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Abstract

We study the existence ofL?-type” gradient estimates for the heat kernel of the natural
hypoelliptic “Laplacian” on the real three-dimensional Heisenberg Lie group. Using Malliavin
calculus methods, we verify that these estimates hold in the gasé&. The gradient estimate
for p=2 implies a corresponding Poincaré inequality for the heat kernel. The gradient estimate
for p =1 is still open; if proved, this estimate would imply a logarithmic Sobolev inequality
for the heat kernel.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Background

In the last 20 years or more, a fairly complete and very beautiful theory has been
developed applying to elliptic operators on Riemannian manifolds. This theory relates
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properties of the solutions of elliptic and parabolic equations to properties of the Rie-
mannian geometry. These geometric properties are determined by the principal symbol
of the underlying elliptic operator. The following theorem (see for exanip)e is a
typical example of the type of result we have in mind here.

Theorem 1.1. Suppose(M, g) is a complete Riemannian manifoldnd V and 4 are
the gradient and Laplaeéeltrami operators acting orC>(M). Let |v| := /g(v, v)
for all v e TM, Ric denote the Ricci curvature tens@nd k denote a constant. Then
the following are equivalent

(1) RIC(Vf, V)= —2k|Vf|? for all f e C®(M),

(2) |Vel 2 f|< ek et 42V f| for all f e C®(M) andt > 0,

(3) |Ve'12f12< et 4/2 |V 2 for all f e C®(M) andt > 0,

(4) there is a functionk (r) > 0 such thatk (0) = 1, K (0) exists and

Ve' V2 RS K (1) 1V f 2 (1.1)

for all f € C(M) andt > O.

Estimates like (1)-(4) are also equivalent to one parameter families of Poincaré
and logarithmic Sobolev estimates for the heat kernel. The latter has implications for
hypercontractivity of an associated semigroup; see G[8ksAlso, in [1], Auscher,
Coulhon, Duong, and Hofmann study inequalities of the form

e fIP < Ce |V f 2,

where C and ¢ are positive constants, along with their relation to the Riesz transform
on manifolds.

As a simple illustration of this theorem, consider the manifdfd= R* with vector
fields

axzi, avzi and 6Z=£.
ox Oy 0z

Let V and 4 be the standard gradient and Laplacian&h

2
2z

V=(0.0y,0) and A=0;+02+d
In this casee’4/2 is convolution by the probability density

pix) = e e
BT (2nt)32
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and
Vel 2§ = o472y £ (1.2)

for all f € C}([R@), as follows from basic properties of convolutions; more abstractly,
this follows from the commutativity of the Euclidean gradient and Laplacian. E@) (
and an application of Hdlder’s inequality then imply that

for all f e CL(R®), where|V f| := \/(axf)z + (0, )2+ (0. /)2
This paper is a first step toward extending Theorkthto hypoelliptic operators of
the form

L=Y X7 (1.3)

where {X;}7_; is a collection of smooth vector fields dv satisfying the Hormander
bracket condition. Recall that the Hormander bracket condition is the assumption

TuM =spar({X(m): X € L}) Vme M,

where L is the Lie algebra of vector fields generated by the collectisp;_;.

By a celebrated theorem of Hormandér,is hypoelliptic; however, the operator
need not be elliptic. The principal symbol of at {eT)M is given by
oL ()= Z;‘Zl[é(x,»(m))]z. By definition, the operatok is degenerate at poinis € M
where there exists & £eT,"M such thato; (£)=0. At points of degeneracy df, the
Ricci tensor is not well defined and should be interpreted to take the vatwein
some directions. Hence, it is not possible to directly generalize Thedrénn this
setting. Nevertheless it is reasonable to ask if inequalities of the farth hight still
hold. More precisely, we le¥V = (X1, ..., X,) and address the following question: do
functions K, (1) < oo exist such that

IVe'L2F1P <K, ()M ?|V £IP,  p el 00)

for all f e C>X(M) andr > 0?

In this paper, we give an affirmative answer to this questiongfoer 1 in the model
case of the Heisenberg Lie group; the case- 1 remains open. LeM = G be R®
equipped with the Heisenberg group operation given in Rdl).(In this setting, we
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take L = X2+ Y2, where X andY are the vector fields

X =0, — %yaz and Y :=0,+ %x@z. (1.4)

We restrict to this simple case because the basic ideas can already be seen here without
the added geometric complications appearing in more general formulations. However,
much of the theory generalizes to certain classes of vector figdg$_, satisfying the
Hormander bracket condition on more general manifolds. These results will appear in
forthcoming papers; sef@.7].

1.2. Statement of results

Notation 1.2. Let CX(G) denote those functiong € C°°(G) such thatf and all its
partial derivatives have at most polynomial growth.

Definition 1.3. The left-invariantgradienton G = R® is the operator
V=(X,7).

The subLaplacianis
L=X>+Y?

and we letP, = ¢'L/2 be the semigroup associated lto Finally, p,(g) = Pido(g) =
¢'L/254(g) denotes the fundamental solution associated tso that for f € C;o(G),

Pif(g) =p:* f(g) = /G f(gh)pi(h)dh,

where dh denotes right Haar measure (i.e. Lebesgue measure)garid computed
relative to the Heisenberg group multiplication in E8.1j below.

Remark 1.4. Since{X, Y} generates the tangent space at all point&oHérmander’s
theorem[9] implies thatL is a hypoelliptic operator. Also Malliavin’s techniques show

p: is a smooth positive function oR>; see Sectior8. In this simple setting, an explicit
formula for p;(g) is

_ 1 w _1 -2 wi iwg
pi(g) = 82 /R Sinh(2) exp< 4|x| w coth( > ))e dw, (1.5)

whereg = (x, y,z) € G andx = (x, y); see for examplg20].
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Notation 1.5. For all p € [1,00) andt > O, let K,(¢) be the best function such that
VP fIP<Kp@t)P|VfIP (1.6)

for all f € C;O(G).

Theorem 1.6. For all p € (1, 00), K,(?) is independent of, and K ,(t) = K, < oo.
Moreover K, > 1 for all p e [1, oo].

Closely related results appear in Kusuoka and Strdd@&k. In particular, Theorem
2.18 of [15] states that for alp € (1, co) there exist finite constantS, such that

VP fIP<Cpt PP 1P,

for all smooth, bounded functiorfswith bounded derivatives of all orders and- 0.

Section2 justifies the choice of vector fields made here, a choice which corresponds
to left-invariant vector fields oft® under the Heisenberg group operation. We show that
the left invariance of the vector fields leaves the inequaliy)(translation invariant.
Certain scaling arguments imply that the constakis are also independent of the
parameter. We also show thatp>ﬁ when 1< p<2 and, in general, thak, > 1.
Note that atr = 0 the inequality is an empty statement and certainly holds for constant
1. So unlike the elliptic case whetE,(¢) is continuous at = 0, there is now a jump
discontinuity in K,(r) at + = 0. Independence of th&, with respect tot does not
generalize to all Lie groups; however, the discontinuitykgf(z) at + = O should be a
feature which persists in the general hypoelliptic setting.

Section3 briefly reviews some infinite-dimensional calculus on Wiener space neces-
sary for the proof of Theoreri.6. The heat kernep,(g) dg is the distribution int of
the process® satisfying Eq. 8.1). Using this representation gf;,, we may transform
our finite-dimensional problem to a problem on Wiener space, where we then may
apply Malliavin’s probabilistic techniques on proving hypoellipticity. The advantage of
the infinite-dimensional Wiener space representatiom,98) dg over that in Eq. 1.5
is that it no longer involves an oscillatory integral.

Section 4 restates Theorem.6 and gives its proof and the proof that this result
implies the following Poincaré inequality.

Theorem 1.7. Let K2 be the constant in Theoreth6 for p = 2. Then
P f2(0) — (P /)% (0) < K2t P,V £12(0)

for all f e Cgo(G) andt > 0.

Finally, Section4.2 shows that our method can not, without modification, be used
to prove K3 < oo.
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2. Real three-dimensional Heisenberg Lie group
2.1. Realization of the Heisenberg Lie group
Recall that the real Heisenberg Lie algebrayis- spar{X, Y, Z}, whereZ = [X, Y]
and Z is in the center ofg. Thus, g5 := sparX, Y} is a hypoelliptic subspace af;
that is, the Lie algebra generated by is g. The Heisenberg grou@ is the simply

connected real Lie group such that @® = g. Letting A = aX + bY + ¢Z and
A'=d' X +DY +'Z, we have by the Baker—Campbell-Hausdorff formula that

’ 11 ’
oA — JATAHIAAT

Thus, we may realiz& as R® with the following group multiplication:
(a,b,c)a,b',cY=(@+a ,b+b,c+c + % (ab' — a’'b)). (2.1)

2.2. Differential operators on G

Notation 2.1. Given an element € g, let A denote the left-invariant vector field on
G such thatA(0) = A. A will denote the right-invariant vector field associatedAo

Now let X = (1,0,0), Y = (0,1,0), and Z = (0,0, 1) at the identity Oc G. We
extend these to left-invariant vector fields @Gnin the standard way. For = (a, b, ¢) €
G, let L, denote left translation by, and compute as follows:

- d
X(a’b5 C) = L(a,b,c)*Xz (Cl,b, c)(t,O, O)
dt |g

d
(a—}—t,b,c—}bt):(l,o,—zb).
0 2 2

dt

So if (x, y, z) are the standard coordinates 6h= RS, for f € C1(G),

_of 1 of
Of(g-tX)— Em (&) > o (&)-

< d

X = —

(X)) ai

Performing similar computations fof and Z, we then have

X=0,—3y0., Y=0,+3x0, and [X,Y]=Z=20

Nl

compare with Eq.X.4). Note then thatX, Y, Z} forms a basis for the tangent space
at every point ofG. This combined with[X, Y] = Z implies that{X, Y} satisfies the
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Hérmander bracket condition. One may also show that the right-invariant vector fields
associated t, Y, andZ are given by

A A A A

X:@x-l-éy@z, Y:(?y—éxﬁz and [X,Y]:z:—(')z

Remark 2.2. The right-invariant vector fields associatedXcandY may be expressed
in terms of the left invariant vector fields, Y, and Z, as:

X=X+yZ and Y=Y —xZ.

We will need the following straightforward results.

Lemma 2.3. By the left invariance ofv and P;, the inequality (1.6) holds for all
g§€G, feCrG), andt > 0, if and only if

VP fIP(0) <K, () PV f17(0) (2.2)

for all f e C,°,°(G) andt > 0.

Proof. If the inequality @.2) holds, then

IVP f1P(g)=I(VPi f) o Lgl”(0) = [V(P: f o Lg)|”(0)
=|V(P(f o L)IPO)SK () PV (f 0 Lg)IP(0)
=Kp(O)P|(Vf)oLg|P(0) = Kp(t) PV f|” 0 Lg(0)

=K, PRIV 1P (g).

The converse is trivial. O

Lemma 2.4. For A € g,
AP, f(0) = PAS(0)
for all f € C°(G) and > 0. More generally
AP, f = P,AY,

from which the previous equation followsince A = A at 0.
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Proof. Heuristically, we know thafA, B] =0 for all B € g, so that[A, L] = 0, and
thus[A, ¢'L/2] = 0. Rigorously

~ d
AP f(0) = T

d
P cA -
. 1f ()=

/ e g)pi(g)dg
0JG

_/d
_GdS

=fG Af(g)p:(g)dg = PLAF(0).

49 pi(g)dg
0

To differentiate under the integral, we have used the translation invariance of Haar
measure (which is Lebesgue measurefot) and the heat kernel bound

Pi(g) < Cr2e P W/t

where p(g) >C’(|x| + |y| + |z|Y/?) is the Carnot—Carathéodory distance @nand C
and C’ are some positive constants; see Theorem 5.4[39hand p. 27 of[4]. O

2.3. Dilations on G

Definition 2.5. A family of dilations on a Lie algebray is a family of algebra auto-
morphisms{¢, },~o0 on g of the form ¢, = exp(W log r), whereW is a diagonalizable
linear operator ony with positive eigenvalues.

So letr > 0 andg = (x, y, z), and definep, : G—G by ¢, (x, y,z) = (rx, ry, rz).
Notice that

1
¢, ((a,b,0)(x,y,2)=0, ((a +x,b+y,c+z+ E(ay — xb))

2
=¢, ((ra +rx,rb+ry, r2c+r?z + %(ay — xb)>

=¢,(a,b,c)d,(x,y,2).

Thus ¢, is in fact an isomorphism o6. The generatoW of ¢, is given by

d
W(x,y, z)=; O, (x,y,2) = (X, 9,20 (x,y.2)
=1

r

=x0x + y0y + 2z0;

- 1 -1 - - .
=x <X+§y6Z)+y(Y—§xaz)+218Z:xX+yY+ZZZ.
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Using e’X(g) =g(,0,0) and
> -1 d X, 0—1
¢V*X ° q’)r (g) = d_ (:br(e (d)r (g)))a
o

along with similar formulas involving’, one shows
¢ Xodpt=rX and ¢, Yo, t=rY. (2.3)
The equations in2.3) are equivalent to
X(fod)=r(Xf)og, and Y(fo¢,)=r(Yf)og,.

Therefore,

V(fo¢)=r(Vf)od,,

L(f o ¢ )=r*(Lf)o ¢, (2.4)
and also, from Eq.1(5), for g = (x, y, 2),

1 w 1_, wrt .
P2 (8)=—> / —_— eXp(—— |X|“w coth (—>> e dw
r 8n2 Jr sinh(wrzt) 4 2

2

1 w 1 _5 wt )
= — _exp|l——|¥ coth| — iwz/r® =24
82 /R rZsinh(%) p( a2 I ( 2 >>"’ roaw

=r~(pr 0 ,-1)(g) (2.5)

through the change of variables — r—2w. Thus,
Pt o )@= [ (o dmptdh = [ F (61, t)pi dh

= fG F (M) pi(dpp1(h))r~*dh = fG [ (@, (@) o, (h) dh
=(P2,f o ¢$h,)(g);
that is,
P(fo¢) =e2(fop) =" 2f)od, =(Paf)og,. (2.6)

For a more general exposition on Lie groups which admit dilations[&e&@he above
remarks lead to the following proposition.
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Proposition 2.6. If K, is the best constant such that
IVPLIP <K, P1lV fIP
for all f € C;o(G), then K,(t) = K, for all + > 0, where K,(¢) is the function
introduced in Notationl.5.
Proof. By Egs. .4 and @.6),

IVP(f 0 ¢p-12)” = |VI(P1f) 0 §,-12]” = rV2(VPLS) 0 or2]”

< Kpr PPV f1P)od,-12=K pr P2 Pi(V f1P0¢h,—12)

=K, P (IVfod,12)").
Replacingf by f o ¢,12 in the above computation proves the assertion. Moreover, re-
versing the above argument shows tHa®; f|7 <K, P;|V f|P implies that|V Py f|7 <
K,PiVfIP. O
2.4. The constank, > 1
Proposition 2.7. For p € [1, o0), let K, be the best constant such that

VP fIP<K,P|VfIF (2.7)

for all f e C;°(G) andt > 0. Thenk), > 1. In particular, K2>2.
Proof. First consider the casp = 2k for some positive integek, and suppose the
constantKy, = 1. Then

VP, f1Z< PV 1%

for all 1 >0, and|V f|% = |VPyf|% = Po|V f1% = |V f|%, together would imply that

_ d d 1
KV 2Dy VL = - VP f1* < - PV fIZ = 5L|V.f|2k. (2.8)

0 0

We now show that the functiorf (x, y, z) = x + yz violates this inequality. Note that

_ _ X _ X 1—%yy _1_
e (8- (8) ()

N



350 B.K. Driver, T. Melcher/Journal of Functional Analysis 221 (2005) 340-365

1/1 1 1 5
Hence,
(k|Vf|2<k*l>VfVLf) () = g (2.9)

On the other hand,
Le(g) = ¢ (9)Lg + ¢ (9)[Vgl?
and so settingp(r) = r* and g = |V f|? gives
2
LIV = KV PEDLIV 2 4 kk = DIV P2 |19 7P

From the above,

2
’V|Vf|2‘2=‘( yz+%xy2—%y(2z+xy) >
—2y +y3+xz 4+ %2x2y—|— %x(21+xy)

and hence
5|2
viveE @ =o,

while (L |V £]?)(0) = —2. Therefore
3 (LIVf1%)(0) = —k. (2.10)

Inserting the results of Eqs2.9) and @.10 into Eqg. 2.8 would imply that%g —k,
which is absurd. ThusKy; > 1 for any positive integek.
For any p € [1, o0), there is some integek such thatp <2k. Thus,

VP fI%=(V P, fIP)2*/P

2%k 2%k
SKFP(PV I <K PV fI (2.11)
Since Ky is the optimal constant for whici2(11) holds andKy; > 1,
1< Ky <K2HP

implies thatk, > 1.
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We now quantify this estimate fop = 2. Since

VP F|? VP, f|?
Ky= sup VP F| VP f]

0) > 0) := C(1),
FeCX(G) P|VF|? PV f]2

where f(x, y,2) = x + yz, it follows that K2 > sup.q C(7). To finish the proof we
computeC(r) explicitly. Observe thatP;, when acting on polynomials, may be com-
puted using

00 n 2

1 /tL t 1¢
P, =e't/% = (=) =I14+zL4+=—L°+---.
= ;n! 2 Tt tagh T

We then have

! ! L+5 =3y
P = —L = =X, VP = 2 2
S f+2 S (X+yz)+2x t f ( Z+%xy

and

2 2
2_ ty_105 1
VP f| _<<1+2) 2y) +(Z+2xy>

1 1 t 12
=<1—y2+Zy4+z2+xyz+Zx2y2>+§(2—y2)+§2.

Also, from before,

1-3yy
Vf:( :
2+ 535Xy

and so
|Vf|2 = 1—y2+ %y4+zz+xyz+ %xzyz,
LIVF? = -2+ 3y? 4+ 2x?
and
LVfI?=4+6=10
Thus,

2
PV £12(0) = |V £12(0) + g LIVS20) + % LAVIRO) =1—1+ th
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and
2 1 2
VP, f12(0) = 1+t+Zt )

We can find the maximum value of

1+t+ 312

C@) =
1—t+ 312

for t >0 by taking derivatives irt to show thatC(¢) takes on its maximum value of
2atr=2. [
3

3. Infinite-dimensional calculus

Let (W(R?), F, w) denote classical two-dimensional Wiener space. ThatWis;
W (R?) is the space of continuous paths: [0, 1] — R? such thatw(0) = 0, equipped
with the supremum norm

w| = max |w(t)|,
loll = max ||

u is standard Wiener measure, afdis the completion of the Boret-field on W with
respect tou. (W, | -|) is a Banach space. By definition @f the process

bi(@) = (bF @), b)) = o

is a two-dimensional Brownian motion. For tho@see W which are absolutely contin-
uous, let

1
E(w) := / |ix(s) |2 ds
0

denote the energy ab. The Cameron—Martin Hilbert space is the space of finite energy
paths,

H'= HY(R?) := {w € W(R?) : w is absolutely continuous an#(w) < oo},

equipped with the inner product

1
(h, k) g1 :=/ h(s)k(s)ds Yh,k € H™.
0
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We may identify the Cameron—Martin space with = L2 ([O, 1], IRZ) in the obvious
way

he H v he H.

In this way, the spaces are isomorphic, and in the sequel, we make this identification
without further comment.

To define a notion of differentiation for functions &, let B = {B(h), h € H} be
the process given by

1
B(h) = / h(t)db.
0

B is an isonormal Gaussian process associated to the Hilbert gpa@enote byS
the class of smooth Wiener functionals; that is, random variablég— R such that

F = f(B(h1), ..., B(hy))
for somen>1, hi,...,h, € H, and functionfeCZ"(R”).
Definition 3.1. The derivative of a smooth functionafeS is the random process
defined by
n af
DiF =3 == (B, ... Bl)hi(0).
i=1 7t

Iterations of the derivative for smooth functiondsare given by

and are measurable functions defined almost everywhef8,dif x W. We will denote
the domain ofD¥ in L7 ([0, 11¥ x W) by D*7, which is the completion of the family
of smooth Wiener functional§ with respect to the seminorth- || , on S defined by
X 1/p
_ i P
1Pl = | EAFIP) + Zl E(ID7FIl 200 )
j:

Let

D* =) () D"

p=lk=>1
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One may generalize these Sobolev spaces to Hilbert-valued functions, again, given an
appropriate notion of differentiation. So 18f; be the set oH-valued Wiener functions
of the form

n
F=Y Fjhj, hjeH, FjeS8.
j=1

Define DF = Y_; D*F; @ h; for k>1. Then, as in the Euclidean case, we may
define the seminorm

X 1/p

IFllepn = | E(IFIG) + Z (107 F 122 0010)

on Sy for any p>1, and letD*?(H) be the completion oSy in the norm|| - i p,H»
and

D*H)= () () D-* ).

p=lik=>1

Definition 3.2. Let D* denote the adjoint of the derivative operatdr which has
domain in LZ(W x [0, 1]) consisting of functionss such that

IE[(DF, G)ulI < CIF 2y

for all F e DY?, whereC is a constant depending d@®. For those functionss in the
domain of D*, D*G is the element of.2(u) such that

E[FD*G] = E[(DF, G)4].

It is known thatD is a continuous operator fro®*° to D*°(H), and similarly, D*
is continuous fromD*°(H) to D*°; see for example Proposition 1.5.4 from Nualart
[18]. For a more complete exposition of the above definitions, we refer the reader to
[5,10-14,16,18,200nd references contained therein.

3.1. The stochastic differential equation

Let £:[0,1] x W — G denote the solution to the Stratonovich stochastic differential
equation
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dét:cht*X o dbll + Lér*Y o dbrz
=X(&,) odb} + V() 0 db?,
Co=0. 3.1)

Remark 3.3. SinceX andY have smooth coefficients with bounded partial derivatives,
Theorem 2.2.2 in Nualaffl8] implies that&, € D, for i = 1,2, 3 and allz € [0, 1].

BecauseG is a nilpotent Lie group, we may determine an explicit solution of the
given SDE.

A&, =X (5,1, &2, 5,3) odb + ¥ (5,1, &2, 5,3) o db?
1 0
= 0 Joart+| 1 ]oar?
1 ¢2 1 ¢£1
-2 f, 2 5:

1 1
dét =dbt, a2 =dp? and &= -5 &0 dbt + > o db?

Thus,

and one may verify directly that

1 1
& = (b,l, o5 /O [btan? - b2 dble (3.2)

satisfies the required SDE. Note that the third componenif ofay be recognized as
Lévy’'s stochastic area integral.
From Section 3.9 in @man and Skorohofl7] and Theorem 1.22 in Bel3], the

solution & = (fl, éz, 53) is a time homogenous Markov process, apd= ¢'L/2 with

L = X?+7Y? is the associated Markov diffusion semigroupétahat is, v, := (&,)sp =
p:(g) dg is the density of the transition probability of the diffusion procéssand

(P f)(0) =E[f ()] (3.3)
for any f € C;°(G), where the right hand side is expectation conditionecg#- 0.

Proposition 3.4. The Malliavin covariance matrix o€,

o= ((Déi’ Dét])H)1<ij<3
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is invertible a.s. forr > 0, and
(deto) e () LP(w) =: L™ (.
p=1

This statement follows from the proof of Theorem 2.3.3 in Nudla8] which relies
on the satisfaction of the Hormander bracket condition{Xi&'} = g.

Remark 3.5. By the general theory, Propositidh4 implies v, = Law(&,) is a smooth
measure; see for example Theorem 2.12 and Remark 2.13 if3ell

3.2. Lifted vector fields and theit2-adjoints

Given A € g, let A’ be theith component of the left-invariant vector fiel, hence
(Al, A?, A?’). In particular, we are interested in the vector fielllgx, y, z) =

A=
(1.0, -3 y) and ¥ (x, y,2) = (0, 1, 5 x). We define the “lifted vector fieldA of A as

3
A=A":= )" ¢ tAI(E)DE € H, (3.4)
ij=1
acting on functionsFeD12 by
AF = (DF,A)y.

Remark 3.6. Recall thatD is a continuous operator fror®> to D*°(H). Thus, Re-
mark 3.3 implies thatA/'(f,) € D> and D&, € D*(H), for all r € [0, 1]. Sog;; € D™

for i, j = 1,2, 3, and this along with PropositioB.4 implies thatal.;1 € D*°. Hence,
A € D®(H).

Proposition 3.7. For all feC(G), ALf(E)] = (Af)(&).
Proof. For any functionfeC7°(G), f () € D> and

. of k
DIf (] =) —— ()D&

P Oxy

see Proposition 1.2.3 from Nualdft8]. Then using Eq.3.4) and the definition of the
Malliavin matrix o, we have

ALFEDI=(Df (&), An

5. /of . .
= Z <_ (f;)fo,ai_le](ét)Dd)

it \ 0% H
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5. . of 4
=Y V5o (pgpg), o
=~ Xk H
i,j,k=1
3

Z A& 2 @%—ZN@%&QJM%

as desired. [

Definition 3.8. For a vector fieldA acting on functions oW, we will denote the
adjoint of A in the L?(u) inner product byA*, which has domain ir.?(u) consisting
of functionsG such that

IE[(AF)GII<CIFliz2¢-
for all F e D12, for some constan€. For functionsG in the domain ofA*,
E[F(A*G)] = E[(AF)G],
for all F € D2,
Note that for anyF e D12,
E[AF] = E[(DF,A)y] = E[FD*A].
Thus, we must have th#* = A*1 = D*A a.s. Recall thaD* is a continuous operator

from D*°(H) into D*°. Thus, forA a vector field orWW as defined in Eq.3.4), Remark
3.6 implies that

3
pA=Y D (ai;lAf(g,)Df;) e D®.
ij=1
Thus, we have the following proposition.
Proposition 3.9. Let A be a left-invariant vector field o with lifted vector fieldA
on W as defined by Eq(3.4). ThenA*, the L2(y)-adjoint of A, is an element oD™.

4. Heat kernel inequalities

4.1. AnLP-type gradient estimatep(> 1) and a Poincaré inequality
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Theorem 4.1. For all p > 1,
VP fIP<K,P|VfIF (4.1)

for all f e C;O(G) andr > 0, where

1,1
1.1 p/2
Kp = 217/(1 + 217((1 2) [||X*&||%q(u) + ||X*§%”%‘1(u):| < 00,

with X* the adjoint of the lifted vector field as in Eq (3.4 withz =1, andq = pL_l.

Proof. By Proposition2.6, we know the constantX, are independent of. Also,
Lemma?2.3 states that the inequality is translation invariant. Thus, the proof is reduced
to verifying the inequality at the identity far= 1; that is, we must find finite constants
K, such that

IVPLEIP(0) <K, P1IV f17(0), (4.2)
for all f € CX(G). So applying RemarR.2 and Lemma2.4, consider

XPLf(0)=P1X f(0)
=P1(X +yZ)f(0) = Pi(X £)(0) + PL(yZ £)(0).

Similarly,
YP1f(0) = Po(Y £)(0) — Pr(xZ f)(0).
Thus,
y _ P
IVPLfIP(Q)=|PiVf + Py (( _x) Zf) 0
y ~ P
< <|P1Vf| + |P1 ((_x) Zf) ) (0)

<2rn <|P1Vflp(0) -

n((2)7)

’ ©). @3
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where

~ p ~ ~
Py (( i ) Zf)‘ 0 = [|PLyZ)IPO0) + | Pr(x Z )20/

and ¢ = -7 is the conjugate exponent @ Let F = (F1, F2, F3) := ¢; and recall

that Z = XY — YX. By Eq. 8.3,

1

Pi(yZ f)(0)=P1(yXY f)(0) — Pr(yY X f)(0)
=E[F2(XY f)(F)] — E[F2(Y X f)(F)]
=E[FX((Y )(F)] — E[F2Y (X £)(F))]
=E[X*F2- (Y f)(F)] = E[Y*F2 - (X f)(F)], (4.4)

whereX and Y are the lifted vector fields ok and Y, as in Eq. 8.4), with t = 1.
Hence,

|PLOYZ )P0 S (EX*F2 - (Y ()| + [EIY* F2 - (X f)(F)1)?
S2([E[X*F2 - (Y ()] + [E[Y*F2 - (X f)(F)])
S2[(EIX* Fo| )24 (PLIY F|P)?/ P (0)+(E[Y* F2|)?/9 (P X £17)?/7(0)]
by Holder’s inequality. Similarly,
|PL(xZ £)[2(0) < 2[(E[X* F1|)¥4 (P1|Y £17)?/7 (0)
+H(EIY* F1|)%4 (P1|X £1P)?7(0)].
Combining this with Eq. 4.3), we have
IVPLFIP© <27 (1PLY £17(O) + [2EIX* Fal")2/ (LI £17)%/7(©)
+2(E|Y* F2|)?/1(P1|X f17)?/7 (0)
+2(EIX* F1 )27 (PY £1P)?7(0)

+2([E|Y*F1|q)2/q(P1|Xf|P)2/p(O)]p/2)

<274 (P|V £17(0)
+2PI2[(Py|X £1P)?P O)II(EIY* F1|1)?/7 + (E|Y* F2|*)¥4]
+(PLIT £17)2/ O(EIX* F1I1)2/7 + (EX Fol)?10/2)
where we use Hoélder's inequality and thet(g) dg is a probability measure to get

|PLV fIP(0)< P1IV £17(0).
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So let
Cp = (EIX*F1|?)%7 + (E|X* F|1)?/4
or equivalently by symmetry,

Cp = (EIY*F )27 4 (E|Y* F,|1)?4,

Note thatC, is a finite constant for alp > 1 by Holder’s inequality, RemarB.3, and
Proposition3.9, since

A*F = D*(FA)

for any vector fieldA on W and F € D*°. Thus,
IV PLf1P(0) < 2P/ PV £ 1P (0)+(2C ,)P/2[(PLIX f17)?/P(0)+(P1|Y £1P)?/P(0)]P/?

1.1
(=+5) 2
<(@pla 4 2" T2 Py py v f1P(0),

which proves Eq.4.2), and hence, the theorem(]

Theorem 4.2 (Poincaré inequality. Let K2 be the constant in Eq4.1) for p = 2 and
p:(g) dg be the Heisenberg group heat kernel. Then

2
/sfz(g)pz(g) dg — (/sf(g)pt(g) dg) <Kot /3 IV f12(e)pi(g) dg
R R R

for all f e CZ"(G) andt > 0.

Proof. Let F;(g) = (P;f)(g). Then

d
~ P,_,F?

1
e Z=Py (—5 LF?+ FSLFS) = —P_,|VF,.

Integrating this equation ohimplies that

t t
Pffz—mf)z:/o P,fs|VFs|2ds=/o P VP, fds
t
<K2/ Pt—sPs|vf|2ds
0

t
=K2/ PIV f12ds = Kot PV f12.
0

wherein we have made use of Theordri. Evaluating the above at O gives the desired
result. O
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4.2. Method fails for thep = 1 case

In this section, we show that the argument in the proof of Theofetrcan not be
used to prove the inequalityt(@) for p = 1.

Proposition 4.3. Let F = (F1, Fo, F3) := £41. Then
IX* Frll ooy + IX* F2ll ooy = o0. (4.5)
Proof. Let ¢ (F) denote thes—algebra generated b¥:W—G and p,(g) dg denote
the Heisenberg group heat kernel. Then ﬁHC}(Rg)
E[X*Fyf (F)I=E[F1(X f)(F)] = P1(xX f)(0)

_ /G xX f(g)p1(g) dg
:_/Gf(g))?(xpl(g))dg

=—/Gf(g)(1+xf( In p1(g))p1(g) dg

=—E[f(F)A+xX In p1)(F)],

where in the third line we have applied standard integration by parts. Consequently,
we have shown

E[X*F1|o(F)] = —(1+xX In p1)(F).
By a similar computation one also shows
E[X* F2lo(F)] = —(yX In p1)(F).

Since conditional expectation &”-contractive and the law df is absolutely contin-
uous relative to Lebesgue measure, it now follows that

1X*Fill ooy + 1X* F2ll Loo ()
> || EDX* Frlo(F)1ll oo uy + IEDX* F2|a (F)1Il oo g

= 1+ xX In p1ll g, + X In pa]

LOO(R3,m)’

where m is Lebesgue measure. Hence, it suffices to show that eithein p, or
vX In p1 is unbounded. We will show X In p; is unbounded by making use of the
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formula for p;(g) in Eq. (1.5. Lettings = 1 in Eq. (.5 and making the change of
variablesw +— 2w, we have

= — — exp| —= coth W dw.
p1(g) o2 /R Sinhw IO( > x| w w) e w

Then applyingX = 0, — 3 0. yields

N 1 .
Xpl(g)z—ﬁ A.%(xw cothw + iyw) Snhw

1 . )
XeXp<_§ |X|?w coth w) 2 dup.
Settingy = z = 0, it follows that
X In p1(x,0,0) = —x f w coth wdv, (w),
R

where

dviw) = = Y
w) = —
* Z¢ Sinhw

exp(—% x’w coth w) dw (4.6)

and z, is the normalizing constant

-—/ Y ex Lgv. cothw | d
Zy 1= . Snhw p 2xw w | dw.

By Lemmad4.4 below,

lim / w cothwdv,(w) =1
R

X—> 00

and so

lim X In p1(x,0,0) = lim (—x / w COthwdvx(w)) = —00. Il
X—>00 X—> 00 R

Lemma 4.4. Let yy(w) = w cothw — 1 and v, be as in Eq (4.6). Then

lim /l//dvx = (0) = 0. 4.7)

X—> 00
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Proof. Sincey (0) = 0 andy is continuous, to prove Eq4(7) it suffices to show by
the usual approximation af — function arguments that

lim / Y(w)dvy(w) =0
lwl>e

X—> 00

holds for everye > 0. We begin by rewriting Eq.4.6) as

1 w 1,
Z. snhw exp(—éx v,b(w))dw

dve(w) =

where

o w 1,
Zy ._/R Snhw exp( 2x lﬂ(w)) dw.

A glance at the graph of will convince the reader that there are constant§ > 0
(depending ore > 0) such thate|w| <y(w) < flw| for all jw| >e. (In fact, one could
take § = 1 independent of). Thus

w 1 2 / 2
w) — exp( —= w) | dw<2 we W2 gy
[ o g p( 532w [ e
L (o 2o

x2g, x20

where in the inequality we have also used thaf— <1.
Now consider the constarf,. We know that forw small, there exists a constant
7 > 0 such thaty(w) <yw?. So lettingp(w) = 54—,

Z.> / o(w) exp(—1 x%(w)) dw
lw|<e 2

& 1 &X
2/ (P(w)e*”/xzwz/z dw = = / ® (E) e*/w2/2 dw,
X J_¢ X

—& &X

where we have made the change of variables> . So, by the dominated convergence
theorem,

&x

lim inf (xZ) > lim inf 0] (E) =2 gy
X

X—00 ex

_QD(O)/ —yw /2 — 2_7'c
Y
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Thus, Z, >3 /2 1 for x sufficiently large, and so

1 1
lim / (w)dve(w)= lim — (w) — ex (—xz (w)) dw
X=0 Jiw|>e v * x—=00 Zy |w|>sw sinhw P 2 v
4B (. 2 —ox2g/2
<2 lim b (o )™ —0
X—>0Q 21 l
Y

as desired. O
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