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Abstract

We prove Cheng–Yau type inequalities for positive harmonic functions on Riemannian manifolds by
using methods of Stochastic Analysis. Rather than evaluating an exact Bismut formula for the differential
of a harmonic function, our method relies on a Bismut type inequality which is derived by an elementary
integration by parts argument from an underlying submartingale. It is the monotonicity inherited in this
submartingale which allows us to establish the pointwise estimates.
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1. Introduction

The effect of curvature on the behavior of harmonic functions on a Riemannian manifold M
is a classical problem. A quantitative measurement of this behavior is encoded most directly
in terms of gradient estimates and Harnack inequalities involving constants depending only on
a lower bound of the Ricci curvature on M , the dimension of M , and the radius of the ball on
which the harmonic function is defined. Such estimates in global form, i.e., for positive harmonic
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functions on Riemannian manifolds, are due to Yau [13]; local versions have been established by
Cheng and Yau [3].

The classical proof of gradient estimates for a harmonic function u relies on two ingredients.
The first ingredient is a comparison theorem for the Laplacian of the Riemannian distance
function, which allows one to bound the mean curvature of geodesic spheres from above in terms
of a lower bound on the Ricci curvature. The second ingredient is Bochner’s formula which is
used to give a lower bound on 1|grad u|

2 in terms of the lower bound on the Ricci curvature.
The gradient estimate itself then relies on a clever use of the maximum principle; see [9].

From a probabilistic point of view, it seems tempting to work with Bismut type representation
formulas for the differential of a harmonic function. Theorem 1.1 below is taken from [11],
[12] and gives a typical gradient formula; for related and more general results the reader may
consult [4]. See [10] for additional background on Bismut formulas.

Notation 1. Throughout this paper, M is an n-dimensional Riemannian manifold with 〈·, ·〉, ∇,
div = ∇·, grad , 1 = ∇ ·grad , and Ric denoting (respectively) the Riemannian metric, the Levi-
Civita covariant derivative, the divergence operator, the gradient operator, the Laplacian, and the
Ricci tensor on M . For v ∈ Tm M , let |v| := 〈v, v〉

1/2, and for x, y ∈ M , let d (x, y) denote the
Riemannian distance between x and y.

For a relatively compact open subset, D ⊂ M , let ∂ D denote the boundary of D and for
x ∈ D let

rD (x) := d(x, ∂ D) = inf
y∈∂ D

d (x, y)

be the distance of x to ∂ D. (By convention, if the boundary ∂ D is empty we set rD (x) = ∞.)
Let K = K (D) ≥ 0 be the smallest non-negative constant such that Ric (v, v) ≥ −K |v|

2 for all
v ∈ T D ⊂ T M and let k = k(D) ≥ 0 be defined by the equation K = (n − 1) k2.

Theorem 1.1 (Stochastic Representation of the Gradient). Let M be a complete Riemannian
manifold, D ⊂ M be a relatively compact open domain, and u: D → R be a bounded harmonic
function. Then, for any v ∈ Tx M and x ∈ D,

(du)xv = −E
[

u(Xτ )

∫ τ

0

〈
Θs ˙̀s, dBs

〉]
, (1.1)

where:

(1) X is a Brownian motion on M, starting at x, and

τ = inf{t > 0 : X t 6∈ D}

its time of first exit from D; the stochastic integral is taken with respect to the Brownian
motion B in Tx M, related to X by the Stratonovich equation dBt = //−1

t δX t , where
//t : Tx M → TX t M denotes the stochastic parallel transport along X.

(2) The process Θ takes values in the group of linear automorphisms of Tx M and is defined by
the pathwise covariant ordinary differential equation

dΘt = −
1
2

Ric//t
(Θt ) dt, Θ0 = idTx M ,

where Ric//t
= //−1

t ◦ Ric]
X t

◦ //t (a linear transformation of Tx M), and 〈Ric]
zu, w〉 =

Ricz(u, w) for any u, w ∈ Tz M, z ∈ M.
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(3) Finally, `t may be any adapted finite energy process taking values in Tx M such that `0 = v,
`τ = 0 and(∫ τ

0
eK t

| ˙̀t |
2 dt

)1/2

∈ L1+ε for some ε > 0,

where K = K (D) is as in Notation 1.

By making a clever choice for `t , it is possible to estimate the right hand side of Eq. (1.1) so as
to obtain sharp estimates of the form

|grad u| (x) ≤ C (rD (x) , n, K ) sup
x∈D

|u (x) |,

where C (r, n, K ) is a certain function of r > 0. See [12, Cor. 5.1] for details.
For positive harmonic functions however, one would like to estimate |grad u|(x) in terms of

u(x) only. Such estimates provide elliptic counterparts to the famous parabolic Li–Yau estimates
for solutions of the heat equation; see [6]. It is an intriguing problem how to gain such estimates
in probabilistic terms from Bismut type formulas.

In this paper we deal with pointwise estimates of grad u(x) in terms of u(x) for positive
harmonic functions u. We show that such estimates may indeed be derived by stochastic analysis
methods involving certain basic submartingales. In particular, we give a stochastic proof of the
following gradient estimate due to Cheng and Yau [3]. In addition, our approach provides an
explicit value for the constant c(n) appearing in (1.2); see (4.11) and (4.12).

Theorem 1.2. Let M be a complete Riemannian manifold of dimension n ≥ 2 and let D ⊂ M be
a relatively compact domain. Let u: D →]0, ∞[ be a strictly positive harmonic function. Then

|grad u(x)| ≤ c(n)

(
k +

1
rD(x)

)
· u(x), (1.2)

where k = k (D) and rD (x) are as in Notation 1.

Our method of proof is inspired by the stochastic approach to gradient estimates used in [12]
for harmonic functions, and in [1] for harmonic maps, where one represents, as described, the
differential by a Bismut type mean value formula which may then be evaluated in explicit terms.
However in this paper, we do not use the mean value formula directly. Roughly speaking, Bismut
type formulas are derived from certain underlying martingales by taking expectation. We sharpen
this approach by constructing analogous submartingales (see Theorem 3.1) which after taking
expectation provide Bismut type inequalities (see Eq. (3.6)). From these probabilistic inequalities
we are able to establish the pointwise estimates; see Theorem 3.2 and Corollary 3.5. Finally, as
in [12], explicit constants depend on a reasonable choice of a finite energy process which is used
for integration by parts on path space; see Theorems 4.1–4.3.

2. Some elementary geometric calculations

Let M be a (not necessarily complete) Riemannian manifold of dimension n ≥ 2, and
u: M → R be a harmonic function. For x ∈ M let ϕ(x) = |grad u|(x). For x ∈ M with
ϕ(x) 6= 0, let n(x) = ϕ(x)−1grad u(x).

If f : M → R is a smooth function, then we have the well-known formula

�grad f = grad 1 f + Ric]grad f, (2.1)
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where � = trace∇2 denotes the rough Laplacian on Γ (T M), and where by definition,

〈Ric] X, Y 〉 = Ric(X, Y ), X, Y ∈ Γ (T M).

Eq. (2.1) applied to u gives

�grad u = Ric]grad u. (2.2)

In the following lemma we calculate grad ϕ and 1ϕ in terms of n.

Lemma 2.1. Let u: M → R be a harmonic function, ϕ = |grad u|, and n = (grad u)/ϕ where it
is defined. Then on M, where ϕ does not vanish,

1ϕ = ϕ[Ric(n, n) + |∇n|
2
H.S.], (2.3)

grad log ϕ = ∇nn − (div n)n, (2.4)

and

|grad log ϕ|
2

≤ (n − 1) |∇n|
2
H.S.. (2.5)

Proof. (i) We start by proving Eq. (2.3). To this end, fix x ∈ M such that ϕ(x) 6= 0 and choose
an orthonormal frame (ei )1≤i≤n at x such that (∇ei e j )(x) = 0 for all i, j . Then, we have at x ,

�(ϕn) = (1ϕ) n + 2
〈
∇ei grad u, n

〉
∇ei n + ϕ �n. (2.6)

Since 〈n, n〉 = 1, we have 0 = v〈n, n〉 = 2〈∇vn, n〉 for any v ∈ Tx M . Thus, taking scalar
product with n makes the second term of the right hand side of (2.6) vanish and yields

1ϕ = 〈�(ϕn), n〉 − ϕ 〈�n, n〉 .

It is easily seen that

〈�n, n〉 = −|∇n|
2
H.S.,

so that with Eq. (2.2) the claimed equality for 1ϕ follows.
(ii) To establish (2.4), note that 1u = 0 can be written as

0 = div (ϕn) = dϕ (n) + ϕdiv n.

Let n[
= 〈n, ·〉 = ϕ−1 〈grad u, ·〉 = ϕ−1du. Then on one hand,

ιndn[
= ιn(−ϕ−2dϕ ∧ du) = −ϕ−2(dϕ (n) du − du (n) dϕ)

= −ϕ−2(−ϕdiv n du − ϕ|n|
2dϕ)

= div n 〈n, ·〉 + 〈grad log ϕ, ·〉 ,

while on the other hand,

ιndn[
= 〈∇nn, ·〉 − 〈∇.n, n〉 = 〈∇nn, ·〉 .

Comparing these last two equations proves Eq. (2.4).
(iii) Finally, to establish (2.5), note first that, as a consequence of (2.4),

|grad log ϕ|
2

= (div n)2
+ |∇nn|

2.
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Next, fix x ∈ M such that ϕ(x) 6= 0 and choose an orthonormal frame (e′

i )1≤i≤n at x such that
e′

n = n. Then

|grad log ϕ|
2

=

(
n−1∑
j=1

〈∇e′
j
n, e′

j 〉

)2

+ |∇nn|
2

≤ (n − 1)

n−1∑
j=1

〈∇e′
j
n, e′

j 〉
2
+ |∇e′

n
e′

n|
2

≤ (n − 1)

n∑
j=1

|∇e′
j
n|

2
= (n − 1) |∇n|

2
H.S.. �

3. Gradient estimates for positive harmonic functions

The following theorem gives the submartingale property which will be crucial for our
estimates; see Bakry [2] for related analytic results.

Theorem 3.1. Let M be a (not necessarily complete) Riemannian manifold of dimension n ≥ 2.
Let X be a Brownian motion on M and let u: M → R be a harmonic function. For any α ≥

n−2
n−1 ,

the process

Yt := |grad u|
α(X t ) exp

{
−

α

2

∫ t

0
Ric(n, n)(Xr ) dr

}
(3.1)

is a local submartingale, where by convention, Ric(n, n)(x) := 0 at points x where grad u(x)

vanishes.

Proof. First assume that grad u does not vanish on M . Then, making use of Eq. (2.3), we have

1ϕα
= αϕα−11ϕ + α(α − 1)ϕα−2

|grad ϕ|
2

= αϕα(Ric(n, n) + |∇n|
2
H.S. + (α − 1)|grad log ϕ|

2). (3.2)

Since our assumption on α is equivalent to α−1 ≥ −1/(n −1), it now follows from the estimate
in Eq. (2.5) that

|∇n|
2
H.S. + (α − 1)|grad log ϕ|

2
≥ |∇n|

2
H.S. −

1
n − 1

|grad log ϕ|
2

≥ 0.

Combining this estimate with Eq. (3.2) shows

1ϕα
≥ αϕαRic(n, n). (3.3)

An application of Itô’s lemma now implies Yt = Nt + At where

dNt = exp
{
−

α

2

∫ t

0
Ric(n, n)(Xr ) dr

}
〈//−1

t grad ϕα(X t ), dBt 〉,

and

dAt =
1
2

(
1ϕα

ϕα
(X t ) − αRic(n, n)(X t )

)
Yt dt.

(Here //t is stochastic parallel translation along X and B is the Tx M-valued Brownian motion
introduced in Theorem 1.1.) By the inequality (3.3), dAt ≥ 0 and therefore, Yt is a local

Please cite this article as: Marc Arnaudon et al., Gradient estimates for positive harmonic functions by stochastic
analysis, Stochastic Processes and their Applications (2006), doi:10.1016/j.spa.2006.07.002.



ARTICLE  IN  PRESS
6 M. Arnaudon et al. / Stochastic Processes and their Applications ( ) –

submartingale, which completes the proof under the assumption that ϕ never vanishes on M .
This assumption however is easily removed by letting Ric(n, n)(x) = 0 in (3.1) at points x
where grad u(x) = 0.

Indeed, let [0, ζ [ be the maximal interval on which our Brownian motion X is defined. Fixing
ε > 0, we consider the partition

0 = τ0 ≤ σ1 ≤ τ1 ≤ σ2 ≤ τ2 ≤ · · ·

of [0, ζ [ defined by

σi = inf{t ≥ τi−1 : Yt ≤ ε/2} and τi = inf{t ≥ σi : Yt ≥ ε}, i ≥ 1.

Now consider Y ε
t := Yt ∨ ε which is seen to be a local submartingale on each of the sub-

intervals of our partition. Indeed, on [σi , τi [ the process is constant, Y ε
≡ ε, while on [τi−1, σi [

it is a local submartingale, since there Y itself is a local submartingale by Itô’s formula, as shown
above, using the fact that X |[τi−1, σi [ takes its values in {x ∈ M : grad u(x) 6= 0}. Now since
each Y ε is a local submartingale, Yt = limε↓0 Y ε

t itself is a local submartingale. �

Remark 2. In (3.1) we adopted the convention that Ric(n, n)(x) = 0 at points x where grad u(x)

vanishes. It should be noted that any other convention also gives a local submartingale as well.

Remark 3. In Appendix we provide a generalization of Eq. (3.3), along with a unified proof of
the submartingale property of Yt in (3.1). The argument there directly takes care of the possible
vanishing of the gradient of u and does not require the case distinction made in the proof of
Theorem 3.1.

Theorem 3.2. Let M be a Riemannian manifold of dimension n ≥ 2 and let u: M → R be
a harmonic function. Further let α ∈ [

n−2
n−1 , 2[ with α > 0, and p > 1, q > 1 such that

p−1
+ q−1

= 1. For x ∈ M, let X be a Brownian motion on M starting at x, and denote by τ

the time of first exit of X from some relatively compact neighbourhood D of x. Further assume
that ρ is a bounded stopping time with ρ ≤ τ and that `t is a real-valued decreasing, adapted
process with C1 paths such that `0 = 1, `ρ = 0. Then

|grad u|(x) ≤ I1(α, p) · I2(α, p) (3.4)

where

I1(α, p) = E

[(∫ ρ

0
|grad u|

2(Xs) ds

)αp/2
]1/αp

and

I2(α, p) = E

[(∫ ρ

0
exp

{
−α

2 − α

∫ s

0
Ric(n, n)(Xr ) dr

}
| ˙̀s |

2/(2−α) ds

)(2−α)q/2
]1/αq

.

Proof. Let Yt be the process defined in Eq. (3.1). Under our assumptions Ŷt := Yρ∧t is a bounded
non-negative local submartingale which according to Doob and Meyer may be decomposed as
Ŷt = Ŷ0 + N̂t + Ât where N̂0 = Â0 = 0; N̂ is the local martingale part, and Â is the drift part.
We further assert that Ŷt is a L2-submartingale in the sense that

‖N̂∞‖
2
2 = E[〈N̂ , N̂ 〉∞] < ∞ and ‖ Â∞‖2 < ∞. (3.5)
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To verify the estimates in (3.5), let (Tn)n≥0 be an increasing sequence of stopping times
converging almost surely to +∞, such that each stopped process Ŷ n

:= Ŷ Tn is a submartingale.
Writing N̂ n

= N̂ Tn , Ân
= ÂTn , we have by Itô’s formula

〈N̂ n, N̂ n
〉t = (Ŷ n

t )2
− (Ŷ n

0 )2
− 2

∫ t

0
Ŷ n

s dŶ n
s ≤ R2

− 2
∫ t

0
Ŷ n

s dN̂ n
s

where R is an upper bound for Ŷ . (Here we already used the fact that Ŷ ≥ 0 and that Â is non-
decreasing.) Taking expectation yields E[〈N̂ n, N̂ n

〉∞] ≤ R2, from which the first estimate in
(3.5) follows by monotone convergence. To bound the L2-norm of the total variation of Â, since
Â is non-decreasing, it suffices to bound ‖ Â∞‖2. But since Ŷ∞ := limt→∞ Ŷt exists almost
surely, it follows that

‖ Â∞‖2 ≤ ‖Ŷ∞ − Ŷ0‖2 + ‖N̂∞‖2 ≤ R + ‖N̂∞‖2 < ∞.

Let

St := Yt`t −

∫ t

0
Ys ˙̀s ds.

Since S0 = Y0 = ϕα(x) and dSt = `t dYt ,

St = ϕα(x) +

∫ t

0
`sdYs

is a local submartingale. Moreover, since ` is bounded and

Sρ∧t = ϕα(x) +

∫ t

0
`s dŶs,

it is clear that Sρ∧t is also a L2-submartingale. In particular we have

ϕα(x) = S0 ≤ E
[
Sρ

]
= −E

[∫ ρ

0
Ys ˙̀s ds

]
= E

[∫ ρ

0
Ys | ˙̀s | ds

]
.

Combining this inequality with the definition of Y in Eq. (3.1) implies

ϕα(x) ≤ E
[∫ ρ

0
ϕα(Xs) exp

{
−

α

2

∫ s

0
Ric(n, n)(Xr ) dr

}
| ˙̀s | ds

]
. (3.6)

Assuming α < 2, an application of Hölder’s inequality shows

ϕ(x) ≤ E

[(∫ ρ

0
ϕ2(Xs) ds

)α/2

×

(∫ ρ

0
exp

{
−

α

2 − α

∫ s

0
Ric(n, n)(Xr ) dr

}
| ˙̀s |

2/(2−α) ds

)(2−α)/2
]1/α

. (3.7)

One more application of Hölder’s inequality to Eq. (3.7) then gives Eq. (3.4). �

To estimate I1(α, p) we use the following lemma.
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Lemma 3.3. For β ∈]0, 1[, let

γβ = 2−1/2

Γ
(

1−β
2

)
Γ
(

1
2

)
1/β

= 2−1/2

Γ
(

1−β
2

)
√

π

1/β

. (3.8)

Then for every positive local martingale Z with infinite lifetime and deterministic starting point
Z0 = z, we have

E[〈Z〉
β/2
∞ ]

1/β
≤ γβ z,

where 〈Z〉∞ = limt↑∞ 〈Z〉t and 〈Z〉t is the quadratic variation process associated with Z.

Proof. Without loss of generality we may assume that z = 1. Moreover, applying the
Dambis–Dubins–Schwarz Theorem (cf. [7] or [8]), by “enriching” the filtered probability space
if necessary, we may assume there exists a Brownian motion B starting at 0 such that

Z t = 1 + B〈Z〉t .

Let T := inf{t ≥ 0, 1 + Bt = 0}. By the reflection principle,

P {Bt ≤ −1} =
1
2

P {T ≤ t} for all t ≥ 0,

and the scaling property of Brownian motion, we conclude that T has the same law as 1/B2
1 .

Consequently,

E[T β/2
]
1/β

= E[|B1|
−β

]
1/β

= γβ .

Moreover, we have 〈Z〉∞ ≤ T a.s., so that

E[〈Z〉
β/2
∞ ]

1/β
≤ E[T β/2

]
1/β

= γβ . �

To exploit estimate (3.4) we now choose α ∈ [
n−2
n−1 , 1[ if n ≥ 3, α ∈]0, 1[ if n = 2, and p > 1

such that β := αp < 1.

Proposition 3.4 (Gradient Estimate; General Form). Let M be a Riemannian manifold of
dimension n ≥ 2 and D ⊂ M be a relatively compact domain. For x ∈ D, let X be Brownian
motion starting at x, τ be the time of first exit of X from D, and ρ be a bounded stopping
time such that ρ ≤ τ . Assume that u: M →]0, ∞[ is a positive harmonic function and let
n = grad u/|grad u| when grad u 6= 0 and n = 0 otherwise. Further, let α ∈ [

n−2
n−1 , 1[∩]0, 1[ and

q > 1 be such that β :=
q

q−1 α < 1. Then, for each x ∈ D, the following estimate holds:

|grad log u|(x)

≤ γβ E

[(∫ ρ

0
exp

{
−

α

2 − α

∫ s

0
Ric(n, n)(Xr ) dr

}
| ˙̀s |

2/(2−α) ds

)(2−α)q/2
]1/αq

(3.9)

where γβ is given by (3.8) and the process `s is chosen as in Theorem 3.2.

Proof. Lemma 3.3 applied to Z t := u(Xρ
t ) gives

E

[(∫ ρ

0
ϕ2(Xs) ds

)β/2
]1/β

≤ γβ u(x). (3.10)
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Bounding the term I1(α, p) in estimate (3.4) by means of (3.10), and dividing by u(x), the
claimed inequality follows from (3.4). �

Corollary 3.5. Keeping the assumptions of Proposition 3.4, if u: M →]0, ∞[ is a positive
harmonic function, then

|grad log u|(x) ≤ γβ E

[(∫ ρ

0
exp

{
αK s

2 − α

}
| ˙̀s |

2/(2−α) ds

)(2−α)q/2
]1/αq

, (3.11)

where Ric ≥ −K = −K (D) as in Notation 1.

4. Explicit constants

In order to estimate the right hand sides in Eqs. (3.9) and (3.11), we are going to use
the methods developed in [12]; see especially [12, Corollary 5.1]. Throughout this section the
assumptions on α and q from Proposition 3.4 will be preserved.

Fix x ∈ M and let D ⊂ M be a relatively compact open neighbourhood of x in M with smooth
boundary. Let f ∈ C2(D̄) be a positive function on D which is bounded by 1 and vanishing on
∂ D and let X t be a Brownian motion on M starting at x ∈ D. Define

T (s) :=

∫ s

0
f −2(X t ) dt, s < τD, and

ρ(t) := inf {s ≥ 0 : T (s) ≥ t} , (4.1)

where τD is the time of first exit of X from D. Alternatively we may express ρ as

ρ (t) =

{
T −1 (t) if t ≤ T (τD)

∞ if t > T (τD) ,

from which we see that

ρ̇ (t) =
1

T ′ (ρ (t))
= f 2(Xρ(t)) for t < T (τD) .

In particular it follows that ρ(t) ≤ t for t < T (τD). By [12, Proposition 2.3], the process
X ′

t := Xρ(t) is a diffusion with generator L ′
:=

1
2 f 21, and infinite lifetime and as a consequence,

T (τD) = ∞ a.s.
The idea now is to use the fact that T (t) ↑ ∞, as t ↑ τD , to construct the required finite

energy process `s meeting the crucial conditions `0 = 1 and `ρ = 0. More precisely, we fix
t > 0 (ρ(t) will be our ρ in Corollary 3.5) and let

h0(s) :=

∫ s

0
f −2(Xr ) 1{r<ρ(t)} dr = T (ρ (t) ∧ s) .

Hence h0(s) = h0(ρ(t)) = T (ρ(t)) = t for s ≥ ρ(t). Further let h1 ∈ C1([0, t], R)

be a function with non-positive derivative such that h1(0) = 1 and h1(t) = 0, and define
`s := (h1 ◦ h0)(s). Since `s has non-positive derivative, | ˙̀s | ds is a probability measure on
[0, ρ(t)].

Theorem 4.1 (Gradient Estimate; Specific Form). Let M be a Riemannian manifold of
dimension n ≥ 2, and D be a relatively compact open domain in M with smooth boundary
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∂ D. Let f ∈ C2(D̄) be strictly positive on D and vanish on ∂ D, and K = K (D) ≥ 0 be chosen
so that Ric ≥ −K as in Notation 1. Further suppose that 0 < α ∈ [

n−2
n−1 , 1[ and q > 1/ (1 − α).

Then, letting p = q/ (q − 1) be the conjugate exponent of q, for any positive harmonic function
u: M →]0, ∞[ and any x ∈ D, we have

|grad log u|(x) ≤
1

f (x)

Γ
(

1−αp
2

)
Γ
(

1
2

)
1/αp √

C(α, K , q, f ) (4.2)

where

C(α, K , q, f ) := sup
y∈D

{K f 2(y) − ( f 1 f )(y) + (αq + 1)|grad f |
2(y)}.

Proof. Our assumptions on α imply that pα < 1 and q > 2/ (2 − α). Since the inequality in
Eq. (4.2) is invariant under scaling f by a positive constant, we may assume without loss of
generality that f is bounded above by 1. We want to estimate I 1/αq where

I := E

(∫ ρ(t)

0
exp

{
αK s

2 − α

}
| ˙̀s |

2/(2−α) ds

)(2−α)q/2
 .

By means of Jensen’s inequality, we get

I = E

(∫ ρ(t)

0
exp

{
αK

2 − α
s

}
| ˙̀s |

α/(2−α)
| ˙̀s | ds

)(2−α)q/2


≤ E

[∫ ρ(t)

0
exp

{
αK q

2
s

}
| ˙̀s |

qα/2
| ˙̀s | ds

]

= E

[∫ ρ(t)

0
exp

{
αK q

2
s

}
| ˙̀s |

(qα+2)/2 ds

]

= E

[∫ ρ(t)

0
exp

{
αK q

2
s

}
|ḣ1(h0(s))|

(qα+2)/2
|ḣ0(s)|

(qα+2)/2 ds

]

= E

[∫ ρ(t)

0
exp

{
αK q

2
s

}
|ḣ1(h0(s))|

(qα+2)/2 f −qα−2(Xs) ds

]

= E
[∫ t

0
exp

{
αK q

2
ρ(r)

}
|ḣ1(r)|(qα+2)/2 f −qα(X ′

r ) dr

]
=

∫ t

0
|ḣ1(r)|(qα+2)/2 E

[
exp

{
αK q

2
ρ(r)

}
f −qα(X ′

r )

]
dr. (4.3)

Let Zs = eαK qρ(s)/2 f −αq(X ′
s). Writing

m
= for equality up to a differential of a local martingale,

we have

dZs
m
=

1
2

Zs(αK qρ′(s) + f 2(X ′
s)(1 f −αq)(X ′

s))ds

m
=

1
2

Zs(αK q f 2(X ′
s) − αq( f 1 f )(X ′

s) + αq(αq + 1)|grad f |
2(X ′

s)) ds
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which implies

dZs ≤ dMs + C1 Zs ds (4.4)

where M is a local martingale and

C1 :=
1
2

sup
x∈D

{αK q f 2(x) − αq( f 1 f )(x) + αq(αq + 1)|grad f |
2(x)}.

Let Dn ⊂ D be an increasing sequence of relatively compact open subsets of D such that x ∈ Dn
and ∪Dn = D. If σn is the time of first exit of X ′ from Dn , then Mσn is a martingale, E[Zσn

s ] < ∞

for all s, and from Eq. (4.4),

E[Zσn
s ] ≤ C1

∫ s

0
E[Zσn

t ] dt.

It now follows by an application of Gronwall’s lemma along with Fatou’s lemma that

E[Zs] ≤ lim inf
n→∞

EZσn
s ≤ Z0eC1s

= f −αq(x)eC1s .

Using this estimate in Eq. (4.3) gives

I 1/αq
≤

(∫ t

0
f −αq(x) eC1s

|ḣ1(s)|
(qα+2)/2 ds

)1/αq

=
1

f (x)

(∫ t

0
eC1s

|ḣ1(s)|
(qα+2)/2 ds

)1/αq

=:
1

f (x)
J̄ (t, h1) .

For a > 0, let J (t, a) := J̄ (t, h1) where h1(s) := 1 −
1−e−as

1−e−at for s ∈ [0, t]. It then follows by
Corollary 3.5 (with ρ = ρ (t) ≤ τ ∧ t ≤ τ ) that

|grad log u|(x) ≤ γβ

1
f (x)

J (t, a) (4.5)

where, by a simple computation,

J (t, a) =

(
a

1 − e−at

)(qα+2)/(2αq)
(

1 − e(C1−(qα+2)a/2)t

(qα + 2)a/2 − C1

)1/αq

.

Now suppose that a > 2C1/(qα + 2). Then

inf
t>0

J (t, a) ≤ lim
t→∞

J (t, a) =

(
a(qα+2)/2

(qα + 2)a/2 − C1

)1/αq

and the minimum in a > 2C1/(qα + 2) of the latter expression is
√

2C1/αq =
√

C(α, K , q, f )

which is attained at a = 2C1/αq . Consequently we have shown

inf
a>0

inf
t>0

J (t, a) ≤
√

C(α, K , q, f )

which combined with Eq. (4.5) (recall that β = αp and γβ is given as in Eq. (3.8)) gives the
estimate in Eq. (4.2). �

Remark 4. Note that C(α, K , q, f ) in Theorem 4.1 differs from the constant c1( f )/2 in [12]
only by the coefficient, αq + 1, which in [12] was the number “3”.
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Remark 5. Let M be a complete Riemannian manifold, x ∈ M , R (y) := d (x, y), Cut (x) ⊂ M
denote the cut-locus of x , and for r > 0 let D = Br (x) (the open ball about x of radius r ) and
define f : D → R by

f (y) := cos
(

π

2
r

R(y)

)
. (4.6)

It is shown in the proof of corollary 5.1 in [12] that

|grad f | ≤
π

2r
and − 1 f ≤

π
√

K (n − 1)

2r
+

π2n

4r2 on D \ Cut (x) .

Hence it follows that on D \ Cut (x),

K f 2
− ( f 1 f ) + (αq + 1)|grad f |

2
≤ C(α, q, r)

where

C(α, q, r) =
π2

4
n + αq + 1

r2 +
π

2

√
K (n − 1)

r
+ K

=
π2

4
n + αq + 1

r2 +
π

2
k (n − 1)

r
+ k2 (n − 1) .

Here K = (n − 1) k2 is as in Notation 1.

Now suppose that r ∈]0, ιx [, where ιx = d (x, Cut (x)) is the distance from x to Cut (x). In
this case D is precompact (because M is complete), ∂ D is smooth, and f ∈ C2

(
D̄
)

with f > 0
on D and f = 0 on ∂ D. Hence by Theorem 4.1, if u is a positive harmonic function defined on
a neighbourhood of D̄, then for all y ∈ D,

|grad log u|(y) ≤

(
cos

(
πd (x, y)

2r

))−1
Γ

(
1−αp

2

)
Γ
(

1
2

)
1/αp √

C(α, q, r),

where α, q , and p are as in Theorem 4.1. In particular, taking y = x in this inequality shows

|grad log u|(x) ≤

Γ
(

1−αp
2

)
Γ
(

1
2

)
1/αp √

C(α, q, r). (4.7)

When r ≥ ιx , the function d2(x, ·) is no longer smooth on Br (x) and the boundary of Br (x)

need not be smooth either. Hence, it is not permissible to apply Theorem 4.1 directly to obtain the
estimate in (4.7). Nevertheless, using the methods in the proof of [12, Corollary 5.1] the estimate
in Eq. (4.7) still holds for arbitrary r > 0.

Theorem 4.2. Let α, q, and p be as in Theorem 4.1 and continue with the notation used in
Remark 5. Then for any r > 0 and positive harmonic function u: Br (x) →]0, ∞[, the estimate
in Eq. (4.7) holds.

Proof. Fix x ∈ M and let R (y) := d (x, y). By Kendall [5, Corollary 1.2], there exists a
continuous adapted increasing process, L t , such that

d (R (X t )) = 〈grad R (X t ) , //t dBt 〉 +
1
2

1R (X t ) dt − dL t (4.8)
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where //t and Bt are as in Theorem 1.1, and grad R (y) and 1R (y) are interpreted as being zero
at points y ∈ M where R fails to be smooth. In particular, if g ∈ C2 (R), then by Eq. (4.8) and
Itô’s formula we have

d (g(R(X t ))) = g′ (R (X t ))

(
〈grad R (X t ) , //t dBt 〉 +

1
2

1R (X t ) dt − dL t

)
+

1
2

g′′ (R (X t )) |grad R (X t ) |
2dt. (4.9)

Now at points where R is smooth,

1 (g (R)) = ∇ · (g′ (R) ∇ R) = g′ (R) 1R + g′′ (R) |grad R|
2.

Hence Eq. (4.9) may be written as

d (g(R(X t ))) = 〈grad (g ◦ R) (X t ) , //t dBt 〉 +
1
2

1(g ◦ R)(X t ) dt − g′ (R (X t )) dL t

with the convention that 1(g ◦ R) = 0 and grad (g ◦ R) = 0 at points where R is not smooth.
Let f be defined as in Eq. (4.6), ρ (s) be as in Eq. (4.1), and X ′

s = Xρ(s) be as above, then

d(g(R(X ′
s)))

m
=

1
2

f 2(X ′
s)1 (g (R)) (Xρ(s))ds − g′(R(X ′

s))dLρ(s). (4.10)

Let g(τ ) := (cos( π
2r τ))−αq and, as in the proof of Theorem 4.1, let

Zs = eαK qρ(s)/2 f −αq(X ′
s) = eαK qρ(s)/2 g(X ′

s).

Then, using Eq. (4.10) and the convention that 1 f (y) = 0 and grad f (y) = 0 at points y ∈ D
where R is not smooth, we have

dZs
m
=

1
2

Zs(αK qρ′(s) + f 2(X ′
s)(1 f −αq)(X ′

s))ds − eαK qρ(s)/2g′(R(X ′
s))dLρ(s)

m
≤

1
2

Zs(αK q f 2(X ′
s) − αq ( f 1 f ) (X ′

s) + αq (αq + 1) |grad f (X ′
s)|

2)ds,

where we have used −eαK qρ(s)/2g′(R(X ′
s)) ≥ 0 and Lρ(s) is increasing in s. With this

observation, the remainder of the proof of Theorem 4.1 starting with Eq. (4.4) goes through
without any further modification. Hence the statement of Theorem 4.1 holds for D = Br (x) and
f = cos (π R/ (2r)). Therefore the argument used to arrive at Eq. (4.7) is still valid provided u is
a positive harmonic function defined on a neighbourhood of B̄r (x). A simple limiting argument
shows that Eq. (4.7) is still valid even when u is a positive harmonic function defined only on
Br (x). �

Theorem 4.3 (Gradient Estimate). Let Mn be a complete Riemannian manifold, n ≥ 2, and let
D ⊂ M be a relatively compact domain, k = k (D) ≥ 0 be chosen so that Ric ≥ −(n − 1) k2,
and rD(x) = dist(x, ∂ D) as in Notation 1. If u: D →]0, ∞[ is a strictly positive harmonic
function, then

|grad u(x)| ≤ c(n)

(
k +

1
rD(x)

)
u(x) for all x ∈ D,

where

c (2) :=
π

2

√
3
2

exp
{
−Γ ′

(
1
2

)/
Γ
(

1
2

)}
, (4.11)
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and for n ≥ 3,

c (n) :=
π

2

Γ
(

1
2(2n−3)

)
Γ
(

1
2

)
(n−3/2)/(n−2)√

3 (n − 1) /2. (4.12)

As already mentioned, Theorem 4.3 is originally due to Cheng and Yau [3]. Our approach
however gives an explicit value for the constant c(n).

Proof. Let r = rD (x). If n = 2, let α ↓ 0 in Eq. (4.7) to conclude that

|grad log u|(x) ≤
1

√
2

exp
{
−Γ ′

(
1
2

)/
Γ
(

1
2

)} √
π2

4
3

r2 +
π

2
k

r
+ k2.

If n ≥ 3, let α =
n−2
n−1 , and q =

2
1−α

= 2 (n − 1). Then again from Eq. (4.7) we find

|grad log u|(x) ≤ γαp

√
(n − 1)

(
3π2

4
1

r2 +
π

2
1
r

k + k2

)
where

γαp =
1

√
2

Γ
(

1
2(2n−3)

)
Γ
(

1
2

)
(n−3/2)/(n−2)

.

This completes the proof of the theorem in view of the following simple estimate:

3π2

4
1

r2 +
π

2
k

r
+ k2

≤
3π2

4

(
1
r

+ k

)2

. �

Corollary 4.4 (Gradient Estimate on Geodesic Balls). Let M be a complete Riemannian
manifold with Ric ≥ −(n − 1)k2, k ≥ 0. If u is a positive harmonic function on a geodesic
ball Br (x) ⊂ M, then

sup
Br/2(x)

|grad u|

u
≤ c(n)

(
k +

2
r

)
.

In particular, if Ric ≥ 0 then any positive harmonic function u on M is constant.

Corollary 4.5 (Elliptic Harnack Inequality). Let M be a complete Riemannian manifold with
Ric ≥ −(n−1)k2. Suppose that u is a positive harmonic function on a geodesic ball Br (x) ⊂ M.
Then

sup
Br/2(x)

u ≤ exp (c(n) (2 + kr)) inf
Br/2(x)

u. (4.13)

Proof. By the gradient estimate, we have supBr/2(x) |grad u|/u ≤ c(n) (k + 2/r). Let x1, x2 ∈

B̄r/2(x) be such that supBr/2(x) u = u(x1) and infBr/2(x) u = u(x2). Then let σ : [0, 1] →
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B̄r/2(x) be a parametrization of the path following a length minimizing geodesic from x2 to
x concatenated with a length minimizing geodesic joining x to x1. Then

log
u(x1)

u(x2)
=

∣∣∣∣∣
∫ 1

0

d log u(σ (s))

ds
ds

∣∣∣∣∣
≤

∫ 1

0
|grad log u|(σ (s))|σ ′ (s) | ds

≤ c(n)

(
k +

2
r

)∫ 1

0
|σ ′ (s) | ds

≤ c(n)

(
k +

2
r

)
· r

from which Eq. (4.13) follows. �
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Appendix. Expansion on the submartingale proof

We start by generalizing inequality (3.3).

Lemma A.1. Let ε ≥ 0, u: M → R be a harmonic function,

M ′
= {x ∈ M : grad u (x) 6= 0} , ϕε =

√
|grad u|2 + ε2,

and

nε (x) := ϕ−1
ε grad u = (|grad u|

2
+ ε2)−1/2grad u,

with the convention that n0 (x) := 0 if x 6∈ M ′. Then for α ∈ [
n−2
n−1 , 1],

1ϕα
ε ≥ αϕα

ε Ric (nε, nε) (A.1)

where (A.1) holds for all x ∈ M if ε > 0 and for all x ∈ M ′ if ε = 0.

Proof. Suppose either ε > 0 or ε = 0 and grad u (x) 6= 0. We begin by observing that

1ϕα
ε = αϕα−1

ε 1ϕε + α (α − 1) ϕα−2
ε |grad ϕε|

2

= αϕα
ε

{
1ϕε

ϕε

+ (α − 1) |grad log ϕε|
2
}

. (A.2)

Set fε (s) = (ε2
+ s)1/2, so that ϕε (x) = fε

(
|grad u (x) |

2
)
. Then

f ′
ε (s) =

1
2
(ε2

+ s)−1/2 and f ′′
ε (s) = −

1
4
(ε2

+ s)−3/2
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and for v ∈ T M ,

vϕε = 2 f ′
ε (|grad u|

2)〈∇vgrad u, grad u〉

= ϕ−1
ε 〈∇vgrad u, grad u〉

= 〈∇vgrad u, nε〉 = 〈∇nε grad u, v〉 (A.3)

where in the last equality we have used the fact that ∇ has zero torsion. From this equation it
follows that

grad ϕε = ∇nε grad u = ∇nε (ϕεnε) = nεϕε · nε + ϕε∇nεnε, (A.4)

and in particular that

grad log ϕε = nε log ϕε · nε + ∇nεnε. (A.5)

Since

div nε = div (ϕ−1
ε grad u) = −ϕ−2

ε 〈grad ϕε, grad u〉 + ϕ−1
ε 1u

= − 〈grad log ϕε, nε〉 = −nε log ϕε,

Eq. (A.5) may be written as

grad log ϕε = ∇nεnε − (div nε) nε. (A.6)

From Eq. (A.3) we also have

∇
2
v⊗vϕε = 〈∇

2
v⊗vgrad u, nε〉 + 〈∇vgrad u, ∇vnε〉

= 〈∇
2
v⊗vgrad u, nε〉 + 〈∇v (ϕεnε) , ∇vnε〉

= 〈∇
2
v⊗vgrad u, nε〉 + vϕε · 〈nε, ∇vnε〉 + ϕε 〈∇vnε, ∇vnε〉

which upon summing on v running through an orthonormal frame shows

1ϕε = 〈�grad u, nε〉 + 〈nε, ∇grad ϕεnε〉 + ϕε|∇nε|
2
H.S.

= 〈grad 1u + Ric#grad u, nε〉 + 〈nε, ∇grad ϕεnε〉 + ϕε|∇nε|
2
H.S.

= 〈Ric#
∇u, nε〉 + 〈nε, ∇grad ϕεnε〉 + ϕε|∇nε|

2
H.S.

= ϕε{Ric (nε, nε) + 〈nε, ∇grad log ϕεnε〉 + |∇nε|
2
H.S.}. (A.7)

When ε 6= 0 and grad u (x) = 0, we see from Eq. (A.7) that

1ϕε (x) = ϕε (x) |∇nε|
2
H.S. (x)

and from Eq. (A.4) that (grad log ϕε) (x) = 0. Combining these identities with Eq. (A.2) gives

(1ϕα
ε ) (x) = αϕα

ε (x) |∇nε|
2
H.S. (x) ≥ αϕα

ε (x) Ric (nε, nε) (x) = 0. (A.8)

This shows that Eq. (A.1) is valid for x 6∈ M ′. To finish the proof it suffices to show that Eq.
(A.1) is valid for all x ∈ M ′.

So for the rest of the proof we will assume that x ∈ M ′. Since 〈n0, n0〉 = 1 on M ′,

0 = v1 = 2 〈∇vn0, n0〉 for all v ∈ Tx M and x ∈ M ′. (A.9)

Taking ε = 0 in Eq. (A.7) gives

1ϕ0 = ϕ0(Ric (n0, n0) + |∇n0|
2
H.S.) (A.10)
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and from Eqs. (A.6) and (A.9) we find

|grad log ϕ0|
2

= |∇n0n0|
2
+ (div n0)

2 (A.11)

on M ′. Let Fε (s) := (s2
+ ε2)α/2 so that ϕα

ε = Fε (ϕ0) and by elementary calculus,

F ′
ε(s) = αs(s2

+ ε2)−1 Fε(s) and

F ′′
ε (s) = α(s2

+ ε2)−2(ε2
− (1 − α)s2)Fε(s).

Therefore we find

1ϕα
ε = 1Fε(ϕ0) = div (F ′

ε (ϕ0) grad ϕ0) = F ′
ε (ϕ0) 1ϕ0 + F ′′

ε (ϕ0) |grad ϕ0|
2

= αϕ0(ϕ
2
0 + ε2)−1 Fε (ϕ0) 1ϕ0 + α(ϕ2

0 + ε2)−2(ε2
− (1 − α) ϕ2

0)Fε (ϕ0) |grad ϕ0|
2

≥ αϕα
ε {ϕ0(ϕ

2
0 + ε2)−11ϕ0 − (ϕ2

0 + ε2)−2 (1 − α) ϕ2
0 |grad ϕ0|

2
}

= αϕα
ε

ϕ2
0

ϕ2
0 + ε2

{
1ϕ0

ϕ0
− (1 − α)

ϕ2
0

ϕ2
0 + ε2

|grad log ϕ0|
2

}

≥ αϕα
ε

ϕ2
0

ϕ2
0 + ε2

{
1ϕ0

ϕ0
− (1 − α) |grad log ϕ0|

2
}

= αϕα
ε

ϕ2
0

ϕ2
0 + ε2

{Ric (n0, n0) + |∇n0|
2
H.S. − (1 − α) |grad log ϕ0|

2
} (A.12)

where in the last equality we have used Eq. (A.10).
Letting {ei }

n
i=1 be an orthonormal frame such that en = n0 shows

(div n0)
2

=

(
n∑

i=1

〈
∇ei n0, ei

〉)2

=

(
n−1∑
i=1

〈
∇ei n0, ei

〉)2

≤ (n − 1)

n−1∑
i=1

〈
∇ei n0, ei

〉2
≤ (n − 1)

n−1∑
i=1

|∇ei n0|
2

and therefore, using Eq. (A.11),

|grad log ϕ0|
2

= |∇n0n0|
2
+ (div n0)

2

≤ (n − 1)

n−1∑
i=1

|∇ei n0|
2
+ |∇en n0|

2
≤ (n − 1) |∇n0|

2
H.S..

Combining this estimate with Eq. (A.12) shows

1ϕα
ε ≥ αϕα

ε

ϕ2
0

ϕ2
0 + ε2

{Ric (n0, n0) + (1 − (1 − α) (n − 1)) |∇n0|
2
H.S.}. (A.13)

Taking α ≥
n−2
n−1 (which is equivalent to 1 − (1 − α) (n − 1) ≥ 0) in Eq. (A.13) implies

1ϕα
ε ≥ αϕα

ε

ϕ2
0

ϕ2
0 + ε2

Ric (n0, n0) = αϕα
ε Ric (nε, nε) .

Combining this estimate with that in Eq. (A.8) proves inequality (A.1). �
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Theorem A.2. We keep the notation and the assumptions of Theorem 3.1. For all α ∈ [
n−2
n−1 , 1],

Yt := |grad u (X t ) |
α exp

{
−

α

2

∫ t

0
Ric (n, n) (Xs) ds

}
is a local submartingale, where

n (x) := n0 (x) =

{
|grad u (x) |

−1grad u (x) if grad u (x) 6= 0
0 if grad u (x) = 0.

Proof. Let ε > 0; then by Itô’s formula along with Lemma A.1,

dϕα
ε (X t ) = 〈(grad ϕα

ε ) (X t ) , //t dBt 〉 +
1
2
(1ϕα

ε ) (X t ) dt

= dMε
t +

α

2
ϕα

ε (X t ) Ric (nε, nε) (X t ) dt + ρε
t dt

where Mε denotes the local martingale part and ρε
t is a non-negative process. In particular this

implies that

d
(

exp
{
−

α

2

∫ t

0
Ric (nε, nε) (Xs) ds

}
ϕα

ε (X t )

)
= exp

{
−

α

2

∫ t

0
Ric (nε, nε) (Xs) ds

}
dMε

t + exp
{
−

α

2

∫ t

0
Ric (nε, nε) (Xs) ds

}
ρε

t dt.

So if ε > 0 and α ∈ [
n−2
n−1 , 1], then

Yt (ε) := (|grad u (X t ) |
2
+ ε2)α/2 exp

{
−

α

2

∫ t

0
Ric (nε, nε) (Xs) ds

}
is a local submartingale. If τ is the time of first exit of X t from a precompact open subset of M ,
Y τ

t (ε) is an honest submartingale. If G is a bounded non-negative Fs-measurable function, then

E[G
(
Y τ

t (ε) − Y τ
s (ε)

)
]

= E
[

G

(∫ t∧τ

s∧τ

exp
{
−

α

2

∫ r

0
Ric (nε, nε) (Xs) ds

}
ρε

r dr

)]
≥ 0.

Using the dominated convergence theorem, we may let ε ↓ 0 in the above inequality to conclude

E[G
(
Y τ

t − Y τ
s

)
] ≥ 0

which completes the proof. �
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