 14. Constructing a vector field, Xh, on W (M) from a vector field h on W (T, M). The
dotted path indicates the flow of o under this vector field.

This theorem first appeared in Driver [47] for & € H (T,M) N C([0, 1], T,M)
and was soon extended to all h € H (T, M) by E. Hsu [96, 97]. cher proofs may also
be found in [76, 127, 146]. The proof of this theorem is rath.er involved and ?mllA r.10t
be given here. A sketch of the argument and more information on the technicalities

involved may be found in [49].

Example 7.30. When M = R?, //s(0)vo = vy, forallv € R4 and 0 € W (RY). T.hus
Xﬁ' () = (hg)o, and et X! (6) = o + th and so Theorem 7.29 becomes the classical
Cameron—-Martin Theorem 7.13.

Corollary 7.31 (Integration by Parts for uwoy). For h € H(T,M) and F ¢
FCYUW (M)) as in equation (7.2), let

(X"F)(o) = %|0F(eth @) =G (DF, Xh)
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as in Notation 7.11. Then

/ X*F duw oy = / F2" duwa
W(M) W(M)

where

1
1
b ;=f (H; + = Ric/;, h’, db,),
0 2

b (o) = ¥, (0) = f /1780,
0

and Ric;;, € End(T,M) is as in (5.60).

Proof. A special case of this Corollary 7.31 with F(o) = S (o) for some f € C®(M)
first appeared in Bismut [21]. The result stated here was provedin [47] as an infinitesimal
form of the flow Theorem 7.29. Other proofs of this corollary may be found in {2, 5,
50, 72, 73, 70, 76, 78, 96, 97, 122, 123, 127, 146]. This corollary is a special case of
Theorem 7.32 below. g

7.4 Divergence and integration by parts

In the next theorem, it will be shown that adapted Cameron—Martin vector fields, X,
are in the domain of D* and consequently D* is densely defined. For the purposes of
this subsection, we assume that b is a T, M-valued Brownian motion, T == ¢ (b) is the
evolved Brownian motion on M and //; is stochastic parallel translation along X.

Theorem 7.32. Let X € X, be an adapted Cameron-Martin vector fieldon W (M) and
h:=//"1X.Then X € D(D*) and

1 1
1
X*1=D*X = f (B(h), db) = f (h; + ERiC//““ hg, dby), (7.35)
0 0
where B is the random linear operator mapping H to L*(ds, T,M) given by

1
[B(h)), := k) + = Ric/, h,. (7.36)
s Ty MY

Remark 7.33. There is a non-random constant C < 0o depending only on the bound
on the Ricci tensor such that Bl g 245,700 < C.

Proof. T will give a sketch of the proof here, the interested reader may find complete
details of this proof in [45]. Moreover, we will give two more proofs of this theorem,
see Theorem 7.40 and Corollary 7.50 below.

We start by proving the theorem under the additional assumption that 4 := //71X
satisfies sup o ]h;[ < K, where K is a non-random constant.

Let b! be defined as in (7.33). (Notice that b’ is nor the flow of the vector field Y
in (7.30) but does have the property that ‘%lobj = ¥;.) Since C; is skew-symmetric,
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¢'Cs is orthogonal and so by Levy’s criteria, s — fg e'Crdb, is a Browni.an motipn.
Combining this with Girsanov’s theorem, s — b} (for fixed ) is a Brownian motion
relative to the measure Z; - 1, where

1 1
Z¢ = exp (- f t(r, &'Cdb) — %ﬂ f (r,r)ds)‘ (7.37)
0

0

Fort € R, let £(¢,+) := ¢(b’") where ¢ is the stochastic development map as. in
Theorem 5.29. Then by Theorem 7.28, xh = ‘%IOE(L -) and in particular if F is a
smooth cylinder function then X hp = %IOF (X(t, -)). So differentiating the identity,

E[F(Z(, )Z]=E[F (2)],
att = 0 gives:

1
E[XF]-E [Ff (r, db)] =0.
0

This last equation may be written alternatively as
(DF, X)y =E[G(DF,X)]=E [F . /(;%B(h),db)] .
Hence it follows that X € D(D*) and
D*X = AI(B(h),db).

This proves the theorem in the special case that A’ is uniformly bounded. 1
Let X be a general adapted Cameron-Martin vector field and 4 := //~" X. Foreach
neN, leth, (s) = fos K (r)- 1y <ndr be as in (7.11). Set X" := //h,, then by the
< X _
special case above we know that X" € D(D*) and D*X" = fo (B(hy), db). 1t is easy
to check that
X—-X"X—-XYWy=Eh—hy,,h—h,)g > 0asn —> oo.

Furthermore,
1
E|D*(x™ — x")|* = lEf |B(hm — hn)|?ds < CE(hy — hp, by — ho) g,
0

from which it follows that D*X™ is convergent. Because D* is a closed operator, it
follows that X € D(D*) and

1 1
D*X = lim D*X" = lim / (B(hy), db) =/ (B(h), db). O
n—o0 Jo 0

n—o00

Corollary 7.34. The operator D* : X — L% (W (M), puw ) is densely defined. In
particular D is closable. (Let D denote the closure of D.)
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Proof. Leth € H, X" := //h, and F and K be smooth cylinder functions. Then, by
the product rule,

(DF, KX")» = E[G (KDF, Xh)] =E[G (D (KF) - FDK, Xh)]
=E[F - KD*X* - FG (DK, Xh)].
Therefore K X" € D(D*) (D(D*) is the domain of D*) and
D*(KX" = kD*X" - G(DK, x").
Since

span{K X*|h € H and K € FC*®} c D(D*)
is a dense subspace of X', D* is densely defined. O

Corollary 7.35. Let h be an adapted Cameron—Martin valued process and Q; be de-
fined as in (6.1). Then

rp\* 1
(XQ ") 1= /0 (QK', db). (7.38)
Proof. Taking the transpose of (6.1) shows QY solves,

d tr 1 : tr : tr
Therefore, from (7.35),

up\* 1 / 1
(xe) 1=/0 (") + 5 Ricys Q"h, db)

— ! d 1 o tr

-/(; ( E£+5RIC//] (Q h),db>
1

=/ (Q"H, db). o
0

Theorem 7.32 may be extended to allow for vector fields on the paths of M which
are not based. This theorem and its Corollary 7.37 will not be used in the sequel and
may safely be skipped.

Theorem 7.36. Let h be an adapted T, M-valued process such that h(0) is non-random
and h — h(0) is a Cameron—Martin process, X := X" = //h, Ex denote the path
space expectation for a Brownian motion startingatx e M, F : C([0,1] - M) »> R
be a cylinder function as in Definition 7.4 and X" F be defined as in (7.7). Then (writing
{df, v) for df (v))

E.[X"F] = E,[FD*X"] + (dEyF), h(0),), (7.40)

where :
* 1 : !
D*x* = /O (h + 3 Ricyy, hs, dbs) := / (B(h), db),
0
as in (7.35) and B(h) is defined in (7.36).
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Proof. Start by choosing a smooth path « in M such that &(0) = h(0),. Let
C:= / R;/(h, 8b),
/ 1 :
r=~h + ERlC//(h),

S s
b;:/ e'Cdb+t/ rdi and
0 0

1 1 1
Z, =exp-— [/ t{r, eCdb) + —t2/ {r, r)ds}
0 2 Jo

be defined by the same formulas as in the proof of Theorem 7.32. Let ug(z) denote
parallel translation along «, that is

dup(t)/dt + T(@(®)ug(t) =0 with ug(0) =id.
Fort € R, define (¢, -) by
T(t,85) = u(t,s)8b.  with X, 0) =al(r)

and

u(t,8s) +u(e, s)Ssbg)u(t, $)=0 with u(t,0) =u,).
Appealing to a stochastic version of Theorem 4.14 (after choosing a good version of
X) it is possible to show that £(0, ) = X, sothe XF = L|gF [Z(z,)]. As in the
proof of Theorem 7.32, »' is a Brownian motion relative to the expectation E, defined
by E,(F) := E[Z,F]. From this it is easy to see that (¢, -) is a Brownian motion on
M starting at «(r) relative to the expectation E,. Therefore, for all ¢,

E[F (2(t, ) Zi} = Eoy F

and differentiating this last expression at = O gives:
1
E[IXF(X)]-E [F/ (r, db)] = (dEF, h(0),).
0

The rest of the proof is identical to the previous proof. O

As a corollary to Theorem 7.36 we get Elton Hsu’s derivative formula which played
a key role in the original proof of his logarithmic Sobolev inequality on W (M), see
Theorem 7.52 below and [98].

Corollary 7.37 (Hsu’s Derivative Formula). Let v, € T,M. Define h to be the
adapted ToM — valued process solving the differential equation:

1
B+ 2 Ric// hy =0 with hyg=v,. (741)

Then
(d(EF), v,) = B,[X"F). (7.42)
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Proof. Apply Theorem 7.36 to X* with 4 defined by (7.41). Notice that 4 has been
constructed so that B(h) = 0, i.e.,, D*X" = 0. ]

The idea for the proof used here is similar to Hsu’s proof, the only question is how
one describes the perturbed process X (¢, -) in the proof of Theorem 7.36 above. It is

also possible to give a much more elementary proof of (7.42) based on the ideas in
Section 6, see for example [58].

7.5 Elworthy-Li integration by parts formula

In this subsection, let {X,-};’=0 C I'(TM), B be an R"-valued Brownian motion and
TsB {m) denote the solution to (5.1) with B = B as in Notation 7.25. We will further
assume that X (m) : R” — T,, M (as in Notation 5.4)is surjective for allm € M and let

X (m* = [X (m) |Nu1(X(m))J-]_l’ as in (6.5). The following Lemma is an elementary
exercise in linear algebra.

Lemma 7.38. Form ¢ M and v, w € TuM let
(v, W) = (X (mM)* v, X (m)* w)gn.
Then

I.m ~ (-, Y is a smooth Riemannian metricon M.
2.X(m" =X m)* and in particular X (m) X (m)¥ = idr, mforallm e M.
3. Every v € T,, M may be expanded as

v=> (v, X; (m)X, (m) = D (0, X (m)e))X (m)e; (7.43)
j=1 j=l1

where [e; };=1 is the standard basis for R",

The proof of this lemma is left to the reader with the comment that (7.43) is proved
in the same manner as item (1) in Proposition 3.48.

Theorem 7.39 (Elworthy—Li). Suppose kg is a T,M valued Cameron—Martin process

such that E [} lk;lzds < ooand F : W(M) - R is a bounded C'-function with
bounded derivative on W, Jor example F could be a cylinder Junction. Then

T
E [(dwn F) (Zk)|=E [F ():)fo (Zsk}, X (%) de)]

T
=IE[F(E)/ (X (Z,) zsk;,de)] (7.44)
0

Where Z; = (TxB)*o is the differential of m — TSB (m) at o.
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Proof. Notice that Z;k; € Tx, M forall s asitshould be. By the reductic:n argument used
in the proof of Theorem 7.32, it suffices to consider the case when |k5| < K where K
is a non-random constant. Let / be the T, M -valued Cameron—Martin process defined

by R
by ;:/ X (T)" Z,k.dr.
0

Then by Lemma 7.38 and Theorem 7.26,
wTE (0) = 2, /OS Z7'X (Z,) hldr
= Z, /S Z7IX(Z) X (2" Z,kLdr = Zik,.
0
In particular this implies
nF (T(‘?) (0)) = (dF (T), 5T (0)) = {dwn F (£), Zk)

and therefore by integration by parts on the flat Wiener space (Theorem 7.32 with
M = R") implies

T
E[(dwanF) () (Zk)] =E[8: [F (D)]] =IE[F (E)/O <h;,st)]
T
=]E[F(E)/ (X(Es)"Zsk;,st)]. 0
0

By factoring out the redundant noise in Theorem 7.39, we get yet another proof of
Corollary 7.35 which also easily gives another proof of Theorem 7.32.

Theorem 7.40 (Factoring out the redundant noise). Assume X (m) = P (m) and

. T
Xo = 0, ks is a Cameron—Martin valued process adapted to the filtration, FF =
(L, :r <), then

T
E [(dwan F) (/€59 = E[F ) [ (08, ab)]
where Qg solves (6.1).

Proof. By Theorems 7.39 and 5.40, we have
T
E[(dwonF) (//zk)] =E [F(E)/O (//szsks, P ():s)st)]
T
=E [F (E)/ (zsks, dbx):l .
0

Combining this with Theorem 5.44 implies
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T
E[(dwn F) (//Zk)] =E [F(E)fO (Zsk;,dbs)}.

As observed in the proof of Corollary 6.4, 7, = Q' which completes the proof. 8]

The reader interested in seeing more of these types of arguments is referred to
Elworthy, Le Jan and Li [71] where these ideas are covered in much greater detail and
in full generality.

7.6 Fang’s spectral gap theorem and proof

As in the flat case we let £ = D*D, an unbounded operator on L2 (W M), ,uw(M))
which is a “curved” analogue of the Ornstein—Uhlenbeck operator used in Theorem
7.23. It has been shown in Driver and Réckner [56] that this operator generates a
diffusion on W (M). This last result also holds for pinned paths on M and free loops
on RV, see [6].

In this section, we will give a proof of S. Fang’s [79] spectral gap inequality for £.
Hsu’s stronger logarithmic Sobolev inequality will be covered later in Theorem 7.52
below.

Theorem 7.41 (Fang). Let D be the closure of D and L be the self-adjoint operator
on L* (/Lw(M)) defined by L = D*D. (Note, if M = R? then £ would be an infinite
dimensional Ornstein—Uhlenbeck operator.) Then the null space of L consists of the
constant functions on W (M) and L has a spectral gap,i.e., thereisaconstantc > 0 such
that (CF, F)Lz(uww)) > c(F, F)Lz(#w(M))forallF € D(L) which are perpendicular
to the constant functions.

This theorem is the W (M) analogue of Theorem 7.23. The proof of this theorem
will be given at the end of this subsection. We first will need to represent F in terms of
DF. (Also see Section 7.7 below.)

Lemma 7.42. Foreach F € L? (W M), /LW(M)) , there is a unique adapted Cameron—
Martin vector field X on W (M) such that

F=EF + D*X.

Proof. By the martingale representation theorem (see Corollary 7.20), there is a pre-
dictable T, M-valued process, a, (which is not in general continuous) such that

1
]E/ las|?ds < 00,
0

and

1
F= IEF+] {as, dbs). (7.45)
0

Define 4 := B~1(a), where B is as in Eq. (7.36); that is to say let 4 be the solution to
the differential equation:
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1 .
K.+ 2 Ric,/ hs = a5 with hg = 0. (7.46)

Claim: B;l is a bounded linear map from L%(ds, T,M) — H foreacho € W (M),

and furthermore the norm of B 1 is bounded independent of o € W (M).
To prove the claim, use Duhamel’s principle to write the solution to (7.46) as

5
hs = f Q" (@%) ' ardr, (1.47)
0
where Q; is as in Eq. (6.1). Since, Wy := Q¥ ( Q‘,‘)_1 solves the differential equation
1 .
W, + ERiC//X W, =0 with W, =1
it is easy to show from the boundedness of Ric,;, and an application of Gronwall’s
inequality that 1
ot (o) =i <c,
where C is a non-random constant independent of s and z. Therefore,
! 1
(h, W) u Zf las — = Ricy, hs|2ds
0 2
1 1 1. )
52] |as|2ds+2f |- Ric,, hy)?ds
0 0o 2

1
<201+ csz)f |as|?ds,
0

where K is a bound on the process % Ric,,, . This proves the claim.
Because of the claim, & := B~ !(a) satisfies E[(h, h)g] < oo and because of
(7.47), h is adapted. Hence, X := //h is an adapted Cameron—Martin vector field and

1 1
D*X:f (B(h), db) =f0 (a,db).
0

The existence part of the theorem now follows from this identity and (7.45).
The uniqueness assertion follows from the energy identity:

1
E[D°X]' =E f |B(h)s % ds > CE{{h, h)u).
0

Indeed if D*X = 0, thenh = 0 and hence X = //h = 0. . =
The next goal is to find an expression for the vector field X in the above lemma in
terms of the function F itself. This will be the content of Theorem 7.45 below.
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Notation 7.43. Let Lg(,uw(M) ¢ L%(ds, T,M)) denote the T,M-valued predictable
processes, v; on W (M) such that E fol lus]* ds < oo. Define the bounded linear oper-
ator B : X, — Lg(,uw(M) : Lz(ds, T,M)) by

= _ drp, _ |
B =B/ 0 = 7 [/ %]+ 5//7 Rie X,
Alsolet Q: X — X denote the orthogonal projection of X onto Xa.

Remark 7.44. Notice that D*X = fol (B(X), db) for all X € X,. We have seen that B
has a bounded inverse, in fact B! (@) = //B Ya).

Theorem 7.45. As above let D denote the closure of D.AlsoletT : X — X, be the
bounded linear operator defined by

T(X)=(B*B)"'Q0x
forall X € X.Then forall F € D(D),
F=EF + D*TDF. (7.48)

It is worth pointing out that B* is not //B* but is instead given by Q//B*. This is
because //B* does not take adapted processes to adapted processes. This is the reason
why it is necessary to introduce the orthogonal projection, Q.

Proof. Let Y e X, be given and X € X, be chosen so that F = EF + D*X. Then
(Y, ODF)y = (Y,DF)y = E [D*Y - F]
=E [D*Y . D*X] =F [(B(Y), B(X))Ll(ds)]
= (Y, B*B(X))x,

where in going from the first to the second line we have used ]E[D*Y ] = 0.
From the above displayed equation it follows that QDF = B*B(X) and hence
X =(B*B)"'QDF = T(DF). o

7.6.1 Proof of theorem 7.41
Let F € D(D). By Theorem 7.45,

E(F ~EF]* =E[D*TDF] = EIB(TDF) 2y, 1.4y < C(DF, DF) 2

where C is the operator norm of BT In particular if F € D(L), then (DF, DF) y =
E[LF - F], and hence

(CF. F)i2 () Z CHUF —EF, F —BF)120,,00)-

Therefore, if F € Nul(£), it follows that F = EF , i.e., F is a constant. Moreover if
F 1 1(.e., EF =0) then

(LF, F)Lz(uwum) > C_I(Fv F)LZ(MW(M))’

proving Theorem 7.41 withc = C~1,
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7.7 W (M)-Martingale representation theorem

In this subsection, ¥ is a Brownian motion on M starting at o € M, //; is stochastic
parallel translation along X and

bs = [¥(D)]; = /0 //718%,

is the undeveloped T, M —valued Brownian motion associated to X as described before
Theorem 5.29.

Lemma 7.46. If f € C®° (M™""") andi <n, then

B[/ gad f (S o By )|
= /) grad; (e(s”“"s")é"“/zf) (Z5, .0 B50 Zs,) - (7.49)

Proof. Let us begin with the special case where f = g @ hforsome g € C °° (M") and
heC®(M)where g ® h(x1,...,Xn+1) ' =8 (X1, ..., Xn) B (xp41) . In this case

//s_ilgradif (231 y oo Zs,,» Es,..H) = //;lgradig (231 PR Esn) -h (Esn+l)
where / /;1 grad; g (Eﬂ, e, & sn) is F;,-measurable. Hence by the Markov property
we have

E[//7 grad; f (S0 B Bop1)| 5o,

= //5 ' eradig (Ts), -, B ) B[ (Zs,1)| ]

= //7 grad;g (Zg,, ..., Ty,) (Er1=m82h) (3,
= //S_l_lgrad,-(e(x"“_s")é"“ﬂf) (Eﬂ, R Y Exn) .

Alternatively, as we have already seen, M; := (¢@n+1~92/2p) (Z;) is a martingale for
§ < $y+1, and therefore,

E [h (Esn+1)| fsﬂ] =E [Mxn+1 | fsn] =M, = (e(s,.+|—s,,)5/2h) (Es,,) ;

Since (7.49) is linear in £, this proves (7.49) when f is a linear combination of functions
of the form g ® h as above. . .
Using a partition of unity argument along with the standard convolution approxll-
mation methods, to any f € C® (M"*!) there exists a sequence fi € C™® (M"*1)
with each f; being a linear combination of functions of the form g ® h. Sll.Cl'.l that fi
along with all of its derivatives converges uniformly to f. Passing to the 11m11t in (7.49)
with f being replaced by fi, shows that (7.49) holds for all f € C*® (M™* ) o
Recall that Q; is the End (7, M)-valued process determined in (6.1) and since

d 1__op1] 9 -1
EQS - Qy [dst] s
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Q7! solves the equation,

i -1 _ IR —1 : ~1
s Q; = > ic/ Qg with Q" = I (7.50)
Theorem 7.47 (Representation Formula). Suppose that F is a smooth cylinder func-
tion of the form F (o) = f (asl, e, Us,,) , then
1
F(£)=EF +/ {as, dbg) (7.51)
0

where ag is a bounded predictable process, as iszero if s > s, and s — a, is continuous
off the partition set, {s1, . . ., sn}. Moreover a; may be expressed as

n
a,:= Q'E [): Lizs; Qs //5 grad; f (55, ..., £y,)

i=1

]-}jl . (7.52)

Proof. The proof will be by induction on n. For n = 1 suppose F (£) = f(%;) for
some ¢ € (0, 1]. Integrating (5.38) from [0, ¢] with g = f implies

_ t —
F(Z)=f(%) =€32f (o) +/ (/7" grad e“=9872 5 (%,)  db,).  (1.53)
0
Since e’A/zf (0) = EF, (7.53) shows (7.51) holds with
a5 = logy<i/ /7 grad =932 £ (5.
By Lemma 6.1, Q,//; " grad e*=3/2 £ (3, )isa martingale, and hence

0s//;" grad 9821 (5) =E[ 01/ grad (%)

]-}]
from which it follows that

a5 = logsxe//5" grad eV f (8,) = 1o, 07 'E[ @1//7 grad £ (3

).

This shows that (7.52) is valid forn = 1.

h To carry out the inductive step, suppose the result holds for level 7 and Now suppose
that

F(Z)=f(Zs,-.., Bs,yy)
with0 < s1 < s2--+ < 8,41 < 1. Let

(Ang1 fx1, x2, ..., Xnt1) = (Ag)(Xp41)

where g(x) == f(x1,x2,..., %, x). Similarly, let grad, ;| denote the gradient acting
on the (n + 1)™-variable of a function f e C®(M™M1y. Set
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H(s, T) i= (W —981/2 £y (5 B, E))
for s, < § < Sp41. By Itd’s Lemma, (see Corollary 5.18 and equation (5.38)),
d[H(s, B,)] = (grad, , G =980/ py (B L B Ty, //sdbs)

for s, < § < $,41. Integrating this last expression from s, t0 sy yields:

F(Z) = (e(er»l"Sn)ArH»l/zf)(E:l D >N >
Sn+1 -
+ f (/5 grad,  eCr D82 ) (B, B, Es) L dby)
Sn
(7.54)
- Sn+1
= (eWrr1 WA 2 YT B )+ f (s, dby), (1.55)
Sn
where o5 1= //;l(gradnH e(s"“_s)é"“/zf)(zsl, ..., Zg,, ). By the induction hy-

pothesis, the smooth cylinder function,

(e(Sn-H_Sn)An-H/zf)(ESl e e Es”, E_g”),

may be written as a constant plus fol (@, dbs), where d is bounded and piecewise
continuous and @, = 0if s > s,. Thus if we let a; 1= a; + 15, <s<s,,, %5, We have

shown Sntl
F(T) =c+f (as. dby)
0

for some constant C. Taking expectations of both sides of this equation then shows
C = E[F(Z)] and the proof of (7.51) is complete. So to finish the proof it only

remains to verify (7.52).
Again by Lemma 6.1,

5 My = Qs//; (grad, ;) O mOS 2 )(Eg L B )
is a martingale for s € [s,, sp+1] and therefore,

My = 0u//7 ! (gradyy e =212 (B, T, B

=E [Man | fs] =E I:Q:"_H//:—”'l*'l (gradn+1f) (Bsps o Do Es"‘“)\ }-A] ’
(7.56)

ie.
//:—l (gradn+l e(SnJrl_-Y)AnJrl/zf)(Xls1 ey Eé’n’ E:)
= 07'E [ Qops/ /5], (€00 f) (Barso s B Do) B 57)

Using this identity, (7.54) may be written as
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F(Z) =¢(%y, ..., %)

Sn+1
#7000 1) By B 5 | 5] )

(7.58)
where i
(X1, .o, Xy) 1= (eSS A1 /2 £y (0 Xny Xn) .

By the induction hypothesis,
]:sjl , dbs> (7.59)

where C = E [F(Z)] as we have already seen or alternatively, by the Markov property,

g(zsla'“» 2:S,,)

1 n
=C+ ./(; <Qs_1]E liz lsis; Qs,-//s_,.lgradig (E:I, ey Es,,)

i=1

C = ]E(e(é'uﬂ—sn)5n+1/2f)(zs1 e, Es,,, Es,,)
=Ef (%, ..., 5, 5;,,,) = E[F(D)]. (7.60)
By Lemma 7.46, for s < 5, andi < n
E [ Qs //;lgradig (Zs,, ..., Es,,)‘ .7-}]
=F [ Qs,-E [//s_ilgradi (e(Sn+l_Su)An+[/2f) (Zsl e E:,,s Es,,)

= ]E[Qs,' /15 grad, f (Zy,,..., %, B

7 ]| %]

7). (7.61)

er—l)

While for s <5, andi = n, we have:

gradyg (o, ..., By, ) = grad, (o =32 gy (2 5w )
+grad, , (O A 2 gy (5 s Y,

IE [ Qs” //;lgradn (e(sn+l*5n)An+l/2f) (Esl e, Esn , E:

n

d
by

=E [ 0, E [//;lgradn (Uri=mBail2py (5,3, 3, f:,,] fs]
=E[ 0, //; grad, £ (3., ... 5., 5,,) ]—‘s]
by Lemma 7.46 and
E [IE [ Qs /17 gradpy (o =mBan gy (23 -7:5,,] fs]

=E [Qs"H //S_nlﬂ (gradn+1f) (251’ coes gy Es,,H)

%]

from (7.57) with s = s,,. Combining the previous three displayed equations shows,
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E[Qs//7 gradyg (S B)| 5
- ]E[Qs,,//s_nlgradnf (Zspr - T, zw)| _7-‘5]

+E[ Qs //31, (8rady 1 £) (Beys o B, B

.7-‘:] (7.62)
Assembling (7.59), (7.60), (7.61) and (7.62) implies

8(Zs), ..., Ly,) = E[F ()]

+ /01 i(Q;IE [1& 0, //7 grad; f (e, ... sy, zsnﬂ)}fs] ,db5>
i=1

1
+ / (Q;IIE [1s5s,, Qs,,H//s—,,lH (gradn+1f) (Zsy, ..., Ly, ES,H.]) -7::] , dbs)
0

which combined with (7.58) shows

F(Z)=E[F(D)]
n+1

1
+ f <Q;11E [Z ls<s, Qs,//5 " erad; f (8. - .., Te,o Toyyn)
0

i=1

f{l ,db5>.

This completes the induction argument and hence the proof. O

Proposition 7.48. Equation (7.51) may also be written as

1 1 1
F(E):lE[F(E)]+f <1E[§s— 5/ 0.0, Ricy,, &.dr
0 s

.7-}] , db5>. (7.63)

where d
— -1
& = //; 7 (DF);,.

Proof. Let v; :=//;." grad; f (s, ..., Ts,) , so that
d n
b= /7 - (DF); =) lscqui,
i=1
and let

n n
a = Lo 07 Qs //5 Eradi f (B, Bs,) = ) 152, 07 Qs vi.

i=1 i=]

Then the Lebesgue—Stieljtes measure associate to &; is

dbs = =) 5, ds)v;
i=1



158 B.K. Driver

and therefore

P [sl 0.dt, = _[ 071 0,dé.

So using integration by parts we have, for s ¢ {0, 51, ..., sn, 1},
! -1 ! 1|4
- [ ertoas =-[oros]izt+ [ 0[50 e
| P
s | eriorRicy, &
s

where we have used £ = 0. This completes the proof since from (7.51) and (7.52),

1
F (%) =]E[F(2)]+f (E [as| Fs1, db) . o
0

Corollary 7.49. Let F be a smooth cylinder function, then there is a predictable,

piecewise continuously differentiable Cameron-Martin vector field X such that F =
E[F]1+ D*X

Proof. Just follow the proof of Lemma 7.42 using Theorem 7.47 in place of Corollary
7.20. ni

7.7.1 The equivalence of integration by parts and the representation formula

Corollary 7.50. The representation formula in Theorem 7.47 may be used to prove the
integration by parts Theorem 7.32 in the case F is a cylinder function.

Proof. Let Fbea cyhnder function, a, be as in (7.52), h be an adapted Cameron-Martin
process and kg (Q;r ) hs. Then, by the product rule and (7.39),

1. d 1_,
b, + 2 Ric/;, hy = (E + ERIC//s) Ok, = QK.
Hence,
1 1
]E[F[ (R + ERic//S hs,dbx)]
0
r 1 1
=E (EF+[ (as,dbs))[ (ngg,dbs)]
L 0
=E 0¥k, as)d ]

=E

F[ (

ro .
[ (QVk;, Z Ls<s; Q;lei//;lgradif (S5, e, }Dsn))ds:l
0

i=1
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=ELf le<s,Qs,//s grad; f (Z sl,...,an))dsil

=E Z(ksiy QJ‘,’//yi gradif (Eslv cees 2s,,)>]
Li=t1
=E| S (/s ks grad; f (Sey, zsn)>] = ]E[XhF]. O

Li=1

Conversely we may give a proof of Theorem 7.47 which is based on the integration
by parts Theorem 7.32.

Theorem 7.51 (Representation Formula) Suppose F is a cylinder function on
W(M)asin(7.2) and & = //s ds (DF), , then

: F=IEF+/(;1<IE[§S

where Qy is the solution to (6.1).

1
- %[ 0710, Ricy), &dr ]-}],dbx>. (7.64)
s

Proof Let h € X, be a predictable adapted Cameron—Martin space valued process such
that E fol ‘hg |2 ds < oo. By the martingale representation property in Corollary 7.20,

1
F=EF+ [ (a, db) (7.65)
0

for some predictable process a such that E fol lag|*> ds < oo. Then from Corollary 7.35
and the Itd isometry property,

E [XQ”"F] —E [F : (XQ“")* 1] ~E [F : [01 (Q"H, db)]
=E Ul (Q¥H,, as)ds] =E Ul (R, Qsas>ds] ) (7.66)
0 0

On the other hand we may compute E [X Qhp ] as

1 d .
E[x0F] =E[(DF, //0"hn] = [ (& % (") )ds
[ <ss, QYK — %Ri% Qi‘hx>ds (1.67)

where we have used (7.39) in the last equality. We will now rewrlte the right side of
(7.67) so that it has the same form as (7.66) To do this let p; := 3 L Ric 7/, and notice that
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1 1 )
/ (&, 0y O h)ds = / <Qsps*$x,< / h;dr)>ds
0 0 0
1 1
— [ drdstos, et Qoo 1)) = | < / Qrp,*s,dr,h;>ds
0 s

wherein the last equality we have interchanged the role of r and s. Using this result
back in (7.67) implies

]E[XQ”hF] - ]E/Ol <ng: - /1 0,0’ dr, h;>ds.

and comparing this with (7.66) shows

(7.68)

1 1
JE/ <Qsas — Osé;s +/ Q0 dr, h's>ds =0 (7.69)
0 s

forallh ¢ x,.

Up to now we have only used F € D (D) and not the fact that F is a cylinder
function. We will use this hypothesis now. From the easy part of Theorem 7.47 we
know that a, satisfies the additional properties of being 1) bounded, 2) zero if s > §p,
and most importantly 3) s — as is continuous off the partition set, {s, ..., s,).

Fixt € (0, \ {sy,..., Sn}, v € T,M and let G be a bounded F,-measurable
function. Forn € N let

s
ln (S) I:/O~ n]ffrff'l-nldr'

Replacing 4 in (7.69) by h, (s) := G -1, (s} v and then passing to the limit as n — 00,
implies

1 1
0= 11m E <Qsas - ngs +/ Q,p:f,dr, h;, (s)> ds
0 s

1
=E [G <Qrar - 0:& +/ Qrp:grdr: U>]

and since G and v were arbitrary we conclude from this equation that

1
]E[QISI _/ Orp & dr

-7:1] = Q:a;.

d
7]

Combining this with (7.65) proves (7.64). O

Thus for all but finitely many s € [0, 11,

1
as = Qs_lE[ngs —/ Qrprérdr

1 1
= E[fs — E/ Q;lQr RiC//r Edr

T
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7.8 Logarithmic-Sobolev inequality for W (M)
The next theorem is the “curved” generalization of Theorem 7.24.

Theorem 7.52 (Hsu’s Logarithmic Sobolev Inequality). Let M be a compact Rie-
mannian manifold, then for all F € D (D)

E [F2 log F2] <EF?.log EF?
1

+2E /

0

where (DFY, = 3‘% (DF); . Moreover, there is a constant C = C (Ric) such that

2

1

17 0Py =5 [ 07 0rRiey, 117 (DY ar s,
’ (7.70)

E [F2 log Fz] < CE[(DF,DF)n,m] +EF? - logEF>. (7.71)

Proof. The proof we give here follows the paper of Capitaine, Hsu ar:d Ledoux [29]. We
begin in the same way as the proof of Theorem 7.24. Let F € FC! (W (M)), ¢ > 0,
H=F’+¢ce D (D) and

%]

14 —op. L
& = //5' - (DHe), =2F - /' = (DF),.

1t .
a, =E [gs - 5/ 070, Ric)), £.dr
where

Then by Theorem 7.47, 1
H, =EH, +/ {a, db).
0

The same proof used to derive (7.23), with ¢ (x) = xInx, shows

1 1
El¢ (H:)] = E[¢ (M) = ¢ (EM;) + E]E [/O A Iaxl2ds]

1 ! 1 2 }
= - ——— |as|*ds | .
_¢(]E]H5)+2E|:/O AT las|“ ds

By the Cauchy—Schwarz inequality and the contractive properties of conditional ex-
pectations,
}}}

1
/17 (DFY, ~ %/ Q7' 0, Ricyy, //71(DF). dr

2

1
las* = IE [2F [ /15 (DFY, - % / Q;'Q, Ricy;, /17 (DFY, dr]

2

fs]

<4E [Fzm] .E[
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Combining the last two equations along with (7.24) implies

E¢ (H,) < ¢ (EH,)

1
+2IE/IE
0

= ¢ (EH,)

1
+2]E/
0

We may now lete | O.in tl}iS inequality to learn (7.70) holds for all F e Fclw). By
compactness_?f M, Ricy, is bounded on M and so by simple Gronwall type estimates
on Q and Q~', there is a non-random constant K < oo such that

|0 o, Ricy,

2

IR
(12 0P =3 [0t o Ricy, 177t (DY, ar

Fs] ds

2
ds.

- , 1!
/7 (DFY, - 5/ 070, Ricy), //7V (DF). dr

<K forallr,s.

op
Therefore,
-1 / 1 ! -1 :
151 0B, =3 [ 070, Riey, /171 0y, ar
Hale ! :
< [](DF):|+—K/ |(DF);|ds]
2 Jo
2, 1, ! :
<2{(DF),|" + =K [/ [(DF)’[ds]
2 0 s
2 1 !
<2|(DF))| +—K2/ |(DF).|* ds
27 Jo s
and hence
2E 1 A P :
/OI(DF):—E/: 0, O, Ric/;, (DF). dr| ds

= (4+ Kz) /01 [(DFY,|* ds.

gorr}bining this elstimate with (7.70) implies that (7.71) holds with C = (4 +K 2)
gain, since FC' (W) is a core for D, standard limiting ar -
and (7.71) are valid for all F € D (D). ® fgUTENLS show that (7'7?:)
" Theorem 7.52 was first proved by Hsu [98] with an independent proof given shortly
! ereafter py Aida and Elwortlpf [4]. Hsu’s original proof relied on a Markoy depen-

ence version of a standard additivity property for logarithmic Sobolev inequalities and
makes .key‘ use of Coro.llary 7.37. On the other hand Aida and Elworthy show, using
the projection construction of Brownian motion, the logarithmic Soboley inequa’lity on
W(M)isa consequence of Gross’ [92] original logarithmic Soboley inequality on the

classical Wiener space W(R™), see Theorem 7 24. Tn Aida’
’ m /.24, In Aida’s and Elw ’
Theorem 5.43 plays an important role. orthy’s proof,
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7.9 More references

Many people have now proved some version of integration by parts for path and loop
spaces in one context or another, see for example [21, 28, 32, 26, 28, 27, 47, 48, 49, 76,
75,78, 85, 122, 128, 146, 161, 159, 160, 163, 102]. We have followed Bismut in these
notes who proved integration by parts formulas for cylinder functions depending on one
time. However, as is pointed out by Leandre and Malliavin and Fang, Bismut’s technique
works without any essential change for arbitrary cylinder functions. In [47, 48], the flow
associated to a general class of vector fields on paths and loop spaces of a manifold
were constructed. The reader is also referred to the texts [71, 100, 171] and the related
articles (81, 80, 35, 77, 82, 83, 84, 34, 37, 33, 38, 36, 39, 125].

Many of the results in this section extend to pinned Wiener measure on loop spaces,
see [48] for example. Loop spaces are more interesting than path spaces since they have
nontrivial topology. The issue of the spectral gap and logarithmic Sobolev inequalities
for general loop spaces is still an open problem. In [93], Gross has proved a logarith-
mic Sobolev inequality on Loop groups with an added “potential term” for a special
geometry on loop groups. Here Gross uses pinned Wiener measure as the reference
measure. In Driver and Lohrenz [54], it is shown that a logarithmic Sobolev inequality
without a potential term does hold on the Loop group provided one replaces pinned
Wiener measure by a “heat kernel” measure. The quasi-invarariance properties of the
heat kernel measure on loop groups was first established in [50, 51]. For more results
on heat kernel measures on the loop groups see for example, [57, 3, 30, 31, 82, 83, 106].

The question as to when or if the potential is needed in Gross’s setting for logarithmic
Sobolev inequalities is still an open question, but see Gong, Réckner and Wu [89] for
a positive result in this direction. Eberle [59, 60, 61, 62] has provided examples of
Riemannian manifolds where the spectral gap inequality fails in the loop space setting.
The reader is referred to [52, 53] and the references therein for some more perspective
on the stochastic analysis on loop spaces.

8§ Malliavin’s methods for hypoelliptic operators

In this section we will be concerned with determining smoothness properties of the
Law (X,) where I, denotes the solution to (5.1) with ¥y = o and B = B being
an R"-valued Brownian motion. Unlike the previous sections in these notes, the map
X(m) : R* — T,,M is not assumed to be surjective. Equivalently put, the diffusion
generator L = % PP, ¢ ,2 + Xo is no longer assumed to be elliptic. However we
will always be assuming that the vector fields {X;}_, satisfy Hormander’s restricted
bracket condition at 0 € M as in Definition 8.1 below. Let Ky := {Xy, ..., X} and K;
be defined inductively by

K1 =1{[X;,K]: K e K} UK.

For example
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Ky={X1,.... X} U{[X;,Xi1:i,j=1,...,n} and
Ks={Xi,.... X} U{IX;, Xi] i, j=1,...,n}
U{[Xe, [X;, X:1] 24, jok=1,...,n) etc.

Definition 8.1. The collection of vector fields, {X g C ' (T M), satisfies Horman-

der’s restricted bracket condition at m € M if there exist / € N such that
span({K(m) : K € K;}) = T,, M.

Under this condition it follows from a classical theorem of Hrmander that solutions
to the heat equation 84 = Lu are necessarily smooth. Since the fundamental solution
to this equation at 0 € M is the law of the process X,, it follows that the Law (Z,) is
absolutely continuous relative to the volume measure A on M and its Radon-Nikodym
derivative is a smooth function on M. Malliavin, in his 1976 pioneering paper [130],
gave a probabilistic proof of this fact. Malliavin’s original paper was followed by an
avalanche of papers carrying out and extending Malliavin’s program including the
fundamental works of Stroock [169, 170, 168], Kusuoka and Stroock [121, 119, 120],
and Bismut [21]. See also [13, 12, 23, 104, 132, 152, 147, 148, 157, 158, 179] (and the
references therein) along with Bell’s article in this volume. The purpose of this section
is to briefly explain (omitting some details) Malliavin methods.

8.1 Malliavin’s ideas in finite dimensions

To understand Malliavin’s methods it is best to begin with a finite dimensional analogue.

Theorem 8.2 (Malliavin’s Ideas in Finite Dimensions). Ler W= R", W be the Gaus-
sian measure on W defined by

du (x) = Qr)~N/? e~ gm x).
Further suppose F : W — R4 (think F = %,) is a function satisfying:
1. F is smooth and all of its partial derivatives are in
L7 (1) '= Mi<p<ocLP (W, ).
2. F is a submersion or equivalently assume the “Malliavin” matrix
C(w) := DF(w)DF (w)*

is invertible for all w € W.
3. Let
A{w) := det C(w) = det(DF (w)DF(w)*)
and assume A~ € L® (u).

Then the law (up = Fou = po F1) of F is absolutely continuous relative to

Lebesgue measure, ., on R? and the Radon-Nikodym derivative, p := dup/d), is
smooth.
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Proof. For each vector field Y € T (TRd) , define
Y(w) = DF(@)*C(@)'Y (F (@), (8.1)

a smooth vector field on W such that DF (w)Y(w) = Y (F (w)) ot in more geometric

roation FY (@) = Y (F @). 82)

For the purposes of this proof, it is sufficient to restrict our attention to the case where

Y is a constant vector field. . , .
Explicit computations using the chain rule and Cramer’s rule for computing

C(w)~! shows that D*Y may be expressed as a polynomial in A~! and ngF té)lr
¢=0,1,2..., k. In particular D*Y is in L™ (1) ..Suppose? £ %O‘W - areb
functions such that f, g, and their first order derivatives are in L (u). Then by a
standard truncation argument and integration by parts, one shows that

/ (¥ frgdu = / FOg)du,
w w

where Y* = =Y + 8(Y) and 8 (V) (@) := — div(Y)(w) + Y(w) - @.

Suppose that ¢ € Cé’o(Rd Yand ¥; € RECT (Rd) , then from (8.2) and induction,
1Yy i) (F (@) = (Y1Yz--- Yi(g o F))(w)

and therefore,
/ (VY- Yed)dur = / V1Y i) (F (@) dpu()
Rd w
=/ (Y1Ys - Yi(d 0 F) (@) dpt(@)
w
- / S(F@) - (VY7 - YD (@ dp@. 83
w

By the remarks in the previous paragraph, (Y3Y;_ - YiD) € L7 (W) which along
with (8.3) shows

[t Y| < C 1o

R4

where C = |Y}Y;_, -~ Y}l "Ll( , < oo. It now follows from Sobolev imbedding
= _ » .

theorems or simple Fourier analysis that srpA and that p = dup/diisa srnoot;l

function.

The remainder of Section 8 will be devoted to an infinite dimensior:ial analogue of
Theorem 8.2 (see Theorem 8.9) where R4 is replaced by a manifold M*,

W = {w € C([0,00), R") : @ (0) =0},
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1 is taken to be Wiener measure on W, B, : W — R”" be defined by B, (w) = w;
and F := %, : W(R") > M is a solution to (5.1) with X9 = 0 € M and 8 = B.
Recall that p is the unique measure on F := o (B; : t € [0, c0)) such that {B},5qisa
Brownian motion. We will use ¢ as the dominant parameter rather than s to be in better
agreement with the literature on this subject.

8.2 Smoothness of densities for Hormander type diffusions

For simplicity of the exposition, it will be assumed that M? is a compact Riemannian
manifold of dimensions 4. However this can and should be relaxed. For example almost
everything we are going to say would work if M is an imbedded submanifold in R¥
and the vector fields { X i}7=0 are the restrictions of smooth vector fields on RY whose
partial derivatives to any order greater than 0 are all bounded.

Remark 8.3. The choice of Riemannian metric here is somewhat arbitrary and is an
artifact of the method to be described below. It is the author’s belief that this issue has
still not been adequately addressed in the literature.

To abbreviate the notation, let
H= Ih eW:(hhy :=/ |h )| dr < oo]
()}

and DX, : H — Tx, M be defined by (DX,) h := 3y T,B (0), as defined in Theorem
7.26. Recall from Theorem 7.26 that

t t
(D) h = z,/ z;‘X(z,)iz,dr://,z,/ HTIX () hedt,  (84)
0 0

where h; := L., Z, = (1) , - ToM — Tx, M, //, is stochastic parallel trans-
lation along ¥ and z, := // ,_1 Z;. In the following, adjoints will be denoted by either
“*or “ ” with the former being used if an infinite dimensional space is involved
and the latter if all spaces involved are finite dimensional.

*

Definition 8.4 (Reduced Malliavin Covariance). The End (T, M)-valued random
variable,

_ ! tr
e, ;=/ Z7IX () X (BT (z;‘) dt (8.5)
0

! I
=/ X E)X (D /. (z;l)t dr, (8.6)
0

will be called the reduced Malliavin covariance matrix.

Theorem 8.5. The adjoint, (DZ,))* : Ty, M — H, of the map DL, is determined by

(DB /), = LesX S/ (uz) v 87
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forall v € T,M. The Malliavin covariance matrix C;, == DT, (DZ)* : Ty M —
Ts,M is given by C; = Z,C, Z[" or equivalently

C; = DT, (DE)* = //:z2.C2f /17 (8.8)
Proof. Using (8.4),

I .
(DE;h,//rv)TzM=<zt/ Z;]X(E,)h,dt, //rv>
¢ 0 T, M

= (//,z, fo V17X (B hedr, //,v>

T, M

t
1, ,-1 ;
=/O (z,z, /17 X(z,)h,,v>TMdr

. «
=/ (ht,X(Ef)“//f (z,z;‘) v> dt 8.9)
0 R"

which implies (8.7). Combining (8.4) and (8.7), using
Z8 = (/2 =25/ /5 =505

shows

! 1 tr —1 t
DE (DR /=7 [ 20X EIX (@ //x (a7") wie
0
! N
=z,/ Z7'X ()X (80 (27) 28/ frvdr.

0

Therefore,

C = Ztérzfr = //rZréerr//rl

from which (8.8) follows. . o]
The next crucial theorem is at the heart of Malliavin’s method and constitutes Fhe
deepest part of the theory. The proof of this theorem will be postponed until Section

8.4 below.

Theorem 8.6 (Non-degeneracy of C;). Let A, := det (C,). IfHormander’s restricted
bracket condition at 0 € M holds then A; > 0 a.e. (i.e, C; is invertible a.e.) and
moreover A,'l € L>® (u).

Following the general strategy outlined in Theorem 8.2, given a vector field Y €
[ (T M) we wish to lift it via the map &, : W — M to a vector field Y on W =
W (R") . According to the prescription used in (8.1) in Theorem 8.2,

Y' := (DE)* (D%, (Dz:,)*)‘1 Y (%) = (DE)*C7Y () € H. (8.10)

From (8.8)
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- 1 A1 —1,,—
Ct1=//t(1:r) G lzt 1//t1
and combining this with (8.10), using (8.7), implies

SV = e [DE) /1, ()7 G Y (=]
=1:X(Z)"//z (z,z;l)" @) ey (30
= L<«XE)"//: (z;‘)lr C7'z7 'y (z)
= LaX @ (2") 6z Y 3.

Hence, the formula for Y’ in (8.10) may be explicitly written as
SAL tr _
Y = U (z7'xz0) dr] ¢z Y (5. 8.11)
0

The reader should observe that the process s — Y! isnon-adapted since C . 1 Z; ly =)
depends on the entire path of  up to time ¢,

Theorem 8.7. Ler Y € T' (TM) and Y* be the non-adapted Cameron—-Martin process
defined in (8.11). Then Y' is “Malliavin smooth,” i.e, Y' is H -differentiable (in the
sense of Theorem 7.14) to all orders with all differentials being in L~ (1), (see
Nualart [148] for more precise definitions). Moreover if f € C® (M), then f(Z)is
Malliavin smooth and

(DIf (D1, Y =Yf (%) (8.12)

where D is the closure of the gradient operator defined in Corollary 7.16.

Proof. We only sketch the proof here and refer the reader to [147, 12, 148] with regard
to some of the technical details which are omitted below. Let {ei }l’.i=1 be an orthonormal
basis for T,M, then

d P ) d |
Vi = Z(e,-, C_';_IZ;_IY(Zx)>/ (ZT_IX(ET))t eidt = Zaih; (8.13)
0

=l i=1

where
_ . SN tr
a; :=(e,',C,_IZ,_1Y(E,)> and hi ;=/ (z;lxo:,)) eid.
0

It is well known that solutions to SDEs with smooth coefficients are Malliavin smooth
from which it follows that h', zZ; ly (Z1), and C; are Malliavin smooth. It also follows
from the general theory, under the conclusion of Theorem 8.6, that C;” !is Malliavin
smooth and hence so are each of the functions aj fori = 1,...d. Therefore, Y =
Zle a;h' is Malliavin smooth as well and in particular Y € D (D*). It now only
remains to verify (8.12).
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Let & be a non-random element of H. Then from Theorems 7.14, 7.15,7.26 and the
chain rule for Wiener calculus,

E[f () - D*h] =E B [f ()1l = E[df (DEH)]

= E[df (z, /t z;lxo:,)iz,dr)]
0
t
X (2;) hed >
=E[<Vf(2,),z,/0 Z7'X (B0) hedt T:!M]
t AN Vi ,h,> dt]
=1EUO <X(2r>“(z,) ZEVF SNV (D he)
from which we conclude that f (E;) € D (D**) = D (D) and
SA tr
(D [f(Ex)])S=/ tX(Ez)"(Z;‘) Z'V f (T de.
0

From this formula and the definition of Y’ it follows that

(DLf(EN, Y)H
tr _
= /t <X(>:,)Lr (z;l)'[r Z5V £ (5), X (Z)" (z;l) C,'IZ,_IY(E,)>dt
0

tr — _
- <Vf (), 7Z (/t Z7'X (T0) (z;‘x ():,)) dr) ez ly ():,)>
0

= (VF (20, 2T 27T (B0) = (Vf (R0, ¥ (E0)

=YfHE). O

Notation 8.8. Let Y act on Malliavin smooth functi?ns by the formula, Y'F :=
(DF, Y'),, and let (Y’ )” denote the L (11)-adjoint of Y.

With this notation, Theorem 8.7 asserts that
Y [f (B0l =T (Z)- (8.14)
Now suppose F, G : W - R are Malliavin smooth functions, then
E[Y'F.G+F-Y'G]=E[Y'[FG)] =E[{D[FGI, Y]
=E[F-GD*Y']
from which it follows that G € D ((Y’)”) and
(Y)" G = -Y'G+GD*Y". (8.15)

From the general theory (see [148] for example), D*U is I\I/Iallijclvin srpoqth if U l1]s
Malliavin smooth. In particular (Y’ )* G is Malliavin smooth if G is Malliavin smooth.
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Theorem 8.9 (Smoothness of Densities). Assume the restricted Hormander condition

holds at 0 € M (see Definition 8.1) and suppose f € C® (M) and {I’i}le crr(T™Mm).
Then
E((N... Y f) (E)] = E[Y}... Y, [f ()]
=E[[f (E1(Y})"... (Y)* 1]. (8.16)

Moreover, the law of T, is smooth.

Proof. By an induction argument using (8.14),
Yi. YL (S)]= (... Yo f)(Z)

from which (8.16) is a simple consequence. As has already been observed, (Y,")* .
(Y)* 1 is Malliavin smooth and in particular (Y})™...(Y})"1 € L' (u) . Therefore
it follows from (8.16) that

EL@ 1 f) Eoll = [(Ye) - (YD) 1 11y 1 oo (8.17)

Since the argument used in the proof of Theorem 8.2 after (8.16) is local in nature,
it follows from (8.17) that the Law(X,) has a smooth density relative to any smooth
measure on M and in particular the Riemannian volume measure. a

8.3 The invertability of f‘, in the elliptic case

As a warm-up to the proof of the full version of Theorem 8.6 let us first consider the
special case where X (m) : R* - T, M is surjective for all m € M. Since M is
compact this will imply there exists an & > 0 such that

X(m)X"(m) > ey, 5 forallm € M.
Notation 8.10. We will write f (¢) = O (e®7) if, for all p < oo,

i 1 )]
1m

el0  ¢gP

=0.

Proposition 8.11 (Elliptic Case). Suppose there is an € > 0 such that
X(m)X"(m) > elg,
forallm € M, then [det (C_',)]_l € L™ (w).
Proof. Let § € (0, 1) and
Ty:=inf {t > 0: |z — I7,p| > 8) (8.18)

where, as usual,
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= /020= 17 (TF)

Since forall a € T, M,
-1
(Z7IX(E)XT (B0 (Z7) @, a) 1
~1 -
— (xEox (0 (2) e, (28) " a)

2 e{(z0)™ a (2) ) =efo.2E (20) ")

we have

Z7X(S)X"(50) (25)

Hence

and therefore,

~1 -1 r\—
ez (2) = a0 () )T = e ()

G

- f 'z X () () e
0

>€/
0

A, = det (C_'t) > & det (/;

2o (@) avze [ )

tATs 1
dr
0

tATs

& ()7 dt) :

By choosing & > 0 sufficiently small we may arrange that

forall T <t A Ty in which case

tATs —1 1
[T ez ATt
0

a1 =12

171

d hence A, = det (C‘,) > ¢d (%t A Tg)d _From this it follows, with g = p - d, that
an t = z

e[siv] <zee((g) )

Now

=((

1
tATs

))

([
tnTs dt
oo —_
IE(‘I/ liaTyze - T 1 1dt>
0

o0
q/ i @ ATy <) dT
0
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which will be finite for allg > 1iff u (z A Ty SD=uTs<1)= O as 1 J 0

forallk > 0.
By Chebyschev’s inequalities and (9.10) of Proposition 9.5 below,

==k (suplzs = 8) <K [S“P l2s I'q] =0(t?%). (8.19)
st S<T

Since g > 2 was arbitrary it follows that Ty <t)y=0 (r°°‘) which completes the
proof. u]

8.4 Proof of theorem 8.6
Notation 8.12. Let § := veT,M: (v,v) = 1}, i.e., S is the unit sphere in T, M.
Proof of Theorem 8.6. To show C;™! e [,%0- () it suffices to show

u(ing(C_',v, v) <€) = 0(>).
ve

To verify this claim, notice that A := inf,e5(C, v, v) is the smallest eigenva]u_e of ;.
Since det C, _is the product of the eigenvalues of C, it follows that A; i=det G, > Ag
and so {det C, < e?} C (Ao < ¢} and hence

m (detC_', < sd) Spo<e)=0(@E®).

By replacing ¢ by £!/¢ above this implies (A, < s) = O(e*7). From this estimate
it then follows that

- x x
E [A,—q] = ]E/ gt 9 = q]E/ 13, < 797 lge
A 0
o0 - o0
= q/ n(A, <1yt lgdr = q/ O(tPy t=9 14¢
0 0
which is seen to be finite by taking p > g + 1.

More generally if T is any stopping time with T < ¢, since (Crv,v) < (Cyv, v)
forall v € § it suffices to prove

© (ing(érv, v) < e) = 0(e>). (8.20)
ve
According to Lemma 8.13 and Proposition 8.15 below, (8.20) holds with
T'=Ts:=inf {t > 0: max {[z, — Iy, , dist(%,, To)} > 8} (8.21)
provided § > 0 is chosen sufficiently small. ]

The rest of this section is now devoted to the proof of Lemma 8.13 and Proposition
8.15 below. In what follows we will make repeated use of the identity,
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" 2
(Crv,v) = Z/T(z;lx,»(z,),v> dr. (8.22)
i=1 0

i " Then
To prove this, let {e;}/_, be the standard basis for R e

n -1
Z2'X(EOXT(E) (28) 7 v = Y Z7 X (T (e, XN (20 (Z7) v)

i=1

= i(zglxi(zo, v) Z;7 X (Z)
i=1

o (z:' XX (20) v, v) = Zn: (z:' X0, v>2

i=1

i integrating on t gives (8.22). o i
Whl;r}ll tl;liogrz)ofsgbelow, there will always be an implied sum on repeated indices

Lemma 8.13 (Compactness Argument). Let T be as in (8.21) and suppose for all

v € S there exists i € {1, ..., n}and an open neighborhood N C, S of v such that
T 2 _
sup 1 (/ ’ (z;‘x,-(z,), u> dr < s) =0 (™), (8.23)
ueN 0

then (8.20) holds provided § > 0 is sufficiently small.

Proof. By compactness of §, it follows from (8.23) that

sup (/Ta (27! xiz0), u>2 dr < s) =0(s™). (8.24)
0

ues

For w € T,M, let 8,, denote the directional derivative acting on function; f (v) with
voé M ;Sec,ause for all v, w € R" with |v] < 1 and |w| < 1 (using (8.22)),
oM.

18, (Cryv, v)] szifon ’(z;lx,-(z,), v>(z;‘x,-(z,), w>.dr
i=1

2

1y, dt
2o Xi(¥o) Hom(R", T, M)

2
Hom(R",T, M)

n Ts

17 X2

by choosing 8§ > 0 in (8.21) sufficiently small we may assume there is a non-random

constant 8 < oo such that
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lvl,slﬂll)sl 10 (C70, v)] <0 < oo,

With this choice of S, ifv,wes satisfy [v — w| < 8 /e then
I(C];;U, v)—(C—‘wa,w)l < €. (8.25)
There exi isfyi .
exists D < oo satisfying: for any ¢ > 0, there is an open cover of S with at most
0s

D - (9/e)* balls of the form B
v, £/6).
that v € B(v;,&/8) 1.5 an (vj. €/6). From (8.25), for any v € § there exists j such

(Criv,v) = (Crvp, )] <e.
Soifinfyes (Cryv, v) < & then min; (Crvj, v;) < 2e, ie.
. f —~ . —~
(gs(cm,v) < e] c (n?n(cnv,., ) <2£J c U5, ;) < 2¢]

J
Therefore,

" <32§(C—’Tsv, v) < s) < Zu ((C_‘Tsvj, vj) < 28)
J
<D-(®/e) supu ((Cryv, v) < 2¢)
ves
<D (0/e) (™) = O0(E™7). o

The followine ; s
ollowing important Proposition is the stochastic version of Theorem 4.9. It

g r *
1Ves thc ﬁ st hln[ [ha[ HOIlIlalldCI S Condltlon n Deﬁlllthll 8 1 18 Ie]evallt to ShOWlll
g

~1 _
Ar” € L™ (u) or equivalently that ! ¢ 7.0 (1)
P 4 .
roposition 8.14 (The appearance of commutators), Ler W €T (TM), th
, then

A - - "
(21 20] = 22 0t Wi 129 S0, wics o, (3.26)
i=1 '

This may also be written in 1t6’s form as

d[ZFIW(Es)} = Z7'[X;, WI(Z,)dB!

n
+1Z X0, W 1 -1
{ 0. WI(Z5) + 5 }:1 z;' (13, W) (S fds,  (8.27)
=
Where Ly W = [X, W] as in Theorem 4.9.

Proof. Write W(Z) = Z,w,, ie, let w;

— 71
Theorem 5.41, =ZoW(E. By Proposition 5.36 and
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Vis, W =87 [W () = 8% [Zows] = (872,) ws + Zobuw,
= (stwSX) 8B + (stw_TX()) ds + Z;8ws.
Therefore, using the fact that V has zero torsion (see Proposition 3.36),

sw; = Z;' [Vsx, W — (Vz,0,X) 8Bs + (Vz,u,Xo0) ds]
= 27 [Vxeeem, 4 xonds W — (Vw()X) 8Bs + (Vwz,) Xo) ds]
=z [(Vx,»(zs)W — V(g Xi) 8B; + (Vxom) W — Vw(z,) Xo) ds]

= 27 (X, W1 (S5) 8B} + [Xo, W1(E,)ds)

which proves (8.26).
Applying (8.26) with W replaced by [X;, W] implies

d [Z;I[Xi, W](E:)] = Z7'1X;, [Xi, WII(Ss)dB! +d[BV],
where BV denotes process of bounded variation. Hence
. o1 .
Z;'(Xi, WI(E0)8B; = Z7'[Xi, WI(Z,)dB; + 2d [z, WI(Es)| B
. -
= Z7'[X;, WI(E5)dB; + EZJ X5, [Xi, WII(Z5)d Bi d B

= Z7'[X;, WI(Z5)d B! + %Z;‘[xi, (X, WII(Zs)ds

which combined with (8.26) proves (8.27). ]

Proposition 8.15. Let T be as in (8.21). If Hirmander’s restricted bracket condition
holds at 0 € M and v € S is given, there exists i € {1,2,...,n} and an open

neighborhood U C, § of v such that

T 2
sup p (/ (ZT_IX,-(E,), u) dr < e) =0 (7).
uel 0

Proof. The proof given here will follow Norris [147]. Hormander’s condition implies
there exist / € N and 8 > 0 such that

1
— K(0)K (o)™ > 381
”C”K;c, (0)K (o)™ > 38

or equivalently put forall v € §,

R 2 2
3 < Kgq (K (@), )" < max (K(0),v)".

By choosing § > 0 in (8.21) sufficiently small we may assume that
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> 28 fi 1 .
II{II:}%([;E%(Z K(Z,), > Bforallve §
Fixave Sand X ¢ K; such that

inf <Z‘1K(z ) v>2 > 28

o<1 T T/ =

and choose an open neighborhood U/ C § of v such that

2
inf <z;11<(z,), u) > pforallu e v,
T<Ts

Then, using (8.19),

Ts 2
supu (/ <Z;1K(Z,), u> dt < s)
uel 0

T
Su( sﬂdtss) =uTs <¢/p)=0(e>7).
0
WriteK:LX‘.r.

(8.28)

.. LXiz x;, withr < 1. Ifithappens thatr = | then (8.28) becomes

T. 2
sup ((CT',u u) <e&)<suppu (/ §<Z;1X,~, (£, u> dt < e) =0 (goo—)
uel 0

uel

and we are done. So now suppose r > 1 and set
Kj =LXU‘ "'LXiZXil forj=1,2,...,r

so that K, = K. We will now show by (decreasing) induction on J that

T 2
sup u (/ <Z;1Kj(21), u> dt < e) =0 (s™7).
uel

(8.29)

From Proposition 8.14 we have l

d [Z,—‘Kj_l(z,)] = 27X, K, [(S)dB ()

- 1
+ {Z, '[Xo, K;11(2) + EZt ! (LﬁiK

~1) (z,)] dt

which upon integrating on ¢ gives
t .
(20K y1 (50, u) = By (500, u) + | (2006 k120, u)as:
0

t _ 1 _
+/0 (Z, X0, Kymd(®0 + 5271 (13, K;m0) (20), u}dr
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Applying Proposition 9.13 of the appendix with T = T,
v, = (27 Ky @0, u), y = (K- (Zo).u),
t .
M, =f <z;1[x,-,K,~_1](z,),u>dB', and
0

t 1__ 2
a= <z;1[x0, K;1(E0 + 527 (L Kjm) (B, u>
implies sup i (2 ) N2 () = O

uel

(e>7),

where

Q () = [f (27K, u> dt <s‘1},

\.

2
2 () :=[ C'X, K110, u) drza]

and g > 4. Since

n

2
X, K; T),u) drt <e
supu([Qz (u)]c) <Zr [Xi, Kj11(Z0) u> T )

Ts
=sup i f
el uelU 0

i=1
Ts 2
<supu (f <Z;1Kj(2,),u> dt <¢
T ueU 0
we may apply the induction hypothesis to learn,

sup u ([ W) =
uel

0 (s°°") .
It now follows from (8.30) and (8.31) that

sup (S (1)) < Sup (21 (W) (1 Q2 () + 5Up (1 (1) N[22 W)

uel uel
< sup u(Q () N Q2 (W) + sup w([£22 @)1
uel
=0 () +0(e™ )=0(s°°"),

which is to say

T; 2 o
supu<f6<Z,_1Kj_1(Zz),u> dt<s‘1)=0(s )
0

uel

. . 1 o0— - oo—
Replacing ¢ by ¢!/9 in the previous equation, using O ((e /9) ) 0 (s°7)
completes the induction argument and hence the proof.

7

(8.30)

(8.31)

’

O
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8.5 More references

The literature on the “Malliavin calculus” is very extensive and I will not make any
attempt at summarizing it here. Let me just add to references already mentioned the
articles in [176, 105, 153] which carry out Malliavin’s method in the geometric context
of these notes. Also see [150] for another method which works if Hoérmander’s bracket
condition holds at level 2, namely when

span({K(m) : K e Ko =T,Mforallm e M

(see Definition 8.1). The reader should also be aware of the deep results of Ben Arous
and Leandre in [17, 18, 16, 15, 124].

9 Appendix: Martingale and SDE estimates

In this appendix {B, : t > 0} will denote and R” -valued Brownian motion, {§; : 1 > 0}
will be a one dimensional Brownian motion and, unlike in the text, we will use the more
standard letter P rather than  to denote the underlying probability measure.

Notation 9.1. When M, is a martingale and A; is a process of bounded variation let
(M), be the quadratic variation of M and |Al, be the total variation of A up to time r.

9.1 Estimates of Wiener functionals associated to SDE’s

Proposition9.2. Supposep € [2, 00), ar and A; are predictable R® and Hom (R", Rd)-

valued processes respectively and

' t
Y :=/ A.dB; +/ adr. 9.1
0 0

Then, letting Y := SUP; < Yz, there exists Cp < 00 such that
t p/2 t P
E(Y})” <C,{E (f A dt) +E (f |a,|dz> 9.2)
0 0

AP = (44%) = 37 (447), = 3 A4y = (4°4).
i=1 i,j

where

Proof. We may assume the right side of (9.2) is finite for otherwise there is nothing to
prove. For the moment also assume o = 0. By a standard limiting argument involving
stopping times we may further assume there is a non-random constant C < 00 such
that

T
Y;+/ |A;|%dT < C.
0
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Let f(y) = |y|? and § := y/ |y| for y € R%. Then, for a, b € R?,
dWf)=pWyP ' 5-a=plyPy-a
and

BdafMN=p(P=D P -a)y-b)+plyP*b-a
=plylP2[(p—2)(5-a) (§-b) +b-a].

So by It6’s formula

d|%|P =d[f(¥)]
19 p -2 Y, . Y, . -dY;|.
= p|¥,|P IYt'dYt'{'EIYtlp [(p—Z) (Y, dY;) (Yt dYt>+dYt t]

Taking expectations of this formula (¥ being a martingale) then gives

E|r,|? = g/ot]E (|Y|1’—2 [(p ) (f/-dY) (f/ : dY) +dy -dY]). 9.3)
Using dY = AdB, we have
dY -dY = Ae; - AejdB'dB/ = ¢; - A*Aeidt = tr(A*A)dr = |A|* dt
and
(YA' . dY>2 = (YA' . Ae,') (YA' . Aej>dBidBj = (A*? - e,'> (A*YA' . e,-) dt
= (A*? . A*?) dt = (AA*? : 1?) dr < |APdr.
Putting these results back into (9.3) implies

t
EIP < 2o -1 [ E(1kr 1A dr.

L.
By Doob’s inequality there is a constant C,, (for example C, = [#] will work)

such that
E[¥)P < GEILIP.

Combining the last two displayed equations implies
t _ t
E|rr|P < c/ E (|Y,|P—2 |A,12) dt < CE (|Y,*|" 2/ |A,|2dt>. 9.4)
—Jo 0

; -1
Now applying Holder’s inequality to the result, with exponents g = p (p —2)™ " and
conjugate exponent g’ = p/2 gives

2 : p/2]*/P
E|r|P < C[E|ry "]~ [E(/O IArlzdt>
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or equivalently, using 1 — (p — 2)/p=2/p,

B[ ") <c [JE (/0, JA,Pdr)p/Tp.

Taking the 2/ p roots of this equation then shows

t p/2
E|V}|® <CE (/ 1A,|2dz) . 9.5)
0

The general case now follows, since when ¥ is given as in (9.1) we have

. * t
Y,*s(/ A,dB,) + [ larlar
0 t 0

so that
. * t
“Y,*”p < ”(/ A,dB,) ” + ”/ lar | dt
0 tllp 0 p
t pi2/p t pql/p
sc[]E(/ |A,12dz) J +[]E(/ la,ldr) ]

0 0

and taking the p‘h-power of this equation proves (9.2). O

Remark 9.3, A slightly different application of Holder’s inequality to the right side of
(9.4) gives

=l s e ([ e fmriniar) < ([ e s 4T ar

=[5 ¢ [ e ar

which leads to the estimate

t ) p/2
Elr|?P <c (/ [E|A, 7] /pdr)
0

Here are some applications of Proposition 9.2,

Proposition 9.4. 7 {X ,-};’zo be a collection of smooth vector fields on RY for which
DX, is bounded for all % 2 1 and suppose X; denotes the solution o (5.] ) with
Yo=xeM:= ]RNand,B =B.Thenforall T < ocand p € [2, o),

E(2})? =E [suplE,l"] < o0, 9.6

t<T
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Proof. Since
. 1 ;
’ —d[X; -dB (1)
Xi(£)8B'(t) = X;(L,)dB (1) + 2d[X;(Ex)]
; 1
= X;(T)dB (1) + 3 (9x,zp Xi) (Bp)dt,
the 1t6 form of (5.1) is
! ; 1+ X;(X,)dB (1) with To = x,
8%, = [XO(E,) + 3 (3x, (=) Xi) (2,)]d + Xi (%
or equivalently,
t ! t ! i dr.
—(0x,z) X (Z,)]
% =x+/0 Xi(Z.)dB, +/0 [Xo(Er)+ 2 (0x;(20) Xi)
By Proposition 9.2,

p p/2
2dr)
EI% P <E(Z7)" = Cplxl” + C,F (/o X

p
; d,) , ©.7)
+C,E (/(;

Using the bounds on the derivatives of X we learn

1
Xo(X:) + > (3%, 20 Xi) (Z1)

2
X(E)PR <C (1 + %] ) and
<C+ %))

1
Xo(Z:) + 3 (3x,z) Xi) (Z0)

which combined with (9.7) gives the estimate
Bl =E (E:)p p/2 t p
t 2 C]E(/ C(1+|>:,|)dz) .
gc,,|x|P+c,,JE(/0c(1+|z,|)dr) +CE( |

N uming ¢t < T < oo, we have by Jensen’s (or Holder’s) inequality that
ow ass < )
E|% P <E(%})”
! 2\P/2 dr
<Clxl? + c:P/ZIE/O (1+1z2)"

! >4 d_‘[
+C,p]E/O A+ 127 =
t p/?
<C |x|P + CT(P/Z_I)]E/ (1 + |Er|2) dr
- 0

!
+ CT(”‘I)IE/ (1+[Z )P dr
0
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from which it follows that

t
EBF <E(E) sl +o@) [ (14EEP)ar @8
0

An application of Gronwall’s ine i
: . quality now shows su E{x,|P
and feeding this back into (9.8) witht = T proves (9?6I§T 2l < cotorallp < o;
forloposi;ion 9:5. Suppose {X;)7_, is a collection of smooth vector fields on M, %,
//_vle;l(g A)withXy =0 € 1;4 and 8 = B, z; is the solution to (3.59) (ie, z; :=
K, 140) and further assume’ there is a constant K < oo such that |[A (m)|,, <
< oo forallm € M, where A (m) € End (T M) is defined by v

1 n n
Am)v:.= 5 [VU (Zl Vx, X; + Xo) _ ZRV (v, X; (m) X; (m)]
= i=1

and

n
D IVuXil < K [v] forallv e TM.
i=1
Then forallp < coand T < oo,

E l;sgg Iz,l":l < 00 9.9
and
E[@ ~ D)= 0 (+7) ast J . 9.10)

Proof. In what follows C will denote a co i
nstant depending on K, T and p.
Theorem 5.43, we know that the integrated It6 form of (5.59) is p- From

t
2t =T -1 1
1 =1Lu +/0 117" (Vijeze:X) dBe + 54/ zvdr 9.11)

where A/, = //71 ..
vx /1 *= /v "A(Z4)//s. By Proposition 9.2 and the assumed bounds on A and

. p/2
E(z})” <C|IIP + CE (/o | (V//fz,c)Xi).sz)
i=1

t p
+C]E(/0 ]A//,zt’dr)
t p/2 t p
§C+CIE(/0 |z,|2dr) +c1E(/ lzfxdr)
0

t
§C+Cf ]E,Zrlpdf
0

? This will always be true when M is compact.
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t p/2 t P
]E[(z.—l)f"]gC]E(f |z,|2dr) +C]E<f |zt|dr)
0 0

< C-ElgP - (7 +17) 9.12)

and

where we have made use of Holder’s (or Jensen’s) inequality. Since
t
Blol? <E()’ <C+C [ Elzclar, ©.13)
0

Gronwall’s inequality implies

supE [|z,/P] < CeCT < o00.
t<T

Feeding the last inequality back into (9.13) shows (9.9). (9.10) now follows from (9.9),
and (9.12). O

Exercise 9.6. Show under the same hypothesis of Proposition 9.5 that

p
E | sup z,_1 ( < 00
t<T
forall p, T < oo. Hint: Show z,—1 satisfies an equation similar to (9.11) with coefficients
satisfying the same type of bounds.

9.2 Martingale etimates
This section follows the presentation in Norris [147].

Lemma 9.7 (Reflection Principle). Let ; bea 1-dimensional Brownian motion start-
ingat0,a > 0and T; = inf {t > 0 : B; = a} be the first time B hits height a (see
Figure 15). Then

2 e 2
P(T, <) =2P(B >a)= f e X ?dx
(T, <) B ) \/ﬁ ;
Proof. Since P(B; =a) =0,
P(Ta<t)=P(Ta<t&ﬁ,>a)+P(Ta<t&ﬁ,<a)
=PB >a)+P(T, <t&p <a),

it suffices to prove
P(T, <t & B, <a) = P(B; > a).

To do this define a new process B, by
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Figure 15. The first hitting time 7, of level a by 5.

B = B fort < T,
" l2a-pfore>1,

(see Figure 16) and notice that B may also be expressed as

o t
b= binty = Vo2, = Bunr) =/0 (lear, = Loz, )dpe. (9.14)

So B = B, fort < T, and B: is B, reflected across the line y=afort>T,.

Figure 16. The Brownian motion B: and its reflection f,
time Ty, the labellings of the B and the 5,
be possible. This should help alleviate the re
asymmetry after the first hitting of level a.

about the line y = a. Note that after
could be interchanged and the picture would still
aders fears that Brownian motion has some funny

From (9.14) it follows that 4, is a martingale and

~\2
(dﬂ;) = (1r<Ta - lzzTa)z dt =dt

and hence that B, is another Brownian moti

on. Since A; hits level a for the first time
exactly when g, hits level q,
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T, =1, :=inf[t>0:;§,=a}
and [f‘a < t] = {T, < t} . Furthermore (see Figure 16),

{Ta<t&ﬂ,<a}=[f‘a<t&;§,>al=[B,>a}.

Therefore, P(T, <t & B, <a) = P(B; > a) = P(B > a)

O
which completes the proof.

Remark 9.8. An alternate way to get a handle on the stopping Fime T, is to compute
its Laplace transform. This can be done by considering the martingale

M, = e)‘ﬁ'_%)‘zt.

Since M, is bounded by ¢*? for t € [0, T,], the optional sampling theorem may be
t
applied to show

eME [e—%AZTa] —E [eAa—%AZTa] = EMp, = EMy =1,
i.e., this implies that E [e‘%"ZT“] = ¢~*4_ This is equivalent to
E [e—ATa] — e—a\/Z_A.

i the
From this point of view one would now have to invert the Laplace transform to get
density of the law of T,.

Corollary 9.9. Suppose now that T = inf {t > 0:|8,| = a}, ie, the first time By
leaves the strip (—a, a). Then

PT t 4P 8 —X /2[1
( < )—< (t>a) - r——/. 4 X
—_ 2 / . (' )
n 71 915
= ( ’ )

Notice that P(T < t) = P(B; > a) where ] = max {|B;]: 7 < t}.So(9.15) may be
rewritten as

in (,/ B =/ —a?/2 9.16)
P(ﬂ,*za)s4P(ﬂ;>a)srmn< n—azea ,1)§2€ (

Proof. By definition T = Ty AT_g sothat {T <t} = {T, < t}U{T_, < t}and therefore
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PT <) S P(M<t)+P(Ty<1t)
=2P(Ta <t)=4P(ﬁt >a)= i ooe—xz/thx

4 /oox 2 4 00
S _e—x /2tdx - _L _xz/zt _ 8t 2 )
V22rt ) @ Tt ae . = ﬂ_aze at/u,

This proves everything but the ve i ity i
ry last inequality in (9.16). To prove this i i
first observe the elementary calculus inequality: prove fis Inequally

(4, >
min (ﬁ;ye v/ ’1) 528 y/2. (9.17)

Indeed (9. -A_ ie., i =2/
ndeed (9.17) holds 7 S 2,ie., if y > yo := 2/+/27. The fact that (9.17) holds
for y < yp follows from the following trivial inequality

1 < 145522277 = ¢ %02,
Finally letting y = a/+/f in (9.17) gives the last inequality in (9.16). o

] heOl em 9.10. Lel N be acontinuous martin ale such lhal - Oan ] be a sto, pl”
1}

P((N)1 <& & N} > 8) < P(B} = §) < 27512,

Proof. By the Dambis, Dubins & Schwarz’s theorem (see p.174 of [109]) we may write

' where 1S a B ownlan motio on a OSSIbl augmente. 1()ba]) 1

{(Mr <e &N} > 8} c [B2>3)
and hence from (9.16),
P((N)r <6 & N} > 8) < P(B* > §) < 25/, O

Theorem 9.11. Supposei that Y, = M, + A, where M, is a martingale and A, is a
process of bounded variation which satisfy: Mo = Ag = 0, [Al; < ct and (M); < ¢t
for some constant ¢ < 0. If T, := inf {t>0:1Y| =a}and: <;/2c, then -

4 ( a?
exp| ——
JTa P 8ct)

YOS MP+ AT < MP+ 1AL S M} v

PY za)=P(T, <) <
Proof. Since

it follows that

{Vf>a) (M} >a/2} Ulet 2 a/2) = M7 > ap2)
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when ¢ < a/2c. Again by the Dambis, Dubins and Schwarz’s theorem (see p.174
of [109]), we may write M; = B, where 8 is a Brownian motion on a possibly

augmented probability space. Since

M’ = max < max = B*
p tf(M),|/3r|_t§“ (B:| = Bz

we learn

P(Y>a)< P (M} >a/2) <P (B} =a/2)
2ct __

< 8ct . e_(a/z)Z/ 8ct . e_(a/2)2/2(_‘t
7 (a/2) 7 (a/2)
’ 2
< 8¢ (a/202) o=@/ /2t _ 4 exp (_ﬁ_)
T (a/z) /mTa 8Ct

wherein the last inequality we have used the restriction ¢ < a/2c. O

Lemma 9.12. If f : [0, 00) — R is a locally absolutely continuous function such that
f(0) =0, then

Proof. By the fundamental theorem of calculus,

t
70 =2 [ FOf @t <2 o Mo O

We are now ready for a key result needed in the probabilistic proof of Hormander’s
theorem. Loosely speaking it states that if ¥ is a Brownian semi-martingale, then it can
happen only with small probability that the L?-norm of Y is small while the quadratic
variation of Y is relatively large.

Proposition 9.13 (A key martingale inequality). Let T be a stopping time bounded
byt < 00, Y =y + M + A where M is a continuous martingale and A is a process
of bounded variation such that My = Ao = 0. Further assume, on the set {t < T},
that (M), and | Al, are absolutely continuous functions and there exists finite positive

constants, ¢y and ¢y, such that
d{M), d|A|,
< ¢y and
ar Ty

Then for all v > 0 and q > v + 4 there exists constants ¢ = c(to, g, v,¢1,¢2) > 0and
g0 = &9(to, g, v, €1, ¢2) > 0 such that

<¢

T
P (/ Y,zdt <&l (Yyr = (M)r > s) < 2exp (— ) =0 (s_°°) (9.18)
0

2¢18Y

forall e € (0, g0l
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Proof. Let go = 45> (so that gg € (2, ¢/2)), N := Jo YdM and

Ce := {(N)1 <c169, Ny = ¢®}, (9.19)

We will show shortly that for ¢ sufficiently small,

T
B := UO Y2dt < &9, (Y)r > s] CCe. (9.20)

By an application of Theorem 9.10,

g240 1
P(CE)SZCXP(—ZC 8‘1) =2exp(—2 v)
1 C1€

and so assuming the validity of (9.20),

T
2 q 1
P (/0 Yodt <& (Y)r > s) < P(C;) <2exp (_2618”) 9.21)

which proves (9.18). So to finish the proof it only remains to veri i i
fy (9.
be done by showing B, N C: =0. ’ veriy (20) which wil

For th it wi
w or_ eTrest (2)f the proof, it will be assumed that we are on the set B, N C{. Since
)1 = fy IY|*d(M),, we have

T T
_ 2
Bencg_[/o Yodt <&, (Y)r > ¢, /(; 1Y 2d(M), > c 9, N}<sq°].

. (9.22)
From Lemma 9.12 with f(z) = {Y); and the assumption that d(Y);/dt < ¢y,

- T
01 22 limgory ooy <200 [ t0ae. 029

By Itd’s formula, the quadratic variation, (Y),, of ¥ satisfies

'
/0 YdY' (9.24)

!
(Y);=Y,2—y2—2/ YdY <Y?+2
0

andontheset {t < T} N B, nCce,

t t t t
/YdY): / YdM+/ YdA §|N,|+/ |Y|dA
0 0 0 0

T [ oT
5N;+62/0 [Y:idt < &% ¢, T1/2 / YZdr
0

1/2
< e® 4 o1y %6, (9.25)

Combining Egs. (9.24) and (9.25) shows, on the set {r < T} N B, N C¢ that
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(Y), < Y2 +2 [sqo + czté/zeq]

and using this in (9.23) implies

= o [ (2o enge)

< \/2c1 [sq +2 [8‘10 + czté/zeq] to] =0 (8‘10/2) =o0(g). (9.26)

Hence we may choose g9 = &g (1, €2. to, g, v) > 0 such that if & < &g then

\/261 (8‘1 + 2%ty + 2(,‘21‘3/234/2) <€

and hence on B; N C¢ we learn ¢ < (Y)7 < & which is absurd. So we must conclude
that B, N C: = 0. u}
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Preface

As in the case of the two previous volumes published in 1986 and 1997, the purpose of
this monograph is to focus the interplay between real (functional) analysis and stochastic
analysis show their mutual benefits and advance the subjects. The presentation of each
article, given as a chapter, is in a research—expository style covering the respective
topics in depth. In fact, most of the details are included so that each work is essentially
self contained and thus will be of use both for advanced graduate students and other
researchers interested in the areas considered. Moreover, numerous new problems for
future research are suggested in each chapter.

The presented articles contain a substantial number of new results as well as unified
and simplified accounts of previously known ones. A large part of the material cov-
ered is on stochastic differential equations on various structures, together with some
applications. Although Brownian motion plays a key role, (semi-) martingale theory is
important for a considerable extent. Moreover, noncommutative analysis and probabil-
ity have a prominent role in some chapters, with new ideas and results. A more detailed
outline of each of the articles appears in the introduction and outline to assist readers
in selecting and starting their work. All chapters have been reviewed.

It is expected that the works here will stimulate further research in several directions
in the areas covered. I would like to express my appreciation to the authors for their
assistance (and some revisions) in this enterprize, and the UCR academic senate research
committee for amodest grant for preparing this volume. Also, I am grateful to Jan Carter
for her key assistance in formatting the volume, and Toby Bartels for resolving some

difficulties with the ISIEX files.

M. M. Rao
Riverside, CA
March, 2004





