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1 Introduction

The aim of this paper is to study spaces of holomorphic functions on an infinite-
dimensional Heisenberg like group based on a complex abstract Wiener space. In
particular, we prove Taylor, skeleton, and holomorphic chaos isomorphism theorems.
The tools we use come from properties of heat kernel measures on such groups which
have been constructed and studied in [4]. We will state the main results of our paper
and then conclude this introduction with a brief discussion of how our results relate
to the existing literature.

1.1 Statements of the main results

1.1.1 The Heisenberg like groups and heat kernel measures

The basic input to our theory is a complex abstract Wiener space, (W, H, µ), as in
Notation 2.4 which is equipped with a continuous skew-symmetric bi-linear form
ω : W × W → C as in Notation 3.1. Here and throughout this paper, C is a finite
dimensional complex inner product space. The space, G := W × C, becomes an
infinite-dimensional “Heisenberg like” group when equipped with the following mul-
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tiplication rule

(w1, c1) · (w2, c2) =
(

w1 + w2, c1 + c2 + 1

2
ω (w1, w2)

)
. (1.1)

A typical example of such a group is the Heisenberg group of a symplectic vector
space, but in our setting we have an additional structure of an abstract Wiener space
to carry out the heat kernel measure analysis.

The group G contains the Cameron–Martin group, GC M := H × C, as a sub-
group. The Lie algebras of G and GC M will be denoted by g and gC M respectively
which, as sets, may be identified with G and GC M respectively—see Definition 3.2,
Notation 3.3, and Proposition 3.5 for more details.

Let b(t) = (B(t), B0(t)) be a Brownian motion on g associated to the natural
Hilbertian structure on gC M as described in Eq. (4.1). The Brownian motion {g(t)}t≥0
on G is then the solution to the stochastic differential equation,

dg(t) = g(t) ◦ db(t) with g(0) = e = (0, 0). (1.2)

The explicit solution to Eq. (1.2) may be found in Eq. (4.2). For each T > 0 we
let νT := Law(g(T )) be the heat kernel measure on G at time T as explained in
Definitions 4.1 and 4.2. Analogous to the abstract Wiener space setting, νT is left
(right) quasi-invariant by an element, h ∈ G, iff h ∈ GC M , while νT (GC M ) = 0, see
Theorem 4.5, Proposition 4.6, and [4, Proposition 6.3].

In addition to the above infinite-dimensional structures we will need corresponding
finite dimensional approximations. These approximations will be indexed by Proj(W )

which we now define.

Notation 1.1 Let Proj(W ) denote the collection of finite rank continuous linear maps,
P : W → H, such that P|H is an orthogonal projection. (Explicitly, P must be
as in Eq. (2.17) below.) Further, let G P := PW × C (a subgroup of GC M ) and
πP : G → G P be the projection map defined by πP (w, c) := (Pw, c).

To each P ∈ Proj(W ), G P is a finite dimensional Lie group. The Brownian motions
and heat kernel measures, {νP

t }t>0, on G P are constructed similarly to those on G–see
Definition 4.10. We will use {(G P , νP

T )}P∈Proj(W ) as finite dimensional approxima-
tions to (G, νT ).

1.1.2 The Taylor isomorphism theorem

The Taylor map, TT , is a unitary map relating the “square integrable” holomorphic
functions on GC M with the collection of their derivatives at e ∈ GC M . Before we can
state this theorem we need to introduce the two Hilbert spaces involved.

In what follows, H(GC M ) and H(G) will denote the space of holomorphic func-
tions on GC M and G respectively. (See Sect. 5 for the properties of these function
spaces which are used throughout this paper.) We also let T := T(gC M ) be the alge-
braic tensor algebra over gC M , T′ be its algebraic dual, J be the two-sided ideal in T
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generated by

{h ⊗ k − k ⊗ h − [h, k] : h, k ∈ gC M }, (1.3)

and J 0 = {α ∈ T′ : α(J ) = 0} be the backwards annihilator of J–see Notation 6.1.
Given f ∈ H(G) we let α := T f denote the element of J 0 defined by 〈α, 1〉 = f (e)
and

〈α, h1 ⊗ · · · ⊗ hn〉 :=
(

h̃1 . . . h̃n f
)

(e)

where hi ∈ gC M and h̃i is the left invariant vector field on GC M agreeing with hi at
e–see Proposition 3.5 and Definition 6.2. We call T the Taylor map since T f ∈
J 0(gC M ) encodes all of the derivatives of f at e.

Definition 1.2 (L2–holomorphic functions on GC M ) For T > 0, let

‖ f ‖H2
T (GC M ) = sup

P∈Proj(W )

∥∥ f |G P

∥∥
L2
(
G P ,νP

T

) for all f ∈ H (GC M ) , and (1.4)

H2
T (GC M ) :=

{
f ∈ H (GC M ) : ‖ f ‖H2

T (GC M ) < ∞
}

. (1.5)

In Corollary 6.6 below, we will see that H2
T (GC M ) is not empty and in fact contains

the space of holomorphic cylinder polynomials (PC M ) on GC M described in Eq. (1.7)
below. Despite the fact that νT (GC M ) = 0, H2

T (GC M ) should roughly be thought of
as the νT –square integrable holomorphic functions on GC M .

Definition 1.3 (Non-commutative Fock space) Let T > 0 and

‖α‖2
J 0

T (gC M )
:=

∞∑
n=0

T n

n!
∑

h1,...,hn∈S

|〈α, h1 ⊗ · · · ⊗ hn〉|2 for all α ∈ J 0 (gC M ) ,

where S is any orthonormal basis for gC M . The non-commutative Fock space is defined
as

J 0
T (gC M ) :=

{
α ∈ J 0 (gC M ) : ‖α‖2

J 0
T (gC M )

< ∞
}

.

It is easy to see that ‖·‖J 0
T (gC M ) is a Hilbertian norm on J 0

T (gC M )–see Definition 6.4
and Eq. (6.8). For a detailed introduction to such Fock spaces we refer to [13].

Remark 1.4 When ω = 0, G(ω) is commutative and the Fock space, J 0
T (gC M ),

becomes the standard commutative bosonic Fock space of symmetric tensors over
g∗

C M .

The following theorem is proved in Sect. 6–see Theorem 6.10.

Theorem 1.5 (The Taylor isomorphism) For all T > 0, T (H2
T (GC M )) ⊂ J 0

T (gC M )

and the linear map,

TT := T |H2
T (GC M ) : H2

T (GC M ) → J 0
T (gC M ) , (1.6)

is unitary.
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Associated to this theorem is an analogue of Bargmann’s pointwise bounds which
appear in Theorem 6.11 below.

1.1.3 The skeleton isomorphism theorem

Similarly to how it has been done on a complex abstract Wiener space by Sugita
[26,27], the quasi-invariance of the heat kernel measure νT allows us to define the
skeleton map from L p(G, νT ) to a space of functions on the Cameron–Martin sub-
group GC M , a set of νT -measure 0.

Definition 1.6 A holomorphic cylinder polynomial on G is a holomorphic cylinder
function (see Definition 4.3) of the form, f = F ◦ πP : G → C, where P ∈ Proj(W )

and F : PW × C→ C is a holomorphic polynomial. The space of holomorphic
cylinder polynomials will be denoted by P .

The “Gaussian” heat kernel bounds in Theorem 4.11 easily imply that P ⊂ L p(νT )

for all p < ∞—see Corollary 5.10.

Definition 1.7 (Holomorphic L p–functions) For T > 0 and 1 � p < ∞, let Hp
T (G)

denote the L p(νT )-closure of P ⊂ L p(νT ).

From Corollary 4.8 below, if T > 0, p ∈ (1,∞], f ∈ L p(G, νT ), and h ∈ GC M ,
then

∫
G | f (h · g)|dνT (g) < ∞. Thus, if f ∈ H2

T (G) we may define the skeleton map
(see Definition 4.7) by

(ST f )(h) :=
∫
G

f (h · g)dνT (g).

It is shown in Theorem 5.12 that ST (H2
T (G)) ⊂ H2

T (GC M ) for all T > 0.

Theorem 1.8 (The skeleton isomorphism) For each T > 0, the skeleton map,
ST : H2

T (G) → H2
T (GC M ), is unitary.

Following Sugita’s results [26,27] in the case of an abstract Wiener space, we call
ST |H2

T (G) the skeleton map since it characterizes f ∈ H2
T (G) by its “values”, ST f ,

on GC M . Sugita would refer to GC M as the skeleton of G(ω) owing to the fact that
νT (GC M ) = 0 as we show in Proposition 4.6.

Theorem 1.8 is proved in Sect. 8 and relies on two key density results from Sect. 7.
The first is Lemma 7.3 (an infinite-dimensional version of [7, Lemma 3.5]) which
states that the finite rank tensors (see Definition 7.2) are dense inside of J 0

T (gC M ).
The second is Theorem 7.1 which states that

PC M := {p|GC M : p ∈ P
}

(1.7)

is a dense subspace of H2
T (GC M ). Matt Cecil [2] has modified the arguments presented

in Sect. 7 to cover the situation of path groups over graded nilpotent Lie groups. Cecil’s
arguments are necessarily much more involved because his Lie groups have nilpotency
of arbitrary step.
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1.1.4 The holomorphic chaos expansion

So far we have produced (for each T > 0) two unitary isomorphisms, the skeleton
map ST and the Taylor isomorphism TT ,

H2
T (G)

ST−→∼= H2
T (GC M )

TT−→∼= J 0
T (gC M ).

The next theorem gives an explicit formula for (TT ◦ ST )−1 : J 0
T (gC M ) → H2

T (G).

Theorem 1.9 (The holomorphic chaos expansion) If f ∈ H2
T (G) and α f := TT ST f ,

then

f (g(T )) =
∞∑

n=0

〈
α f ,

∫
0≤s1≤s2≤···≤sn≤T

db (s1) ⊗ · · · ⊗ db (sn)

〉
(1.8)

where b(t) and g(t) are related as in Eq. (1.2) or equivalently as in Eq. (4.2).

This result is proved in Sect. 9 and in particular, see Theorem 9.10. The precise
meaning of the right hand side of Eq. (1.8) is also described there.

1.2 Discussion

As we noticed in Remark 1.4 when the form ω ≡ 0 the Fock space J 0
T (gC M ) is the

standard commutative bosonic Fock space [9]. In this case the Taylor map is one of
three isomorphisms between different representations of a Fock space, one other being
the Segal–Bargmann transform. The history of the latter is described in [13] beginning
with works of Bargmann [1] and Segal [24]. For other relevant results see [8,14].

To put our results into perspective, recall that the classical Segal–Bargmann space
is the Hilbert space of holomorphic functions on C

n that are square-integrable with
respect to the Gaussian measure dµn(z) = π−ne−|z|2 dz, where dz is the 2n-dimen-
sional Lebesgue measure. One of the features of functions in the Segal–Bargmann
space is that they satisfy the pointwise bounds | f (z)| � ‖ f ‖L2(µn) exp(|z|2/2) (com-
pare with Theorem 6.11). As it is described in [13], if C

n is replaced by an
infinite-dimensional complex Hilbert space H , one of the first difficulties is to find
a suitable version of the Gaussian measure. It can be achieved, but only on a certain
extension W of H , which leads one to consider the complex abstract Wiener space set-
ting. From Sugita’s [26,27] work on holomorphic functions over a complex abstract
Wiener space, it is known that the pointwise bounds control only the values of the
holomorphic functions on H . This difficulty explains, in part, the need to consider
two function spaces: one is of holomorphic functions on H (or GC M in our case)
versus the square-integrable (weakly) holomorphic functions on W (or G in our case).

The Taylor map has also been studied in other non-commutative infinite-
dimensional settings. Gordina [10–12] considered the Taylor isomorphism in the
context of Hilbert-Schmidt groups, while Cecil [2] considered the Taylor isomor-
phism for path groups over stratified Lie groups. The nilpotentcy of the Heisenberg
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like groups studied in this paper allow us to give a more complete description of the
square integrable holomorphic function spaces than was possible in [10–12] for the
Hilbert–Schmidt groups.

Complex analysis in infinite dimensions in a somewhat different setting has been
studied by Lempert (e.g.[20]), and for more results on Gaussian-like measures on infi-
nite-dimensional curved spaces see papers by Pickrell (e.g.[22,23]). For another view
of different representations of Fock space, one can look at results in the field of white
noise, as presented in the book by Obata [21]. The map between an L2-space and a
space of symmetric tensors sometimes is called the Segal isomorphism as in [18,19].
For more background on this and related topics see [16].

2 Complex abstract Wiener spaces

Suppose that W is a complex separable Banach space and BW is the Borel σ–algebra on
W . Let WRe denote W thought of as a real Banach space. For λ ∈ C, let Mλ : W → W
be the operation of multiplication by λ.

Definition 2.1 A measure µ on (W,BW ) is called a (mean zero, non-degenerate)
Gaussian measure provided that its characteristic functional is given by

µ̂(u) :=
∫
W

eiu(w)dµ(w) = e− 1
2 q(u,u) for all u ∈ W ∗

Re, (2.1)

where q = qµ : W ∗
Re × W ∗

Re → R is an inner product on W ∗
Re. If in addition, µ is

invariant under multiplication by i , that is, µ ◦ M−1
i = µ, we say that µ is a complex

Gaussian measure on W .

Remark 2.2 Suppose W = C
d and let us write w ∈ W as w = x + iy with x, y ∈ R

d .
Then the most general Gaussian measure on W is of the form

dµ(w) = 1

Z
exp

(
−1

2
Q

[
x
y

]
·
[

x
y

])
dx dy

where Q is a real positive definite 2d × 2d matrix and Z is a normalization constant.
The matrix Q may be written in 2 × 2 block form as

Q =
[

A B
Btr C

]
.

A simple exercise shows µ = µ ◦ M−1
i iff B = 0 and A = C . Thus the general

complex Gaussian measure on C
d is of the form
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dµ(w) = 1

Z
exp

(
−1

2
(Ax · x + Ay · y)

)
dx dy

= 1

Z
exp

(
−1

2
Aw · w̄

)
dx dy,

where A is a real positive definite matrix.

Given a complex Gaussian measure µ as in Definition 2.1, let

‖w‖H := sup
u∈W ∗

Re\{0}
|u(w)|√
q(u, u)

for all w ∈ W, (2.2)

and define the Cameron–Martin subspace, H ⊂ W , by

H = {h ∈ W : ‖h‖H < ∞}. (2.3)

The following theorem summarizes some of the standard properties of the triple
(W, H, µ).

Theorem 2.3 Let (W, H, µ) be as above, where µ is a complex Gaussian measure
on (W,BW ). Then

(1) H is a dense complex subspace of W .
(2) There exists a unique inner product, 〈·, ·〉H , on H such that ‖h‖2

H = 〈h, h〉 for
all h ∈ H. Moreover, with this inner product H is a complete separable complex
Hilbert space.

(3) There exists C < ∞ such that

‖h‖W � C ‖h‖H for any h ∈ H. (2.4)

(4) If {e j }∞j=1 is an orthonormal basis for H and u, v ∈ W ∗
Re, then

q(u, v) = 〈u, v〉H∗
Re

=
∞∑
j=1

[
u
(
e j
)
v(e j ) + u

(
ie j
)
v
(
ie j
)]

. (2.5)

(5) µ ◦ M−1
λ = µ for all λ ∈ C with |λ| = 1.

Proof We will begin with the proof of item 5. From Eq. (2.1), the invariance of
µ under multiplication by i (µ ◦ M−1

i = µ) is equivalent to assuming that q(u ◦ Mi ,

u ◦ Mi ) = q(u, u) for all u ∈ W ∗
Re. By polarization, we may further conclude that

q (u ◦ Mi , v ◦ Mi ) = q (u, v) for all u, v ∈ W ∗
Re. (2.6)

Taking v = u ◦ Mi in this identity then shows that q(u ◦ Mi ,−u) = q(u, u ◦ Mi ) and
hence that

q (u, u ◦ Mi ) = 0 for any u ∈ W ∗
Re. (2.7)
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Therefore if λ = a + ib with a, b ∈ R, we see that

q (u ◦ Mλ, u ◦ Mλ) = q (au + bu ◦ Mi , au + bu ◦ Mi )

= (a2 + b2)q(u, u) = |λ|2 q(u, u), (2.8)

from which it follows that q(u ◦ Mλ, u ◦ Mλ) = q(u, u) for all u ∈ W ∗
Re and |λ| = 1.

Coupling this observation with Eq. (2.1) implies µ ◦ M−1
λ = µ for all |λ| = 1. If

|λ| = 1, from Eqs. (2.2) and (2.8), it follows that

‖λw‖H = sup
u∈W ∗

Re\{0}
|u (λw)|√

q(u, u)
= sup

u∈W ∗
Re\{0}

|u ◦ Mλ(w)|√
q (u ◦ Mλ, u ◦ Mλ)

= sup
u∈W ∗

Re\{0}
|u(w)|√
q(u, u)

= ‖w‖H for all w ∈ W.

In particular, if ‖h‖H < ∞ and |λ| = 1, then ‖λh‖H = ‖h‖H < ∞ and hence
λH ⊂ H which shows that H is a complex subspace of W . From [4, Theorem 2.3]
summarizing some well-known properties of Gaussian measures, we know that item
3. holds, H is a dense subspace of WRe, and there exists a unique real Hilbertian inner
product, 〈·, ·〉HRe , on H such that ‖h‖2

H = 〈h, h〉HRe for all h ∈ H . Polarizing the
identity ‖λh‖H = ‖h‖H implies 〈λh, λk〉HRe = 〈h, k〉HRe for all h, k ∈ H . Taking
λ = i and k = −ih then shows 〈ih, h〉Re = 〈h,−ih〉Re, and hence that 〈ih, h〉Re = 0
for all h ∈ H . Using this information it is a simple matter to check that

〈h, k〉H := 〈h, k〉HRe + i 〈h, ik〉HRe for all h, k ∈ H, (2.9)

is the unique complex inner product on H such that Re〈·, ·〉H = 〈·, ·〉HRe .
So it only remains to prove Eq. (2.5). For a proof of the first equality in Eq. (2.5), see

[4, Theorem 2.3]. To prove the second equality in this equation, it suffices to observe
that {e j , ie j }∞j=1 is an orthonormal basis for (HRe, 〈·, ·〉HRe) and therefore,

〈u, v〉H∗
Re

=
∞∑
j=1

[
u
(
e j
)
v
(
e j
)+ u

(
ie j
)
v
(
ie j
)]

for any u, v ∈ H∗
Re.

��
Notation 2.4 The triple, (W, H, µ), appearing in Theorem 2.3 will be called a com-
plex abstract Wiener space (Notice that there is redundancy in this notation since µ

is determined by H, and H is determined by µ).

Lemma 2.5 Suppose that u, v ∈ W ∗
Re and a, b ∈ C, then

∫
W

eau+bvdµ = exp

(
1

2

(
a2q (u, u) + b2q(v, v) + 2abq(u, v)

))
. (2.10)
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Proof Equation (2.10) is easily verified when both a and b are real. This suffices to
complete the proof, since both sides of Eq. (2.10) are analytic functions of a, b ∈ C.

��

Lemma 2.6 Let (W, H, µ) be a complex abstract Wiener space, then for any ϕ ∈ W ∗,
we have

∫
W

eϕ(w)dµ(w) = 1 =
∫
W

eϕ(w)dµ(w), (2.11)

∫
W

|Re ϕ(w)|2 dµ(w) =
∫
W

|Im ϕ(w)|2 dµ(w) = ‖ϕ‖2
H∗ , (2.12)

and

∫
W

|ϕ(w)|2 dµ(w) = 2 ‖ϕ‖2
H∗ . (2.13)

More generally, if C is another complex Hilbert space and ϕ ∈ L(W, C), then

∫
W

‖ϕ(w)‖2
C dµ(w) = 2 ‖ϕ‖2

H∗⊗C . (2.14)

Proof If u = Re ϕ, then ϕ(w) = u(w) − iu(iw). Therefore by Eqs. (2.6), (2.7), and
(2.10),

∫
W

eϕdµ =
∫
W

eu−iu◦Mi dµ

= exp

(
1

2
(q(u, u) − q (u ◦ Mi , u ◦ Mi ) − 2iq (u, u ◦ Mi ))

)
= 1.

Taking the complex conjugation of this identity shows
∫

W eϕ(w)dµ(w) = 1. Also
using Lemma 2.5, we have

∫
W

|Re ϕ(w)|2 dµ(w) = q(u, u) and

∫
W

|Im ϕ(w)|2 dµ(w) =
∫
W

|u(iw)|2 dµ(w) = q (u ◦ Mi , u ◦ Mi ) = q (u, u) .
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To evaluate q(u, u), let {ek}∞k=1 be an orthonormal basis for H so that {ek, iek}∞k=1 is
an orthonormal basis for (HRe, Re〈·, ·〉H ). Then by Eq. (2.5),

q (u, u) =
∞∑

k=1

[
|u (ek)|2 + |u (iek)|2

]
=

∞∑
k=1

|ϕ (ek)|2 = ‖ϕ‖2
H∗ .

To prove Eq. (2.14), apply [4, Eq. (2.13)] to find

∫
W

‖ϕ(w)‖2
C dµ(w) =

∞∑
k=1

[
‖ϕ(ek)‖2

C + ‖ϕ(iek)‖2
C

]

= 2
∞∑

k=1

‖ϕ(ek)‖2
C = 2‖ϕ‖2

H∗⊗C.

��

Remark 2.7 (Heat kernel interpretation of Lemma 2.6) The measure µ formally sat-
isfies

∫
W

f (w)dµ(w) =
(

e
1
2 �HRe f

)
(0),

where �HRe = ∑∞
j=1 ∂2

e j
and {e j }∞j=1 is an orthonormal basis for HRe. If f is holo-

morphic or anti-holomorphic, then f is harmonic and therefore

∫
W

f (w)dµ(w) =
(

e
1
2 �HRe f

)
(0) = f (0).

Applying this identity to f (w) = eϕ(w) or f (w) = eϕ(w) with ϕ ∈ W ∗ gives
Eq. (2.11). If u ∈ W ∗

Re, we have

∫
W

u2(w)dµ(w) =
(

e
1
2 �HRe u2

)
(0) =

∞∑
n=0

1

2nn!
(
�n

HRe
u2
)

(0)

= 1

2

(
�HRe u2

)
(0) = 1

2

∞∑
j=1

(
∂2

e j
u2
)

(0)

=
∞∑
j=1

u
(
e j
)2 = ‖u‖2

HRe
.

Eqs. (2.12) and (2.13) now follow easily from this identity.
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2.1 The structure of the projections

Let i : H → W be the inclusion map and i∗ : W ∗ → H∗ be its transpose, i.e.
i∗
 := 
 ◦ i for all 
 ∈ W ∗. Also let

H∗ := {h ∈ H : 〈·, h〉H ∈ Ran
(
i∗
) ⊂ H∗} (2.15)

or in other words, h ∈ H is in H∗ iff 〈·, h〉H ∈ H∗ extends to a continuous linear func-
tional on W . (We will continue to denote the continuous extension of 〈·, h〉H to W by
〈·, h〉H .) Because H is a dense subspace of W , i∗ is injective, and because i is injective,
i∗ has a dense range. Since h ∈ H → 〈·, h〉H ∈ H∗ is a conjugate linear isometric
isomorphism, it follows from the above comments that H∗ � h → 〈·, h〉H ∈ W ∗ is a
conjugate linear isomorphism too, and that H∗ is a dense subspace of H .

Lemma 2.8 There is a one to one correspondence between Proj(W ) (see Notation 1.1)
and the collection of finite rank orthogonal projections, P, on H such that P H ⊂ H∗.

Proof If P ∈ Proj(W ) and u ∈ PW ⊂ H , then, because P|H is an orthogonal
projection, we have

〈Ph, u〉H = 〈h, Pu〉H = 〈h, u〉H for all h ∈ H. (2.16)

Since P : W → H is continuous, it follows that u ∈ H∗, i.e. PW ⊂ H∗.
Conversely, suppose that P : H → H is a finite rank orthogonal projection such

that P H ⊂ H∗. Let {e j }n
j=1 be an orthonormal basis for P H and 
 j ∈ W ∗ such that


 j |H = 〈·, e j 〉H . Then we may extend P uniquely to a continuous operator from W
to H (still denoted by P) by letting

Pw :=
n∑

j=1


 j (w)e j =
n∑

j=1

〈
w, e j

〉
H e j for all w ∈ W. (2.17)

From [4, Eq. 3.43], there exists C = C(P) < ∞ such that

‖Pw‖H � C ‖w‖W for all w ∈ W. (2.18)

��

3 Complex Heisenberg like groups

In this section we review the infinite-dimensional Heisenberg like groups and Lie
algebras which were introduced in [4, Section 3].

Notation 3.1 Let (W, H, µ) be a complex abstract Wiener space, C be a complex
finite dimensional inner product space, and ω : W × W → C be a continuous skew
symmetric bilinear quadratic form on W . Further, let

‖ω‖0 := sup
{‖ω (w1, w2)‖C : w1, w2 ∈ W with ‖w1‖W = ‖w2‖W = 1

}
(3.1)
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be the uniform norm on ω which is finite by the assumed continuity of ω.

Definition 3.2 Let g denote W × C when thought of as a Lie algebra with the Lie
bracket operation given by

[(A, a), (B, b)] := (0, ω(A, B)) . (3.2)

Let G = G(ω) denote W × C when thought of as a group with the multiplication law
given by

g1g2 = g1 + g2 + 1

2
[g1, g2] for any g1, g2 ∈ G (3.3)

or equivalently by Eq. (1.1).

It is easily verified that g is a Lie algebra and G is a group. The identity of G is the
zero element, e := (0, 0).

Notation 3.3 Let gC M denote H ×C when viewed as a Lie subalgebra of g and GC M

denote H × C when viewed as a subgroup of G = G(ω). We will refer to gC M (GC M )

as the Cameron–Martin subalgebra (subgroup) of g (G). (For explicit examples of
such (W, H, C, ω), see [4].)

We equip G = g = W × C with the Banach space norm

‖(w, c)‖g := ‖w‖W + ‖c‖C (3.4)

and GC M = gC M = H × C with the Hilbert space inner product,

〈(A, a) , (B, b)〉gC M
:= 〈A, B〉H + 〈a, b〉C. (3.5)

The associate Hilbertian norm is given by

‖(A, a)‖gC M
:=
√

‖A‖2
H + ‖a‖2

C. (3.6)

As was shown in [4, Lemma 3.3], these Banach space topologies on W ×C and H ×C
make G and GC M into topological groups.

Notation 3.4 (Linear differentials) Suppose f : G → C, is a Frechét smooth func-
tion. For g ∈ G and h, k ∈ g let

f ′(g)h := ∂h f (g) = d

dt

∣∣∣
0

f (g + th)

and

f ′′(g) (h ⊗ k) := ∂h∂k f (g).

(Here and in the sequel a prime on a symbol will be used to denote its derivative or
differential.)
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As G itself is a vector space, the tangent space, TgG, to G at g is naturally iso-
morphic to G. Indeed, if v, g ∈ G, then we may define a tangent vector vg ∈ TgG by
vg f = f ′(g)v for all Frechét smooth functions f : G → C. We will identify g with
TeG and gC M with TeGC M . Recall that as sets g = G and gC M = GC M . For g ∈ G,
let lg : G → G be the left translation by g. For h ∈ g, let h̃ be the left invariant vector
field on G such that h̃(g) = h when g = e. More precisely, if σ(t) ∈ G is any smooth
curve such that σ(0) = e and σ̇ (0) = h (e.g. σ(t) = th), then

h̃(g) =, lg∗h := d

dt
|0 g · σ(t). (3.7)

As usual, we view h̃ as a first order differential operator acting on smooth functions,
f : G → C, by

(
h̃ f
)

(g) = d

dt

∣∣∣
0

f (g · σ(t)) . (3.8)

The proof of the following easy proposition may be found in [4, Proposition 3.7].

Proposition 3.5 Let f : G → C be a smooth function, h = (A, a) ∈ g and g =
(w, c) ∈ G. Then

h̃(g) :=, lg∗h =
(

A, a + 1

2
ω (w, A)

)
for any g = (w, c) ∈ G (3.9)

and, in particular,

(̃A, a) f (g) = f ′(g)

(
A, a + 1

2
ω(w, A)

)
. (3.10)

If h, k ∈ g, then

(
h̃k̃ f − k̃h̃ f

)
= [̃h, k] f. (3.11)

The one parameter group in G, eth, determined by h = (A, a) ∈ g, is given by
eth = th = t (A, a).

4 Brownian motion and heat kernel measures

This section will closely follow [4, Section 4] except for the introduction of a cer-
tain factor of 1/2 into the formalism which will simplify later formulas. Let {b(t) =
(B(t), B0(t))}t�0 be a Brownian motion on g = W × C with the variance determined
by

E
[
Re 〈b(s), h〉gC M

· Re 〈b(t), k〉gC M

] = 1

2
Re 〈h, k〉gC M

s ∧ t (4.1)
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for all s, t ∈ [0,∞), h = (A, a), and k := (C, c), where A, C ∈ H∗ and a, c ∈ C.
(Recall the definition of H∗ from Eq. (2.15).)

Definition 4.1 The associated Brownian motion on G starting at e = (0, 0) ∈ G is
defined to be the process

g(t) =
⎛
⎝B(t), B0(t) + 1

2

t∫
0

ω (B (τ ) , d B (τ ))

⎞
⎠ . (4.2)

More generally, if h ∈ G, we let gh(t) := h · g(t), the Brownian motion on G starting
at h.

Definition 4.2 Let BG be the Borel σ–algebra on G and for any T > 0, let
νT : BG → [0, 1] be the distribution of g(T ). We will call νT the heat kernel measure
on G.

To be more explicit, the measure νT is the unique measure on (G,BG) such that

νT ( f ) :=
∫
G

f dνT = E [ f (g(T ))] (4.3)

for all bounded measurable functions f : G → C. Our next goal is to describe the
generator of the process {gh(t)}t�0.

Definition 4.3 A function f : G → C is said to be a cylinder function if it may be
written as f = F ◦ πP for some P ∈ Proj(W ) and some function F : G P → C,
where G P is defined as in Notation 1.1. We say that f is a holomorphic (smooth)
cylinder function if F : G P → C is holomorphic (smooth). We will denote the space
of holomorphic (analytic) cylinder functions by A.

Proposition 4.4 (Generator of gh) If f : G → C is a smooth cylinder function, let

L f :=
∞∑
j=1

[(̃
e j , 0

)2 + ˜
(
ie j , 0

)2]
f +

d∑
j=1

[(̃
0, f j

)2 + ˜
(
0, i f j

)2]
f, (4.4)

where {e j }∞j=1 and { f j }d
j=1 are complex orthonormal bases for (H, 〈·, ·〉H ) and

(C, 〈·, ·〉C) respectively. Then L f is well defined, i.e. the sums in Eq. (4.4) are con-
vergent and independent of the choice of bases. Moreover, for all h ∈ G, 1

4 L is the
generator for {gh(t)}t�0. More precisely,

M f
t := f (gh(t)) − 1

4

t∫
0

L f (gh (τ )) dτ (4.5)

is a local martingale for any smooth cylinder function, f : G → C.
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Proof After bearing in mind the factor of 1/2 used in defining the Brownian motion
b(t) in Eq. (4.1), this proposition becomes a direct consequence of Proposition 3.29
and Theorem 4.4 of [4]. Indeed, the Brownian motions in this paper are equal in distri-
bution to the Brownian motions used in [4] after making the time change, t → t/2. It is
this time change that is responsible for the 1/4 factor (rather than 1/2) in Eq. (4.5). ��

4.1 Heat kernel quasi-invariance properties

In this subsection, we are going to recall one of the key theorems from [4]. We first
need a little more notation.

Let C1
C M denote the collection of C1-paths, g : [0, 1] → GC M . The length of g is

defined as


GC M (g) =
1∫

0

∥∥ lg−1(s)∗g′(s)
∥∥

gC M
ds. (4.6)

As usual, the Riemannian distance between x, y ∈ GC M is defined as

dGC M (x, y) = inf
{

GC M (g) : g ∈ C1

C M � g(0) = x and g(1) = y
}

. (4.7)

Let us also recall the definition of k(ω) from [4, Eq. 7.6];

k (ω) = −1

2
sup

‖A‖HRe
=1

‖ω (·, A)‖2
H∗

Re⊗CRe

= − sup
‖A‖H =1

‖ω(·, A)‖2
H∗⊗C � −‖ω‖2

H∗⊗H∗⊗C > −∞, (4.8)

wherein we have used [4, Lemma 3.17] in the second equality. It is known by Fer-
nique’s or Skhorohod’s theorem that ‖ω‖2

2 = ‖ω‖2
H∗⊗H∗⊗C < ∞, see [4, Proposition

3.14] for details.

Theorem 4.5 For all h ∈ GC M and T > 0, the measures, νT ◦ l−1
h and νT ◦ r−1

h , are

absolutely continuous relative to νT . Let Zl
h := d(νT ◦ l−1

h )

dνT
and Zr

h := d(νT ◦r−1
h )

dνT
be the

respective Randon–Nikodym derivatives, k(ω) is given in Eq. (4.8), and

c(t) := t

et − 1
for any t ∈ R

with the convention that c(0) = 1. Then for all 1 � p < ∞, Zl
h and Zr

h are both in
L p(νT ) and satisfy the estimate

∥∥Z∗
h

∥∥
L p(νT )

� exp

(
c (k (ω) T/2) (p − 1)

T
d2

GC M
(e, h)

)
, (4.9)

where ∗ = l or ∗ = r .
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Proof This is [4, Theorem 8.1] (also see [4, Corollary 7.3]) with the modification that
T should be replaced by T/2. This is again due to the fact that the Brownian motions
in this paper are equal in distribution to those in [4] after making the time change,
t → t/2. ��

It might be enlightening to note here that we call GC M the Cameron–Martin sub-
group not only because it is constructed from the Cameron–Martin subspace, H , but
also because it has properties similar to H . In particular, the following statement
holds.

Proposition 4.6 The heat kernel measure does not charge GC M , i.e. νT (GC M ) = 0.

Proof Note that for a bounded measurable function f : W × C → C that depends
only on the the first component in W × C , that is, f (w, c) = f (w) we have

∫
G

f (w)dνT (w, c) = E[ f (B(T ))] =
∫
W

f (w)dµT (w).

Note that for the projection π : W × C → W , π(w, c) = w we have π∗νT = µT and
therefore

νT (GC M ) = νT (π−1(H)) = π∗νT (H) = µT (H) = 0.

��
For later purposes, we would like to introduce the heat operator, ST := eT L/4,

acting on L p(G, νT ). To motivate our definition, suppose f : G → C is a smooth
cylinder function and suppose we can make sense of u(t, y) = (e(T −t)L/4 f )(y). Then
working formally, by Itô’s formula, Eq. (4.5), and the left invariance of L , we expect
u(t, hg(t)) to be a martingale for 0 � t � T and in particular,

E[ f (hg(T ))] = E[u(T, hg(T ))] = E[u(0, hg(0))] = (eT L/4 f )(h). (4.10)

Definition 4.7 For T > 0, p ∈ (1,∞], and f ∈ L p(G, νT ), let ST f : GC M → C be
defined by

(ST f )(h) =
∫
G

f (h · g)dνT (g) = E[ f (hg(T ))]. (4.11)

The following result is a simple corollary of Theorem 4.5 and Hölder’s inequality
along with the observation that p′−1 = (p−1)−1, where p′ is the conjugate exponent
to p ∈ (1,∞].
Corollary 4.8 If p > 1, T > 0, f ∈ L p(G, νT ), h ∈ GC M , and

Zl
h ∈ L∞−(νT ) := ∩1�q<∞Lq(νT ) (4.12)
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is as in Theorem 4.5, then ST f is well defined and may be computed as

(ST f ) (h) =
∫
G

f (g)Zl
h(g)dνT (g). (4.13)

Moreover, we have the following pointwise “Gaussian” bounds

|(ST f ) (h)| � ‖ f ‖L p(νT ) exp

(
c (k (ω) T/2)

T (p − 1)
d2

GC M
(e, h)

)
. (4.14)

We will see later that when f is “holomorphic” and p = 2, the above estimate in
Eq. (4.14) may be improved to

|(ST f ) (h)| � ‖ f ‖L2(νT ) exp

(
1

2T
d2

GC M
(e, h)

)
for any h ∈ GC M . (4.15)

This bound is a variant of Bargmann’s pointwise bounds (see [1, Eq. (1.7)] and
[6, Eq. (5.4)]).

Lemma 4.9 Let T > 0 and suppose that f : G → C is a continuous and in L p(νT )

for some p > 1. Then ST f : GC M → C is continuous.

Proof For q ∈ (1, p) and h ∈ GC M we have by Hölder’s inequality and Theorem 4.5
that

E | f (hg(T ))|q = vT

(
| f |q Zl

h

)
� ‖ f ‖q/p

L p(νT ) ·
∥∥∥Zl

hn

∥∥∥
L

p
p−q (νT )

� ‖ f ‖q/p
L p(νT ) exp

(
c (k (ω) T/2) q

T (p − q)
d2

GC M
(e, h)

)
(4.16)

Hence if {hn}∞n=1 ⊂ GC M is a sequence converging to h ∈ GC M , it follows that

sup
n

E | f (hng(T ))|q � ‖ f ‖q/p
L p(νT ) exp

(
c (k (ω) T/2) q

T (p − q)
sup

n
d2

GC M
(e, hn)

)
< ∞,

(4.17)

which implies that { f (hng(T ))}∞n=1 is uniformly integrable. Since by continuity of f ,
limn→∞ f (hng(T )) = f (hg(T )), we may pass to the limit under the expectation to
find

lim
n→∞ ST f (hn) = lim

n→∞ E f (hng(T )) = E [ f (hg(T ))] = ST f (h) .

��
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4.2 Finite dimensional approximations

Notation 4.10 For each P ∈ Proj(W ), let gP(t) denote the G P -valued Brownian
motion defined by

gP(t) =
⎛
⎝P B(t), B0(t) + 1

2

t∫
0

ω (P B(τ ), d P B(τ ))

⎞
⎠ . (4.18)

Also, for any t > 0, let νP
t := Law(gP(t)) be the corresponding heat kernel measure

on G P .

The following Theorem is a restatement of [4, Theorem 4.16].

Theorem 4.11 (Integrated heat kernel bounds) Suppose that ρ2 : G → [0,∞) be
defined as

ρ2(w, c) := ‖w‖2
W + ‖c‖C . (4.19)

Then there exists a δ > 0 such that for all ε ∈ (0, δ) and T > 0

sup
P∈Proj(W )

E

[
e

ε
T ρ2(gP (T ))

]
< ∞ and

∫
G

e
ε
T ρ2(g)dνT (g) < ∞. (4.20)

Proposition 4.12 Let Pn ∈ Proj(W ) such that Pn|H ↑ IH on H and let gn(T ) :=
gPn (T ). Further suppose that δ > 0 is as in Theorem 4.11, p ∈ [1,∞), and
f : G → C is a continuous function such that

| f (g)| � Ceερ2(g)/(pT ) for all g ∈ G (4.21)

for some ε ∈ (0, δ). Then f ∈ L p(νT ) and for all h ∈ G we have

lim
n→∞ E | f (hg(T )) − f (hgn(T ))|p = 0, (4.22)

and

lim
n→∞ E | f (g(T )h) − f (gn(T )h)|p = 0. (4.23)

Proof If q ∈ (p,∞) is sufficiently close to p so that qp−1ε < δ, then

sup
n

E | f (gn(T ))|q � Cq sup
n

E

[
ep−1qερ2(g)/T

]

which is finite by Theorem 4.11. This shows that {| f (gn(T ))|p}∞n=1 is uniformly inte-
grable. As a consequence of [4, Lemma 4.7] and the continuity of f , we also know
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that f (gn(T )) → f (g(T )) in probability as n → ∞. Thus we have shown Eqs. (4.22)
and (4.23) hold when h = e = 0. Now suppose that g = (w, c) and h = (A, a) are in
G. Then for all α > 0,

ρ2(gh) = ‖w + A‖2
W +

∥∥∥∥a + c + 1

2
ω(w, A)

∥∥∥∥
C

� ‖w‖2
W + ‖A‖2

W + 2 ‖A‖W ‖w‖W + ‖a‖C + ‖c‖C + 1

2
‖ω (w, A)‖C

� ρ2(g) + ρ2(h) + C ‖A‖W ‖w‖W

� ρ2(g) + ρ2(h) + C

2

[
α−1 ‖A‖2

W + α ‖w‖2
W

]

�
(

1 + Cα

2

)
ρ2(g) +

(
1 + C

2α

)
ρ2(h), (4.24)

where C := (2 + 1
2‖ω‖0). As Eq. (4.24) is invariant under interchanging g and h

the same bound also hold for ρ2(hg). By choosing α > 0 sufficiently small so that
(1 + Cα

2 )ε < δ, we see that g → f (gh) and g → f (hg) satisfy the same type of
bound as in Eq. (4.21) for g → f (g). Therefore, by the first paragraph, we have now
verified Eqs. (4.22) and (4.23) hold for any h ∈ G. ��

5 Holomorphic functions on G and GC M

We will begin with a short summary of the results about holomorphic functions on
Banach spaces that will be needed in this paper.

5.1 Holomorphic functions on Banach spaces

Let X and Y be two complex Banach space and for a ∈ X and δ > 0 let

BX (a, δ) := {x ∈ X : ‖x − a‖X < δ}

be the open ball in X with center a and radius δ.

Definition 5.1 (Hille and Phillips [17, Definition 3.17.2, p. 112.]) Let D be an open
subset of X . A function u : D → Y is said to be holomorphic (or analytic) if the
following two conditions hold.

(1) u is locally bounded, namely for all a ∈ D there exists an ra > 0 such that

Ma := sup {‖u(x)‖Y : x ∈ BX (a, ra)} < ∞.

(2) The function u is complex Gâteaux differentiable on D, i.e. for each a ∈ D and
h ∈ X , the function λ → u(a + λh) is complex differentiable at λ = 0 ∈ C.

(Holomorphic and analytic will be considered to be synonymous terms for the
purposes of this paper.)
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The next theorem gathers together a number of basic properties of holomorphic
functions which may be found in [17]. (Also see [15].) One of the key ingredients to
all of these results is Hartog’s theorem, see [17, Theorem 3.15.1].

Theorem 5.2 If u : D → Y is holomorphic, then there exists a function u′ : D →
Hom(X, Y ), the space of bounded complex linear operators from X to Y , satisfying

(1) If a ∈ D, x ∈ BX (a, ra/2), and h ∈ BX (0, ra/2), then

∥∥u (x + h) − u (x) − u′ (x) h
∥∥

Y � 4Ma

ra (ra − 2 ‖h‖X )
‖h‖2

X . (5.1)

In particular, u is continuous and Frechét differentiable on D.
(2) The function u′ : D → Hom(X, Y ) is holomorphic.

Remark 5.3 By applying Theorem 5.2 repeatedly, it follows that any holomorphic
function, u : D → Y is Frechét differentiable to all orders and each of the Frechét
differentials are again holomorphic functions on D.

Proof By [17, Theorem 26.3.2 on p. 766.], for each a ∈ D there is a linear operator,
u′(a) : X → Y such that du(a + λh)/dλ|λ=0 = u′(a)h. The Cauchy estimate in
Theorem 3.16.3 (with n = 1) of [17] implies that if a ∈ D, x ∈ BX (a, ra/2) and
h ∈ BX (0, ra/2) (so that x + h ∈ BX (a, ra)), then ‖u′(x)h‖Y � Ma . It follows from
this estimate that

sup
{∥∥u′ (x)

∥∥
Hom(X,Y )

: x ∈ BX (a, ra/2)
}

� 2Ma/ra . (5.2)

and hence that u′ : D → Hom(X, Y ) is a locally bounded function. The estimate in
Eq. (5.1) appears in the proof of the Theorem 3.17.1 in [17] which completes the proof
of item 1.

To prove item 2. we must show u′ is Gâteaux differentiable on D. We will in
fact show more, namely, that u′ is Frechét differentiable on D. Given h ∈ X , let
Fh : D → Y be defined by Fh(x) := u′(x)h. According to [17, Theorem 26.3.6], Fh

is holomorphic on D as well. Moreover, if a ∈ D and x ∈ B(a, ra/2) we have by
Eq. (5.2) that

‖Fh(x)‖Y � 2Ma ‖h‖X /ra .

So applying the estimate in Eq. (5.1) to Fh , we learn that

∥∥Fh (x + k) − Fh (x) − F ′
h (x) k

∥∥
Y � 4 (2Ma ‖h‖X /ra)

ra
2

( ra
2 − 2 ‖k‖X

) · ‖k‖2
X (5.3)

for x ∈ B(a, ra/4) and ‖k‖X < ra/4, where

F ′
h(x)k = d

dλ
|0 Fh (x + λk) = d

dλ
|0u′ (x + λk) h =:

(
δ2u
)

(x; h, k).

123



B. K. Driver, M. Gordina

Again by [17, Theorem 26.3.6], for each fixed x ∈ D, (δ2u)(x; h, k) is a continuous
symmetric bilinear form in (h, k) ∈ X × X . Taking the supremum of Eq. (5.3) over
those h ∈ X with ‖h‖X = 1, we may conclude that

∥∥∥u′ (x + k) − u′ (x) − δ2u (x; ·, k)

∥∥∥
Hom(X,Y )

= sup
‖h‖X =1

∥∥Fh (x + k) − Fh(x) − F ′
h(x)k

∥∥
Y

� 4 (2Ma/ra)
ra
2

( ra
2 − 2 ‖k‖X

) ‖k‖2
X .

This estimate shows u′ is Frechét differentiable with u′′(x) ∈ Hom(X, Hom(X, Y ))

being given by u′′(x)k = (δ2u)(x; ·, k) ∈ Hom(X, Y ) for all k ∈ X and x ∈ D. ��

5.2 Holomorphic functions on G and GC M

For the purposes of this section, let G0 = G and g0 = g or G0 = GC M and g0 = gC M .
Also for g, h ∈ g, let (as usual) adgh := [g, h].
Lemma 5.4 For each g ∈ G0, lg : G0 → G0 is holomorphic in the ‖ · ‖g0 –topol-
ogy. Moreover, a function u : G0 → C defined in a neighborhood of g ∈ G0 is
Gâteaux (Frechét) differentiable at g iff u◦ lg is Gâteaux (Frechét) differentiable at 0.
In addition, if u is Frechét differentiable at g, then

(
u ◦ lg

)′
(0) h = u′(g)

(
h + 1

2
[g, h]

)
. (5.4)

(See [13, Theorem 5.7] for an analogous result in the context of path groups.)

Proof Since

lg(h) = gh = g + h + 1

2
[g, h] = g +

(
I dg0 + 1

2
adg

)
h,

it is easy to see that lg is holomorphic and l ′g is the constant function equal to I dg0 +
1
2 adg ∈ End(g0). Using ad2

g = 0 or the fact that l−1
g = lg−1 , we see that l ′g is invertible

and that

l ′g−1 =
(

I dg0 + 1

2
adg

)−1

= I dg0 − 1

2
adg.

These observations along with the chain rule imply the Frechét differentiability state-
ments of the lemma and the identity in Eq. (5.4).

If u is Gâteaux differentiable at g, h ∈ g0, and k := h + 1
2 [g, h], then

d

dλ
|0u ◦ lg(λh) = d

dλ
|0u (g · (λh)) = d

dλ
|0u(g + λk)
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and the existence of d
dλ

|0u(g+λk) implies the existence of d
dλ

|0u◦ lg(λh). Conversely,
if u◦ lg is Gâteaux differentiable at 0, h ∈ g0, and

k := h − 1

2
[g, h] =

(
I dg0 + 1

2
adg

)−1

h,

then

lg (λk) = g + λ

(
I dg0 + 1

2
adg

)
k = g + λh.

So the existence of d
dλ

|0(u ◦ lg)(λk) implies the existence of d
dλ

|0u(g + λh). ��
Corollary 5.5 A function u : G0 → C is holomorphic iff it is locally bounded and
h → u(geh) = u(g · h) is Gâteaux (Frechét) differentiable at 0 for all g ∈ G0.
Moreover, if u is holomorphic and h ∈ g0, then

(
h̃u
)

(g) = d

dλ
|0u
(

geλh
)

= u′(g) (h + [g, h])

is holomorphic as well.

Notation 5.6 The space of globally defined holomorphic functions on G and GC M

will be denoted by H(G) and H(GC M ) respectively.

Notice that the space A of holomorphic cylinder functions as described in Defini-
tion 4.3 is contained in H(G). Also observe that a simple induction argument using
Corollary 5.5 allows us to conclude that h̃1 . . . h̃nu ∈ H(G0) for all u ∈ H(G0) and
h1, . . . , hn ∈ g0.

Proposition 5.7 If f ∈ H(G) and h ∈ g, then ĩh f = i h̃ f , ĩh f̄ = −i h̃ f̄ ,

[(
ĩ h
)2 + h̃2

]
f = 0, and (5.5)

(
h̃2 + ĩ h

2
)

| f |2 = 4
∣∣∣h̃ f
∣∣∣2 . (5.6)

Proof The first assertions are directly related to the definition of f being holomorphic.
Using the identity ĩ h f = i h̃ f twice implies Eq. (5.5). Equation (5.6) is a consequence
of summing the following two identities

h̃2 | f |2 = h̃
(

f · f̄
) = h̃2 f · f̄ + f · h̃2 f̄ + 2h̃ f · h̃ f̄

and

ĩ h
2 | f |2 = ĩ h

(
f · f̄

) = ĩ h
2

f · f̄ + f · ĩ h
2

f̄ + 2ĩ h f · ĩ h f̄

= −h̃2 f · f̄ − f · h̃2 f̄ + 2h̃ f · h̃ f̄ ,

and using h̃ f̄ = h̃ f . ��
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Corollary 5.8 Let L be as in Proposition 4.4. Suppose that f : G → C is a holo-
morphic cylinder function (i.e. f ∈ A), then L f = 0 and

L | f |2 =
∑
h∈�

∣∣∣h̃ f
∣∣∣2 , (5.7)

where � is an orthonormal basis for gC M of the form

� = �e ∪ � f = {(e j , 0)
}∞

j=1 ∪ {(0, f j )
}d

j=1 (5.8)

with {e j }∞j=1 and { f j }d
j=1 being complex orthonormal bases for H and C respectively.

Proof These assertions follow directly form Eqs. (4.4), (5.5), and (5.6). ��
Formally, if f : G → C is a holomorphic function, then eT L/4 f = f and therefore

we should expect ST f = f |GC M where ST is defined in Definition 4.7. Theorem 5.9
below is a precise version of this heuristic.

Theorem 5.9 Suppose p ∈ (1,∞) and f : G → C is a continuous function such
that f |GC M ∈ H(GC M ) and there exists Pn ∈ Proj(W ) such that Pn|H ↑ IH , then

‖ f ‖L p(νT ) � sup
n

‖ f ‖
L p
(

G Pn ,ν
Pn
T

) . (5.9)

If we further assume that

sup
n

‖ f ‖
L p
(

G Pn ,ν
Pn
T

) < ∞, (5.10)

then f ∈ L p(νT ), ST f = f |GC M , and f satisfies the Gaussian bounds

| f (h)| � ‖ f ‖L p(νT ) exp

(
c (k(ω)T/2)

T (p − 1)
d2

GC M
(e, h)

)
for any h ∈ GC M . (5.11)

Proof According to [4, Lemma 4.7], by passing to a subsequence if necessary, we may
assume that gPn (T ) → g(T ) almost surely. Hence an application of Fatou’s lemma
implies Eq. (5.9). In particular, if we assume Eq. (5.10) holds, then f ∈ L p(νT ) and
so ST f is well defined.

Now suppose that P ∈ Proj(W ) and h ∈ G P . Working exactly as in the proof of
Lemma 4.9, we find for any q ∈ (1, p) that

E | f (hgP(T ))|q � ‖ f ‖q/p
L p
(
G P ,νP

T

) exp

(
c (kP (ω)T/2) q

T (q − p)
d2

G P
(e, h)

)
, (5.12)

where dG P (·, ·) is the Riemannian distance on G P and (see [4, Eq. (5.13)]),

kP (ω) := −1

2
sup
{
‖ω (·, A)‖2

(P H)∗⊗C : A ∈ P H, ‖A‖P H = 1
}

. (5.13)
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Observe that kP (ω) � k(ω) and therefore, as c is a decreasing function, c(k(ω)) �
c(kP (ω)). Let m ∈ N be given and h ∈ G Pm . Then for n � m we have from Eq. (5.12)
that

E
∣∣ f
(
hgPn (T )

)∣∣q � ‖ f ‖q/p

L p
(

G Pn ,ν
Pn
T

) exp

(
c
(
kPn (ω) T/2

)
q

T (q − p)
d2

G Pn
(e, h)

)

� ‖ f ‖q/p

L p
(

G Pn ,ν
Pn
T

) exp

(
c (k (ω) T/2) q

T (q − p)
d2

G Pm
(e, h)

)

wherein in the last inequality we have used c(k(ω)) � c(kP (ω)) and the fact that
d2

G Pn
(e, h) is decreasing in n � m. Hence it follows that supn�m E| f (hgPn (T ))|q < ∞

and thus that { f (hgPn (T ))}n�m is uniformly integrable. Therefore,

ST f (h) = E f (hg(T )) = lim
n→∞ E f

(
hgPn (T )

) = lim
n→∞

∫
G Pn

f (hx)dν
Pn
T (x). (5.14)

On the other hand by [4, Lemma 4.8] (with T replaced by T/2 because of our
normalization in Eq. (4.1)), ν

Pn
T is the heat kernel measure on G Pn based at e ∈ G Pn ,

i.e. ν
Pn
T (dx) = pPn

T/2(e, x)dx , where dx is the Riemannian volume measure (equal

to a Haar measure) on G Pn and pPn
T (x, y) is the heat kernel on G Pn . Since f |G Pn

is holomorphic, the previous observations allow us to apply [5, Proposition 1.8] to
conclude that

∫
G Pn

f (hx)dν
Pn
T (x) = f (h) for all n � m. (5.15)

As m ∈ N was arbitrary, combining Eqs. (5.14) and (5.15) implies that ST f (h) = f (h)

for all h ∈ G0 := ∪m∈NG Pm . Recall from Lemma 4.9 that ST f : GC M → C is con-
tinuous and from the proof of [4, Theorem 8.1] that G0 is a dense subgroup of GC M .
Therefore we may conclude that in fact ST f (h) = f (h) for all h ∈ GC M . The
Gaussian bound now follows immediately from Corollary 4.8. ��
Corollary 5.10 Suppose that δ > 0 is as in Theorem 4.11 and f : G → C is a
continuous function such that f |GC M is holomorphic and | f | � Ceερ2/(pT ) for some
ε ∈ [0, δ). Then f ∈ L p(νT ), ST f = f , and the Gaussian bounds in Eq. (5.11) hold.

Proof By Theorem 4.11, the given function f verifies Eq. (5.10) for any choice of
{Pn}∞n=1 ⊂ Proj(W ) with Pn|H ↑ P strongly as n ↑ ∞. Hence Theorem 5.9 is
applicable. ��

As a simple consequence of Corollary 5.10, we know that P ⊂ L p(νT ) (see Defi-
nition 1.6) and that (ST p)(h) = p(h) for all h ∈ GC M and p ∈ P .

Notation 5.11 For T > 0 and 1 � p < ∞, let Ap
T and Hp

T (G) denote the L p(νT )–
closure of A ∩ L p(νT ) and P , where A and P denote the holomorphic cylinder
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functions (see Definition 4.3) and holomorphic cylinder polynomials on G respec-
tively.

Theorem 5.12 For all T > 0 and p ∈ (1,∞), we have ST (Hp
T (G)) ⊂ H(GC M ).

Proof Let f ∈ Hp
T (G) and pn ∈ P such that limn→∞ ‖ f − pn‖L p(νT ) = 0. If

h ∈ GC M , then by Corollary 4.8

|ST f (h) − pn (h)| = |ST ( f − pn) (h)|
� ‖ f − pn‖L p(νT ) exp

(
c (k (ω) T/2)

T (p − 1)
d2

GC M
(e, h)

)
.

This shows that ST f is the limit of pn|GC M ∈ H(GC M ) with the limit being uniform
over any bounded subset of h’s contained in GC M . This is sufficient to show that
ST f ∈ H(GC M ) via an application of [17, Theorem 3.18.1]. ��
Remark 5.13 It seems reasonable to conjecture that A2

T = H2
T (G), nevertheless we

do not know if these two spaces are equal! We also do not know if ST f = f for
every f ∈ A ∩ L2(νT ). However, Theorem 5.9 does show that ST f = f for all
f ∈ A ∩P∈Proj(W ) L p(νP

T ) with L p(νP
T )–norms of f being bounded.

6 The Taylor isomorphism theorem

The main purpose of this section is to prove the Taylor isomorphism Theorem 1.5 (or
Theorem 6.10). We begin with the formal development of the algebraic setup. In what
follows below for a vector space V we will denote the algebraic dual to V by V ′. If V
happens to be a normed space, we will let V ∗ denote the topological dual of V .

6.1 A non-commutative Fock space

Notation 6.1 For n ∈ N let g⊗n
C M denote the n–fold algebraic tensor product of gC M

with itself, and by convention let g⊗0
C M := C. Also let

T := T (gC M ) = C ⊕ gC M ⊕ g⊗2
C M ⊕ g⊗3

C M ⊕ . . .

be the algebraic tensor algebra over gC M , T′ be its algebraic dual, and J be the two-
sided ideal in T generated by the elements in Eq. (1.3). The backwards annihilator of
J is

J 0 = {α ∈ T′ : α(J ) = 0}. (6.1)

For any α ∈ T′ and n ∈ N∪{0}, we let αn := α|g⊗n
C M

∈ (g⊗n
C M )′.

After the next definition we will be able to give numerous examples of elements
in J 0.
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Definition 6.2 (Left differentials) For f ∈ H(GC M ), n ∈ N∪{0}, and g ∈ GC M ,
define f̂n(g) := Dn f (g) ∈ (g⊗n

C M )′ by

(
D0 f

)
(g) = f (g) and

〈
Dn f (g), h1 ⊗ · · · ⊗ hn

〉 = (h̃1 . . . h̃n f
)

(g) (6.2)

for all and h1, . . . , hn ∈ g0, where h̃ f is given as in Eq. (3.8) or Eq. (3.10). We will
write D f for D1 f and f̂ (g) to be the element of T(gC M )′ determined by

〈
f̂ (g), β

〉
=
〈

f̂n(g), β
〉

for all β ∈ g⊗n
C M and n ∈ N0. (6.3)

Example 6.3 As a consequence of Eq. (3.11), f̂ (g) ∈ J 0 for all f ∈ H(GC M ) and
g ∈ GC M .

In order to put norms on J 0, let us equip g⊗n
C M with the usual inner product deter-

mined by

〈h1 ⊗ · · · ⊗ hn, k1 ⊗ · · · ⊗ kn〉g⊗n
C M

=
n∏

j=1

〈
h j , k j

〉
gC M

for any hi , k j ∈ gC M . (6.4)

For n = 0 we let 〈z, w〉g⊗0
C M

:= zw̄ for all z, w ∈ g⊗0
C M = C. The inner product

〈·, ·〉g⊗n
C M

induces a dual inner product on (g⊗n
C M )∗ which we will denote by 〈·, ·〉n . The

associated norm on (g⊗n
C M )∗ will be denoted by ‖ · ‖n . We extend ‖ · ‖n to all of (g⊗n

C M )′
by setting ‖β‖n = ∞ if β ∈ (g⊗n

C M )′ \ (g⊗n
C M )∗. If � is any orthonormal basis for gC M ,

then ‖β‖n may be computed using

‖β‖2
g⊗n

C M
:=

∑
h1,...,hn∈�

|〈β, h1 ⊗ · · · ⊗ hn〉|2 . (6.5)

Definition 6.4 (Non-commutative Fock space) Given T > 0 and α ∈ J 0(gC M ), let

‖α‖2
J 0

T (gC M )
:=

∞∑
n=0

T n

n! ‖αn‖2
n . (6.6)

Further let

J 0
T (gC M ) :=

{
α ∈ J 0 (gC M ) : ‖α‖2

J 0
T (gC M )

< ∞
}

. (6.7)

The space, J 0
T (gC M ), is then a Hilbert space when equipped with the inner product

〈α, β〉J 0
T (gC M ) =

∞∑
n=0

T n

n! 〈αn, βn〉n for any α, β ∈ J 0
T (gC M ). (6.8)
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6.2 The Taylor isomorphism

Lemma 6.5 Let f ∈ H(GC M ) and T > 0 and suppose that {Pn}∞n=1 ⊂ Proj(W ) is a
sequence such that Pn|gC M ↑ IgC M as n → ∞. Then

lim
n→∞

∥∥∥ f̂ (e)
∥∥∥

J 0
T (gPn )

=
∥∥∥ f̂ (e)

∥∥∥
J 0

T (gC M )
= ‖ f ‖H2

T (GC M ) = lim
n→∞ ‖ f ‖

L2
(

G Pn ,ν
Pn
T

) ,

(6.9)

where ‖ · ‖H2
T (GC M ) is defined in Eq. (1.4).

Proof By Theorem 5.1 of [6], for all P ∈ Proj(W ),

‖ f ‖L2
(
G P ,νP

T

) =
∥∥∥ f̂ (e)

∥∥∥
J 0

T (gP )
, (6.10)

where

∥∥∥ f̂ (e)
∥∥∥2

J 0
T (gP )

=
∞∑

n=0

T n

n!
∑

{h j}n
j=1⊂�P

∣∣∣〈 f̂ (e), h1 ⊗ · · · ⊗ hn

〉∣∣∣2 (6.11)

and �P is an orthonormal basis for gP . In particular, it follows that

‖ f ‖H2
T (GC M ) = sup

P∈Proj(W )

∥∥∥ f̂ (e)
∥∥∥

J 0
T (gP )

(6.12)

and hence we must now show

sup
P∈Proj(W )

∥∥∥ f̂ (e)
∥∥∥

J 0
T (gP )

=
∥∥∥ f̂ (e)

∥∥∥
J 0

T (gC M )
. (6.13)

If � is an orthonormal basis for gC M containing �P , it follows that

∥∥∥ f̂ (e)
∥∥∥2

J 0
T (gP )

≤
∞∑

n=0

T n

n!
∑

{h j}n
j=1⊂�

∣∣∣〈 f̂ (e) , h1 ⊗ · · · ⊗ hn

〉∣∣∣2 =
∥∥∥ f̂ (e)

∥∥∥2

J 0
T (gC M )

,
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which shows that supP∈Proj(W ) ‖ f̂ (e)‖J 0
T (gP ) � ‖ f̂ (e)‖J 0

T (gC M ). We may choose ortho-
normal bases, �Pn , for gPn such that �Pn ↑ � as n ↑ ∞. Then it is easy to show that

lim
n→∞ ‖ f ‖

L2
(

G Pn ,ν
Pn
T

) = lim
n→∞

∥∥∥ f̂ (e)
∥∥∥

J 0
T (gPn )

= lim
n→∞

∞∑
n=0

T n

n!
∑

{h j}n
j=1⊂�Pn

∣∣∣〈 f̂ (e) , h1 ⊗ · · · ⊗ hn

〉∣∣∣2

=
∞∑

n=0

T n

n!
∑

{h j}n
j=1⊂�

∣∣∣〈 f̂ (e) , h1 ⊗ · · · ⊗ hn

〉∣∣∣2

=
∥∥∥ f̂ (e)

∥∥∥
J 0

T (gC M )

from which it follows that supP∈Proj(W ) ‖ f̂ (e)‖J 0
T (gP ) � ‖ f̂ (e)‖J 0

T t (gC M ). ��

For the next corollary, recall that P and PC M denote the spaces of holomorphic
cylinder polynomials on G and GC M respectively, see Definition 1.6 and Eq. (1.7).

Corollary 6.6 If f : G → C is a continuous function satisfying the bounds in Propo-
sition 4.12 with p = 2, then f |GC M ∈ H2

T (GC M ) and f̂ (e) ∈ J 0
T (gC M ). In particular,

for all T > 0, PC M ⊂ H2
T (GC M ) and for any p ∈ P , p̂(e) ∈ J 0

T (gC M ). This shows
that H2

T (GC M ) and J 0
T (gC M ) are non-trivial spaces.

Definition 6.7 For each T > 0, the Taylor map is the linear map, TT : H2
T (GC M ) →

J 0
T (gC M ), defined by TT f := f̂ (e).

Corollary 6.8 The Taylor map, TT : H2
T (GC M ) → J 0

T (gC M ), is injective. Moreover,
the function ‖ · ‖H2

T (GC M ) is a norm on H2
T (GC M ) which is induced by the inner

product on H2
T (GC M ) defined by

〈u, v〉H2
T (GC M ) := 〈û (e) , v̂ (e)

〉
J 0

T (gC M )
for any u, v ∈ H2

T (GC M ) . (6.14)

Proof If f̂ (e) = 0, then ‖ f ‖H2
T (GC M ) = 0 which then implies that f |G P ≡ 0 for

all P ∈ Proj(W ). As f : GC M → C is continuous and ∪P∈Proj(W )G P is dense in
GC M (see the end of the proof of Theorem 5.9), it follows that f ≡ 0. Hence we
have shown TT injective. Since ‖ · ‖J 0

T (gC M ) is a Hilbert norm and, by Lemma 6.9,

‖ f ‖H2
T (GC M ) = ‖TT f ‖J 0

T (gC M ), it follows that ‖·‖H2
T (GC M ) is the norm on H2

T (GC M )

induced by the inner product defined in Eq. (6.14). ��

Our next goal is to show that the Taylor map, TT , is surjective. The following lemma
motivates the construction of the inverse of the Taylor map.
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Lemma 6.9 For every f ∈ H(GC M ),

f (g) =
∞∑

n=0

1

n!
〈

f̂n (e) , g⊗n
〉

for any g ∈ GC M , (6.15)

where the above sum is absolutely convergent. By convention, g⊗0 = 1 ∈ C. (For a
more general version of this Lemma, see Proposition 5.1 in [3].)

Proof The function u(z) := f (zg) is a holomorphic function of z ∈ C. Therefore,

f (g) = u(1) =
∞∑

n=0

1

n!u(n)(0)

and the above sum is absolutely convergent. In fact, one easily sees that for all R > 0
there exists C(R) < ∞ such that 1

n! |u(n)(0)| � C(R)R−n for all n ∈ N. The proof is
now completed upon observing

u(n)(0) =
(

d

dt

)n

u(t) |t=0 =
(

d

dt

)n

f (tg) |t=0

=
(

d

dt

)n

f (etg) |t=0 = (g̃n f
)
(e) =

〈
f̂n (e) , g⊗n

〉
.

��
The next theorem is a more precise version of Theorem 1.5.

Theorem 6.10 (Taylor isomorphism theorem) For all T > 0, the space H2
T (GC M )

equipped with the inner product 〈·, ·〉H2
T (GC M ) is a Hilbert space, T (H2

T (GC M )) ⊂
J 0

T (gC M ), and TT := T |H2
T (GC M ) : H2

T (GC M ) → J 0
T (gC M ) is a unitary transforma-

tion.

Proof Given Corollary 6.8, it only remains to prove TT is surjective. So let
α ∈ J 0

T (gC M ). By Lemma 6.9, if f = T −1
T α exists it must be given by

f (g) :=
∞∑

n=0

1

n!
〈
αn, g⊗n 〉 for any g ∈ GC M. (6.16)

We now have to check that the sum is convergent, the resulting function f is in
H(GC M ), and f̂ (e) = α. Once this is done, we may apply Lemma 6.5 to con-
clude that ‖ f ‖H2

T (GC M ) = ‖α‖J 0
T (gC M ) < ∞ and hence we will have shown that

f ∈ H2
T (GC M ) and TT f = α. For each n ∈ N ∪ {0}, the function un(g) :=

1
n! 〈αn, g⊗n〉 is a continuous complex n–linear form in g ∈ GC M and therefore holo-
morphic. Since |〈αn, g⊗n〉| � ‖αn‖n‖g‖n

gC M
, then for R > 0

sup
{|un(g)| : ‖g‖gC M

� R
}

� ‖αn‖n Rn .
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Therefore it follows that

∞∑
n=0

sup
{|un(g)| : ‖g‖gC M

� R
}

�
∞∑

n=0

T n

n! ‖αn‖n
Rn

T n

�

√√√√ ∞∑
n=0

T n

n! ‖αn‖2
n

√√√√ ∞∑
n=0

T n

n!
(

Rn

T n

)2

= ‖α‖J 0
T (gC M ) eR2/(2T ) < ∞. (6.17)

This shows f (g) = limN→∞
∑N

n=0 un(g) with the limit being uniform over g in
bounded subsets of gC M . Hence, the sum in Eq. (6.16) is convergent and (see [17,
Theorem 3.18.1]) the resulting function, f , is in H(GC M ). Since

f (zh) =
∞∑

n=0

zn

n!
〈
αn, h⊗n 〉 for any z ∈ C and h ∈ gC M ,

it follows that

〈
αn, h⊗n 〉 =

(
d

dz

)n

f (zh)|z=0 =
(

d

dt

)n

f
(

eth
)

|t=0 =
〈

f̂n (e) , h⊗n
〉
.

This is true for all n and h ∈ gC M , so we may use the argument following Eq. (6.13)
in [3] (or see the proof of Theorem 2.5 in [7]) to show f̂ (e) = α. ��

As a consequence of Eq. (6.17) we see that if f ∈ H2
T (GC M ) then

| f (g)| � ‖ f ‖H2
T (GC M ) e‖g‖2

gC M
/(2T ) for any g ∈ GC M . (6.18)

The next theorem, which is an analogue of Bargmann’s pointwise bounds (see [1,
Eq. (1.7)] and [6, Eq. (5.4)]), improves upon the estimate in Eq. (6.18).

Theorem 6.11 (Pointwise bounds) If f ∈ H2
T (GC M ) and g ∈ GC M , then for all

g ∈ GC M ,

| f (g)| � ‖ f ‖H2
T (GC M ) ed2

C M (e,g)/(2T ), (6.19)

where d2
C M (·, ·) is the distance function on GC M defined in Eq. (4.7).

Proof Let Pn ∈ Proj(W ) be chosen so that Pn|gC M ↑ IgC M as n → ∞ and recall
that G0 := ∪∞

n=1G Pn is a dense subgroup of GC M as explained in the proof of The-
orem 5.9. Let g ∈ G Pm for some m ∈ N and let σ : [0, 1] → GC M be a C1–curve
such that σ(0) = e and σ(1) = g. Then for n � m, σn(t) := πPn (σ (t)) is a C1 curve
in Gn such that σn(0) = e and σn(1) = g. Therefore by [6, Eq. (5.4)], we have
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| f (g)| �
∥∥ f |G Pn

∥∥
L2
(

G Pn ,ν
Pn
T

) · e
d2

G Pn
(e,g)/(2T ) � ‖ f ‖H2

T (GC M ) · e

2

GC M
(σn)/(2T )

,

(6.20)

where 
GC M (σn) is the length of σn as in Eq. (4.6). In the proof [4, Theorem 8.1], it
was shown that limn→∞ 
GC M (σn) = 
GC M (σ ). Hence we may pass to the limit in

Eq. (6.20) to find, | f (g)| � ‖ f ‖H2
T (GC M ) ·e
2

GC M
(σ )/(2T )

. Optimizing this last inequal-
ity over all σ joining e to g then shows that Eq. (6.19) holds for all g ∈ G0. This suffices
to prove Eq. (6.19) as both sides of this inequality are continuous in g ∈ GC M and
G0 is dense in GC M . ��

7 Density theorems

The following density result is the main theorem of this section and is crucial to the
next section. Techniques similar to those used in this section have appeared in Cecil
[2] to prove an analogous result for path groups over stratified Lie groups.

Theorem 7.1 (Density theorem) For all T > 0, PC M defined by Eq. (1.7) is a dense
subspace of H2

T (GC M ).

Proof This theorem is a consequence of Corollary 7.4 and Proposition 7.12 below. ��
The remainder of this section will be devoted to proving the results used in the

proof of the theorem. We will start by constructing some auxiliary dense subspaces of
J 0

T (gC M ) and H2
T (GC M ).

7.1 Finite rank subspaces

Definition 7.2 A tensor, α ∈ J 0(gC M ), is said to have finite rank if αn = 0 for all but
finitely many n ∈ N.

The next lemma is essentially a special case of [7, Lemma 3.5].

Lemma 7.3 (Finite Rank Density Lemma) The finite rank tensors in J 0
T (gC M ) are

dense in J 0
T (gC M ).

Proof For θ ∈ R, let ϕθ : gC M → gC M be defined by

ϕθ (A, a) =
(

eiθ A, ei2θa
)

.

Since

[ϕθ (A, a), ϕθ (B, b)] =
[(

eiθ A, ei2θa
)

,
(

eiθ B, ei2θ b
)]

=
(

0, ω
(

eiθ A, eiθ B
))

=
(

0, ei2θω(A, B)
)

= ϕθ [(A, a), (B, b)]

we see that ϕθ is a Lie algebra homomorphism.
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Now let �θ : T(gC M ) → T(gC M ) be defined by �θ1 = 1 and

�θ (h1 ⊗ · · · ⊗ hn) = ϕθ h1 ⊗ · · · ⊗ ϕθ hn for all hi ∈ gC M and n ∈ N.

If we write ξ ∧ η for ξ ⊗ η − η ⊗ ξ , then

�θ(ξ ∧ η − [ξ, η]) = (ϕeiθ ξ ) ∧ (ϕeiθ η) − ϕeiθ [ξ, η]
= (ϕeiθ ξ ) ∧ (ϕeiθ η) − [ϕeiθ ξ, ϕeiθ η].

From this it follows that �θ(J ) ⊂ J and therefore if α ∈ J 0(gC M ), then α ◦ �θ ∈
J 0(gC M ). Letting � be an orthonormal basis as in Eq. (5.8), we have ϕθ h = ei2θ h or
ϕθ h = eiθ h for all h ∈ �. Therefore it follows that

|〈α ◦ �θ, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2 = |〈α, ϕθ k1 ⊗ ϕθ k2 ⊗ · · · ⊗ ϕθkn〉|2
= |〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2

and hence that

‖α ◦ �θ‖2
J 0

T (gC M )
=

∞∑
n=0

T n

n!
∑

k1,k2,...,kn∈�

|〈α ◦ �θ, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2

=
∞∑

n=0

T n

n!
∑

k1,k2,...,kn∈�

|〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2 = ‖α‖2
J 0

T (gC M )
.

So the map α ∈ J 0
T (gC M ) → α ◦ �θ ∈ J 0

T (gC M ) is unitary. Moreover, since

|〈α, ϕθ k1 ⊗ ϕθ k2 ⊗ · · · ⊗ ϕθ kn〉 − 〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2
� 2 |〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2

we may apply the dominated convergence theorem to conclude

lim
θ→0

‖α ◦ �θ − α‖2
J 0

T (gC M )

=
∞∑

n=0

T n

n!
∑

k1,k2,...,kn∈�

lim
θ→0

|〈α, ϕθ k1 ⊗ ϕθk2 ⊗ · · · ⊗ ϕθ kn〉

−〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2
= 0,

so that α → α ◦ �θ is continuous. (Notice that �θ ◦ �α = �θ+α , so it suffices to
check continuity at θ = 0.)
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Let

Fn(θ) = 1

2πn

n−1∑
k=0

k∑

=−k

ei
θ = 1

2πn

sin2(nθ/2)

sin2(θ/2)

denote Fejer’s kernel [28, p. 143]. Then
∫ π

−π
Fn(θ)dθ = 1 for all n and

lim
n→∞

π∫
−π

Fn(θ)u(θ)dθ = u(0) for all u ∈ C ([−π, π ], C).

We now let

α(n) :=
π∫

−π

α ◦ �θ Fn(θ)dθ.

Then

lim sup
n→∞

‖α − α (n)‖2
J 0

T (gC M )
� lim sup

n→∞

∥∥∥∥∥∥
π∫

−π

[α − α ◦ �θ ] Fn(θ)dθ

∥∥∥∥∥∥
J 0

T (gC M )

� lim sup
n→∞

π∫
−π

‖α − α ◦ �θ‖J 0
T (gC M ) Fn(θ)dθ = 0.

Moreover if β := k1, . . . , km ∈gC M with m >n, then there exits βl ∈ g⊗m
C M such that

�θβ =
2m∑

l=m

eilθβl .

From this it follows that

〈α(n), β〉 :=
π∫

−π

〈α,�θβ〉 Fn(θ)dθ =
2m∑

l=m

〈α, βl〉
π∫

−π

eilθ Fn(θ)dθ = 0

from which it follows that α(n)m ≡ 0 for all m > n. Thus α(n) is a finite rank tensor
for all n ∈ N and lim supn→∞ ‖α − α(n)‖2

J 0
T (gC M )

= 0. ��
Corollary 7.4 The vector space,

H2
T,fin (GC M ) :=

{
u ∈ H2

T (GC M ) : û (e) ∈ J 0
T (gC M ) has finite rank

}
(7.1)

is a dense subspace of H2
T (GC M ).
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Proof This follows directly from Lemma 7.3 and the Taylor isomorphism Theo-
rem 6.10. ��

7.2 Polynomial approximations

To prove Theorem 7.1, it suffices to show that every element u ∈ H2
T,fin(GC M ) may

be well approximated by an element from H2
T (G). In order to do this, let {e j : j =

1, 2, } ⊂ H∗ be an orthonormal basis for H and for N ∈ N, define PN ∈ Proj(W ) as
in Eq. (2.17), i.e.

PN (w) =
N∑

j=1

〈
w, e j

〉
H e j for all w ∈ W. (7.2)

Let us further define πN := πPN and

uN := u ◦ πN for all N ∈ N. (7.3)

We are going to prove Theorem 7.1 by showing uN ∈ P and uN → u in H2
T (GC M ).

Remark 7.5 A complicating factor in showing uN |GC M → u in H2
T (GC M ) is the

fact that for general ω and P ∈ Proj(W ), πP : G → G P ⊂ GC M is not a group
homomorphism. In fact we have,

πP
[
(w, c) · (w′, c′)]− πP (w, c) · πP

(
w′, c′) = �P

(
w,w′) (7.4)

where

�P
(
w,w′) = 1

2

(
0, ω

(
w,w′)− ω

(
Pw, Pw′)) (7.5)

So unless ω is “supported” on the range of P , πP is not a group homomorphism.
Since, (w, b)+ (0, c) = (w, b) · (0, c) for all w ∈ W and b, c ∈ C, we may also write
Eq. (7.4) as

πP
[
(w, c) · (w′, c′)] = πP (w, c) · πP

(
w′, c′) · �P

(
w,w′). (7.6)

Lemma 7.6 To each k := (A, a) ∈ gC M , g = (w, c) ∈ G, and P ∈ Proj(W ), let

k P (g) = k P (w, c) := πP k + �P (w, A) ∈ gP (7.7)

where �P is defined in Eq. (7.5) above. If u : GC M → C is a holomorphic function
and g ∈ G, then

(
k̃ (u ◦ πP )

)
(g) =

〈
Du (πP (g)) , k P (g)

〉
(7.8)
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or equivalently put,

〈
û ◦ πP (g), k

〉 = 〈D (u ◦ πP ) (g), k〉 =
〈
Du (πP (g)) , k P (g)

〉
. (7.9)

Proof By direct computation,

(
k̃ (u ◦ πP )

)
(g) = d

dt

∣∣∣∣
0

u
(
πP

(
g · etk

))

= d

dt

∣∣∣∣
0

〈
Du (πP (g)) , [πP (g)]−1 · πP

(
g · etk

)〉

where by Eq. (7.6),

d

dt

∣∣∣∣
0

(
[πP (g)]−1 · πP

(
g · etk

))

= d

dt

∣∣∣∣
0

(
P(t A), a + 1

2
ω (w, t A) − ω (Pw, t P A)

)

=
(

P A, a + 1

2
ω (w, A) − ω(Pw, P A)

)

= πP k + �P (w, A).

��
Notation 7.7 Given P ∈ Proj(W ) and k j = (A j , c j ) ∈ gC M , let K j := k P

j :
GC M → gC M and κn : GC M → ⊕n

j=1g
⊗ j
C M be defined by

κn =
(

k̃n + Kn⊗
) (

k̃n−1 + Kn−1⊗
)

· · ·
(

k̃1 + K1⊗
)

1

=
(

k̃n + Kn⊗
) (

k̃n−1 + Kn−1⊗
)

· · ·
(

k̃2 + K2⊗
)

K1. (7.10)

In these expressions, K j⊗ denotes operation of left tensor multiplication by K j .

Example 7.8 The functions κn are determined recursively by κ1 = K1 and then

κn =
(

Kn ⊗ +k̃n

)
κn−1 = Kn ⊗ κn−1 + k̃nκn−1 for all n � 2. (7.11)

The first four κn are easily seen to be given by, κ1 = K1,

κ2 = K2 ⊗ K1 + k̃2 K1 = K2 ⊗ K1 + �P (A2, A1) ,

κ3 =
(

K3 ⊗ +k̃3

)
(K2 ⊗ K1 + �P (A2, A1))

= K3 ⊗ K2 ⊗ K1+K3 ⊗ �P (A2, A1)+ �P (A3, A2) ⊗ K1+K2 ⊗ �P (A3, A1) ,
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and

κ4 = K4 ⊗ K3 ⊗ K2 ⊗ K1

+
(

K4 ⊗ K3 ⊗ �P (A2, A1) + K4 ⊗ �P (A3, A2) ⊗ K1 + K4 ⊗ K2 ⊗ �P (A3, A1)

+�P (A4, A3) ⊗ K2 ⊗ K1 + K3 ⊗ �P (A4, A2) ⊗ K1 + K3 ⊗ K2 ⊗ �P (A4, A1)

)

+�P (A4, A3) ⊗ �P (A2, A1) + �P (A3, A2) ⊗ �P (A4, A1) + �P (A4, A2) ⊗ �P (A3, A1) .

At the end we will only use κn evaluated at e ∈ GC M . Evaluating the above expressions
at e amounts to replacing K j by πP k j in all of the previous formulas.

Proposition 7.9 If u ∈ H(GC M ), then, with the setup in Notation 7.7, we have

〈
û ◦ πP , kn ⊗ · · · ⊗ k1

〉 = 〈û ◦ πP , κn
〉

for any n ∈ N, (7.12)

where both sides of this equation are holomorphic functions on GC M .

Proof The proof is by induction with the case n = 1 already completed via Equation
(7.9). To proceed with the induction argument, suppose that Eq. (7.12) holds for some
n ∈ N. Then by induction and the product rule

〈
û ◦ πP , kn+1 ⊗ kn ⊗ · · · ⊗ k1

〉 = k̃n+1
〈
û ◦ πP , kn+1 ⊗ kn ⊗ · · · ⊗ k1

〉
= k̃n+1

〈
û ◦ πP , κn

〉
=
〈
û ◦ πP , k̃n+1κn

〉
+
〈
k̃n+1

[
û ◦ πP

]
, κn

〉
. (7.13)

To evaluate k̃n+1[û ◦ πP ] let v ∈ T(gC M ) and let ṽ denote the corresponding left
invariant differential operator on GC M . Then

〈
k̃n+1

[
û ◦ πP

]
, v
〉
(g) =

(
k̃n+1

〈[
û ◦ πP

]
, v
〉)

(g)

=
(

k̃n+1
[
(ṽu) ◦ πP

])
(g)

=
〈
D (ṽu) (πP (g)) , k P

n+1(g)
〉

=
(

˜k P
n+1(g)ṽu

)
(πP (g))

=
〈
û (πP (g)) , k P

n+1(g) ⊗ v
〉
. (7.14)

Combining Eqs. (7.13) and (7.14) shows,

〈
û ◦ πP , kn+1 ⊗ kn ⊗ · · · ⊗ k1

〉 = 〈û ◦ πP , k̃n+1κn

〉
+
〈
û ◦ πP , k P

n+1 ⊗ κn

〉

=
〈
û ◦ πP , k̃n+1κn + k P

n+1 ⊗ κn

〉
= 〈û ◦ πP , κn+1

〉

wherein we have used Eq. (7.11) for the last equality. ��
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The induction proof of the following lemma will be left to the reader with Exam-
ple 7.8 as a guide.

Lemma 7.10 Let k j = (A j , c j ) ∈ gC M for 1 � j � n, � n
2 � = n/2 if n is even and

(n − 1)/2 if n is odd, and κn be as in Eq. (7.10). Then

κn(e) = πP kn ⊗ · · · ⊗ πP k2 ⊗ πP k1 + R (P : kn, . . . , k1), (7.15)

where

R (P : kn, . . . , k1) =
� n

2 �∑
j=1

R j (P : kn, , . . . , k1) (7.16)

with R j (P : k1, . . . , kn) ∈ g
⊗(n− j)
C M . Each remainder term, R j (P : k1, . . . , kn), is a

linear combination (with coefficients coming from {±1, 0}) of homogenous tensors
which are permutations of the indices and order of the terms in the tensor product of
the form

�P (A1, A2) ⊗ · · · ⊗ �P
(

A2 j−1, A2 j
)⊗ k2 j+1 ⊗ · · · ⊗ kn . (7.17)

Proposition 7.11 Let PN ∈ Proj(W ) and πN := πPN be as in Notation 1.1 and
suppose that u ∈ H(GC M ) satisfies ‖ûn(e)‖n < ∞ for all n. Then

lim
N→∞

∥∥ûn(e) − [û ◦ πN (e)
]

n

∥∥
n

= 0 for n = 0, 1, 2, · · · (7.18)

Proof To simplify notation, let αn := ûn(e) and αn(N ) := [û ◦ πN (e)]n . Let � be an
orthonormal basis for gC M of the form in Eq. (5.8) and let k := (k1, k2, . . . , kn) ∈ �n .
Then

〈α − α (N ) , k1 ⊗ · · · ⊗ kn〉 = 〈α, k1 ⊗ · · · ⊗ kn − πN k1 ⊗ · · · ⊗ πN kn〉
+ 〈α, R (PN : k)〉

where R(PN : k) is as in Lemma 7.10. Therefore, ‖αn −αn(N )‖n � CN + DN where

CN :=
√∑

k∈�n

|〈α, R (PN : k)〉|2 and

DN :=
√∑

k∈�n

|〈αn, k1 ⊗ · · · ⊗ kn − πN k1 ⊗ · · · ⊗ πN kn〉|2.
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We will complete the proof by showing that, limN→∞ CN = 0 = limN→∞ DN . To
estimate CN , use Lemma 7.10 and the triangle inequality for 
2(�

n) to find,

CN =

√√√√√∑
k∈�n

∣∣∣∣∣∣
� n

2 �∑
j=1

〈
α, R j (PN : k)

〉
∣∣∣∣∣∣
2

�
� n

2 �∑
j=1

√∑
k∈�n

∣∣〈α, R j (PN : k)
〉∣∣2.

But
∑

k∈�n |〈α, R j (PN : k)〉|2 is bounded by a sum of terms (the number of these
terms depends only on j and n and not N ) of which a typical term (see Eq. (7.17)) is;

∑
k∈�n

∣∣〈αn− j , �PN (A1, A2) ⊗ · · · ⊗ �PN

(
A2 j−1, A2 j

)⊗ k2 j+1 ⊗ · · · ⊗ kn
〉∣∣2 .

(7.19)

The sum in Eq. (7.19) may be estimated by,

∥∥αn− j
∥∥

n− j

∞∑
l1,...,l2 j =1

∥∥�PN

(
el1 , el2

)∥∥2
gC M

. . .
∥∥�PN

(
el2 j−1 , el2 j

)∥∥2
gC M

=∥∥αn− j
∥∥2

n− j ε
j
N ,

where

εN = 1

4

∞∑
k,l=1

‖ω (ek, el) − ω (PN ek, PN el)‖2
C

= 1

4

∞∑
max(k,l)>N

‖ω (ek, el) − ω (PN ek, PN el)‖2
C

� 1

2

∞∑
max(k,l)>N

‖ω (ek, el)‖2
C → 0 and N → ∞.

Thus we have shown limN→∞ CN = 0
For N ∈ N, let �N = {(0, f j )}d

j=1 ∪ {(e j , 0)}N
j=1. Since k1 ⊗ · · · ⊗ kn = πN k1

⊗ · · · ⊗ πN kn if k := (k1, k2, . . . , kn) ∈ �n
N , it follows that

D2
N =

∑
k∈�n\�n

N

|〈αn, k1 ⊗ · · · ⊗ kn − πN k1 ⊗ · · · ⊗ πN kn〉|2

� 2
∑

k∈�n\�n
N

|〈αn, k1 ⊗ · · · ⊗ kn〉|2 . (7.20)

Because

∑
k∈�n

|〈αn, k1 ⊗ · · · ⊗ kn〉|2 = ‖αn‖2
n < ∞
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and �n
N ↑ �N as N ↑ ∞, the sum in Eq. (7.20) tends to zero as N → ∞. Thus

limN→∞ DN = 0 and the proof is complete. ��
Proposition 7.12 If u ∈ H2

T,fin(GC M ) and uN := u ◦πN as in Eq. (7.3), then uN ∈ P
and uN |GC M → u in H2

T (GC M ).

Proof Suppose m ∈ N is chosen so that ûn(e) = 0 if n > m. According to Proposi-
tion 7.9,

〈
ûN (e), kn ⊗ · · · ⊗ k1

〉 = 〈û(e), κn(e)
〉

where κn(e) ∈⊕� n
2 �

j=1 g
⊗(n− j)
C M . From this it follows that 〈ûN (e), kn ⊗ · · · ⊗ k1〉 = 0 if

n � 2m + 2. Therefore, uN restricted to PN H × C is a holomorphic polynomial and
since uN = uN |PN H×C ◦ πN , it follows that uN ∈ P . Moreover,

lim
N→∞

∥∥û (e) − ûN (e)
∥∥2

J 0
T (gC M )

= lim
N→∞

2m+2∑
n=0

T n

n!
∥∥ûn (e) − [ûN (e)

]
n

∥∥2
n

= 0,

wherein we have used Proposition 7.11 to conclude limN→∞ ‖ûn(e)−[ûN (e)]n‖n = 0
for all n. It then follows by the Taylor isomorphism Theorem 6.10 that limN→∞ ‖u −
uN ‖H2

T (GC M ) = 0. ��

8 The skeleton isomorphism

This section is devoted to the proof of the skeleton Theorem 1.8. Let us begin by
gathering together a couple of results that we have already proved.

Proposition 8.1 If f : G → C is a continuous function such that f |GC M is holomor-
phic, then

‖ f ‖L2(νT ) � ‖ f |GC M ‖H2
T (GC M ) = ‖ f̂ (e)‖J 0

T (gC M ). (8.1)

If ‖ f |GC M ‖2
H2

T (GC M )
< ∞, then ST f = f and f satisfies the Gaussian pointwise

bounds in Eq. (6.19). (See Corollary 8.3 for a more sophisticated version of this
proposition.)

Proof See Theorems 5.9 and 6.11. ��
Lemma 8.2 Let f : G → C be a continuous function such that f |GC M is holomor-
phic and let δ > 0 be as in Theorem 4.11. If there exists an ε ∈ (0, δ) such that
| f (·)| � Ceερ2(·)/(2T ) on G, then

‖ f ‖L2(νT ) = ‖ f ‖H2
T (GC M ) =

∥∥∥ f̂ (e)
∥∥∥

J 0
T (gC M )

< ∞. (8.2)

(It will be shown in Corollary 8.4 that f is actually in H2
T (G).) In particular, Eq. (8.2)

holds for all f ∈ P .
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Proof Let {Pn}∞n=1 ⊂ Proj(W ) be a sequence such that Pn|gC M ↑ IgC M as n → ∞.
Then, by Lemma 6.5 and Proposition 4.12 with h = 0,

∞ > ‖ f ‖L2(νT ) = lim
n→∞ ‖ f ‖

L2
(

G Pn ν
Pn
T

) = ‖ f ‖H2
T (GC M ) =

∥∥∥ f̂ (e)
∥∥∥

J 0
T (gC M )

.

��
We are now ready to complete the proof of the Skeleton isomorphism Theorem 1.8.

8.1 Proof of Theorem 1.8

Proof By Corollary 5.10, ST f = f |GC M for all f ∈ P and hence by Lemma 8.2,
‖ST f ‖H2

T (GC M ) = ‖ f ‖L2(νT ). It therefore follows that ST |P extends uniquely to an

isometry, S̄T , from H2
T (G) to H2

T (GC M ) such that S̄T (P) = PC M . Since S̄T is iso-
metric and PC M is dense in H2

T (GC M ), it follows that S̄T is surjective, i.e. S̄T :
H2

T (G) → H2
T (GC M ) is a unitary map. To finish the proof we only need to show

ST f = S̄T f for all f ∈ H2
T (G). Let pn ∈ P such that pn → f in L2(νT ). Then

pn = ST pn → S̄T f in H2
T (GC M ) and hence by the Gaussian pointwise bounds in

Eq. (6.19), S̄T f (g) = limn→∞ pn(g) for all g ∈ GC M . Similarly, using the Gaussian
bounds in Corollary 4.8, it follows that

|ST f (g) − pn(g)| = |ST ( f − pn) (g)|
� ‖ f − pn‖L2(νT ) exp

(
c (k (ω) T/2)

T
d2

GC M
(e, g)

)
(8.3)

and hence we also have, ST f (g) = limn→∞ pn(g) for all g ∈ GC M . Therefore,
ST f = S̄T f as was to be shown. ��
Corollary 8.3 If f : G → C is a continuous function such that f |GC M ∈ H2

T (GC M ),
then f ∈ H2

T (G), ST f = f |GC M , and ‖ f ‖L2(νT ) = ‖ f ‖H2
T (GC M ).

Proof By Proposition 8.1 we already know that ST f = f |GC M . By Theorem 1.8, there
exists u ∈ H2

T (G) such that f |GC M = ST u. Let pn ∈ P be chosen so that pn → u in
L2(νT ) and hence pn|GC M = ST pn → ST u = ST f in H2

T (GC M ) as n → ∞. Hence
it follows from Proposition 8.1 that

‖ f − pn‖L2(νT ) �
∥∥( f − pn) |GC M

∥∥
H2

T (GC M )
= ‖ST ( f − pn)‖H2

T (GC M ) ,

and therefore, limn→∞ ‖ f − pn‖L2(νT ) = 0, i.e. pn → f in L2(νT ). Since pn → u
in L2(νT ) as well, we may conclude that f = u ∈ H2

T (G). ��
Corollary 8.4 Suppose that f : G → C is a continuous function such that | f | �
Ceερ2/(2T ) and f |GC M is holomorphic, then f ∈ H2

T (G) and ST f = f .

Proof This is a consequence of Lemma 8.2 and Corollary 8.3. ��
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9 The holomorphic chaos expansion

This section is devoted to the proof of the holomorphic chaos expansion Theorem 1.9
(or equivalently Theorem 9.10). Before going to the proof we will develop the machin-
ery necessary in order to properly define the right side of Eq. (1.8).

9.1 Generalities about multiple Itô integrals

Let (H, W) be a complex abstract Wiener space. Analogous to the notation used in
Sect. 6.1, we will denote the norm on H

∗⊗n by ‖ · ‖n .

Notation 9.1 For α ∈ H
∗⊗n and P ∈ Proj(W), let αP := α ◦ P⊗n ∈ H

∗⊗n.

Proposition 9.2 Let n ∈ N and α ∈ H
∗⊗n and Pk ∈ Proj(W) with Pk |H ↑ I |H. Then

αPk → α in H
∗⊗n.

Proof Let � := ∪k�k be an orthonormal basis for H where �k is chosen to be
an orthonormal basis for Ran(Pk) such that �k⊂�k+1 for all k. Since Pku = u or
Pku = 0 for all u ∈ � and k ∈ N, we have

|〈α, u1 ⊗ · · · ⊗ un − Pku1 ⊗ · · · ⊗ Pkun〉|2 ≤ |〈α, u1 ⊗ · · · ⊗ un〉|2

where
∑

u1,...,un∈�

|〈α, u1 ⊗ · · · ⊗ un〉|2 = ‖α‖2
n < ∞.

An application of the dominated convergence theorem then implies,

lim
k→∞

∥∥α − αPk

∥∥2
n = lim

k→∞
∑

u1,...,un∈�

|〈α, u1 ⊗ · · · ⊗ un − Pku1 ⊗ · · · ⊗ Pkun〉|2

=
∑

u1,...,un∈�

lim
k→∞ |〈α, u1 ⊗ · · · ⊗ un − Pku1 ⊗ · · · ⊗ Pkun〉|2 =0.

��
Lemma 9.3 Suppose that {b(t)}t≥0 is a W–valued Brownian motion normalized by

E [
1 (b(t)) 
2 (b (s))] = 1

2
s ∧ t (
1, 
2)H∗

Re
for all 
1, 
2 ∈ W

∗
Re. (9.1)

If P ∈ Proj(W), T > 0, and { fs}s≥0 is a (PH)∗–valued continuous adapted process,
such that E

∫ T
0 | fs |2(PH)∗ds < ∞, then

E

∣∣∣∣∣∣
T∫

0

〈 fs, d(Pb) (s)〉
∣∣∣∣∣∣
2

=
T∫

0

E | fs |2(PH)∗ ds. (9.2)
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Proof Let {e j }d
j=1 be an orthonormal basis for PH and write

Pb(s) =
d∑

j=1

[
X j (s)e j + Y j (s)ie j

]

where X j (s) = Re(Pb(s), e j ) and Y j (s) = Im(Pb(s), e j ). From the normalization
in Eq. (9.1) it follows that {√2X j ,

√
2Y j }d

j=1 is a sequence of independent standard
Brownian motions, and therefore the quadratic covariations of these processes are
given by:

d X j dYk = 0 and d X j d Xk = dY j dYk = 1

2
δ jkdt for all j, k = 1, . . . , d. (9.3)

Using Eq. (9.3) along with the identity,

〈 fs, d(Pb)(s)〉 =
d∑

j=1

[〈
fs, e j

〉
d X j (s) + 〈 fs, ie j

〉
dY j (s)

]
, (9.4)

it follows by the basic isometry property of the stochastic integral that

E

∣∣∣∣∣∣
T∫

0

〈 fs, d (Pb) (s)〉
∣∣∣∣∣∣
2

= 1

2

d∑
j=1

E

⎡
⎣

T∫
0

∣∣〈 fs, e j
〉∣∣2 ds +

T∫
0

∣∣〈 fs, ie j
〉∣∣2 ds

⎤
⎦

= E

T∫
0

d∑
j=1

∣∣〈 fs, e j
〉∣∣2 ds =

T∫
0

E | fs |2(PH)∗ ds.

��

Definition 9.4 For P ∈ Proj(W), n ∈ N, and T > 0, let

M P
n (T ) :=

∫
0≤s1≤s2≤···≤sn≤T

d Pb (s1) ⊗ d Pb (s2) ⊗ · · · ⊗ d Pb (sn) .

Alternatively put, M P
0 (T ) ≡ 1 and M P

n (t) ∈ (PH)⊗n is defined inductively by

M P
n (t) :=

t∫
0

M P
n−1(s) ⊗ d Pb(s) for all t ≥ 0. (9.5)
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Corollary 9.5 Suppose that T > 0, α ∈ H
∗⊗n, and P ∈ Proj(W), then 〈α, M P

n (T )〉
is a square integrable random variable and

E

∣∣∣〈α, M P
n (T )

〉∣∣∣2 = T n

n! ‖αP‖2
n .

Proof The proof is easily carried out by induction with the case n = 1 following
directly from Lemma 9.3. Similarly from Lemma 9.3, Eq. (9.5), and induction we
have

E

∣∣∣〈α, M P
n (T )

〉∣∣∣2 = E

∣∣∣∣∣∣
T∫

0

〈
α, M P

n−1 (s) ⊗ d Pb (s)
〉∣∣∣∣∣∣

2

=
T∫

0

d∑
j=1

E

∣∣∣〈α, M P
n−1 (s) ⊗ e j

〉∣∣∣2 ds

=
d∑

j=1

T∫
0

sn−1

(n − 1)!
∥∥〈α, (·) ⊗ e j

〉∥∥2
n−1 ds = T n

n!
∥∥αp

∥∥2
n .

��
Notation 9.6 We now fix T > 0 and for P ∈ Proj(W), let α̃P = 〈α, M P

n (T )〉, i.e.

α̃P =
〈
α,

∫
0≤s1≤s2≤···≤sn≤T

d Pb (s1) ⊗ d Pb (s2) ⊗ · · · ⊗ d Pb (sn)

〉
.

Lemma 9.7 If P, Q ∈ Proj(W), then

∥∥α̃P − α̃Q
∥∥2

L2 := E
∣∣α̃P − α̃Q

∣∣2 = T n

n!
∥∥αP − αQ

∥∥2
n .

Proof Let R ∈ Proj(W) be the orthogonal projection onto Ran(P) + Ran(Q). We
then have (αP )R = αP and (αQ)R = αQ and therefore, by Corollary 9.5,

E
∣∣α̃P − α̃Q

∣∣2 = E

∣∣∣(αP )˜
R − (αQ

)˜
R

∣∣∣2 = E

∣∣∣(αP − αQ
)˜

R

∣∣∣2

= T n

n!
∥∥(αP − αQ

)
R

∥∥2
n

= T n

n!
∥∥αP − αQ

∥∥2
n .

��
Proposition 9.8 Let α ∈ H

∗⊗n and Pk ∈ Proj(W) with Pk |H ↑ I |H, then {α̃Pk }∞k=1
is an L2–convergent series. We denote the limit by α̃. This limit is independent of the
choice of orthogonal projections used in constructing α̃.
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Proof For k, l ∈ N, by Lemma 9.7,

∥∥α̃Pl − α̃Pk

∥∥
L2 = ∥∥αPl − αPk

∥∥
n → 0 as l, k → ∞,

because, as we have already seen, αPl → α in H
∗⊗n . Therefore α̃ := L2– limk→∞ α̃Pk

exists.
Now suppose that Ql ∈ Proj(W) also increases to I |H. By Lemma 9.7 and the fact

that both αPl and αQl converge to α in H
∗⊗n , we have

∥∥α̃Pl − α̃Ql

∥∥
L2 = ∥∥αPl − αQl

∥∥
H∗⊗n → 0 as l → ∞.

��
By polarization of the identity, ‖α̃‖2

L2 = T n‖α‖2
n/n!, it follows that

(
α̃, β̃

)
L2

= T n

n! (α, β)H∗⊗n for all α, β ∈ H
∗⊗n .

Moreover, if α ∈ H
∗⊗n and β ∈ H

∗⊗m with m �= n, by the orthogonality of the finite
dimensional approximations, α̃Pl and β̃Pl , we have that (α̃, β̃)L2 = 0.

Corollary 9.9 (Itô’s isometry) Suppose that α = {αn}∞n=0 ∈ ⊕∞
n=0

T n

n! H
∗⊗n, i.e. αn ∈

H
∗⊗n for all n such that

‖α‖2
T =

∞∑
n=0

T n

n! ‖αn‖2
n < ∞.

Then α̃ :=∑∞
n=0 α̃n is L2(P)–convergent and the map,

∞⊕
n=0

T n

n! H
∗⊗n � α �→ α̃ ∈ L2(P),

is an isometry, where P is the probability measure used in describing the law of
{b(t)}t≥0.

9.2 The stochastic Taylor map

Let b(t) = (B(t), B0(t))∈g and g(t)∈G be the Brownian motions introduced at the
start of Sect. 4. We are going to use the results of the previous subsection with H =
gC M , W = g, and b(t) = (B(t), B0(t)). Let f ∈H2

T (G) and α f := TT ST f ∈J 0
T (gC M ).

The following theorem is a (precise) restatement of Theorem 1.9.

Theorem 9.10 For any f ∈H2
T (G)

f (g(T )) = α̃ f , (9.6)
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where α̃ f was introduced in Corollary 9.9. (The right hand side of Eq. (1.8) is to be
interpreted as α̃ f .)

Proof First suppose that f is a holomorphic polynomial and P∈ Proj(W ) so that
πP∈ Proj(g). Then by Itô’s formula,

f (gP(T )) = f (e) +
T∫

0

〈D f (gP(t)) , dπP b(t)〉 .

Iterating this equation as in the proof of [3, Proposition 5.2], if N ∈ N is sufficiently
large, then

f (gP(T )) = f (e) +
N∑

n=1

∫
0≤s1≤s2≤···≤sn≤T

〈
Dn f (e) , dπP b (s1) ⊗ · · · ⊗ dπP b (sn)

〉

= f (e) +
N∑

n=1

[
Dn f (e)

]˜
πP

.

We now replace P by Pk ∈ Proj(W ) with Pk ↑ I in this identity. Using Proposi-
tions 4.12 and 9.8, we may now pass to the limit as k → ∞ in order to conclude,

f (g(T )) = f (e) +
N∑

n=1

[
Dn f (e)

]˜ = α̃ f . (9.7)

Now suppose that f ∈ H2
T (G). By Theorem 7.1 we can find a sequence of holo-

morphic polynomials { fn}∞n=1 ⊂ P such that

E | f (g(T )) − fn(g(T ))|2 = ‖ f − fn‖2
L2(νT )

→ 0 as n → ∞.

The isometry property of the Taylor and skeleton maps (Theorem 6.10 and Corol-
lary 8.3), shows that α fn → α f in J 0

T and therefore by Corollary 9.9 α̃ fn → α̃ f

as n → ∞. Hence we may pass to the limit in Eq. (9.7) applied to the sequence
fn(g(T )) = α̃ fn , to complete the proof of Eq. (9.6). ��

10 Future directions and questions

In this last section, we wish to speculate on a number of ways that the results in this
paper might be generalized.

(1) It should be possible to remove the restriction on C being finite dimensional, i.e.
we expect much of what have done in this paper to go through when C is replaced
by a separable Hilbert space. In doing so one would have to modify the finite
dimensional approximations used in our construction to truncate C as well.
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(2) We also expect that the level of non-commutativity of G may be increased. To
be more precise, under suitable hypothesis it should be possible to handle more
general graded nilpotent Lie groups.

(3) Open questions:
(a) as we noted in Remark 5.13 we do not know if Ap

T = Hp
T (G). It might be

easier to try to answer this question for p = 2.
(b) give an intrinsic characterization of H2

T (G) as in Shigekawa [25] in terms of
functions in L2(νT ) solving a weak form of the Cauchy–Riemann equations.

Acknowledgments We are grateful to Professor Malliavin whose question during a workshop at the
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