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Let M be a compact manifold without boundary, o be a fixed base point in M,
g be a Riemannian metric on M, and V be a g-compatible covariant derivative on
TM—the tangent space to M. Assume the torsion (7) of V satisfies the skew
symmetry condition: g{T(X, ¥, Y > =0 for all vector fields X and Y on M. (For
example, take V to be the Levi-Civita covariant derivative on (M, g).) Also let v
denote the Wiener measure on W, (M)={weC([0, 1], M): w(0)=0}, and let
H(w)(s) denote stochastic parallel translation (relative to v) along the path
we W, (M) up to time se[0,1]. Given a C'-function #:[0,1]—T,M, it is
shown that the differential equation &(¢)=H(o(¢))h with initial condition
o(0) = id: W(M) » W(M) has a solution a:R — Maps(W(M), W(M))—the
measurable maps from W(M) to W(M). This function () is a flow on W(M), ie.,
for all 1, te R, o(f + 1) = 0(t)oa(t) v-as. Furthermore o(¢) has the quasi-invariance
property: the law (6(¢), v) of a(¢) with respect to the Wiener measure (v) is equiva-
lent to v for all reR. This result is used to prove an integration by parts formula
for the h-derivative 4,/ defined by 8, f(w)=(d/dt)lof(o(t)(w)), where [ is a
“Ccylinder” function on W(M).  © 1992 Academic Press, Inc.

1. INTRODUCTION

Let H denote the Hilbert space of absolutely continuous functions func-
tions A: [0, 17— R” such that 4(0)= 0 and (h, h) = [, |h'(s)] ds < co. Recall
the classical Cameron—-Martin Theorem [CM1, CM2, Mar] which states
that if u is the standard Wiener measure on W(R")= C([0, 1], R") and
he H, then u is quasi-invariant under the transformation

(0 — o+ h): W(R") > W(R"). (1.1)

Furthermore, the Radon-Nikodym derivative is given by

du(w + h)/du(w) = exp ( — L: W (s) dw(s)—3 Ll |h'(s)]? ds), (1.2)
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where {4 h'(s)-dw(s) is an Itd stochastic integral, see [K3, Theorem 1.2,
p. 1137]. The purpose of this paper is to prove the analogous result for the
Wiener measure on the path space of a compact Riemannian manifold.

Let (M, g, V) be given, where M is a compact manifold without bound-
ary, g is a Riemannian metric on M, and V is a g-compatible covariant
derivative on TM (see Section 2.) Fix a base point o e M and a C'-function
h:[0,1] > T ,M (=tangent space of M at o) such that #(0)=0. Let v
denote the Wiener measure on the path space W(M)=C([0, 1], M)
which is concentrated on the set of based paths W, (M)=
{we W(M): w(0)=0€e M}. Let H(w)(s) denote stochastic parallel transla-
tion (or horizontal lifting) along w (relative to v) on the interval [0, 5], see
Section 3, and in particular Theorem 3.2. (Notice that H is really an
equivalence class of processes with two processes equivalent if they are
equal v-a.s.) With the above data, define the “vector field” (X*) (or more
precisely an equivalence class of vector fields) on W, (M) by

X"(w)(s) = H(w)(s) h(s). (1.3)

Notice that for each w, X*(w) is a vector field along the curve w. Hence,
it is reasonable to interpret X*(w) as a tangent vector at w e W, (M). See
Malliavin [M1, M3] for some proposed methods of defining the tangent
space (TW(M)) to W(M) and equipping it with a Riemannian metric. Also
see Remark 2.3, where it is pointed out that the map 4 — X"(w) is an
isometry with respect to the “natural” metrics on H and T, W, (M).

Given such a vector field X, it is natural to try to construct its flow. In
other words, one wants to find a function ¢: R —» Maps(W(M), W(M)) (the
measurable maps from W(M) to W(M)) which solves the initial value
problem,

é()(w)=X"a(t)(w)) with ¢(0)(w)=o, (1.4)

at least for v-almost every we W, (M). (Note that the s-variable which is
taken to be the parameter for paths in W(M) is now suppressed. This
convention will be used whenever possible throughout this paper.)

Remark 1.1. If M =R", with the usual metric and covariant derivative
and 0=0, then X"(w)(s)=h(s) under the natural identification of TR"
with ®” x R". For this case one easily solves (1.4) to find

a(tw)=w + th,

which at r=1 is the transformation (1.1) used by Cameron and Martin.
The reader is referred to Example 5.1 for the more general Lie Group cases
where one can still explicitly solve (1.4).
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Because of the above remark it is reasonable to consider a(1), where o(¢)
solves (1.4), as the generalization of the transformation (1.1). Now assum-
ing the existence of a solution (o) to (1.4), it is natural to ask whether the
map o(t): W(M)— W(M) leaves the Wiener measure (v) quasi-invariant?
In other words, is the law (v, = a(r), v) of a(r) with respect to v equivalent
to v for all ¢? Recall two measures v, and v are said to be equivalent it they
are mutually absolutely continuous with respect to one another. Suppose
for the moment v, =a(r), v is not absolutely continuous with respect to v.
In this case X”(o()) is no longer well defined, since X*(w) was only
defined up to v-equivalence. More precisely the equivalence class of the
process X"(a()) will now depend on the particular representative chosen
for X”. This certainly renders Eq. (1.4) meaningless. Therefore, the issues of
existence and quasi-invariance of solutions to (1.4) are inseparable.

Because of the difficulties discussed above, it will be beneficial to reinter-
pret the meaning of (1.4). The modification is as follows. First, define the
coordinate functions a,(s): W(M)—->M by o (s)@)=w(s) for ecach
se[0,1]. We now say a solution to (1.4) is a path (o(¢) for teR) of
M-valued semimartingales solving

6(t)=H(s(t))-h  with a(0)=a,, (1.5)

where H(o(t)) is the stochastic parallel translation (or horizontal lift) of the
M-valued semimartingale o(¢). (We are now suppressing both the random
sample path o and the s-parameter from the notation.) Of course the
process g(f) must be suitably differentiable in the s-variable. Recall that
the notion of stochastic parallel translation along any continuous M-valued
semimartingale is always well defined, see Theorem 3.2 below.

The reformulation in (1.5) of (1.4) has the advantage that it makes sense
even if the flow does not satisfy the quasi-invariance property. It is now
possible to summarize the main results of this paper.

THEOREM 1.1. Let (M, g, V, W(M), H, a,) be as above and suppose that
h: [0, 1] — T,M is a C'~function such that h(0)=0. Then there is a unique
solution o: R — “Brownian semimartingales” on M satisfying (1.5).

See Definition 4.1 for the notion of a Brownian semimartingale.
Theorem 1.1 is a consequence of Corollary 6.3. Two proofs of Corollary 6.3
are given in this paper, one in Section 6 and the other in Section 7. The
condition that 4 is C' rather than an element of H is an unnatural restric-
ion which is needed for technical reasons. I would expect the results in this
paper to be true for all he H.

The next theorem is a combination of Theorem 8.1 and Theorem 8.5. In
order to state the theorem, recall that a continuous M-valued process
(X, }sero. 17 defined on a measurable space 2 may be thought of as a
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function from € to W(M). This function is still denoted by X and is giyen
by X(w)= (s - X (w)). T will write X or X(s) interchangeably depending
on which notation is more convenient.

TuEOREM 1.2. Keep the assumptions and notation in Theorem 1.L
Further assume that V is torsion skew symmetric (see Definition 8.1), then
v,=0(t),v (the law of a(1)) is equivalent to v, for all t. If a(1) -is viewed as
a function from W(M) to W(M), then a(1) solves (1.4) and is a flow on
W(M), ie., for all t,teR, o(t)oa(t)=0o(t+1) v-as. Furthermore, yr’
p,=dv,/dv is the Radon-Nikodym derivative of v, with respect to v, then p;
is v-integrable for all r e R. (See (8.16) and Theorem 8.5 for a formula for p,.)

Remark 1.2. The Levi-Civita covariant derivative is an example of a
torsion skew symmetric covariant derivative. See Example 8.1 for more

examples.

The integration by parts formula in the next theorem is an easy conse-
quence of Theorem 1.2. Theorem 1.3 is a combination of Theorem 9.1 and

Proposition 9.1.

THEOREM 1.3.! Keep the notation and hypothesis of Theorem 1.2. Let
(-,-) denote the inner product on LYW (M), dv). For a fur.zctio'n
[ W(M)— R let 8, f=(d/dt)]o f(a(1)): W(M)— R, if the derivative exists in
probability. Then there is a function z(h): W(M)— R such fhat for all
“C2-cylinder functions” f and g on W(M) one has the integration by parts

Sformula:

(0, f,8)=1(f, —0,8+z(h)-g).

Furthermore, there are constants ¢>0 and K> 1 independent of h iuch that
for all h#0 in C', y(etLFVIT) < K < oo, where |[B|? = [g |1 (s)]” ds.

See Definition 9.1 for the notion of a C2-cylinder function, and Eq. (9.2)
for the explicit formula for z(#) involving the Ricci curvature and the
torsion of the covariant derivative V.

Remark 1.3. The analogues of Theorems 1.2-1.3 are valid if the Wiener
measure (v) is replaced by a pinned Wiener measure on W(M), ie., a

Brownian bridge. See Driver [D3].

There have been numerous other nonlinear extensions to the classical
Cameron-Martin theorem in the literature. The first such extension was by
Cameron and Martin [CM3]. The later nonlinear extensions are for the
most part done in the setting of Gross’ [Gr2] abstract Wiener spaces, see

! Leandre [Le] has recently proved this integration by parts formula directly using
methods of Bismut.
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Gross [Gr1], Kuo [KI1, K2], Ramer [Ra], and Kusuoka [Kul-Ku41].
The order is both chronological and by degree of generality.

Results which are closer to those of this paper may be found in Albeverio
and Hoegh-Krohn [AH], Shigekawa [Shl, Sh2] Frenkel [Fr], M.-P.
Malliavin [MM1], and Gross [Gr4]. All of these papers include quasi-
invariant results for the Wiener measure (or the pinned Wiener measure)
on the based (loops) paths of a compact Lie group. See Sections 5 and 10
for a morc thorough discussion of how the results in this paper relate to
the Lic group and homogeneous space cases discussed in [AH, Shi,
Sh2, Fr, MM1, Gr4]. Some other related references that the rcader may
wish to consult are Airault and Malliavin [AM1, AM2], Airault and Van
Biesen [AV1, AV2], Epperson and Lohrenz [ELIL, EL2], Getzler [Ge],
Jones and Leandre [JL], P. Malliavin [M1-M3], M.-P. Malliavin and
M. Malliavin [MM2-MM4], and Pressley and Segal [PS].

At this point it should be pointed out that a majority of this manuscript
is devoted to Theorem 1.1—the existence of the nonlinear transformations
a(1). Once Theorem 1.1 is proved, the quasi-invariance issue is quite easily
settled with the aid of Girsanov’s Theorem [Gi]—which is yet another
extension of the classical Cameron-Martin theorem.

The closest result in the literature (to the author’s best knowledge) relat-
ing to Theorem 1.2 is the work of Cruzeiro [Cr]. Roughly stated, Cruzeiro
proves the existence of flows for a certain class of vector-fields on the
standard Wiener space. She also shows that these flows satisfy the quasi-
invariance property. As stated, Theorem 1.2 involves a flow on W(M),
rather than the path space W(R"). However, by using the stochastic
development of Eells and Elworthy and P. Malliavin (see, for example,
[EE, Ell, Em, IW] and Section 3 below), it is possible to transfer the
differential equation (1.4) or (1.5) on W(M) to a differential equation on
W(R"). (The underlying measure on the path space W(R") will be the
standard Wiencr measure denoted by u.) When this is done the “vector
field” X" on W(M) becomes a vector field X" on W(R") (defined p-as.)
which has the form

in:jawym+ijnw, (1.6)

where w is now a path in W(R"), and C and R functions on W(R") such
that p-as. s — (C(w)(s), R(w)(s)) is an adapted continuous End(R") x R"-
valued process. This result is included in Theorem 5.1 and Proposition 6.1,
where the reader may find explicit formulas for C and R. Roughly speaking
Cruzeiro’s results could be used to prove the existence of a flow generated
by (1.6) provided C=0. But as a rule in our situation C is seldom zero.
(A notable exception to this rule is when M is a commutative Lie group,

, R” or a torus.) It should be noted, however, as in [MM1], if one
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knows a priori the existence of the flow for (1.6) and one has good control
over the “infinitesimal density” (z(/)), then one can still use the technique
of [Cr] to prove the quasi-invariance property. This technique is not used
in this paper. We will only use the more standard Girsanov theorem.

As with Eq. (1.4), it is better to first consider X" as inducing a flow on
the space of R”-valued semimartingales rather than on W(R") itself. That
is, one should consider the equation

jcu ) (1 fkwwnm with w(0)=b,  (1.7)

where w(r) is now a path of R"-valued semimartingales, and b is a standard
R"-valued Brownian motion. (For example, b(s) could be the coordinate
process on (W(R"), u), b(s)(w)=w(s).) Equation (1.7) is solved in
Theorem 6.1. The idea of the proof is simple. First assume that w(r) is a
Brownian semimartingale, that is to say, w(t):j‘O( db+j t) ds, where
for each r in R, (O(t), a(t)) is a continuous adapted End(R") x R" valued
process. The initial condition w(0)=¥& implies the initial condition
(0(0), «(0)) = (Id, 0) for (O(1), a(r)). Now insert this form of w(¢) into (1.7)
to find the equations '

with 0(0)=1, (1.8)
and
a(r) = C(w(t)) alr)+ R(w(t))

These equations are then solved by a modified Piccard iteration scheme.

We can now explain how the torsion skew symmetry condition enters
into Theorem 1.2. First it is shown that proving quasi-invariance for w(t)
proves quasi-invariance for o(t), see Theorem 8.2. It is easy to see that in
order for the law of w(t) to be equivalent to u (= Wiener measure on
W(R")), requires w(f) to have the same quadratic covariation as b, see
Lemma 8.1. But this implies that O(¢) must be an O(n)-valued process,
where O(n) denotes the orthogonal group on R”. But by (1.8), if O(1)
is orthogonal for all ¢, then the process C(w(¢)) must be so(n)-valued,
where so(n) is the Lie algebra of O(n) consisting of skew symmetric real
n x n-matrices. But the explicit formula for C (see (5.6)-(5.8)) shows that
one can not expect C(w(?)) to be skew-symmetric unless the torsion tensor
has the skew symmetry property in Definition 8.1.

This paper is divided into ten sections. Section 2 introduces the differen-
tial geometric notation used in the paper. This section also provides a
“smooth” warmup to the stochastic calculations done later. The purely dif-
ferential geometric Theorem 2.4 is also proved. (Theorem 2.4 is mainly used
in the second proof of Corollary 6.3 given in Section 7.) Section 3 reviews

with «(0)=0. (1.9)
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some basic definittons and properties about manifold valued semimar-
tingales. It is in this section where the stochastic horizontal lift and the
development maps are reviewed. Both of these constructions will play a
crucial role throughout the manuscript. Section 4 is devoted to deriving the
basic estimates needed for proving cxistence for the flows defined by
Eqgs. (1.5) and (1.7). (On the first reading the reader should probably omit
the proofs in this section.) In Section 5 and the beginning of Section 6 we
show that a solution to any one of the differential equations (1.5), (1.7), or
(1.8) (1.9) can be used to construct a solution for the remaining two dif-
ferential cquations. The rest of Section 6 is concerned with proving exist-
ence and uniqueness to Egs. (1.8) and (1.9). Section 7 contains an alternate
proof for cxistence and uniqueness of solutions to (1.5). Section 8 deals
with the issues of quasi-invariance and the existence of flows on W(M) or
W(R"). Section 9 is devoted to the integration by parts formula for the
h-derivative. Finally, in Section 10 (also see Section 5) we discuss some less
satisfactory alternatives to Eq. (1.4).

2. GEOMETRIC PRELIMINARIES

In the beginning of this section I will fix some notation and review some
basic facts from differential geometry. The rest of the section is devoted to
studying the flow equation (1.1) in the smooth category. The computations
done here will be used as a guide for the stochastic case.

First, some general comments on notation. I usually use angled brackets
({ >) to enclose the arguments of a function on which the function
depends linearly. For example, F(x){a, b)> would denote a function which
is typically nonlinear in the x-variable but is linear in a for fixed (x, ») and
lincar in b for fixed (x, a). If the variables @ and b are elements of a vector-
bundle, then linear is to be interpreted as fiber linear. If F is a fiber bundle
over a manifold M, then I'(F) will denote the smooth sections of F. If ¢
is a smooth curve in M then I',(F) will denote the set of smooth
sections along ¢. Suppose that f: M —> N is a differentiable map between
manifolds M and N, then the differential of f will be denoted by f,. If N
is a vector space, the differential df{d(0)) = (d/dt)|,f(a(t}))e N will be
used frequently, where o(¢) is a smooth curve in M. If both M and N
are vector spaces, then we may define the differential f* by
S(m)v=(d/dt)|of(m+tv)e N for all m and v in M. Notice that f, maps
TM to TN, df maps TM to N, and ' maps M to Hom(M, N), where
Hom(M, N) denotes the space of linear maps from M to N. Finally, if «
and B are !-forms on a manifold M, the two form o A f will be identified
with the alternating multilinear map on TM given by

a A fCo, wh=alo) - fw) —alw) - B
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for all v, we T, M and me M. (Warning: This convention differs from
Kobayashi and Nomizu [KN] by a factor of 2. This explains the factor of
2 discrepancies between formulas quoted in this paper and those in [KN].)

Throughout this paper the following data will be fixed. Let
(M",V, g, 0,u,) be a smooth compact n-dimensional Riemannian manifold
with metric g, a g-compatible covariant derivative V, a fixed base point
oe M, and a fixed orthogonal frame u, above o. Recall that a covariant
derivative V on TM is said to be g-compatible if Vg =0, ie, X(g{Y, Z))=
g{V, Y, Z>+g<Y,V,Z> for all X,Y,Zel(TM). Also recall that an
orthogonal frame at me M is a linear isometry u: R" - T, M.

The principal bundle of orthonormal frames is denoted by n: O(M) > M
or O(M) for short, where = is the canonical fiber projection. We are mostly
interested in the path spaces Wy(R"), W (M), and W, (O(M)), where the
following notation is being used.

Notation 2.1. 1If (Q,q) is a pointed manifold (geQ given) then
W(Q)=C([0,1], Q) is the set of continuous paths in @ and
W, (0)={weW(Q): w(0)=¢q]} is the subset of based paths. Also let
W=(Q)NW 2(Q)) denote the set of smooth (based) paths in Q.

Given a smooth path ¢ in M and a smooth vector field X along g, let
VX/dse I' ,(TM) denote the covariant derivative ¢*VX of X, where g*V
is the pull-back of V to sections along o. Also if uel ,(O(M)),
define Vu/dse ' (E) by (Vu/ds)(s)-&=(V/ds)(u(s)&) for all & in R,
where E=Hom(R"”, TM) is the vector-bundle over M with fiber
E, =Hom(R", T, M) for each me M. Note because V is g-compatible,
u(s) "' (V/ds)(u(s)) is in so(n)—the Lie algebra of O(n) consisting of
skew-symmetric n x n real matrices.

The covariant derivative V is cquivalent to a conncction on the principal
bundle O(M). Namely, let w = w" be the connection [-form on O(M) with
values in so(n) defined by w<{u'(s)> = u(s) ™' (Vu/ds)(s) where u(s) is any
smooth path in O(M). Furthermore, this » induces the covariant derivative
V on the associated bundle TM = O(M) x5, R".

The following definitions are standard, see Kobayashi and Nomizu

[KNT.

DEerFINITION 2.1, The canonical 1-form on O(M) is the R"-valued 1-form
(3) on O(M) given by &> =u"'n, ¢ for all £e T,0(M) and uec O(M).

DEerINITION 2.2. The standard horizontal vector fields Bdla)(-)e
N(TO(M)) for aeR" are defined by the following: B{a)(u) is the
horizontal lift of uae TM to T,0(M) for each u in O(M). So B{a)(u)
is the unique element in 7,0(M) such that n, B{a)(u)=ua and

w{BLa)(u)>=0.
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Remark 2.1. For Aeso(n) and u in O(M), let u-Ae T,0(M) denote
the tangent vector u-A = (d/dt)|, ue'”. With this notation it is easy to
check that the decomposition of a tangent vector &¢,e T,0(M) into vertical
and horizontal components is given by &, =u-wl&,> + B{IE,D D(u).
Onec should also note that if u(r}) is a smooth path in O(M) then w<lu(t)) =

u(1)" (Vu/de)(r). Hence u(t) also decomposes as (¢) = u - (u(t) ™' (Vu/dt)(1))
+ B3 (1) > (ul(t)).

DeriNniTION 2.3, (1) The curvature tensor of V is defined by
RX, Yy Z=V,V,Z-V,V, Z— V[,\'. Y1Z,

where X, Y, Ze [(TM).
(11) The torsion tensor of V is defined by

T(X, Y=V, Y-V, X—[X, Y],

where X, Ye I(TM).

(11) The curvature form Q of w is the so(n)-valued 2-form on O(M)
defined by

QUX, Y>=dw{HX, HY) = (dw)" (X, Y,
where X, Ye T,0(M), and HX and HY denote the horizontal componcents
of X and Y, respectively. (So HX = B{3{X) >(u).)
(ii") For all ue O(M) and a,be R" set Q,{a,b) = Q{(B{ad(u),
B{bY(u)) e so(n).

(iv) The torsion form & of w is the R"-valued 2-form on O(M)
defined by

OLX, Y>=d9"(X, Y>=dI(HX, HY>

forall X, YeT,0(M) and ue O(M).
(iv'y For all ueO(M) and a,beR" set ©,{a,b)=0{B{ad(u),
B{bH(u) > e R

The next lemma summarizes some basic properties of curvature and
torsion.

LemMma 2.1, Using the notation of Definition 2.3 one has the following
relations:

(i) O@=dS+w A § (first structure equation);
(i) Q=dw+w A w (second structure equation);
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(iii) 2,<{a,b>=u""R{ua,ub) u for all ue O(M), and a, b e R";
(iv) 0., a,by=u""'T{ua,ub) for all ue O(M) and a, be R".

For a proof, see [KN, Sect. ITI, Theorem 2.4, and Sect. IIL5].

DerFINITION 2.4. (i) A path ue W*(O(M)) is said to be horizontal
if (Vu/ds)(s)=0 or equivalently wd{u'(s))=0 for all se[0,1] Let
HW™>(O(M)) denote the set of smooth horizontal paths in O(M) and
HW ?(O(M)) be the curves in HW”(0(M)) based at u,,.

(i) The horizontal lift of a curve o€ W (M) is defined to be the
unique curve u € HW; (O(M)) such that o(s) = nou(s). Denote this path u
by H(o), and call the resulting function H: WP(M)— HW 2 (O(M)) the
horizontal lift map. (Note that H(a)(s)u, ' is the parailel translation

operator along 6| o 1)

DerINITION 2.5. The development map is the function I: WP (R") —
HWZ(O(M)) given by I(w)=u, where we W (R") is given and
ue HW(O(M)) is the unique solution to the differential equation

u'(s)= B{w'(s) D (u(s)) with u(0)=u,. 2.n)

(Recall that v, € O,(M) is a given fixed {rame.)

The stochastic counterparts of the next three theorems will be crucial for
this paper.

THEOREM 2.1.  The sets HW D (O(M)), W (M), and W (R") are in one
to one correspondence. In particular the development map I: W (R") —
HW Z(O(M)), and the projection n: HW »(O(M)) — W»*(M) are bijective,
where 1 now denotes (by abuse of notation) the function n(u)=meu. Further-
more, the horizontal lift map H is the inverse of n, and w=1""(u) is given

by
w(s)= 9 (s) ds'. (22)
4]

Proof. Let I="'(u)=w where w is given in (2.2). Suppose that u=1(w)
with we W (R"). By applying n,, to both sides of Eq. (2.1), it follows from
the definition of B{-) that m,u =uw'. Therefore w=u'nu =3u),
from which Eq.(2.2) follows after remembering that w(0)=0. We have
just shown that I~'o/=id. Now if w=1""'(u) with ue HW(O(M)), then
w' =9¢u'> and B{w' )(u)=B{3{u' ) (u)=u" because u' is horizontal.
Therefore, u satisfies Eq. (2.1) so that u=I(w)=1Io1 '(u).

It follows trivially from the definition of H that o H=id on W °(M). So
it only remains to show that Hon=id on HW(O(M)). But this is also



I8 BRUCE K. DRIVER

tnvial, since the horizontal lift of a curve is unique once the initial frame
is given, Q.E.D.

For heW,(R") and oeW?(M), dcfine X"o)el(TM) by
N*"a)v) = H(a)(s)-h(s) for all s in [0, 1]. One should interpret X" as a
vector ficld on 177 (M), Tt is natural to flow along the vector field X" That
is. given @, W'/ (M) the llow along X" starting at ¢, is defined to be the
solution a: B — W’ (M) to the functional differential equation

é(1y=X"(a)= H(o)-h,  with ¢(0)=0,. (2.3)

Remark 2.2. At this point it would be more natural to work with
I1'-paths rather than smooth paths. A H'-path (¢) in M is an clement of
W (M) such that ¢ has a “derivative in L2.” Sec Klingenberg [K11-KI3]
or [D2, Scct. 3] for a precise definition, and the fact that these H'-paths
form a Hilbert manifold. In this H'-setting it would be possible to prove
that X" is in fact a smooth vector field. Hence, by standard existence
theorems for ordinary differential equations on Hilbert manifolds (sce, for
cxample, Lang [L]) Eq. (2.3) will have a unique solution. Since our main
interest is in the stochastic case I will not pursue this issue herc. Besides,
the spirit of this section is to elucidate the “algebraic” structure of these
flow equations and not cloud the exposition with analysis.

Remark 2.3. Again identifying I"(TM) (=smooth sections of TM
along ¢) with the tangent space to W> (M) at ¢ e W>*(M), we may define
a metric (G=G*")on W (M). Namely, if X and Y are two vector ficlds
along a, set

GCX, YD =Go (X, ¥y = L: g <ch(s), ZJ—: (s)> ds. (2.4)

Notice that G{X"(a), X"(a)> = {h, h), where (h, h)= [ |I'(s)}* ds. Hence
the map (h - X"(0)): WT(R") > T,W>(M)=1"7(TM) is an isometry for
cach o e W™ (M).

THEOREM 2.2. Assume the same notation as above, and let (1) be a
solution to the flow equation (2.3). Let u(t)= H(a(t))e HW (O(M)) and
w(t)=1""(u(t))e WP(R"). Then w(t) and u(t) satisfy

u(1)(s) = —u(t)(s)- L: (2, {h, wHNL, s ) ds"+ By (u)(t, ) (2.5)
and .
W(t)(s)= r (2,<{h,wH)(t, s ) ds - w'(1)(s)
0

+ (O, hy wHE, s)+h(s), (2.6)
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where w' = dwjds, W = dw/dt, etc, and (2,{h, wONL, s) =
Q0 Chls), w(t)(s)) with similar notation for the ©, and the B{I) terms.

Proof. 1 will give two proofs of this thcorem. One using the covariant
derivative V, and the other using the connection form w. It will be this
second proof which is more casily adapted to the stochastic case. The first
proof is included for the rcader who is morc comfortable with covariant

derivatives.

First Proof. Start with the basic formula for u:
A%
n=u-wlud+ BLIay(u)=u- (u -1 —£> + B3y >(w), (2.7)

sec Remark 2.1. By definition of w and Theorem 2.1, u”" = B{w' )(u ), and so
by taking 7, of both sides of this cquation one finds ¢’ = uw’. Since u(t) is
a horizontal curve in s for each fixed ¢, it follows by definition that
Vu/ds=0. Therefore (V/ds)(V/dt)u=[V/ds, V/dt]1u=R{s", 6> u, and
hence by Lemma 2.1, and the relations ¢ =uw' and ¢ = uh, one has

A%
d (u - _u) =u 'R, 6>u=Q,(w, hy=—Q,{hw ). (28)

ds dt
It follows by integrating (2.8) using Vu/dt =0 at s =0 that
Yu N
e ) = ) ’ o
<LI dt)(f,s) L) Qw', (e, s') ds
- _f Q,Chyow'H (1, ') ds'. (2.9)
0

Combining Egs. (2.7) and (2.9) along with the observation that Wiy =
u'n i=u"'6=u"'uh=h proves Eq. (2.5).

Now to prove (2.6), first suppose that () is any smooth curve in O(M),
o=nou, and Xel,(TM) is any vector field along o. Then I claim
(djde)(u='X)= —u~"{(Vu/dt)u ' X —VX/dt}. To see this, let i€ O(M) be
any horizontal lift of the curve o, and define g(f) e O(n) by the equation
u(t)=1u(t) g(t). Then

d

;—’t(u*'X)=%(g*‘a*‘X)= —g gt X g o (0 X),

Since, # is horizontal, Vu/dt=ig and (djdt)(ia~'X)= """ (VX/dt). These
two observations and the last displayed equation yield

d iy —1~—1V“ a1 —1~‘1VX
E(u X)y=—g7'u d{g a ' X+gu ’
\Y \Y
=u'1{—7115u—‘x+7f}. (2.10)
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Applying (2.10) with u(r) replaced by u(r)(s) and X(¢) replaced by
a'(1)(s) gives
Vu

d Vo'
‘{’/Z—[uilo"]:——uil.—.u"’O—+u*1_a
dt

dt dr’ (211)

Now using the definition of torsion, Lemma 2.1, and the relation ¢’ = uw',
it follows that Vo'/dt=Vd/ds+ T{d,c'y=Vd/ds+u®,{h,w'). Since
s—u(t)(s) is a horizontal path in O(M), Vé/ds = (V/ds)(uh)=uh'. So the
last two equations show that

’

—1 VO. ’
u o O, {hwH+I. (2.12)

Equation (2.6) is now a consequence of (2.11), (2.9), and (2.12).

Second Proof.  Our starting point is still Eq. (2.7). We also borrow
from the above proof the equations 9<ud=u '6=h and 9¢u'd =
u 'g"=w'. Since u’ is horizontal, w{(u’> = 0. Therefore, 0 = (d/dt) wlu'> =
dw<i, u') + (dfds) w{i). By the second structurc equation (Lemma 2.1)
and again because ' is horizontal, Qd{i, ') =dw<{u, u'). Hence
(dfds) wltiy=Qu',u)= -, {h w, so that

w{ud(t, 5)= —f Q. Chyw' (e ') ds'.

This last equation is the same as (2.9), which as above yields (2.5).
Now compute W' = (d/dr) 3{u’>:

L_d o . d
W= — 3 u' > =d3u, 'y +— 3 u) =d3la, u' >+ I’
dt ds

=00, ud>—w A I, u'd+h.

The last equality is a consequence of the first structure equation
(Lemma 2.1). Because w{u’> =0, one has

W=0d,u') —wluayIlu'y+h = —wladw +60,{hwd+1I,
which combined with (2.9) again proves (2.6). Q.E.D.

Equation (2.6) may be considered as a functional differential equation
for w’ by defining u to be /(w). (Notice that w may be recovered by integra-
tion from w’ since w(0)=0.) Theorem 2.2 shows that given a solution (o)
to the flow equation (2.3), then w=1""0 H(g) solves Eq. (2.6). It will be
shown in Section 5 that (2.6) is still valid for random paths provided all
w'’s are replaced by dw, where dw is the Stratonovich differential of w in
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the s-variable. One possible method for solving (2.3) would be to solve
(2.6) instead and then set ¢ =m0 I(w). (This is what is done in Section 6.)
The next theorem shows that ¢ defined this way solves (2.3). The stochastic
analogue of this theorem appears in Section 5.

THEOREM 2.3.  Suppose that w(t) is a smooth path in W>=(R") satisfying
Eq. (2.6), where u in (2.6) is to be interpreted as I(w). If ¢ =mel(w), then o
satisfies the geometric flow equation (2.3).

Remark 2.4. 1f we had been working with the Hilbert manifold of
H'-paths and had shown that the maps 7 and H are diffeomorphisms, then
a direct proof of Theorem 2.3 would be unnecessary.

Proof. To simplily notation sct 4 = [;) Q. w' H(t, sy ds', and w=I(w).
We first show that u satisfies Eq. (2.5). Because of Eq. (2.7) it suffices to
show that 3¢(i)>=h and w{i)>= —A. Set £ = 39<{u)> and E=wu), then |
claim that the pair (£ —h, A + E) satisfies the differential equations

(E+AY =, (w, E—h> (2.13)

and
(E=h)=(E+A)w+0O,w, E=h). (2.14)

To show this, compute E’ using the second structure equation:

., d ) .. d ,
E —Ew<u>—dw<u,u>+dtw(u>

{
=’ uy—w A wlu, u>+iw<u’>.

Because ' is horizontal, w A wd{u’,u>=0 and wlu')=0, so that
E'=Qd,uy=80,{(w, &> Thus (E+ Ay =0,w',&—h), which is
Eq. (2.13).

Now compute &' using the first structural equation and 3{u'> =w":

r__ d . . d ’
& =7 Iuy =d9{u’, i) +dt S<u'>
=0, uy—w A I, a)+w.
Using again w{u’) =0 and also that w satisfies Eq. (2.6) one finds

E=0,(w, > +wla)y §u' > +w
=0 AW, EYFHEW + AW + O, {hw' Y+

This last equation easily gives Eq. (2.14).
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Equations (2.13) and (2.14) are linear differential equations for the pair
(E+ A, & — h) with 0 initial conditions at s =0. By uniqueness of solutions
to lincar O.D.E.s it follows that A+ E=0, and ¢ —h=0, and so (2.5)
holds. The theorem is now completed by applying n, to both sides of (2.5)
to get

d(t)=mn u(t)=u(t)h= H(a(1))h,

which is (2.3). Q.E.D.

I will end this section with a purely differential geometric theorem on
the existence of “nice” extensions of covariant derivatives for manifolds
imbedded in a Euclidean space. This theorem will be used in the next
section to give an extrinsic proof of the existence of stochastic horizontal
lifts. Tt will be use again, in a more serious way, in Section 7. We will need
the following lemma to prepare for Theorem 2.4.

LEMMA 2.2, Suppose that M is an imbedded submanifold of RY,
i M- RY s the inclusion map, and g is a metric on M. Then
j: O(M) - RY x Hom(R", R") defined by j(u)= (ion(u), i'(n(u))ou) is an
imbedding of O(M) in RY x Hom(R", RY). Here i'(m): T,,M — R" is given
by i'(m)=pryei,,, with pry projection onto the second RY under the natural
identification of TR™ with R x RY. Explicitly, this identification is given by

1
((x, v) > v, Ei (x+ fv)): RYxRY > TR".

0

Proof (Sketch). Let k=N -—n, where n is the dimension of M. Given a
point me M, there is an open neighborhood U of R containing m, and a
C™-function F: U - R* such that Un M =F~'({0}) and F'(p): RY - R*
is surjective for all pe U. Choose a smooth function g: U — N x N-positive
definite symmectric matrices such that glv,., w.>=(g(x)v, w) Jor all
v, w.e T.M and xe Un M, where (-, -)is the usual inner product on R".
Define H: Ux Hom(R", RY) - R* x Hom(R", R*) x %, where & is the
set of all nxn real symmetric matrices, by H(x, A)= (F(x), F'(x)A4,
A"g(x)A —1I). Then check that j(O(M)) n [UxHom(R", R")] =
H'({(0,0,0)}), and that the differential of H is surjective for (x, A)e
J(O(M))n [UxHom(R", R")]. The lemma now follows by the implicit
function theorem. Q.ED.

From now on we will identify M with (M), and O(M) with j(O(M)).

THEOREM 2.4. Suppose that M is an imbedded submanifold of R”, g is a
metric on M, and V is a g-compatible covariant derivative on TM. Then there
is an open neighborhood Y = R™ of M, a C*-function n: Y - M, a metric g
on Y, and g compatible covariant derivative V on TY satisfving:
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(1) 7|y is the identity on M,
(il) if i: M = Y is the inclusion map then i*g =g,
(iii) suppose that Z:R—TY is a smooth path then n*(iZ/dt) =
(V/dt)(n, Z), in particular if Z: R — TM is smooth then VZ[dt =VZ/d1.

Let I be the N x N-matrix valued 1-form on Y such that V=d+ T, and
let P(y)=n'(yp):RY>RY (ie, P(y)a=(d/dl)l,n(y+ta)eR".) Then
condition (iil) is equivalent to:

(iv) Pr=dP+r*I{-) P, more explicitly if v, = (d/dt)]|o (y+ 1) isa
tangent vector in Y, then

P(y) I'(v,»=dP{v, ) + I{m,v,) P(y)=0,P(p)+ ' {myv,> P(y). (2.15)
(v) P(m) is orthogonal projection onto T, M for all me M.

Remark 2.5. The key consequence of condition (iii) is that if Z is a V-
covariantly constant path in TY then Z=n,Z is a V-covariantly constant
path in TM. It is this property that will be used in Section 7.

Proof. First we show that (iii) and (iv) are cquivalent. Write
Z(1)=Z(t)gy» where (1)€Y and Z(1)eRY, similarly Z(1)=n,Z(1)=
2(1) gy where z(1)=P(d(¢)) Z(t) and o(t)=mn-a(). With this notation,
then n_(VZ/dt) = (P(6)[: + () £]), and (V/dt)(n, Z)=([Z + 16 ) z),-
Therefore condition (iii) is equivalent to

P(6Y:+T{a)z)=2+14é): (2.16)

for all functions z(¢) in RY. Now write u= P(5), so that z=uz and
2 = (d/dt)(uz) = 1z + uz. Using this expression for Z and I'(6) = (n*I{c>
in (2.16), one shows easily that condition (iii) is equivalent to (iv).

To prove the existence of V, it is convenient to transfer the problem on
Y to one on the normal bundle (£) of TM in TR”™. Let p: E — M be the
fiber projection, and Se(E) be the zero section of E. By the tubular
neighborhood theorem [L, Chapt.4, Theorem 9] therc is an open
neighborhood Y of M in RY and a diffeomorphism y: Y — E such that
potplyy =idy, and Yoi=S. Define n=poy, then n:Y— M satisfies
condition (i).

Now suppose that g is a metric on Y, V is a covariant derivative on 7Y,
and Z:J > TY is a smooth map. Let =y H*g, V=v,V¢;', and
Z= ¥, Z, then it is easy to check that condition (ii) is equivalent to

(i) g=S8%g,
and condition (iii) is equivalent to

(ii") p,(V/dt)Z2)=(V/dt)(p,Z)=VZ/dt, where Z=poZ.
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Also the condition that V is g-compatible is equivalent to V being g-com-
patible. Hence, if we can find a metric g, and a g-compatible covariant
derivative (V) on TE satisfying condition (ii") and (iii’), then the corre-
sponding g and \ will satisfy the conclusion of the theorecm.

We now construct V and g. First choose a fiber metric G on E, and a
G-compatible covariant derivative D on E. This covariant derivative D is
cquivalent to a connection on E. Explicitly, we may define the horizontal
subspace AT, E of T .E by

. DV
HTE= {V(O): Vi (=1, 1)~ TE smooth, V(0)=r¢, and - = 0}.
As is well known p: AT, E— T, M is a linear isomorphism. Let # also

denote the horxzontal lift operator: #'{v)(e)=p, iy M y ) forveT, M.
Recall that the vertical subspace ¥'T,E of T E is defined to be the

Ker(p,.) and is isomorphic to E,.,. This isomorphism is given by

(c+ m')); E,., -1 T.E.

, , 61
(e ” (e )(_E
0

Let x: TE — E be defined by x| ,,,=0, and k{(¢"), ) =¢' for all ¢’ € E,,,,.

Remark 2.6. 1t is casy now to check that p*TM =~ A TE, p*E="7"TE,
and TE=#TE® v TE so that TE=p*TM & p*E, where p*TM and p*E
denote respectively the pull-backs of TM and E over M to bundles over E.

We are now in a position to define ¢ and V. Set g{&nd=
g(p*é Petl> +FGCREY, k() forall & yeT, Eand ce L Suppose that
Z(t) is a smooth curve in TE, and (1) =p(Z Z(t)), definc

v Voo D_
EZ(I)=H<;1—I(P*Z(1))> (e(2)) + <E [h<Z(f)>]>

efr)

It is now casy to check that Vis g compatible and that (iii") holds. Condi-
tion (ii’) is also casily verified using S, v=#"{v>(S(m)), where ve T, M.
So we are now only left to prove (v).

The fact that P(m) is a projection onto T, M for me M follows from
non=m, and n=id on M. To show that P(m) is orthogonal it suffices to
show that P(m )(T,,,M = {0}. Since ¢ is by definition an isometry from Y
to E, T,M* =y (¥ TyumE). Because n=poyy and P(m)=n’' (m) (n'(m)
is m,, with base points forgotten) it follows that P(m) (T, M™*)= {0},
since 1, (T, M) =p W ¥ (V Ty E)=ps(V Ty E) = {0}. Q.E.D.
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Remark 2.7. The condition that V is g-compatible is easily seen to be
equivalent to the condition

dg{-> =gl {->+I"{-) g, (2.17)

where ¢ is being identified with the matrix function ¢ satisfying
g<v,,w > =(g(x)v,w) for all xe Y and v, we R".

3. STOCHASTIC PRELIMINARIES

This section will fix the probabilistic notation and review some facts
about semimartingales on manifolds. We will emphasize the non-intrinsic
point of view because it facilitates the derivation of the estimates in
Section 4. Throughout this section and the rest of the paper
(2, 7, {F.} 50, P) will be a filtcred probability space satisfying the “usual
hypothc515 (or somctimes written as the usual conditions).

UsuaL HYPOTHESIS. (Q, %, {#},50. P) is said to satsfy the usual
hypothesis if the o-algebra F is complete with respect to-the probability
measure P, the filtration { %} is right continuous, and %, contains all P-null
sets.

Given a measurable function f: Q2 — R, the integral |, f(w) dP(w) will
oftcn bc denoted by P(f). More generally, for any Ae%#, sct
=[,flw)dP(w). If #<F is a sub-sigma algebra of &, then

(fl // ) dcnotcs the conditional expectation of f with respect to P and .
Finally, if (X, 5#7) is another measurable space and F: Q — X is F /A -
mcasurable, let F, P denote the probability measure on (X, ) defined by
F P(A)y=P(F'(A4)) for all Ae#. Recall that if /X — R is a bounded
measurable function then F, P(f)= P(f- F).

Hopefully, the reader will not be confused by the overuse of the symbol
2 for both the curvature form and the sample space Q2. The symbol d will
also have a dual meaning which is likely to be even more confusing:
namely, the differential of a form or the It6 stochastic differential of a
process (sorry).

Suggested references for this section arc Protter [Pr] for stochastic
integration theory, and Emery [Em] for stochastic calculus on manifolds.
Some other references are [Bil, Bi2, Ell, IW, Me, No, RW, Sc1-Sc¢3] to
name just a few. For the reader not familiar with stochastic calculus on
manifolds perhaps Meyer’s short paper. [Me] is a good place to start.

We will adopt the notation in [Em ], in particular j X Y will denote the
process (s — [ X 9Y) where the integral is the Fisk-Stratonovich stochastic
integral. In terms of Ité integrals, [Xo6Y={XdY+3[X, Y], where
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[X, Y] denotes the quadratic covariation of the semimartingales X" and Y.
One often writes dX dY for the differential of [X, Y]. The following
assumptions will be in force throughout this manuscript.

Standing Conventions. A process {X(s)} means an adapted process.
A semimartingale is by definition (in this paper) continuous. (More
generally, most processes appearing in this paper will be continuous.)

DerINITION 3.1, An M-valued semimartingale is a continuous M valued
(#,) adapted stochastic process X, such that for all fin C™(M), f(X) is a
real (Q, #, {#,}, P)-scmimartingalc.

Remark 3 If X is an M-valued semimartingale and ¢: M > Q is a
C*-function then Y= @(X) is a Q-valued semimartingale.

Suppose that a(s) is a T*M semimartingale and X(s)=7(a(s)) (by
Remark 3.1, X is an M-valued semimartingale), where : T*M — M is the
canonical projection. We would like to define the Stratonovich integral
ja(éX) To this end, usc the Whitney embedding theorem (see Ref. [Au]
of [Sp]) to imbed M into R (for some N) in such a way that M is a
closed subset of R™. By the tubular neighborhood theorem (see Lang
[L, Sect. IV, Theorem 97), there exists an open subset }7 of R" containing
M and a smooth map p: ¥ — M such that p|,, is the identity on M.
Set a(s)=p*a(s) which is a T*V-valued semimartingale, since
p* T*M — T*V is a C*-function. With x=(x' x% .., x") being the
standard linear coordinates on RY a(s)=3>"  a,(s)dx']y,,, where
,(5) = 2(5)< (80" ) v = ()< P4 ((3/0x)| yo)))-  Because  the  map
(o = a{ P ((3/0x)] 1)) >): T*M — R is smooth, it follows that all of the
as are R-valued semimartingales. Hence, for every T*M valued semi-
martingale («), there cxists a finite collection of real semimartingales {«,},
and a finite collection of C™-functions {x'} on M such that

a(s) = a,;(5) dx'| y(y)-

DEFINITION 3.2. (i) Suppose that a«fs) is a T*M valued semi-
martingale and X is thc M-valued semimartingale X(s)=(x(s)). The
Stratonovich integral [a{dX) is the real valued semimartingale
ZEij,-(s)é(g (X(s))), where {/;(s)} is a finite collection of real semi-
martingales, and {g'} is a finite subset C*(M) such that a(s)=
> fi(s) dg’|xm~

(ii) Supposc that « is a smooth 1-form on M and X is an M-valued
semimartingale. The Stratonovich integral [ «a{6X ) is the process j a{dX>,
where &(s) =« y,,—a T*M-valued semimartingale such that X(s)=m-d.

Remark 3.2. The fact that [a<8X ) is well defined is proved in [Em,
Proposition 7.4, Sect. (7.7), and Exercise (7.8)]. A direct proof of this fact
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may be modeled on the proof of the more general Theorem 6.24 of [Em].
Because [a(dX) is well defined it follows that [a{dX)=[a(dX)=
| 3, 0,6(x'(X)), where we are now using the notation preceding Defini-
tion 3.2. This last expression for [a{6X) is the ordinary Stratonovich
integral for jo’c(éX) when X is viewed as an R"-valued semimartingale.

Remark 3.3. If ais a smooth I-form on M, then again by the Whitney
imbedding theorem o may be written as a finite sum . f; dg’ where the
functions {f;} and {g‘} are smooth functions on M. For a =7 f, dg’, the
Stratonovich integral | a{dX) is given by X {/:(X)6(g"> X).

The following casily proved elementary properties of these stochastic
integrals will be used routinely in the sequel.

ProposITION 3.1, Suppose that X is an M-valued semimartingale.

(i) Let a be a T*M-valued semimartingale above X (Toa=X), and
let Z be a real-valued semimartingale, so that w=Z -« is also a T*M semi-
martingale over X. Then j n{dX>= j Z 5(f a 80X ).

(ii) For fe C™(M), [ df(oX ) =f(X(s))—/(X(0)).

(iit) Suppose that ¢: M — Q is a C* mapping between two manifolds
and that r] is a 1-form on Q. Let Y=¢(X) (a Q-valued semimartingale),
then [ (@*n){dX) = Ir](é Y>. This rule may be written informally as
Py 0X = 5((/) ° X).

I will now recall some facts about stochastic differential equations and
stochastic parallel translation on manifolds, see [Em, Sc1-Sc3]. The
emphasis will be on the special cases used later in the paper.

DEerFINITION 3.3. Suppose that @ is a manifold and X:R" — I(7Q)
(a = X<{a)(-)) is a linear map. Given an R"-valued semimartingale (w), a
Q-valued semimartingale (g) is said to satisfy the Stratonovich stochastic
differential equation

0g = X{owH(q) 3.H
if for all fin C*(Q)
d(f(q)) = w (q){ow)

More precisely,

with o (g){(ad =df{X{ad(q)>.

n

gD =)= 3 [ (X<elals ) ow(s), (3:2)

i=1

where {¢,}7_, is the standard basis for R”".
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DermNITION 3.4, The support of the linear map X: R" - [(TQ) is the
union of the supports of the vector fields X;= X<{¢;>, i€ {1,2,..,n}. So X
is said to have compact support if each X, has compact support.

THEOREM 3.1, Suppose that (w, Q, X) are given as above and that X has
compuct support. Fix a point ¢,€ Q, then there exists a unique solution to

(3.1) such that q(0)=gq,,. Furthermore, if Q is an imbedded submanifold of

an open subset (V) of RY, and X: R" - I'(TV) is a linear map extending X
(that is, X{aX{(q)=X<ad(q) for all aeR" and qe Q) then q is also the
unique solution to 6q = X{ow)(q) with ¢(0)=gq,,.

Remark 3.4. Theorem 3.1 is a consequence of the much more general
Theorem 7.21 in [Em], which is a consequence of [Em, Theorem 6.417].
Unfortunately, the proof of Theorem 6.41 contains an error. Namely, it is
assumed that the normal bundle to an imbedded submanifold is always tri-
vial. This is not in general true. For example, it is false if the manifold is
non-orientable or more generally if onc of the Stiefel-Whitney classes of the
tangent bundle are non-trivial (see Milnor and Stasheff [ MS, Lemma 4.2]).
Because of this problem and the fact that the proof of this special case is
considerably simpler than the general case, a proof of Theorem 3.1 will be
included. Undoubtedly, the oversight in [Em] can be fixed—probably
using a modification modeled on the proof given below.

Proof.  We start by first proving existence in the case that Q is an open
subset of R™. For the moment it is not assumed that X has compact
support. Write X,(¢)=X{e;>(¢) as above. By Itd’s lemma, ¢ solves
8g=X{dw)(q) iff ¢ solves the standard Stratonovich differential equation

dg=Y X,(q) ow'"

This last equation may easily be transformed into an equivalent Itd
stochastic differential equation

oo o
U= X9 '+ 53 (5 ) 0]
o1 d , .
=433 (o8 ) @O XY@ dvn] (33)
ik \Y

with initial conditions ¢(0)=g,. Therefore, by standard existence and
uniqueness theorems for equations of type (3.3) (with only minor modifica-
tions due to Q being an open subsct of R” rather than all of RY), there is
a unique maximal solution ¢ to (3.3) with possible explosion at a predict-
able stopping time &, Furthermore the process ¢ is a continuous semimar-
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tingale on the stochastic interval [0, £), see Protter [Pr, Theorem 8, p. 199,
and Theorem 38, p. 247].

Now to the general case. (Assume now that X has compact support.) By
Whitney's imbedding theorem we may and do assume that Q is imbedded
in R*. We now use the notation in Theorem 2.4 with M replaced by Q.
Recall that E is the normal bundle to Q = R”, S is the zero section of E,
p: £— Q is the canonical projection, Y is an open neighborhood of Q
diffeomorphic to E, etc. Define a linear map X: R" - ['(T(E)) by letting
Xay(e)=#{Xad(p(e))(e) be the horizontal lift of X{ad(p(e)) to e
for each e¢e E. (To define this horizontal lift just choose any connection
on £E) Then, for each «¢eR" g¢geQ, and ecFE, X satisfies: (i)
peX{a(e)=X<a)(ple)) and (ii) S, X{(a)(q)=X{a)(S(q)).

By the special case proved above there is a unique solution with possible
explosion time ¢ to the equation de= X{dw)(e), with initial condition
e(0)=e,, where ¢,= S(q,) € E. Define g=poe, and é = S(q).

Claim. The semimartingale g=pece solves dg= X{éw)(g) and e=
é=5(q). Compute dg=p,de=p, X owd(e)=X{wH(p(e))=X{dwd(q)
as desired where we used property (i) above. Now compute 6é =S, 5=
S X{ow(q) = X{dw)(S(q))=X{dw)(é) by property (ii) above. So by
the uniquencss of solutions to stochastic differential equations it follows
that é = ¢, since é(0) =¢(0) = S(q,). This proves the claim.

Because ¢ = S(p(q)), it follows that e remains in the zero section of E for
all time. Let K be a compact subset of Q containing the support of X and
set K= S(K). It is now clear that ¢ must remain in the set K for all time,
and therefore there can be no explosion. Thus ¢=o0 as. This proves
existence.

We now prove uniqueness and the last statement of the theorem.
Supposc that g is any solution to the dg = X{dw)(q) with ¢(0)=q,. Also
suppose that Q is an imbedded submanifold of ¥ (an open subset of R")
and X:R"> I(TV) is a linecar map extending X. Since, ge @ and
X{a)(q)=X{a)(q) for all ¢ in Q, it follows that ¢ also satisfies
dq = X{ow)(q) with ¢(0)=gq,. But this equation can be converted as in
(3.3) to a standard Ité type cquation which is known to have unique
solutions. So the solution ¢ must be unique, and can be found by solving,
8g = X{owd(q) with g(0)=g¢,. Q.ED.

In order to state and prove the stochastic analogues of Theorem 2.1 it is
necessary to discuss stochastic horizontal lifts or equivalently parallel
translation. The stochastic differential equation for parallel translation does
not quite fit into the context of the above theorem. So I will now treat
this special case. We will use the notation in Section 2—rccall that
n: O(M) — M was the principal O(n)-bundle over M of orthogonal frames,
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and © was the so(n)-valued connection 1-form on O(M) constructed
from (V).

DEeFINITION 3.5. A semimartingale u(s) in O(M) is said to be w-hori-
zontal (or just horizontal) if | w{du) =0 —abbreviated as w{du) =0.

DEFINITION 3.6.  Suppose that ¢ is an M-valued semimartingale, then
an O(M)-valucd scmimartingale  is said to be a horizontal lift of ¢ if
(i) mou=o, and (ii) v is horizontal (w{du) =0).

The next theorem is Proposition 8.13 of [Em] which guarantees the
existence of horizontal lifts. A fairly easy proof of this theorem may be
given using cssentially only Theorem 2.4, Proposition 3.1, and Itd’s
formula. Because the notation and techniques of the proof will be needed
in Section 7, [ will give a proof here.

THEOREM 3.2.  Suppose that o is an M-valued semimartingale and that u,,
is a O(M)-valued Fy-measurable random variable such that mwou,=a(0).
Then there is a unique horizontal lift (u) of o such that u(0)=u,. (In all
applications u,, will be the fixed base-frame in O(M).)

Proof. First use Whitney's imbedding theorem to imbed M into a
Euclidean space (R™). Then choose a (Y, g, n 7, V, I', P) as in Theorem 2.4.
For notational simplicity I will drop the bars from the notation. There is
no danger in doing this, since Theorem 2.4 guarantees that V=V, and
g =g on the domains of V and g, respectively. Recall that V=d+T"on TY
(when TV is identified with ¥ x R") and P(y)=n'(y). (P throughout this
proof will denote 7’ and not the probability measurc on (£, #).) Let
proi YxRY —» RY be projection onto the second factor, (-, -) denote the
standard inner product on both R” and R", and identify the metric g, on
T, Y with the positive definite matrix g(y) such that g, {a, f>=(g(y)a, f)
for all o, fe RY. Since M < R" is an imbedded submanifold, TM can be
identified with

{(m,a)e M xR" | P(m)a=0},
and the frame bundle O(M) may be identified with
{(m, u)e M x Hom(R", RY): P(m)u=u, u"'g(m)u=id},

see Lemma 2.4.

We now can easily compute o in this non-intrinsic notation. For this
suppose that U(s)=(a(s), u(s)) is a smooth path in O(M), then
w{U'>=U"YVU/ds)=u""(u'+ I'{(c’) u), where ¢’ is the derivative as
a tangent vector in M, while w'(s)=lim, ., [u(s+e)—u(s)]/c is the
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Hom(R", R¥)-valued derivative. (Notice under all of our identifica-
tions that U'=(¢",u,)e TM x T(Hom(R", R")). Therefore in general
wl(v,,A,)>=u""(4+T{v,>u), where (v,,A4,)eTOM), and u~'=
U gancpomy - The form @ may easily be extended to a smooth form (@) on
all of Y>< Hom(R", R") by setting

DV A)) =t Pm)A+ T vy 1) = ug(m)(A+ 10, ) u).

Suppose that U(s) is an O(M)-valued semimartingale. In this extrinsic
notation U(s) = (a(s), u(s)), where o is a R"-valued semimartingale and u
is a Hom(R", R")-valued semimartingale such that a.s.:

(i) o(-)eM,;

(i) Pla(-))u(-)=u(-);

(iii) and u"g(o)u=id.
The condition that U is horizontal (w{du) =0) transiates to

0=d{d(a, u)) =u"'Plo)ou+ I{da) u)
or equivalently to
0=u"g(a)(ou+ [{do) u).

Either one of these last two equations is equivalent to:

(iv) P(o)(du+1'{da) u)=

Claim. Let Q(m)= 1 P(m), then under conditions (i)-(iii) above
Q(0)(du+ oo u)=

One way to verify the claim is just to notice that the form
v(v,,, A,>=0Q(m) A+ I'{v, > u) is identically zero on TO(M), and that
Q(o)(du+I'{dc) u)=v{8U) which must be zero, since Stratonovich
integrals are intrinsic objects. Alternatively, one could use Eq.(2.15) of
Theorem 2.4 as follows. Because of (ii), Q(¢)u =0 and hence

0Q(0)-u+ Qo) éu=0. (3.4)
But by (2.15)
80(0)= —6P(c)= —dP{bc>=T{dc) P(o)— P(g) I'{d5),

so that
80(6) - u=I{dc) u—P(a) '{da) u=Q(0) I'(da) u, (3.5)

where (ii) was used once again. The claim clearly follows from (3.4) and
(3.5).
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As a consequence of the claim, condition (iv) in the presence of condi-
tions (i)~(iii) is equivalent to

(iv') Su+ (56> u=0, (3.6)

because P(a)+ Q(c)=1d. Therefore in order to find a horizontal lift we
need only find a Hom(R”, R")-valued semimartingale satisfying conditions
(i)(iii), and (iv’) above with u(0) = u,. At this point we have no choice but
to definc u as the unique solution to the linear Stratonovich differential
equation (3.6) with initial condition u(0)=u,.

Remark. One may expand (3.6) into the Ité form to get
du= —I'(06){doy u+3[I(c){do) I(6){da)—TI"(c){do,da)] u.
(If the notation is not clear see Corollary 8.3 below.) Thus if

= —J I'(o){do> +%j [I(o){da) '(6){do)—1"(c){dg,da}]

(a Hom(R"™, R")-valued semimartingale), then (3.6} is equivalent to the
linear stochastic differential cquation du=dZu. By Theorem7 of
[Pr, p. 197], the equation du=dZu with ©(0)=u, has a uniquc solution,
and hence so does (3.6) with u(0)=u,. Furthermore, this solution (u) is a
semimartingale.

It now remains to show that this solution u satisfies conditions (ii)
and (iii) above. This is where the choice of a nice covariant derivative
in Theorem 2.4 comes to play. Recall from Remark 2.7 that the
Hom(R"™, RV)-valued 1-form n=dg—gl"—I""g defined on TY is identi-
cally zero. (For the proof, it suffices that n vanishes on TM.) Now by
assumption u,€ O(M), so v=u"g(c)u=id at s=0. Therefore to show
codition (iii) holds (v =id), it suffices to show that v =0. Write g, for g(o)
and computc

dv="0u"g u+u"og,u+ug, du
= —uy'"I""Sod gout+utdgldod u—ug, I'(oc) u
=u"[I'"(dc> g, +dglda)—g,[{do>]-u
=u'"n{dod>u=0,
where we have used (by definition) that dg{ds¢ ) =d(g(a)), the differential

equation (3.6) for u, the differential equation for «'" (the transpose of (3.6)),

and the fact that =0.
Let w= P, -u, where P, = P(c). To show that condition (ii) holds, we
must show that w=u. Since w(0)=u(0)=u,, it suffices—by uniqueness
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of solutions for linear stochastic differential equations-—to show that w
satisfies the same differential equation as u, le., that dw+ I'(da) w=0.
For this just compute dw + I'(d5) w,

dw+ I'{dayw=0P_ -u+P,-Su+1{dc) P,u
=dP{éc>u— P, I'{dc>u+1{dc) P,u
=[dP—P - I'+ - P](éc)>u=0,

where the last equality is a consequence of Theorem 2.4 which guarantees
that the Hom(R", R"¥)-valued 1-form [dP— P-I + I"- P] vanishes on TM.
Q.E.D.

Notation 3.1. Let M, H¥O(M), and ¥ R" denote the space of based
M-valued semimartingales starting at o € M, horizontal O(M )-valued semi-
martingales starting at u,e O(M), and R"-valued semimartingales starting
at 0e R", respectively.

The next theorem, which is the analogue of Theorem 2.1, establishes a
I-1 correspondence between the three sets M, HYO(M), and S R"
Recall the canonical 1-form () on O(M) is given by (&, > =u"'n¢,
for all £, in T,0(M), and for ae R" the horizontal vector-field B{a) at
ue O(M) is defined to be the horizontal lift of uae TM to T,0(M).

THEOREM 3.3. Define the maps H. M - H¥O(M), n: H¥ O(M) —
PM, I SR> HFO(M), and I ' H¥O(M) - S R" as follows. Let H(a)
be the horizontal lift of o€ M to O(M) starting at u,, and n(u)=mnou. For
be S R", let I(b) = u be the solution to the Stratonovich differential equation
Su=B{Sb>(u) starting at u(0)=u,. Finally for ue HYO(M), set
b:l"(u)zj 3 oud. Then H and m are inverses to one another as are |
and I !

Proof. 1t is clear by the definition of H and =, and the uniqueness of
horizontal lifts that noc H=1id on M and Hen=id on H¥O(M). Now
[ I(by= [ 9¢ou) = [ §¢BL3bY(u)), where u=1(b). But ${BLa)(u))
=¢ for all ¢ in R” and « in O(M), so that 1"'ol(b):jdh=h. (If the
reader is not convinced, he/she should write $=3 f,dg’ and redo the
argument—the proof amounts to unwinding definitions.)

Suppose that b = I '(u) = [9<Su). We wish to show that
ou= B{5b>(u). More explicitly, it must be shown for all fe C*(O(M)),

d(f(u)) = (B(u) f)<3b) = (B(u) )8 [ 9<oup > =#;{oup,  (3.7)

where (B(u) f)<a) = B{a)(u) fand H#;{¢,) = (B3, H(u)) f For £ in
TO(M) define V& and HE to be the vertical and horizontal components
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of & respectively, then (&) =df{HE). Let ¥, {&H>=df{VE)=
dflu-wd&>>. Since &=HE+VE for all & in TO(M), it follows that
df= A+ 4. (Noticc that ., and ¥7 are both l-forms on O(M).) There-
fore, for dny O(M)-valued semimartingale we have that

d(f(u)y=df (ouy =, ouy + ¥, du. (3.8)

Therefore (3.7) will be a consequence of (3.8) provided that ¥, (du) =0
when « is a horizontal semimartingale. By choosing a basis {T,} for so(n),
we may write =) w’T, and ¥;=3% g,w" where g (u)=df{u-T,)
(recall u- T'= (d/dt)|, ue'” for Te so(n)) Therefore assuming u is horizontal,

J“V<5U> Zj Y uy = ngt, () (jw“@u)):

by Proposition 3.1(i), and the fact that w*{du)> =0 for all a. Q.E.D.

Remark 3.5. Equation (3.8) is a stochastic analogue of (2.7). This may
be made more explicit. Let 7', be the vertical vector fields on O(M) defined
by T u)=u-T, For ue¥O(M), set w=[9{su) then (3.8) may be
written as

Su=Y w{du) T(,+Z(3w (u), (3.9)

«

to be interpreted as 6(f(u)):2“(Tu(u)f)w”@u)+Z,-(B,-(u)f) ow,; for
all fe C”(O(M)).

To end this section, the reader is reminded of the definition of an
M-valued Brownian motion starting at o€ M and its relationship to the
standard Brownian motion on R”.

DEerINITION 3.7, Let (M, g, V) be a Riemannian manifold equiped with
a g-compatible covariant derivative V. The Laplacian with respect to V is
the second order elliptic differential operator (4) on C™(M) defined by

AF= o0V df) = LV ACEL By =T LB/~ dRV B>,

where {E;} is any local orthonormal frame.

It will be useful to record the following method for computing Af.

LemMa 3.1, Suppose that fe C*(M) and a, be R” then

(i) (BLa) BEh) fom)(u)=(V df){ua, ub};
(i1) X, B} (fom)=dfon, where B;,=B{e;> and the e, is the ith
standard basis element for R".
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Proof. (1) B{bY(u) for=df {(n,B{b)(u)) =df{ua). Thus
(Blay B fom)(u) = (dfds)|ydf ™ (u) - h).

Let Y(s)=e™<“>(u)-b, a tangent vector ficld along the curve o(s)=
n(e*B<“?(u)). Therefore,

d
(BSay BEbY fom)u)=— . df (Y(s)o

VY
_V df(a(0), Y(0)> + df<g (0)>
— (V df ), BEad (), ub> = (V df ) ua, ub,

since Y(s) is a parallel vector field along o.
(i) Leta=b=e;in (i) and sum on /. Q.E.D.

DEFINITION 3.8. An M-valued semimartingale (o,) is a Brownian
motion iff for all fe C®(M), there is a real-valued local martingale M/

such that d(f(c))=dM’+54f(c) ds

The following theorem restates [ Em, Proposition 8.26(iii) ] which relates
the standard Brownian motion on R" to Brownian motions on M. I will
only give the easy direction of the proof here. The reader is invited to give
a non-intrinsic proof of the other direction using the ideas and notation in
this section.

THEOREM 3.4. Let o be an element of &M, then ¢ is a Brownian motion
iff b=1""'oH(c) is a standard Brownian motion on R".

Proof (Easy Direction Only). Assume that b is a standard Brownian
motion on R”, and set u=I(b) and ¢ =mou By definition of u satisfying
du= B{b>(u), for any Fe C*(O(M))

S(F(u)) = BLdbY(w)F+ 1Y (B,B,F)(u) d[b', b’]
= BLdbY(u)F+ 1Y (B2 F)(u) ds.

Now if F=fom where feC*(M) we have by Lemma 3.1(ii) that
Y (B2F)(u) = Afon(u), so that the above equations becomes

df(6) = B{dbY(u) F+ $4f(c) ds.

This shows ¢ is an M-valued Brownian motion, since | B{db)(u)F=
3. [ (B<e;>(u) F) db, is a martingale. Q.E.D.
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4. ESTIMATES AND DIFFERENTIABILITY

In this section and for the remainder of the paper it is assumed, as in
Section 3, that (2, %, {# },»0, P) is a filtered probability space satisfying
the usual hypothesis. We further assume that this probability space
supports an R"-valued Brownian motion {b(s)},. o 17 With respect to the
Filtration .%,. For ecxample, take Q= W(R"), P=Wicner mcasure,
h(s): 2 - R" to be given by h(s)(w)=w(s), and Z, to be the augmentation
by all P-negligible scts of the g-algebra generated by the maps b(s’) for
s'<s. Alternatively and more geometrically, we could take Q = W(M), P to
be the Wiener measure on W, (M)c W(M), % to be the augmentation
by all P-negligible scts of the o-algebra gencrated by the maps
o, ()N w)=aw(s") (we W(M)) for s'<s, and b=I 'oH(s,). Notice that
Theorem 3.4 guarantees that b is a standard R"-Brownian motion. (See
Section 8 for a more detailed discussion of thesc two examples.)

It is now useful to restrict the class of semimartingales to “Brownian
semimartingales.” But first a word on notation and conventions. In the
sequel we will be interested in processes (X(4, s)) indexed by s€ [0, 1] and
reJ or R, where J=[—1, 1]. These processes will usually be C"° as a
function of (t, s)—that is, P-a.s. the map (1, s) — X(¢, s) is differentiable in
the t-variable and the derivative X(s, s) is jointly continuous in (¢, s). Typi-
cally for each re R, the process X(¢)= X(, -) will be a semimartingale. The
following conventions on the differentials of such two-parameter processes
arc strictly followed in the sequel.

Standing Conventions. For each re R, let X(¢) be a semimartingale in
the suppressed s-variable, i.c., {X(¢)(5)},cro.17 is an F-adapted scmimar-
tingale. Then dX(t) (6X(1)) denotes the Itd (Stratonovich) differential of
X(r) with respect to the suppressed s-variable. So if {¥(¢)},.; is another
one parameter family of semimartingales, then

[ ¥(1) dx(2)is the process s - j Y)Y dX()(s)
and

j Y(1) 5X(¢) is the process Hj(: Y()(s') dX(0)(s') + LY (0), X(1) ().

DEerFINITION 4.1. (a) Let V be a finite dimensional vector space and
Hom(R", ) be the finite dimensional vector space of linear operators
from R" to V. A V-valued process (w) is a Brownian semimartingale if w
is a continuous Z-adapted process such that there exists a continuous
adapted Hom(R”", V) x V-valued process (O, «) such that w(s)=w(0)+
[50(s") db(s')+ [§ a(s') ds’. In the future we write this as w=w(0)+
fOdb+[ads.
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Remark 4.1. Assuming that w(0)=0, thc map (O,a)»w=[Odb+
[« ds is injective. Indeed, if w =[O0 db+[ads=0, then the finite vaFiation
part ([ods) of w is zero and so a=0. Also the quadratic variations
[Low, Aow]=[X,[Ao0e¢,]*ds=0, where Ae V* (the dual space of V)
and {¢,} is the standard basis for R". This shows that 100 =0 for all 2 and
so 0 =0. (Of course this is true up to indistinguishability, a comment that

will usually be omitted in the sequel.)

DEFINITION 4.1, (b) Let Q be a manifold, then a Q-valued semimar-
tingale (X) is said to be a Brownian semimartingale iff fo X is an R-valued
Brownian semimartingale for all fe C*(Q).

The proof of the following proposition is casy and is left to the reader.

PrOPOSITION 4.1. (1) Suppose that X is a Q-valued semimartingale
where Q is an imbedded submanifold of RY. Then X is a Brownian semi-
martingale in R™ in the sense of Definition 4.1(a) iff X is a Brownian semi-
martingale in Q in the sense of Definition 4.1(b).

(il) Suppose that o is an M-valued semimartingale, u= H(o), and
w=I"Yu)=1""oH(c), where I, H, and I~ are as in Theorem 3.3. Then if
any of the processes X, u, or w is a Brownian semimartingale then so are the
remaining (wo processes.

Before starting on the estimates, it is necessary to introduce a number of
different norms. First a convention. If ¥ is a finite dimensional vector
space, then |v| will denote the length of v with respect to some norm (-n
on V. Since V is finite dimensional, it will in general not matter which
norm is chosen, and this choice is left to the reader if the norm is not given
explicitly. For the following standard vector spaces it is convenient to make
the following choices of norms.

Notation 4.1. (1) If A is an nxm matrix, we put |4| =tr(A*A)"* =

the Hilbert-Schmidt norm.
(ii) If aeR", |a] will denote the standard Euclidean length of a.
(iii) Suppose that (B, |-]) is a normed space and f: [0, 1] — B, define
fr=sup{|f(r)|:0<r<s} and f*=/T We also write |/l for f¥

DerNiTION 4.2, Suppose that f, is a continuous adapted stochastic pro-
cess taking values in a normed space (V). For pe [1, o0}, define || f | sris) =
IS M Lrcpys and Ifllsr = I/l soiy = 1/ H Locr)- Also let S7(V) or just S” stand
for the space of continuous adapted processes f,€ V such that | f] s» < c0.

For spaces of Brownian semimartingales it will be convenient to define
two types of norms.
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DEFINITION 4.3, Suppose that w=[{Odb+[ads is a V-valued
Brownian semimartingale and that pe [ 1, co]. Define

s 172 .
() Awll e = “ I:J-() |O(s")|? (1.8"] +£) la(s")| dds’ , (4.1)

LP(P)

and
'(ii) fiwll Bi(s) = HOHSI'(,Y) + flecl| SP(s) (4.2)

Again set [[wil o= Wil yrirys 1Wlgr = W] yryy. Also let H” = H”(V) and
B” = B”(V') denote the set of V-valued Brownian semimartingales such that
wll»< oo and |w z < oo, respectively.

LEMMA 4.1 (Basic Incqualitics). Let r, ', pe[2, 0] such that 1/p=
I/r+1/r". Suppose that w is a V-valued Brownian semimartingale and Z is
a Hom(R", V)-valued continuous adapted process (more generally just locally
bounded and predictable); then:

(1) (Burkholder’s inequality) For pe[2, ), there is a positive
constant ¢, such that for all se [0, 1], [wilgn,) <, 1wl yni)s
() wlle < Iwl pos
(iii) (Emery’s inequality) | [ Z dwll yr < 1 Z) g | Wl 1y
(iv) For all s in [0, 1],

2]

’ HP(s)

Yd

<lwl?,., j P(1Z(s)|7) ds’

<l ey 120, o

V) M Z dwl g <12 se ol g
Now assume that Z is also a Brownian semimartingale and r, r', pe [2, o)
such that 1/p=1/r+ 1/¥'; then
)T Z ] < ey 0l § 120 D
(v') MZ dwl gr < c, 1 Z]| 4 ”W“n' <, N Z) g ”W” B>
)

there are constants c, . such that | Zwl| g, < c, | Z| g W] gr;

’

(iv

(v

(vii) If Z is a process which is P-a.s. absolutely continuous with respect
10 ds, then | Zw| go < | Z")| 5= |wltso + 1 Z] 5 | W] g

Proof. (i) See Stroock [Sti, St2].

(ii) This one is trivial and is left to the reader.
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(iii) The proof of a more general form of Emery’s inequality may be
found in Protter [Pr, Theorem 3, p. 191]. I will give a short proof for this

special casc.
By definition of |[-llyr, 1§ Zdwll;r=11Z0] 2+ |ZO¢|L1 I oy where
1= {o /()" ds]"*. Therefore,

<IZ*-110] 2+l g Ml rey

Hr

<SNZ*| ey - WO} 2+ Lol il ey
=1Zl s - il

I

where Holder’s inequality was used in the second inequality.
(iv)
= | 1ZO|1,2([0, gt |Z°‘|1,*([0.5]) I Lo(P)

HP(s)

< HZO0) 130,97 + 122 Lo, on) I Lrcr)

1. f Z dw

< ||w[|m i |Z|L2(ro 511 “10

Now

5 P2
H iZ|L2([O \)]| Lﬁ(l’) [L) ’Z(.y/)|2dsljl < [J |Z( )| dS‘ }’

by Jensen’s or Holder’s inequality. Finally
p[j"' 12(.«>|”ds'} <[ Przx1rds = [ 1215,
0 0

The estimates in (iv) now easily follow from the last three displayed equa-
tions.

(v) By Holder's inequality, |ZOls <|Z]s|Olls, and | Zallsr <
| Z | ¢ llll g~ Therefore

“ J‘Zdw = | Z0| s + 1 Zall 50 <1 Z1 s LHON s + Nl s T = 121157 Il s
BP
as claimed. ' . -
The statements in (iv’) and (v') follow immediately using (i), (ii), (iv),
and (v).

To prove (vi) and (vii), write Z=_fA<db>+jy ds, where A is a
Hom(R”, Hom(R", V))-valued process and 7y is a Hom(R", V)-valued
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process. Using the definition of ||-| 4 and basic stochastic calculus one
finds that
WZwllgr =11 AL D> w+ ZO| g + llyw+ Za+ 4 - Of 5, ()

where 4.0=3"
to deducce that

12wl gr < [ 2l Wl + 1 Z1 g wlhse + AT - 1O 50
S M2l g lwl e+ e | ZY g hwll g+ 1 Z1 g 1wl e

ALe;» Oc,. Using Holder’s incquality on (*) it is casy

F=1

which proves (vi) with ¢, . =c,+¢,+ 1. (The actual size of ¢, . will
depend on the choice of norms put on the spaces ¥, Hom(R", V), and
Hom(R", Hom(R", VV}}.) Assertion (vii) also casily follows from (x).
Indeed, we now are assuming that 4 =0 and y = Z' so that (*) reduces to

12wl o = 1ZON o + 12w + Zat]] o
which clearly implics (vii). Q.E.D.

LeMMA 4.2, For cach finite dimensional vector space V, and pe[1, oo ],
the spaces S”(V) and B"(V) are Banach spaces.

Proof.  First note that as a normed space B”(V)=S”(Hom(R", V))®
S”(V), so it will suffice to show that S”(V) is a Banach space. Now it is
clear that S”(})7) is a normed space, so that only completencss remains to
be verified. For this suppose that {f,}” ,<S”(V) with Z,, Wollse =
20 W Legpy < 0. Since, L”(P) is complete, it follows that 5, ex1sts in
L”(P), and in particular P-as. ), /*¥< oo, Therefore P-as. f= Z L is a
continuous function. By Holder’s inequality, the monotone convergcnce
theorem, and the fact that f* <3, f* P-as., it follows that |f]s, <
2u 1 fullsr <00 so that f'e S7(V). Similarly,

T I IR A B VA

and this last expression tends to zero as N — co. Therefore f=3*_ £, in
S7, and so S”(V) is complete. Q.E.D.

The next theorems will be used in proving existence, regularity, and
differentiability of solutions to (1.5) and (1.7). But let us first record
Gronwall’s inequality in the form that it is used in this paper.

Lemma 4.3 (Gronwall's Inequality). Suppose that y(s), ¢(s), and y(s)
are non-negative functions on [0, 00) such that

V)< [ 0t de+als), (43)
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then
Y(s)< J n(t)e(t)exp {J n(u) du} dt + &(s). (44)
0 0
In particular if § and ¢ are constants then (4.4) reduces to
p(s)<ee™. (4.4")

THEOREM 4.1. Let X: R" — I'(TRY) be a linear map with compact support
as in Definition 3.4. For convenience write X(q)a for X{a)(q), and X (q) for
X{e;>(q), where {e;}}_, is the standard baszsfor R". Assume that w and W are
two Brownian semimartingales in B® = B*(R") with canonical decomposi-
tions w={ O db+[ads and w={Odb+[ads. Let q,eR" be fixed, and
define q and q to be the solutions to the 1td stochastic differential equations

= X(q) dw and dg= X(q) dw, respectively, with initial conditions g(0)=
G(0)=gq,. Then for pe [2, c0), there is a constant K, = K,(|wll g=, W]l gs, X)
such that g — Gl ;0 < K, {w—Wl g0 and g —qll gr <K, [ — W] g

Proof. Since X has compact support, there is a constant C such that
1X(¢)— X(§)] <C|g—g} and |X(¢q)] < C for all ¢ and g in R”". Also because
X has compact support, the processes ¢ and g remain inside any ball con-
taining the support of X and the initial starting point ¢,. Let Q@ =g —¢,

then
dQ = (X(q) — X(§)) dw + X(g) d(w —W). (4.5)

Hence,

1oNs ., <l | HX(CI)—X((DIIZF o ds"+ Cllw =7,
17(s) (

<Clwl, -J 101 Gy s+ C v =¥ 7

<Ol vy | 1Oy 5+ C v =01

where Lemma 4.1 parts (iii) and (iv) were used in the first inequality, and
(i) in the last. It now follows from Gronwall's Lemma (Lemma 4.3) that
there is a constant K, such that ||g —gll o < K, [w—Wl| 0.

We may now compute ||Q|f z» using (4.5) and Lemma 4.1 repeatedly:

10150 = 11(X(g) — X(§)) O+ X(§)(O = O)lsr
+ 1(X(g) — X(§))o + X() (ot — &)l s
<C 0|5« 1Qlsr + C 10 =0llsr+ C llallso 1Qllsr + C e —all sr
=C Wl 1Qllsr+ C llw— ] 4
<C{c, 1wl g 1QUun + 1w — Wl 5o}
<K, {lw =Wl s+ lIw—wll g} <K, w—llpr,

as claimed, where K, has been increased in size appropriately. Q.ED.
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COROLLARY 4.1. Let Q be a compact manifold which is assumed to be
imbedded in R for some N. Suppose that X:R" — I'(TQ) is a linear map
of R" to the smooth vector fields on Q. Let w=[Odb+[oads and
W :j O db+ j « ds be two Brownian semimartingales in B*(R") as above, ¢,
be a fixed point in Q, and q and § be the solutions to the Fisk-Stratonovich
differential equations dq= X(gq)ow and diq= X(q) &w, respectively, with
initial conditions q(0)=g(0)=¢q,. Then for 2<p< oo, there is a constant
K, = K,(IIwl]l goo, W]l gy X} such  that  |lq~glly» < K, |w—W|,», and
g —qligr <K, |w—wWwll g, where the norms on Q are determined by the
imbedding of Q into R".

Proof. We make use of the imbedding of Q@ in RY to write the
Fisk-Stratonovich differential equations non-intrinsically as It6 equations.
First extend X to a linear map from X: R" — I'(TR”™) in such a way that
X has compact support. Then the equation for ¢ may be written non-
intrinsically as

dg=X(q) dw+3X'(¢){dg) dw= X(q) dw+ 1 X'(¢){X(q) dw) dw

X(g)dw+1 Z X'(9){X(q) Oe¢;> Oe, ds

i=1

=X(g)dw+ Y(q)[O® O] ds,

where Y()[A® B]1=(1/2) 3", X'(¢){X(q) Ae;> Be,—a smooth vcctor
field on R" with compact support. Here 4 and B are in End(R") and {¢;}
is the standard basis for R". Let V=End(R")® End(R"). The corollary
follows from the above theorem with X replaced by X: R” x V — I(TR"Y)
given by X(q)(a, v)=X(q)a+ Y(q)v (aeIR” and veV), and w and w
replaced by W and W defined to be W(s)= (w(s IO@O ds) and W(s)=

(%(s), | O ® O ds), respectively. QE.D.

The next lemma is a version of Kolmogorov’s Lemma which will be used
often in the sequal, see [ Pr, Theorem 53, p. 171, and Corollary, p. 173].

LEmMMA 4.4 (Kolmogorov's Lemma). Let p>1 and V be a finite dimen-
sional vector space. Suppose [ J=[—1,1]1->8?(V) is a K-Lipschitz
Sunction, i.e., || f(1))—f(t: s S K|ty —t,] forall t,, t,eJ=[—1,1]. Then
there is a version of f such that P-as. (t - f(t)):J - WV)=C([0,1], V)
is continuous. In particular, there is a version of [ such that
(t, )= f(1)($)): I x[0,1] > V is P-a.s. continuous.

LEMMA 4.5. Let p>1, and suppose that q:J— SP(R™) is an ||| g

differentiable function and the derivative (q) is K-Lipschitz on J. Then there

is a version of q such that P-a.s. the function (t,s)— q(t)(s) is C*°.
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Proof. First notice that the hypothesis implies || - is bounded on J.
Therefore, using the fundamental theorem of calculus in the Banach space
S”(R™) one finds

j” G(t) dt

(5]

[" vt a

2

“(1(’1)“(1(’2)”Sr<’

Sr

<

<Clty =1,

So by Kolmogorov’s Lemma, we may choose a version of ¢ and ¢ such
that P-a.s. the function (f — ¢(¢)) and (¢ - ¢(¢)) is sup-norm continuous in
W(R"Y). Assume that >0 (r<0 -may be handled similarly) and let
N={0=1t,<t,<t,< --- <t,=t} denote a partition of the interval [0, 1],
and set 1,(¢q)=3%"2 ¢(t,)(t;, , — t;). Again by the fundamental theorem of
calculus and the definition of the Riemann integral,

q(t)=q(0)+ Lm I,(¢) in S"(R").

mesh(/7)—0
By the definition of | -] g, this implies that

lim  g(1)—q(0)—1,(¢)l., =0 in L7(P),

mesh(/7) -0

where ||, denotes the sup-norm on W(R™). Therefore, by choosing an
appropriate sequence of partitions /7, with mesh(/7,) =0 as k- o0, we
can assume that

lim (1)~ q(0) =1 (¢)].. =0  P-as.

k — w0
In particular this implies off a fixed null set independent of s,

lim |g(£)(s) — q(0)(s) — I 7,(¢)(s)| = 0.

k— oo

Therefore, by the definition of the R-valued Riemann integral we find, off
a fixed null set, that

a(1)(s) )+ j §) de.
But, this clearly implies that g is P-a.s. C"°. Q.ED.

THEOREM 4.2. Let w(t)e B®(R") for each t in J and assume C_ =
Sup, e W)l g= < 0. Assume for each pe[2, ):

(i) the map t — w(t) is continuously differentiable into B”;
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(i} there is a constant K’ such that |w(t)—w(t') o <K' |t—1'| and
Ilt) = (e g <K' |t —1) for all 1,V e J.

Suppose that X: R" — I(TR") is a linear map with compact support, q, € R
is a fixed point, and for each 1 let q(t) be the solution to the Ité stochastic
differential equation

dq(t) = X(qg(1)) dw(t) with  ¢(1)(0)=gq,. (4.6)

Then there is a version of q(t) for each t, such that a.s. the process (t — g(t)):
J = W(R") is continuous. Furthermore this version of q is a.s. C"°, the map
1= q(t) is differentiable into B” for each pe [2, o0), and ¢(t) is a Brownian
semimartingale satisfying the stochastic differential equation

dq(1) = X(g(1)) div(r) + X" (g(1)){4(1) ) dw(r). (4.7)
Finally for each pe[2, ), there are constants K,=K,(C.., K', X) such
that
lg() =g M s < K, [t =1'], (4.8)
and
1G(0) = g( MW pr < K, [1 =11 (4.9)

Proof. In this proof K, will denote a generic constant depending only
on p, C., K', and X. The value of K, will vary from place to place.

According to Theorem 4.1, there is a constant K, such that
() — g W pr < K, w(t) = w(t) g <K, |t—1'| which proves (4.8). By
Burkholder’s inequality (Lemma 4.1), Hq(r) —q( YW sr <, llg(t) —q(t' ) 50,
so that |{g(¢) —q(¢'} s» < K, |t —t'|. Therefore by Kolomogorov's Lemma
(Lemma 4.4), there is a version of ¢(¢) such that a.s. (r— ¢(1)): J - W(R")
is continuous, and hence the map (1, 5) = g(¢)(s) is also continuous P-a.s.
We now take ¢(7) to be such a continuous version.

Let ¢(r) denote the solution to the stochastic differential equation

dq(r) = X(q(1)) (1) + X'(q(2))<q(£) > dw(t)  with §¢(0)=0, (4.10)

where ¢(r) is the solution to (4.6). (I do not claim yet that ¢ is the
derivative of ¢.)

Remark 42 Note that Eq. (4.10) has global solutions. To see this fix
t and let W(t jX 1)){-> dw(t), so that W( Jis a Hom(R” R*)-valued

Brownian semlmartmgalc. Also  set [X ) dw(t). With this
notation Eq. (4.10) may be rewritten as
d=J()+ [ dW(2) 4(1) (4.11)

to which one may directly apply [Pr, Theorem 7, p. 197].
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We now proceed by proving the following assertions:

(i) both sup,.,; |l¢g() > and sup,., 4(t)llg are finite for all
pel2, o)

(i) there exists K, such that [|§(t,)—qg(t))ll gr <K, |t;—1t,] for
t,1,eld;

(iii) there exists K, such that |[lg(¢;)—q¢(t,)ll gr <K, [t; — 15| for
1y, 1€,

(iv) ¢ is the derivative of ¢ in the ||| ,» norm;

(v) ¢ is the derivative of ¢ in the ||l » norm.

Step (i). By (4.10) and Lemma 4.1(iii) and (iv') onc finds that

1O 2y, < C IHON Gy + C ()15, - j VGO ]y 5
where C is a constant depending on p, and the sup-norm of X and its first
derivatives. Il we knew [[¢(1)ll ,;»,, were finite for each s, then it would
follow from Gronwall’s inequality that [|¢(¢)] ;;» < K(C [|W{)] g C W] 5=)s
where K is a function increasing in its arguments. This technicality is casily
overcome by replacing ¢(f) by ¢(#)” where ¢ is the first exit time of the
process ¢(¢) from a large ball. (It then follows from (4.10) that ||g(#)°{ g,
is also bounded.) By the same argument above it follows

00 gy < C Iy C I - [ 0071l

< CRON iy C IO - [ 00N,

for which Gronwall’s incquality yields {{g(£)7| - < K(C |W(6)] 10,
C |Iw(t)] 5= ), independent of the stopping time o. Finally, letting the size of
the ball tend to infinity, it follows that [|g(¢)] - < K(w(t)lf e, W) )
which is bounded since |Ww(t)ll,,» < D0 5 and w(2)] 5« are bounded by
hypothesis.

Now it is casy to cstimalte [|§(7)] 5» from (4.10) using Lemma 4.1 to find

gl 5r < C{ il gr + l1g 1 Iwl B"} < C{ W1l gr + ¢, 1G] v fwl] 3"}"

where 1/r+ 1/r'=1/p. This shows that ||§(z)] z» is bounded, since it has
already been shown that |¢]| ;- is bounded and by hypothesis || 4z, and
| w| 5 remain bounded.

Step (ii). In order to simplify notation, write g, for ¢(¢,), ¢, for ¢(t,),
w, for w(t,), and »w, for w(r,) for i=1 and 2. Using the differential equation
(4.10) for ¢(t), we have
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d(g,—¢,)=1X(q,)— X(g;)] dw, + X(q,) d[v, — ;]
+ [X(91)<q:> — X'(¢2)<{¢2> ] dw,
+ X'(q2)<qy> d[w; —w,]. (4.12)
From (4.12) and Lemma 4.1 it follows that
g2 = Gilres) S 1X(q1) = X (g | 5oy 1 o)
+ X (g2 57y W1 =2 sy

+ “ f [X'(q0)<q:1> — X' (q2){4,> ) dw,

HP(s)
+ ||X/((12)<(?2>HS'(.¢) Nlw; — Wz]”u"(.s)y (4.13)

where 1/r + 1/r' = 1/p. Using the given estimates on w(¢), w(¢), the fact that
X is globally Lipschitz, |X| and |X’] are uniformly bounded, the estimate
that ||| ,;- < C < oo, Eq. (4.8), Lemma 4.1, and Theorem 4.1, it follows that
the first, second, and fourth terms on the right hand side of (4.13) are
bounded by a constant times |¢, —¢,]. Thus

lg.—q, H//r(,\») < Kp [ty —t; ]+ ’ J~ [X/((11)<(:(1 >— X/(f12)<‘]2>] dw,

5

HP(s)

and so using Lemma 4.1(iv)
Vo =iy K Lt — 1,17
j 1X'(g)<q1> = X'(q2)<q2 1 5oy A8’ (4.14)
Because X is C™ with compact support it follows that
1X'(q)<q1> — X' (q2)<{42 21 < 1X"(q,)<qs — 421 +1[X"(9,) — X'(¢92)] {27
<Clg =41+ Clgi— 4.1 142l (4.15)

y (4.14), (4.15), and the inequality
M2t 1gr—=q21lse < NG2llse lg1 —qa2ll s

< N gallur gy —q2lls < K, |6 — 151,
where 1/r+ 1/r' = 1/p one finds

2= 01 Wy <K 2= 0117+ € [ 11— sl

<Kl—117+e¢, 'CL 145 —dall 5y ds’. (4.16)
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Gronwall’s inequality applied to (4.16) shows (¢, — ¢, 1/, <K, [t — 1],
which completes step (ii).

Step (iii). By (4.12) and Lemma 4.1,

g2 =11l <1 X(q) — X(g2)l s 19y 15
F 1 X(@) s D0y =2l
+1X(g:)<q:> = X' (g2)q2 2 s w1 |l 5
F1X(g2)<q2 0 s iwi = wall gy (4.17)

where again 1/r+ 1/r' = 1/p. Using similar arguments as above it is easy to
see that the first, second, and fourth terms on the right hand side of (4.17)
may be estimated by a constant times |f,—(,]. The third term in (4.17)
may be estimated with the help of Lemma 4.1 as

1X"(q1)<q1> — X' (g2)q2 Ml s w11l 57
<ClHg2— g5l + 1421191 — g2l lsr
<Ce, q2—qill g2 llse - llgr — g2 lsv
<Kt =ty + e 1qallyr llgy— gallae
K, 1,11,

where 1/k + 1/k' = 1/r. Hence, putting all the estimates together shows that
g2 — 4l gr <K, |t;—1,], which is the third assertion. We may now apply
Kolmogorov’s Lemma to conclude that the process ¢ has a version such
that as. (1 = ¢(1)): J - W(R") is continuous. We now assume that such a
continuous version of ¢ has been chosen.

Step (iv). Fix reJ, 4#0, and set Q= "[qg(r+ 4)—q(t)]/4. For nota-
tional simplicity set g=gq(1), w=w(t), §=q(t+4), Ww=w(t+4),
W, = [w(t+4)—w(t)]/4. Also for any function f: R"— V, where V is a
finite dimensional vector space, set [’(a,b)={y/f (a+th)d:, for all
a, be R". This function f'(a, b) satisfies f'(a,0)=f"(a), and fla+b)=
fla)+f'(a, b)b, for all a, b in R".

Claim. ||Q| x» is bounded independent of ¢ and 4.
To see this consider

dQ = (X(é) dw — X(q) dw)/4

{[X(q)+X'(q,4-Q)<4-Q>Fdv—X(q)dw}

Z
X(q)[dw —adw]/d+ X'(q, 4-Q)<Q> dw
X(q) d 4+ X'(q, 4-Q)Q D dhi. (4.18)
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Recall that X has compact support so that g(¢) remains in the ball
containing the support of X and the initial point ¢,. Therefore, 4-0 =
g—q is also bounded for all 4. From these last comments, (4.18), and
Lemma 4.1 one can estimate

R }

<1<,,[nw,4nzp [ 100 s } (4.19)

From (4.19) and Gronwall’s inequality it follows that [Q|,,» <K, [, || .

So it suffices to show that ||, g» is bounded independent of £ and 4. But

by the fundamental theorem of calculus in the Banach space B”(R") we get
1 pr+a

‘ ZJ, [i(z) = ()] de

“QHII’(\)\ li“”/i‘ P

[, — (Ol o =

BP

<

S @il

<K'|Al/2, (420

1+ 4
< A"-K’J [t —1] dt

I

where hypothesis (ii) of the theorem was used to get the last inequality.
Since K' is independent of ¢ and 4, (4.20) implies ||W | 5» is uniformly
bounded which proves the claim.

We now may finish the proof of step (iv). Set ¢ = Q — ¢(¢), then by (4.10)
and (4.18)

de=X(q) dDw,— w1+ X'(q, 4-Q)<Q) dv— X'(¢){q) dw
— X(q) dl i, — ]+ X'(q, - Q)G +5) div— X'(q)<g > dw
=X(g) dD,— W]+ [X'(q, 4-Q)<q)> — X'(9)<§>] d
+ XG> d[w—w]+X'(q, 4-0)e) dw. (4.21)

The second term “divided” by dw in the last line of (4.21) may be rewritten
as

[X'(q,40)<q>— X" (9)<4>] =f0] [X'(g+rdQ)q) —X'(q){q)]dr

=f1 drjl du X"(q+ur AQ)r 4Q, ¢>
0 0

=X"(q, 4Q)<4Q, ¢>.
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With this (4.21) becomes
de=X(q) d[w,— W]+ X"(q, 40)<40Q, ¢ dw
X'(q){g>d[w—w]+X'(q, 4Q){e) dw. (4.22)

Using Lemma 4.1, the claim that Q] ,, is bounded, parts (i)-(iii), and
(4.20), it follows from (4.22) that

(S {Il%—ﬂ’llf,ﬂr 114 - Q1 14l g,

4l =5+ Coo | el d.«}

K,;|A|p[1+(”Q”S"‘|(1|is")p+l|(]|is']+Kj lelt gy, ts'

K,[W SR (423)

where 1/r+ 1/r'=1/p. By (4.23) and Gronwall’s inequality, it follows that
lell e < K, 141, (4.24)

e, |[qg(r+4)—q(t)]/4—q(t)lur < K, |4]. Hence, for all pe[2, o), q(t)
is H "-differentiable with the derivative ¢(¢) solving the stochastic differen-
tial equation (4.10). Because |-l <c¢, |- 4», it follows from Lemma 4.5
(using (4.9)) that our version of ¢ is already C'°.

Step (v). By (4.22), (4.20), and Lemma 4.1, it is easy to estimate
lell g < CK'A/2+ CA )Gl s W] 5
+ Cliglls hw =l g+ C el s W]l 5
SCK' 42+ Ce, gl - {4 1%l g + Iw — %] 5}
+ Cc, el g Wl 57 (4.25)

where ¢ = §(1). Hence, hypothesis (ii) of the theorem, the fact that [§|l - is
bounded, and (4.24)-(4.25) imply that |l¢[ 5» < K, - 4—which proves that g
is also B’-differentiable with ¢(t) solving (4.10). Q.E.D.

CoROLLARY 4.2. Keep the hyposthesis of Theorem 4.2. Then all the
conclusions of theorem 4.2 remain valid if the Ité differential equation (4.6)
is replaced by the Stratonovich differential equation

dq(t) = X(q(t)) ow(1) with ¢q(0)=gq,. (4.6")

For the proof it will be useful to have the following:
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LEmMA 4.6, Suppose that V and W are finite dimensional vector spaces.
Let F:R—-(3,.,S5"(V), G:R— Nps2S(W), and R:V—->R be given
functions, and assume that R is smooth with compact support. Let r(t) =
Ro F(t)= R(F(1)).

(i) If F and G are S"-continuous for all pe [2, c0) then so are FQ G
and r.

(ii) If F and G are S"-Lipschitz for all pe[2, o) then so are FQG
and r.

(iiiy If F and G are S"-differentiable for all pe {2, o) then so are
F® G and r. The derivatives are given by (d/d)(FRG)=FQG+F®G,
and 7= R'(FY(F).

(iv) Furthermore, if F and G are S'-continuous (Lipschitz) for all
pel2, ©), then (d/dt)/(FQ G) and i are also S”-continuous (Lipschitz) for
all pe[2, o).

Proof. (i) and (ii). To simplify notation, let i,=#,), F,=F(t),
G,=G(t;), and F,= F(t;) for i=1 and 2. Then by Holder’s inequality,

IF®G(1) = FRG(t )l S IFi—F2® G llsr + 1F2@ (G — Go)ll s
<C ”Fl “Fz ”S’ ”Gl ” s+ C HFz ”s' ”Gl - Gz”s"a

where 1/r+1/r'=1/p, and C is a constant such that |[A® B| < C [4] -|B|.
This inequality clearly proves the assertions in (i) and (ii) involving F® G.
The assertions in (i) and (ii) involving r(¢) are trivial, because

[ry—raollsr SKF, — Fall s,
where K is a Lipschitz constant for R.

(iii) Let &(h)=]| [FRG(t+h)—F®G(1)/h—FRG(t) — F® G(1)] s,
then as in the ordinary proof of the product rule one finds

(M) IR @ (Gt + ) = GO 1/h—G(0)} o0
+ I{[F(+h) = F(1)/h —F(l)} ®G(1) s

% [F(t+h)— F)]®[G(t+h)—G(1)]

A4
Let r and ' be such that 1/p=1/r+ 1/r', it then follows from Holder’s
inequality that
e(h) < CIF(N| 5 1G(t+h) = G())/h = GO s
+ C I [F(t+h) — F0))/h = ()l s 1 GOl s

C “ ;—1 [F(t+h)—F(1)

ILG(r+h)— GOl s
N

which tends to zero as i — 0, proving (d/dt)(FR® G)=FR® G+ FRG.
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To see that r(r} is differentiable, use Taylor’s theorem to conclude for all
x, ye V that

|R(y) = R(x) = R(x)(y —x)| <K |x =y,

where K is a bound on the second derivatives of R. Insert y = F(¢+ #) and
x=F(t) and divide by £ in this last inequality and then take the S”-norm
of both sides of the result to conclude

1
5 (e ) = r(6) = RUCEQO))(F(e + 1) = F) e

SK [ F(t+h)=F(1)] 3 /h

Since F is differentiable the right member of this last inequality tends
to zero as h tends to zero. This clearly concludes the proof of (iii)
because |[(1/h) R'(F(O))F(t+h)— F(t))— R'(F(¢)) F(t)||s» is bounded by
KI(F(t+h)— F(t))}h— F(1)] s» which tends to zero as h— 0, where K is
now a bound on R’

(iv) The assertions in (iv) follow from (i)—(iii). To apply (i)-(iii) for the
#(1) case, left F(r) - R'(F(1)) and G(r) — F{(r) and notice that the assertions
involving F® G hold for B{F, G ), where B: Vx W— Z is any bounded
vector-valued bi-linear form. Q.E.D.

Proof of Corollary 4.2. As in the proof of Corollary 4.1, Eq. (4.6") may
be written as the [td equation

dg=X(q) dw + Y(q)[0® O] ds, (4.26)

where Y(q)[A® B]l=(1/2)X"_, X'(¢){X(q) Ae;) Be, is a smooth vector
field on R" with compact support. Again 4 and B arc in End(R") and {e;}
is the standard basis for R”. As before let V=End(R")® End(R"),
X:R"x V- f(TRN) be givcn by Y(q)((a v)>=X(g)a+ Y(q)v (aeR" and

ve V), and W(t)(s)=(w( _[O s'Y® O(t)(s')yds’). Then Eq. (4.26)
can be written in Itd form as
dq(t)=X(q())dW(1)  with ¢(1)(0)=gq,, (4.27)

where W(¢) is an R” x V-valued Brownian semimartingale in B*(R" x V).
To finish the proof one needs only to replace R” by R" x V' in Theorem 4.2,
and to verify that W(t) still satisfies hypotheses (i)—(iii) of Theorem 4.2.

Now if W=(w,[vds) where w=[Odb+[ads is an R"-valued
Brownian semimartingale and v is a continuous adapted V-valued process,
then dW = (0, 0)db + | («, v) ds. From this it follows that

[ Wiigr =110l sr + Il )l sr < Ol sp + Nl 50 + l[0]] 5
= Wil o + livll 50 (4.28)
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So by (4.28), in order to verify the corresponding hypothesis (i)-(iii) of
Theorem 4.2, it suffices to show with v(t) = O(¢) ® O(¢) that:

(i) t-o(1) is differentiable in S7(V) with ()= 0(1)® O(t) +
0(1)® O(1);
(ii) wu(r) and o(r) are SP-Lipschitz on J;
(iit)  {{o(¢}|| s~ is bounded for teJ.

Now (iii) is obvious, since ||v(¢)] s« < C-J|O(¢ )HU, <C-|w(t )”2“ and (i)
and (i) follow from Lemma 4.6. Q.E.D.

LemMma 4.7, Suppose that F(t) and G(t) are Brownian semimartingales
for each t, and for each pe [2, o0) the functions F and G are B” differen-
tiable. Then the path of Brownian semimartingales Z(t)= | F(1) 8G(t) is also
B’ dlff(’l entzablc f()/ all p e [2 ) and the derivative procew Z(t) is given by

jF )+ f F(1) 8G(t). Furthermore if F and G are BP-continuous
(szvclutu)for pe [2, oo) then so is Z. (This lemma still holds true if F(t)
and G(t) are vector-valued processes, in which case the multiplication should
be replaced by the tensor product or some bilinear form.)

Proof. Write dFF= A db+ads, and dG=C db+y ds, so that
dZ = FdG + 5d[F,G]=FCdb+ {Fy+34-C} ds,

where 4-C =Y, (Ae,)(Ce;) and {e,}7_, is the standard basis for R". By
Lemma 4.1 the B” norm is stronger than the S” norm, so the process F is
Sr-differentiable for all p. Hence by Lemma 4.6, FC and {Fy + (1/2) 4 - C}
are S” differentiable for all pe[2, oo} with the derivatives given by the
product rule. Therefore by the definition of the B”-norm, Z is B”-differen-
tiable for all p and the differential ¢Z of Z is given by

dZ =[FC+FCldb+ {Fy+ Fj+1[A-C+ A-C]} ds.

This last expression is easily scen to be the same as FéQ + F G as claimed
in the lemma. The continuity (Lipschitz) assertion for Z also follows from
Lemma 4.6 and the explicit formula for dZ given above. Q.E.D.

COROLLARY 4.3. Let q(t) be an R-valued Brownian semimartingale
such that t— q(t) is B7-differentiable for all pe[2, ), and let w be a
smooth 1-form on RY with compact support. Then the path of Brownian
semimartingales Z(t) jw(éq V> is B7-differentiable for all pe (2, x)
with derivative

2(1)= [ do<g(r), 54(0)> + [ d(@<d(1)))
= [ do<q(n), 3q(1)> + <41
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(Informally this may be written (djdt)(w<dq)= (dw){q, 6q) + d(w{q)).)
Furthermore, if ¢ is B”-continuous (Lipschitz) for all pe [2, co) then so is Z.

The proof of this corollary will be given after the following lemma.

LeEmMMA 4.8. Let q(t) be an R¥-valued Brownian semimartingale such that
q(t) is BP-differentiable for all pe {2, «o) and let f:RY = R be a smooth
Sfunction with compact support. Then F(t)=f(q(t)) is a Brownian semimar-
tingale which is B-differentiable for all pe[2, co) and F(t)=df{4(t))
fg(t) G(1). Furthermore, if g is B -continuous (Lipschitz) for all pe [2, oo)
then so is F.

Proof.  Write dq(t)= A(t) db+ a(t) ds, so that 4 and « are S”-differen-
tiable. Then by [t0’s Lemma,

dF(t)=/f"(q(1)) A(t) db+ [ f"(q (f))a(f)+Y(f1(i))<A(t) A(1))]ds, (4.29)

where Y(¢){A® B> =(1/2) X, f"(q(t})){Ae,, Be;» and {e,} is the standard
basis for R”. From Lemma 4.1 we know that H I s»<c, |-l 4, and hence
g(r) is S’-differentiable for all pe[2, «0). Repeated application of
Lemma 4.6 shows that f'(q(t)) A(¢), and [f'(q(1)) a(t) + Y{(q(1))
(AN ® A(t) > ] are SP-differentiable for pe [2, o0). So by the definition of
the B”-norm, it follows that F is B”-differentiable for all pe[2, o0). The
fact that the B”-derivative of F is given by f"(¢(2)){4(¢)) follows from the
fact that this is the correct formula for the weaker S7-derivative, sce
Lemma 4.6. The continuity and Lipschitz assertion of the lemma arc
proved in a similar way. Q.E.D.

Proof of Corollary 4.3. Without loss of generality we may assume that
w=fdg, where fis a C™-function on R" with compact support, and g
is linear. Let 1,(dw) = (dw){v, - >, that is, 1, is interior multiplication by
ve TRY. Now dw=df ndg, and hence dw{q,dq)=(1,dw){dq)=
df{g» o(goq)—dg<q> o(foq). Set F(t)=/(q(1)) and G(1)=g(q(1)), then
by assumption (using g is linear) G is B”-differentiable for all p = 2, and by
Lemma 4.8, so is F(t) with F(1)=df{4(t)). Thus

dw{q, 3¢ = (1, dw)<5q>=F5G—G‘5F. (4.30)
Now by definition of Z(¢)= [ w{dq(t)), Z(t)= [ F(t) 6G(t). Therefore,

by Lemma 4.7, Z is continuously differentiable and Z()=[ F(1) 5G(1) +
IF 1) 6G(t). So from this expression for Z and (4.30) one has

(1)~ [ do (o), 39(n)> = [ LF(1) 36(0) + G(o) 6F(1)] = [ 8(F(1) G(1)
L = [t di<in> ] =),

as claimed. The continuity and Lipschitz assertions directly follow from
Lemma 4.7. Q.ED.
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5. GEOMETRIC AND NON-GEOMETRIC FLOW EQUATIONS

We now assume that we have the following data:

(i) (Q, F,{%#},50,b, P)is a filtered probability space satisfying the
usual hypothesis and b is an R"-valued Brownian motion with respect to
the filtration {%,} as in Section 3;

(ily (M", V,g,o0,u,, h)is a smooth compact #-dimensional Rieman-
nian manifold with metric g, a g-compatible covariant derivative V, a fixed
base point o€ M, a fixed orthogonal frame u,e O,(M), and a C'-function
h: [0, 17— R" such that #(0)=0.

DerINITION 5.1. The geometric flow equation (associated to /) is the
differential equation

(1) = H(a()) - h, (5.1)

where 0: R > %M is a path of semimartingales, and H(-) is the horizontal
lift operator in Theorem 3.3. We assume here that P-as. the function
(1, 8) = a(t)(5): Rx [0, 1] > Mis C-°

Remark 5.1. Since /i is C' and H(o(1)) is a semimartingale, H(o(t))-h
is also a semimartingale. Therefore, if o solves (5.1) then necessarily g(¢) is
a TM-valued semimartingale. It scems that the most general possible /i one
might allow (for general manifolds) is a semimartingale. In this paper 4 is
assumed to be a C' deterministic function.

ExaMmpLE 5.1. (a) Take M =R", 0=0, and V =to the usual covariant
derivative on TR”". Then upon identifying TR" with R"xR", H(-)=1d.
Therefore the solution to (5.1) is

a(t)=a(0)+¢t-h (5.2)

That is, (5.1) just generates translations by /.

(b) Take M =G tobeaLiegroup,o=e=idinG, u,: R" - g =Lie(G)
(the Lie algebra of G) to be a fixed frame, and let V be the covariant
derivative for which the left invariant vector fields are covariantly constant.
In this case H(o(!))=L,-, where L, ,:G— G is left translation by
o(t)—L,,g=0(t)g. Again the solution to (5.1) may be found explicitly,

o(t)=0(0) e (5.3)

where A(s)=u,h(s)e 4.
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(c) This is the same as example (b), but now take V to be the
covariant derivative for which the right invariant vector fields are parallel.
Then in this case the solution to (5.1) is

o(t) = e"(0). (5.4)

The transformations in Example 5.1 have been highly studied when
¢(0) is a Brownian motion and more recently when ¢(0) is a Brownian
Bridge process. In particular, one is interested in whether the law of a(t)
is equivalent to the law of ¢(0). Example 5.1(a) is the domain of the
classical Cameron—Martin formula, see [CMI, CM2, Mar] and also
[Grl, Gi, K1-K3, Ra, Kul-Ku4]. The quasi-invariance for the flow (5.1)
in Examples 5.1(b) and (c) is discussed in [AH, Shl, Sh2, Fr, MM1, Gr4].

In an effort to convince the reader that the solution to Eq. (5.1) is the
correct generalizations to the formulas in (5.2)-(5.4), let us briefly discuss
two other possible alternatives. A more thorough discussion can be
found in Section 10. One alternative to (5.1) which coincides with
Examples 5.1(a)-(c) is to use the exponential function. Explicitly, define
a(t)=exp(tH(a(0)) h), where exp: TM — M is the geodesic flow associated
with the covariant derivative V. But this “shifting” procedure suffers from
two serious problems. The first is that in general the map 7T(0,)=
exp(tH(a,) h) is not a flow on the space of semimartingales. The second is
that in most cases the Law(7 (c,)) will not be equivalent to the Law(o,)
when ¢, is a Brownian motion on M. See Section 10 for more details.

A second possible curve shifting technique is to use the flow of a given
s-dependent vector field. Explicitly, let X: [0, 17— I'(TM) be an s-depen-
dent vector field on M such that X(0)=0. Now for any vector field
YeI'(TM), let e'Y denote the flow on M generated by Y. With this nota-
tion, define the shift 7(a,) of ¢, by T,(c,)(s)=e"**(a,(s)). This prescrip-
tion again reproduces (5.2)-(5.4) after an appropriate choice of vector ficld
X depending on h. This procedure is considered in [MM1] in the special
case that M is a homogeneous space. In this case 7, is always a flow on
W(M), but in general T, will not leave Brownian motions on M quasi-
invariant. In Section 10 it is shown that in order for T, to leave the Wiener
measure quasi-invariant the vector field X(s) must be a Killing vector field
for each s. In other words, ¢ should act isometrically on M. Of course
the generic manifold does not admit any non-trivial Killing vector fields,
and this shifting technique is then useless.

Notation 5.1. Suppose @ is an imbedded submanifold of some
Euclidean space R" and that ¢, € Q is a fixed base point. Let &¥“Q-denote
the space of Brownian semimartingales in Q that start at g, which are also
in B®(RY). (If Q=R", M, or O(M), then ¢,=0, o, u,, respectively.} The
space ¥ *(Q is equipped with the topology of convergence in the B”-norm
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for all pe [2. o). (Note p # oo here.) So a function ¢: R —» %™ (Q is said to
be continuous if it is B”-norm continuous for all pe [2, o). We say ¢ is C'
if: (i) for each T=>0, sup, <+ llg(t) s <oo, and (ii) ¢ exists and is
continuous in the B”-norm for cach pe[2, co). It is not required that ¢ be
in B*(R™).

Remark 52. 1f ¢:J > 97 Q is C', then it follows that ¢ is B”-Lipschitz
for all pe[2, w). Therefore by Kolmogorov’s lemma (Lemma 4.4), we can
choosc a version of ¢ such that P-as. (1, s) — ¢(¢)(s) is continuous. In the
sequel, such a version will always be chosen.

We now restrict our attention to the spaces &M, and ¥ O(M), where
an imbedding of M into R" has been chosen and fixed once and for all. By
Lemma 2.2, the imbedding of M into R" induces an imbedding of O(M)
into RYx Hom(R", R"). The next proposition is a regularity result for
solutions to (5.1).

PROPOSITION 5.1. Suppose that a: R M is a C'-solution to (5.1),
then in fact 6 is B"-Lipschitz for all pe[2, o).

Proof. Since o is C', ¢ is B”-Lipschitz for all pe [2, o). Therefore, by
Corollary 4.1 and our method of constructing H{s) in Theorem 3.2, it
follows that t— H(a(r)) is B”-Lipschitz for all p=2 (sec Lemma 7.3(i)
below). The lemma now follows, because d(f)= H(o(r))h and Lemma
4.1(vi) gives

l6(t)) = ()l sr <, 1H(a(1,)) = H(a(t)] 5 1]l g,
where 1/r+ 1/r'=1/p. Q.E.D.

The following theorem is the stochastic analogue of Theorem 2.2.

THEOREM 5.1. Let 6:J = S M be a C' function satisfying (5.1), and set
w(ty=1""oH(a(1)). Then w:J — S “(R") is a C'-function and satisfies

n':(z):j C(w(1)) dw(t) + h, (5.5)

where for any Brownian semimartingale (w),

Clw)=A(w)+ T(w) (5.6)

with
A(w)EJQ“Uz, Sw, (5.7)

and
Tw)=0,{h >, (5.8)

where u=mnoI(w).
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Proof. We will closely imitate the proof of Theorem 2.2. First notice by
Theorem 3.3 that u= H(o). Therefore by the method of construction of
H{o) in in Theorem 3.2 and by Corollary 4.2, it follows that u(¢) is C' in
F*O(M) (see the proof of Lemma 7.3(i) below for more details). By
Corollary 4.3 it follows that w(t)z["(u(t))=§9<6u(z)> is C'in &> R".
In fact because of Proposition 5.1, we know that w and # are in fact
B?-Lipschitz for all p = 2—but we will not nced this property. By definition
u 18 horizontal (w(Su) =0), thus by Corollary 4.3,

O=§[w<5u> =dwlu, ou) + o(wlu))=02u, dudy +d(wlu)), (5.9)

where the second equality is a result of the second structure equation
(Lemma 2.1) and the fact that @ A w (&, du) =[w{ua), w{ou)]=0. Now
Q< duy = QL BEOwH (1)) =Q2,<{h, dw), since <1, - » only depends on
the horizontal component of & which is equal to B{/i)(u). (Note:
n i=d=uh=mn,B{h)(u), scc Section 2 for the notation.) So (5.9) may be
rewritten as

wlul(t)) = —JQ“‘,)</1, ow(t)> = — A(w(1)), (5.10)

because #(¢)(0)=0¢e T, O(M) and hence w{u(+)(0)) =0.
Now again use Corcllary 4.3 to differentiate the equation w=17""(u)=
[ 8¢éu>y with respect to 7 to get

W(1)(s) :jo d9i(1), Su(r)y + $a(1) 5. (5.11)

Using the first structure equation (Lemma 2.1) and arguments like those
used to go from (5.9) to (5.10), (5.11) may be rewritten as

W(1)(s) = L O iy s OW(1)) —jo wla(t)y ow(t) +h(s).  (5.12)

The theorem follows from Egs. (5.6)-(5.8), (5.10), and (5.12). Q.E.D.

The next theorem is the converse of Theorem 5.1 and is the stochastic
analogue of Theorem 2.3.

THEOREM 5.2.  Suppose that w: R — #*R" is a C'-function that satisfies
(5.5). If o=mol(w), then : R—> F*M is a C'-function satisfying (5.1).

Proof. Let u(t)=1(w(t)), so that g(t)=mou(t). By Proposition 6.3
below, w(¢) is automatically B”-Lipschitz for all pe [2, o0), and hence by
Corollary 4.2, u: R— ¥*0(M) is C'. By Lemma 4.8, 0: R » ¥ *M is also
C'. Define ¢ =98<u), E=wu), and 4=A(w)=[Q,(h, éw), where for
notational simplicity the /-variable is also being suppressed. Our goal is to
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show that =4, since then ¢ =n_ t=u3{u) =uh= H(o)h as desired. To

prove & =h, we will follow closely Theorem 2.2 and show that the semimar-

tingales (&—h, A+ E) satisfies a linear stochastic differential equation.

Because (E—h, A+ E)=01f s=0, it will follow that (& —h, A+ E)=0.
Start by computing the differential of ¢ using Corollary 4.3,

dE = d(3<iry) = d9Su, i) +;—II CHLSud)

d
=d39<{ou, L2>+Z(dw), (5.13)

where 3¢ou) =d(I~'(u)) = dw was used in the last equality. Using the first
structure equation (@ =d%+w A J) and computing as in the proof of
Theorem 5.1 we find

dé=dw+ d3{ou, u) = dir + O ou, 1) —w A 3{ou, 1)
=dw+ Oou, u) +wlud §{dud)=dw+ 0, ,{éw, &>+ E dw,

since w{du ) =0. Combining the formula for ¢Z with that of dw from (5.5),
{(dw=Aow+ O, ,(h, ow) + dh) yields

dAE—h)=(A+E)ow+6O,{dw, E—h>. (5.14)
Again using Corollary 4.3 and the fact that w{du)y =0, compute
1

=§;w<§u> = dw (i, u> + d(w{i ) = i, ud +dE. (5.15)
Because &{u)=¢, and 9¢0u) =3dw, (5.15) may be rewritten as

0=290,{¢& éw) + dE, which when added with Q,{h, ow) — 54 =0 yields
dA+E)y=Q,{h—=¢& dw). (5.16)
For each fixed ¢, (5.14) and (5.16) are a coupled pair of linear stochastic
differential equations for (&(¢) — h) and (A(¢) + E(¢)) with initial conditions
E(t)—h=0, and A(t)+ E(¢) =0 at s = 0. By uniqueness of solutions to such

equations we sec that £(f)—h=0 and A(¢) + E(¢+)=0 P-a.s. This proves the
theorem. Q.E.D.

6. EXISTENCE AND UNIQUENESS FOR THE NON-GEOMETRIC FLow

In this section an existence and uniqueness theorem for the “non-
geomctric flow equation” (5.5) of Theorem 5.1 will be proved. Hence, by
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Theorems 5.1 and 5.2 this will also prove existence and uniqueness for the
“geometric flow equation” (5.1). The following section is devoted to
proving directly existence and uniqueness for the geometric flow equation
5.1).

( T;w first step in the proof is to reformulate the non-geometric flow cqua-
tions (5.5), see Proposition 6.1 below. For the purposes of this section it is
important to remember that a C'-function w:J - % “R" is equivalent to
giving a pair of processes (0, a): J » S*(End(R") x R"), such lhdt (0, a)is
S” continuously differentiable for all p>2 and sup,ej t {10(t )||bm
fa(t)s=} <oco. Of course w is related to (O,a) by w( j

+ [a(r) ds

DEFINITION 6.1. Suppose that f: O(M)— V (V' =a vector space) is a
C™-function, let f: O(M)—End(R", V) be defined by ['(u)(a)=
df{B{a>(u)) for all ue O(M) and aeR". We will call /" the horizontal
derivative of f.

Remark 6.1. The two main examples of interest are f(u)=£,<{, -,
and f(u)=0,{-, -, in which case f'(u){a) will be denoted by 2,<a, -, ->
and @/ {a, -, - », respectively.

DEFINITION 6.2. Let 4 and BeEnd(R")=Hom(R* R"), aeR", and
ue O(M). Define

(1) ‘Q—u<A’ (I,B>E Z Q;‘<A(_’,-, a, B€i>’ (61)
i=1

(i) 0,{A,a, By="Y 0,{Ae; a, Be;), and (6.2)
i=1

(iii) Ric,{a, 4, By =Y ©.{a, Ae;) Be,, (6.3)

i=1
where {e,} is the standard basis for R".

Remark 6.2. 1f O is an orthogonal matrix and 4= B=0, then the
formulas (6.1)-(6.3) are independent of O. The reason for the terminology
Ric, in the (6.3) is that Ric, <a,0,0)>=3%7_,Q,{a,e;)e; Is essentially
the R1cc1 tensor when O is orthogonal

PROPOSITION 6.1. Suppose that w:J —» S R", and (0, a): J > L R" is
defined by

w(z)=j0(t)db+ja(z)ds. (6.4)
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Then Eq. (5.5) is equivalent to the pair of differential equations
O(1) = C(w(1)) O(1) (6.5)
and
a(1) = Clw(1)) alt) + R(w(1)), (6.6)
where C(w) is defined as in Theorem 5.1 and R(w) is defined to be
R(w)=1{Ric,{h, 0,0)+ 6,0, h, O} + 1, (6.7)

where w is the Brownian semimartingale w = j O db + j o ds. The derivatives
in (6.5) and (6.6) are to be taken in the S”-topologies for all p€[2, ).

Proof. Inscrt the expression (6.4) for w(t) into (5.5) to get
Odb+dds=Cw)[Odb+ads]+5dC(w)dw+h ds, (6.8)

where the ¢ is now also being suppressed from the notation. By (5.7), (5.8),
[t6’s Lemma, and du= B{dw >(u),

dA(wY=8,{h, ow) =Q,{hy dw)d + 52, {dw, h, dw)
=Q,(h 0dby+ {(Q,{h a)+32,{0,h, 0>} ds, (6.9)
and
dT(w)=d(@,{h, ->)=0,{ow, h, - >+ 0O ,(dh,->
=0, {dw, h,->+30:dw,dw, h,- ) +6,{dh,->
=0, 0db,h, >+ {0, (o, h,->
+0,0,->+30140,0,h, >} ds, (6.10)
where @/<0,0,h,->=Y,0,{0¢;, Oc,;, h,-», and O" is the horizontal

derivative of @'.
Thus using d[C(w)]=dA(w)+dT(w), (6.9), and (6.10) one finds

dC(w) dw=Q,{h, dw) dw+ O, {dw, h, dw}
=Ric, <h, 0,0) ds+0,{0, h, O) ds. (6.11)
Noting that the B”-norm on w={Odb+fads is equivalent to the

S’-norm on (O, a), the lemma is proved upon inserting (6.11) into (6.8)
and then comparing the db and ds terms on both sides of the result. Q.E.D.

Remark 6.3. Let C=sup,.om 0.{-, | Notice that C(w)=A(w)+
T(w), where A(w)(s)eso(n) and T(w)(s)e End(R") such that |T(w)(s)| <
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C |h},, independent of w,s, and the random sample point. Lemma 6.1
below and this observation imply that any solution to (6.5) and (6.6) has
the property that O(¢)(s) is uniformly bounded provided O(0)(s) was
uniformly bounded. With O(¢) uniformly bounded, it follows from the
definition of R(w(¢)) that R(w(r))(s) remains uniformly bounded. This
in turn will imply (by Lemma 6.1) that « must remain bounded. (Sce
Corollary 6.1.)

LemMma 6.1. Let V=R" or End(R"), and assume that A.J— so{(n),
T:J - End(R"), and R: J— V are all continuous maps, where J=1[~-1,1].
Let a, €V be a fixed vector and define a: J — V to be the unique solution to
the ordinary differential equation

a(t)=A(t)oa(t)+ T(t) alt) + R(1) with  a(0)=a,,. (6.12)
Then
(i) ol o, < (lot, | + Rl ) €T, (6.13)

where [T\, =sup,., |T(t)|, and |R|,, =sup,., |R(1)|. (Notice this estimate
is independent of the size of A—intuitively A supplies only a rotation term.)

(il) Now also suppose that A:J-so(n), T:J-End(R"), and
R:J — V are another collection of continuous maps and that & denotes the
solution to (6.12) with A, T, and R replaced by A, B, R. Then there exists a
constant K= K(|o,|, 1T, IR, Tl s | Rl ), such that

(1)~ (1) sx‘ | {14 =4 + 170 = Tte)

+|R(t)— R(z)| } dr ; (6.14)
{(Notice that the constant K is independent of A and A. This is crucial to later
applications.)

Proof. (i) For simplicity assume that > 0—the case 1 <0 is similar.
Let U:J - O(n) be the unique solution to

Ut)y=A(r) U(t)  with U(0)=ideO(n) (6.15)
and set Z(t)= U(r) ™" a(t), then
Z=U"'TUZ+U 'R and Z(0)=«,. (6.16)

Because U(r) is orthogonal, we have that |a(t)] =|Z(r)|, so it suffices to
show that Z satisfies the estimate (6.13). From (6.16) one easily finds

201 <, + [ LT 1ZE) +RE T dr

This last equation and Gronwall’s inequality (Lemma 4.3) yields (6.13).
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(i) In this argument K will denote a constant depending on (|o,l,
1], IR}, | T\ |Rl). The different K’s in a string of inequalities may

vary from place to place. _ B ‘
Let U and Z be defined as above and define U and Z analogously with

(A, T, R) replaced by (A4, T, R). Then
lo—a|=|UZ~0-Z|<|UIZ-ZI+|U-Ul|Z|
<|Z-Z|+K|U-U\, (6.17)

where we have used part (i) to replace |Z| by K. Estimate the U-term:

U~ T =10 00~ 1
<[

= [ 106 LA - 401 O]

—d« [U(r) " U(r)] | de
dt

:j' 1A(x)— A(1)] . (6.18)

Now to the Z term. From (6.16) we see that
\Z—Z|={U '[TUZ+R]— U '[TUZ+R]|
<|U'=T ' |TUZ+ R +|TUZ—TUZ| +|R—R|
<K\ U-UO+|T-TUZ|+|T1\UZ—-UZ| +|R—R|
<K|U-U+K|T-T|+K|UZ—UZ|+|R—R|
<K[|U-0+|T-TI+\U-T| \ZI+1Z—Z]]1+|R—R]
<K[WU-U+|T-T+|Z-Z|+|R-R|]. (6.19)

Upon integration of this inequality from 0 to ¢ and an application of
Gronwall’s inequality it is seen that

20~ Z() <K [ [1U6) = Ufo)
+1T(2) = T +R(2) — K@) 1 e
<k[ [0~ A0)

+|T(t)— T(t)| + |R(x) — R(z)| ] dr, (6.20)
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where (6.18) was used in going from the first to the second inequality. The
result follows by combining (6.17), (6.18), and (6.20). Q.E.D.

DEFINITION 6.3. A l-parameter family of End(R")x R"-vaiued pro-
cesses  (O(1), (1)) solves (6.5) and (6.6) poinrwise if the following
conditions are verified.

(i) P-as. the function (1, s) = (O(r)(s), a(r)(s)) is C"°.

(i) Let w(r)=] 0(r)db+§oc(t)ds. There exists versions of u(¢) of
I(w(1)), and A(t) of A(w(r)) such that P-as. the maps (¢, s) - u(r)(s) and
(1, 5) — A(1)(s) are C"°.

Let R(r) be the version of R(w(7)) found by inserting O(¢) and u(¢) into
Eq. (6.6). Let T(1)=0,,<{h, - (a version of T(w(t))), and C(1)=A(1)+
T(1) (a version of C(w(r))). Notice, with thesc choices, P-a.s. the map
(£, 5) = (R(1)(s), T(1)(s), C(1)(s)) is C"°.

(iii) There is a fixed set 2,< of full measure such that on Q,,
(O(1)(s), a(t)(s)) verifics pointwise (6.5) and (6.6) with C(w()) and R(w(¢))
replaced by C(¢) and R(r).

COROLLARY 6.1. Let (O(1), a(t)) be a l-parameter family of
End(R") x R"-valued processes which solves (6.5) and (6.6) pointwise, and set
w(t)= [ O(t) db+ [ a(t)ds. If [|w(0)] g= =[O0} s + [2(0)] < < O, then
[0 s« < N0(0)] g €™, and {w()] g= = 10()] 5= + (D)l 5 < C, for
all te J, where C,=C, (1], |w(0)]5=) and C=sup,comn 10, )l

Remark 64. Throughout the paper T will make repeated use of the
following measure theoretic fact. Let f: Ux Q2 — V be a measurable map
where U is a subset of R* and ¥ is a normed vector space. Suppose
that for each weQ the map x— f(x, w) is continuous, and therc is a
constant C, such that for each xeU, P({w:|f(x,w)<C,})=1,
then P({w:sup ey |flx, @) <C,})=1 Indeed, if D is a countable
dense subset of U, then it is clear that P(Q,)=1, where
Qp={w:sup,cp If(x, w) <C,}. But by continuity, for all w e 2, one has
SUp,..y 1f(x, w)] < Cy. Since, 2,cQ,={w:sup,cylflx, w)]<C,} and
our c-algebra is P-complete, it follows that £, is measurable and that
P(Q,)=1

Proof of Corollary 6.1. For teJ, let A(t), T(t), R(t), and C(¢) be as in
Definition 6.3. Notice that A(t)eso(n), and on 2,, |T()l, <Clh],.
(I will omit the statement “on ,” in the future.) So by Lemma 6.1(i),
[0(1)],, <10(0)],, e ™=, from which it follows that

HO(1)] s= < [ O(0)]| 5 €€ 1.
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Also it is easy to show there is a constant K such that
[R()l oo S KIODIZ, |l oo + 11| o <K NOO) 5 €2 (h o, + B,

where in the second inequality we used the estimate on O just proved.
Therefore we may apply Lemma 6.1(i) to (6.6) to get

o)l s < (N0l s + K OO 5. € Ml= [B] , + | 1] ) €€ 1.
The lemma now easily follows with
Co= (2 [W(O)] o+ K IW(0) | 5 W] o + 1] ) W= (6.21)
because |A|o, < ||, and [w(t)] so = 1O(2)]] o + llo(t)]] . QED.

After proving some basic estimates (Proposition 6.2) on A(w), T(w), and
R(w), we will see that the w:J — #*R" in the above lemma is in fact C!
and w is B?-Lipschitz for p e [2, o). Furthermore, this w satisfies (5.5), or
equivalently (6.5) and (6.6) with derivatives taken in the S”-topologies.

PROPOSITION 6.2 (Basic Estimates). Let 0< C,< oo be a fixed constant
and suppose that w and w are in & R" with |w| g < C, and |W] g < C,.
Also assume that |k'| < C,. Then for all pe [2, ) there exists a constant
K=K(p, C,) such that:

(1) NAW) = AW rr S K W~ W]l 4105
(i) N AW) =AW sr <, K lIw =Wl 10 < ¢, K [[W— W]l o3
(i) [T(w) = TW) o < K flw =Wl 0
(v) NTwW) =Tl sr <, KW= p1» S, K [|[W— W] s}
(V) IR(W)—R(®)s» <K |w— | gs;
(vi) NICw)—CO»)l o < K [|W— Wl 1103
(vi)) [[C(w) = COMls» <, K lw—Wll o <, K W=l g
Remark 6.5. 1If O and O are restricted to be orthogonal matricies, then

estimate (v) above can be improved to an H”-estimate as in (i) and (iii).
We will not need this improved version of (v).

Proof. Throughout this proof K will denote a constant depending only
on C,, p, and the underlying geometrical data. Let u=I(w), i=I(Ww),
A= A(w), and A= A(w). By Corollary 4.1 there is a constant K such that
lu—ial e < K|lw—w|yr and |lu— il 5o < K |lw — W] go. These inequalities
will be used frequently along with the obvious inequalities that |0 — 0|/,
<w--Wllgo, e —&llsp < |w— |l pr, and ||, < W], <C,.

From (6.9)

dA=Q,{h,dw) + 30,0, h, O ds
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with a similar equation holding for dA. Thus
d(A —Z) =Qu<h’ dw> _Qﬁ<h, dw> + %{Qu<0, hs 0> —§ﬁ<0’ h; 6>} ds.
Therefore

14~ Ayr < | [ 1@uChdiv = 2uCh v}

H?

HP

+“f9a<h,d(w—m>

(6.22)

l
+3

[12.<0,n,05-2.(0,1,0)} a5

HP

The three terms on the right side of (6.22) will be estimated separately.
The first term is estimated using Emery’s and Burkholder’s inequalities

(Lemma 4.1(i) and (iii)),

SK Wl pe 12.<h, - > —2a<h, D llse

HP

SK Wl g il o llu—all s

f{.Q,,(h, dwd> — <k, dwd)

S, K ||Wlye Al W — Wil 0,

where the first K is dependent on the norms and the second X includes the
Lipschitz constant for the function u —» 2, (-, - ). The second term is easily
estimated using Emery’s inequality:

” [ @uch, dow <U2uChy - Hlso 19—l 0 <K [h] g 19— ¥l 1

Now for the third term, by elementary estimates it is easily seen P-a.s. that
12,40, h,0)— 2,0, h, 0| <12,— 2| |hl, C3+1Q;| [k 2C, |0 - Ol
<Kl|lu—ial+K|0-0|,

from which it follows that twice the third-term of (6.22) can be estimated
by

l —
K||u—12[|s,.+KH jo 0-0lds|

<Ke, llu—ill yo+ K lw—wl o

<K |w—w| .

This finishes the proof of (i). Part (ii) follows from (i) with an application
of Burkholder’s inequality. I will omit the proofs of (iii} and (iv), since they
are similar to the proofs of (i) and (ii) with Eq. (6.10) used in place of (6.9).
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By elementary estimates one has P-a.s. that
IR(w)— R(W)l, <K |u—1itl o + K|O - 0|,
which implies
[R(W)— R(W)lls» <K lu—itllso+ KO~ Ollsr < K [|w— W]l go.

This proves (_v). Finally, (vi) and (vii) are a direct consequence of (i)-(iv)
and the definition C(w)= A(w)+ T(w). Q.ED

CoROLLARY 6.2 (Regularity). Keeping the same notation and hypothesis
as Corollary 6.1, the function w:J » & R" is in fact C' with w BP-Lipschitz
Jor all pe (2, o). Furthermore, this w satisfies (5.5), or equivalently (6.5)
and (6.6) where the derivatives are now taken in the S”-topologies.

Proof. First notice that

ICW)se < IIC(w) — C(0)l5» + [C(O)]] 50
S KWl yo+ K1l oo S K[ Ao + Wl 3] < KC, < 00,

provided llv.vllgm < C,. In particular [|[C(2)]|sr = |C(W(t))s» <K, < o0 for
all tel. Smce‘ 0()—O() <[V |C(w(z))] |0(z)| dr < C, [Y1C(w(x))} de
for all ¢'>¢ it follows that [|O(r)~ O(t')] s < C, ¥ I|C(w(1))llsr dr <
{{ |t —¢'|. Similarly, since R(w) is bounded when O and 4 are bounded,
it follows that [a(t)—a(?')llsr <K |t—1'|. Therefore, [w(t)—w(t')| g <
Klt—t’] for all ¢, '€ J. That is, w is B”-Lipschitz. By Proposition 6.2(vii)
it follows that C(r) = C(w(t)) is S’-Lipschitz.

~ Now let 4> 0, and set ¢(h) = | [O(t + k) — O(1)1/h — O(1) | 55, where O(1)
is 'the pointwise derivative. Using the fundamental theorem of calculus
pointwise, we learn

[O(t + k) — O(1)1/h— O(t) =% f"” [C(z) O(t) — C(¢) O(t)] dx.

Consequently

1 pe+h
s <z [ 1CE) 0() = C(1) O(1)l v

t

1 pt+h
< j [K0(r) = O(t)| s + K | C(z) — C(1) || 5] it

1 t+h
ng’ K|t —t| de < Kh,
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where Holder’s inequality (with 1/r+1/r'=1/p) was used in the second
inequality along with the boundedness of C(r) in the S"-norms. The argu-
ment also works for h<0, so that (k) <K |h|. This shows that O(¢) is
Se-differentiable with derivative given by C(¢) O(¢). A similar computation
would show that a(¢) is also S”-differentiable with derivative given by
C(1) a(t) + R(t). Therefore, w(t) is B’-differentiable and satisfies (5.5).

To show that w(¢) is B”-Lipschitz, we start with the easy estimate,

10(1) — O < 1C(8) = C()] €, + |C(1)] [0() = O(E)],

where C, is the constant in Corollary 6.1.
From this estimate and Holder’s inequality one finds

10() — Ol 5» < C, I1C(1) = C( i 5o + N C(W) 5 1O()) = O 57

where 1/p=1/r+1/r. Since for each pe[2, ), w is B -differentiable, it
follows w is BP-Lipschitz. Hence by Proposition 6.2, C(t)=C(w(1)) is
S”-Lipschitz for all pe[2, c0). These comments and the above displayed
estimate clearly imply that O is S*-Lipschitz. The proof that & is
S”-Lipschitz is similar. Q.E.D.

The next proposition along with Corollary 6.2 shows that the pointwise
notion and “SP-notion” (in Proposition 6.1) of the solution to (6.5) and

(6.6) agree.

PROPOSITION 6.3. Suppose that w:J—-> S R" (w(t)=[O0()db+
ja(t)ds) is a function such that (O(t), a(t)) satisfy (6.5) and (6.6) with
derivatives taken in the SP-topologies (pe[2, 00)) as in Proposition 6.1.
Further assume sup,c, |w(t)| g» <0, then w:J—>F*R" is C! and the
derivative w is BP-Lipschitz for pe[2, ©). Furthermore, it is possible to
choose a version of (O(t), a(t)) such that (O(t), a(t)) solves (6.5) and (6.6)
in the pointwise sense of Definition 8.3.

Proof. Let C(t) and R(t) be versions of C(w(t)) and R(w(t)), respec-
tively. Since w is B”-differentiable, w is B’-continuous on J. Therefore by
Proposition 6.2, t - C(r) and ¢ — R(¢) is SP-continuous for all pe [2, ). It
now follows (with a Holder’s inequality argument) from (6.5) and (6.6)
that O() and d(¢) are SP-continuous for all p. Thus w:J - °R" is C',
and hence w is B”-Lipschitz. So by Proposition 6.2, C(¢) and R(t) are
S*-Lipschitz for all p. Going back to (6.5) and (6.6), we can now conclude
by a Holder’s inequality argument that O(t) and &(t) are in fact
S*-Lipschitz—i.e., w(t) is BP-Lipschitz.

Because w is BP-Lipschitz, Lemma 4.5 asserts the existence of C L0 ver-
sions of O(t) and «(t) which will still be denoted by O(7) and «(?), respec-
tively. Also using Lemma 4.4, Lemma 4.5, and Theorem 4.2, we may choose
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version A(t) and u(r) of A(w(r)) and I(w()), respectively, such that
(¢, 5) > A(t)(s) is continuous, and (z, 5) = u(t)(s) is C° Now let C(1),
R(#), and T(t) denote the versions of C(w(t)), R(w(t)), and T(w(t))
described in Definition 6.3. It is easy to see that the pointwise notion of the
derivative of (O(¢), «(¢)) and the S”-notion of the derivative agree P-as.
Therefore from (6.5), we know for each ¢ that P-as. O(t) = C(r) O(1), where
the derivative is now taken pointwise. Since both sides of this last equation
are continuous processes, it follows (in the standard way) that there
is a fixed subset 2,0 of full measure such that on Q,,
O(t)(s) = C(1)(s) O(t)(s) for all (1, s)e J x [0, 1]. A similar argument shows
that a satisfies (6.6) pointwise. Q.E.D.

We now come to the first proof of existence and uniqueness of solutions
to equations (6.5) and (6.6).

THEOREM 6.1.  Let h: [0,1] > R” be a fixed C'-function with h(0)=0.
Suppose that w,= | O, db + { &, ds is a Brownian semimartingale in %= R".
Then in the class of all differentiable functions w:R— P®R" such
that sup, < |w(t)l g= <00 for all T>O0, there is a unique member (w)
satisfying (5.5) and w(0)=w,,. (Equivalently if (O(t), a(t)) is defined by
w(t)=[O(t)db+ [ a(t) ds, then there exists a unique solution (O(t), a(t))
to (65) and (66) with 00)=0, and a(0)=a, such that
sup < L0l s» + la(t)lls=] < 00 for all T> 0.) This solution (w) has
the property that w is BP-Lipschitz for all pe (2, o). Furthermore, if
T S°R" > F*R" is defined by T"(w,)=w(t), then T" is a flow on

S CR" in the sense that T} T"w,) and T", (w,) are indistinguishable.

Proof. First let me make some initial comments and reductions. The
theorem will be proved with R replaced by J=[—1, 1]. It should be clear
to the reader that any other compact interval would work just as well.
From existence on compact intervals and uniqueness, it is easy to conclude
the existence of a solution w on all of R. The fact that T" is a flow on
S *R" is a direct consequence of uniqueness of solutions by the usual
O.D.E. proof. Finally we have already seen that any solution w: J » % * R"
to (5.5) is necessarily C' and W is BP-Lipschitz, see Corollary 6.1,
Corollary 6.2, and Proposition 6.3. So it suffices to consider only C'-func-
tions w:J— ¥ *R" (It is readily verified by a scaling argument that
J=[~1,1] in Corollary 6.1, Corollary 6.2, and Proposition 6.3 can be
replaced by [ — 7, T'] provided 4 is replaced by 7'- 4 in all of the estimates. )

Let C=sup,com)|0.<-,->|, and C, be the constant in Corollary 6.1
defined in (6.21). Let X denote the set of C!-functions w:J— F®R”"
(w(1)={ O(t) db + [ (1) ds) such that w(0) =w,, | O(1)]| s < | O(0)]| 5o €€ V1=
and |w(t)g= < C, for t e J By Corollary6.1, Corollary 6.2, and
Proposition 6.3, any solution to the differential equation (5.5) with initial

QUASI-INVARIANCE 333

conditions w, must be in X. We may and do assume that versions for O
and « have been chosen to be jointly continuous in (¢, 5), see Lemma 4.5.
We now define a function L: X — X as follows. For w(t)=[0(t)db +
fo(t)ds, define O, and a, as the solutions to the ordinary differential
equations

0,(t)=C(w(t)) 0,(1)  with 0,(0)=0, (6.23)

and

a,(t)y=C(w(1)) a,(t) + R(w(1)) with «,(0)=«,, (6.24)
where we make the convention that versions of I(w(t)), T(w(t)), C(w(?)),
and R(w(t)) have been chosen to be P-as. jointly continuous in (¢, s).
These equations may be solved for each fixed sample point and for each
fixed s. Because of continuous dependence (of solutions to ordinary dif-
ferential equations) on parameters it follows that (¢, s) > (O,(¢, 5), a(t, 5))
is C1° P-as. Set L(w)(t)=w,(t)=[ 0,(t) db + | a,() ds. With no essential
modification, it follows by the same arguments in Corollaries 6.1 and 6.2
that w, = L(w) is back in X. In fact, even more is true. By the same proof
as in Corollary 6.2, there is a constant K=K, independent of we X
such that w,=L(w) is B’-Lipschitz with Lipschitz constant K—i.e.,
IL(w)(£) — Liw)(t' )l go < K, |t — | for ¢, '€ J, and we X.

The key feature of L is that if w: J - % R" is a solution to (6.5)-(6.6)
with w(0)=w,, then w is a fixed point for L in the sense that P({L(w)(¢)=
w(t) for reJ})=1. To verify this statement, recall from the proof of
Proposition 6.3 that if w(t)=[O0(r)db+[a(r)ds solves (5.5) where
(O(t), «(t)) are chosen to be P-as. jointly continuous in (t,s), then
(O(t), a(t)) solves (6.5) and (6.6) in the pointwise sense. It is now clear that
solving (6.23) and (6.24) will yield (O,(¢), ,(¢))=(O(¢), a(7)) P-as. We
have used the fact that any two versions of C(w(¢)) or R(w(t)) which are
P-as. jointly continuous in (¢, s) must be identically equal on a set of full
P-measure.

The strategy of the proof is to choose a wge X, define w,= L") (w,),
where L' means L composed with itself a-times, and then show that
w=lim,_, , w, exists and solves the differential equation (5.5). To show
uniqueness of the solution and existence of the limit w, we will show that
L™ is a contraction in B” for some sufficiently large n. This will follow

from the next claim: :

CLAIM. There is a constant K = K(p), independent of w, and w, in X such
that

IL(w)(#) — L(w )0l gr < K fol wi(r)=wy(Dlgrdr |, (6.25)

Jor all teJ.
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Proof of Claim.  For simplicity assume that ¢ > 0. Let w(t) = Liw)(1) =
[Oi(t)db+[a,(t)ds for i=1,2. By Lemma 6.1(ii) and the fact that
!T (W)l < C |h|, for any Brownian semimartingale w, it follows that there
1s a constant X independent of w, and w, in X such that P-a.s.

10,(1)(s) = O(1)(s)] < KL[ LIA(w(2)(s) = A(wy(1))(s)]

H1T(wi (1)) = T(wy(7))(s)| ] dr.

Consequently letting K vary from place to place,
10,()= 0x(0llor <K [ L14(w,(2)) ~ AQws(e))ls
1T, (2)) = TOw(e))l 5] e
<K [ 1w (@) = w0l e, (6.26)

I p . S us y I .
n p o

1540 =&l 5r < K [ 1) = w(0)l (6.27)

In the'application of Lemma 6.1 we have used Remark 6.4 to guarantee
the existence of a constant K, independent of weX such that P-as

Sup, e [R(W(1))l,, <K,. Clearly (6.25) is a conse
proving the claim. ) quence of (6.26) and (6.27)

Iterating (6.25) leads to
L 0w, )(1) = 2w ) ()] 5o < K™ 1)/, (6.28)

where y=Sup,e, Ilwy(t) — w,.(t)llm < 2C,. This immediately proves unique-
ness o(£ )solutxons. Indeed if w, and w, are two solutions, then since
w;=L(w,) for all n, it follows from (6.28) that [w,(r)— wy(t)l v <
2CO§/ Iél /n!, which tends to 0 as n— 0. To prove existence, choose
wo€ X, for example, take wy(r)=w, for all r. Defin = Loy

(6.28) shows that ’ = L) then

W, 1 (1) = WOl g = |L(w, )() = Lo ) (1)1l go
<2C,K" |t|"/n!.

Tf:(i)s last inequality shows that w, is BP-Cauchy uniformly in ¢, since

me0 2C, K" |t|"/n! < 0. Thus w(t)= B?-lim, _, , w,(t) exists uniformly in
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¢ and is a BP-continuous function. In fact, since each w, is B”-Lipschitz
with the Lipschitz constant independent of n, w is also BP-Lipschitz. It is
also clear, by passing to a subsequence to get uniform in s almost sure
convergence of 0,(¢) and a,(?), that [[w(t)] 5 <C, for all teJ.

To finish the proof it suffices by Proposition 6.3 to show w:J — F*R"
is differentiable in the B”-topologies and that w(t)sj' o(1) db+joc(t)ds
satisfies (5.5). Or equivalently O(t), and a(r) are SP-differentiable and
satisfy (6.5) and (6.6). For this fix a p=2, the function
1 C(w,(1)) O, (t) is S’-continuous and hence S?-Riemannian
integrable. Using the same argument as in Lemma 4.5 and the definition of

L, it is easy to show that
t
0,1(1)—0,= L C(Wa(1)) Opyr(t)de  (P-as.) (6.29)

where the integral is a Riemannian integral in S”. We now estimate the
difference between the right member of (6.29) and I(, C(w(t)) O(r) dx,

| [/t 0,1 (0= oo 0@ |
< [ 1C0,(0)) 0y 1(2) = CO¥() Ol
<[ ICOD N 10,11(2) = Ol e
+C, [ 1C0n(e) = COvteNlsr
<K [ ()= WD)l o,

where 1/p = t/r + 1/ and K = K(C,, sup,cs |C(w(t)l ge). Since
W, 4 1(t) = w(t)|l g — O uniformly in t as n — o, this last inequality shows
that the right-hand side of (6.29) converges to f6 C(w(t)) O(t) dr in the
SP-norm. Since the left-hand side of (6.29) converges to O(t)—O0, in
the S? norm, it follows that

0(1)=00+f C(w(t)) O(r) dr. (6.30)
]
So by the fundamental theorem of calculus it follows that O is §” differen-

tiable with derivative O(t) = C(w(t)) O(¢). A similar argument shows that «
is SP-differentiable and that « satisfies (6.6). Q.E.D.
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COROLLARY 6.3. Let h:[0,1] - R" be a C'-function such that h(0) =0,
and suppose that o, is a B*-Brownian semimartingale with values in M such
that ¢,(0)=o. Then there is a unique C'-function ¢:R - & ®M, such that
(5.1) holds (6(1)=H(a(1))h) and 6(0)=0,. Furthermore, the Sfunction
T!:S"M— S°M defined by Ti(o,)=0(t) is a flow on #=M.

Proof. Existence follows from Theorems 5.2 and 6.1. The uniqueness
assertion follows from Theorems 5.1 and 6.1. The property that T is a flow
again follows from uniqueness in the usual way. Q.E.D.

Remark. In Proposition 7.1 below it will be shown that any differen-
tiable function o: R > ¥°M solving (5.1) is automatically C! with ¢
B”-Lipschitz for all pe [2, o).

7. EXISTENCE AND UNIQUENESS FOR THE GEOMETRIC FLOW EQUATIONS

The purpose of this section is to give a more “direct” proof of
Corollary 6.3. This section may be skipped without loss of continuity. The
reason for including this section is that the techniques used may be useful
in the future.

The idea of the proof is to imbed M into R" for some N, and use a
standard Piccard iteration scheme to solve the equation

a(t)=H(a(t))h (7.1)

as an equation in R". Then with the aid of Theorem 24, it will be shown
that the solution o(¢) found this way actually takes values in M.

In this section, it will be assumed that M is an imbedded submanifold of
R* for some N. We also suppose that (Y, g, n, I, P) has been chosen as in
the proof of Theorem 3.2. Recall that Y is an open neighborhood in RY
containing M, n: Y > M is a C*-map such that n|,, =id, g is a metric on
Y which extends the metric on M, I is a connection 1-form on R™ such
that V=d+ I" on TM, and P(x)=n'(x). (Note well: in this section 7 is a
function on Y and not O(M ).) Also write V for the covariant derivative on
TY defined by d+ I We assume that (Y,g, I, P) has all the properties
guaranteed by Theorem 2.3. It may further be assumed, by shrinking Y to
a relatively compact subset of Y if necessary, that the function I'(x)= I oy
for xe Y is bounded along with all of its derivatives and that the metric g
is comparable to the Euclidean metric on R”. The metric g is said to be
comparable with the Euclidean metric if there is a constant & > 0 such that
e [v]* < g, v, > <e™2|0|¥n for all ve RN and x in Y. Recall that o,
denotes the tangent vector (d/dt), (x + ).

For any semimartingale ¢ with values in Y starting at o€ M, let u= H(q)

337
QUASI-INVARIANCE

i " ing the
denote the semimartingale with values in End(R", R") found by solving
stochastic differential equation

du+I(6){dadu=0

hat
If o is a semimartingale in M, it follows from th.e progf of Th.eotrgrr;iz.2f (:r ;
H(c) is the horizontal lift of ¢ to O(M ),hwr;'tten mmr:r))rsl-lz(?)r.x i fo R’\;
i i r :
because I” is g-compatible, .t e linea ‘ '
?;Izrf(()) vf;) solving (7.2) are isometries with respect to the Euclidean inner

Rn anj thE 1']“,]5]. 10 d”:t —_ on RN “,here g iS NOW
prOduCt on F ga(s) gl TG(J)Y 2

i is com-
any semimartingale in Y starting at oe M. Therefore, because g

. N
parable to the usual metric on RY, it follows that

with u(0)=u,. (7.2)

1 _ N=g2,
‘ulZEZIuei|2€;6 2;g,,<ue,~,u€,> & .

here {e;} is the standard basis for R”. This shows that the §e}r:1i$arttl)2iax111§
:lv= H (a)l remains uniformly bounded independent of o wit e

lul <e

LEMMA 7.1. Let ¢ be any continuous semimartingale with vahfes ir; n);
e d = OU,
starting at o€ M, then P(0) H(o).=' H(moo). (Recall that P(6)=m
this P does not denote the probability measure P.)

Proof. Define =m0, u=H(o), and ii= P(o)u. It suffices to show
Sii+ I'(6){66) 1i=0, (7.3)
since #(0) = P(0) u,=u,. By Itd’s lemma,
Sii= P'(0){d0 ) u+ P(c) du=dP{dc) u— P(o) [(0){o0) u.
But by Theorem 2.3(iv), dP — PI'= — a*'¢-> P, which combined with the
last equation gives
Sii= —n*I{dc) P(a)u= —I'{(m, 00 = — {66y a.
Q.E.D.
This last equation is the same as (7.3).
LEMMA 7.2. Suppose that ¢:R—> S Y (q(t) =0+ o(1) db —{;Oj-[:,(ii,),,dfo)
is a differentiable function (in the BP-topologies). Then a(t) is a
(7.1) iff (O(1), a(2)) solves 4
O(1) = C(a(1)) O(1), .

d
" (1) = C(a(t)) alt) + R(a (1)) (7.5)
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where C(a(t)) and R(a(t)) are defined as follows. For any ¢ =o +[{0db+
[ods in Y set

Clo)= —TI'(6){-) H(o) h (7.6)

and

R(0)=3) [1(0){0e¢;) I(0){0e;> — I''(c){ Oe,, Oe,>] H(c)h + H(c)H'.

13

(7.7

(The derivatives in (7.4) and (1.5) are 10 be interpreted in the S”-sense for
all pe 2, ©).)

Proof. For notational simplicity, write u(¢) for H(a(1)) and suppress ¢
from the notation. Then if ¢ solves (7.1) one has

dé =0 db+a ds = d(uh) = Su-h+uh= — [(6)<50> uh+ uh' ds
= ~I(0){do) uh—iI"(c){dao, do> uh
+3(0){de) I'(6){do > uh + uh’ ds

=—1(0)0db)uh+{ —I(0){a) uh+1Y [I'(a){0e;> ()< 0e,>

—3I7'(6){ Oe;, Oe;>] uh + uh'} ds.
=C(0)Odb+[C(c)a+ R(c)] ds.
Eguating the db-terms and the ds-terms on both sides of this last equation
yields (7.4) and (7.5). Q.ED

E_quations (7.4) and (7.5) are the analogues of (6.5) and (6.6) of the last
'sect_lon.. Equations (7.4) and (7.5) have the disadvantage of being non-
mtrmsxc; however, they are analytically simpler than (6.5) and (6.6). This
is because the coefficient C(¢) is bounded independent of ¢. Indeed
[C(o)l <Me™' |h|,,, where M is a bound on I ,

LEMMA 7.3. Suppose that ¢ and G are & Y-Brownian semimartingales,
and that pe [2,00) then there is a constant k independent of o, h, and p and
constants K, = K(p, |6 — ol go, |G — 0|l =) for pe [2, ©) such that

(i) NH(o)—H(G)p <K, l0—=6lp  for pe[2, w); (7.8)
(i1) 1H(o)—u,llgr<k[1+lo—0l3,);  and (7.9)
(iii) IH(o) Al ar <5 || - [1+ llo — 0], ] (7.10)

In (ii) and (iii) above p = oo is permissible.
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Proof. Let U(c)= (o, H(c)), then U solves the Statonovich differential
equation dU(c) = F(U(0)) da, where F(x, u)a=(a, —I(x){a)u) for xe¥,
aeR", and ueHom(R", R"). Equation (7.8) is now seen to be a direct
consequence of Corollary 4.1 applied to the equation for U. Notice that the
only way compactness entered Theoremd4.l and Corollary 4.1 was to
guarantee that the vector field X and all of its derivatives were Lipschitz.
But our I satisfies this condition and hence so does the function F.

To prove Eq. (7.9) first express (7.2) in Ité form,

du= —I(o)(doyu+1 Y {(I(0)(0e;>)*~I"(0)(0e,, Oe;} ds,
i=1 '
where {e;} is the standard basis for R”. Use the boundedness of
u=H(o), I, and I"" along with Lemma 4.1 to conclude

. 2
lu—u,ll g < Cllo—ollg+ ClOI,,

where C is a constant independent of ¢. Equation (7.9) is an easy
consequence of this inequality, since [0l <|[lo—oll and x(1+x)<
const.(1 + x?) for all x>0.

To prove (7.10), write u= H(c) as u,+ [ Adb+ [ p ds and compute

d(uh)=Adbh+ [fh+uh'] ds,
from which it foilows
el go < 1H'| oo LIH () = tollgo +671 1,

since |H(c)|, <&7 %, |hl o < |H'|o. Equation (7.10) is an easy consequence
of this last displayed equation and (7.9). Q.ED.

The next proposition is the analogue of Proposition 6.3. Now that C(c)
is bounded independent of s, the B®-boundedness assumption that was
used in Proposition 6.3 is no longer necessary. The following jazzed up
version of Gronwall’s inequality will be used in place of Lemma 6.1(i).

LEMMA 74. Let (V,|-|l) be a normed linear space. Assume that
f:(—a,a)— V is a differentiable Junction and there are constants € 20 and
k=0 such that ||[f()] <k | ()| +¢ for te I=(—a,a). Then for all tel

AN <e“M IO+ 14 ].

Proof. Because f is differentiable, f is continuous and so for each
Te (0, a), Mr=sup, < rllf(1)| is finite. Let ¥* denote the continuous dual
of ¥V and let || also denote the induced norm on V*. Choose ie V'*
such that ||A] =1 and set g(t)=A(f(?)). Then g: /- R is differentiable
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with g(¢ f(t and hence |g(1)| < ||f(t)|[ <M, for |t|<T. Apply
Theorem 8 21 of Rudin [Ru] to g to find

W) =50 =50+ [ #() e
Therefore,

A <10 + | [ 1860

<o+ [[ 1o a

<IN+ | [ 170 de | +o1d,

from which it follows, by taking the supremum over e V* with ||A]| =1,
that

IAON<ISON +& el +x

J s de |

(Notice that 1 — ||f(t)|| is Borel measurable, since it is the pointwise limit
of the Borel functions F,(6)=n|lf(t+1/n)—f(Ol -1 14<a1m-) The
lemma now easily follows from Gronwall’s inequality, Lemma 4.3. Q.E.D.

ProrosiTiON 7.1 (Regularity). Suppose that 6:R—> %Y (a(t)=o0+
[ O(r) db+ { a(t) ds) is a differentiable function which satisfies (7.1), then ¢
is C' (in the B” -topology) and t — 6(t) is B”-Lipschitz for all pe[2, ).
Furthermore, it is possible to choose versions of O(t), a(t), C(t)= C(c(t)),
and R(t)= R(o(t)) such that (7.4) and (1.5) hold pointwise P-a.s.

Proof. Recall that |C(o)| <k ||, where k depends only on g and I
So by (7.4), |0()]lsr <k |l |O(t)ls» for all ¢ and pe€[2, ). Thus by
Lemma 7.4, |O(t)l s» < |0(0)]| g» €= for all t& R and pe[2, oo). Letting
p tend to infinity in this last estimate yields

10() 5= < NO(0)] 5= €11 (7.11)

It is now easy to conclude from (7.7) that there exists a constant C,
independent of a(¢) and 4 such that

IR(G(Dl 5= < Cy W[ L1+ 10(0)]1 5]
S C, W] [1+10(0)] 5, €11 ], (7.12)

Now apply Lemma 7.4 with p <oo using (7.5) and (7.12) to find, after
letting p — oo, the estimate

loe(O)l 50 < €11 {{a(0) 50

+Co IH] 5 1] [14+10(0)] 5 € 11171=7 ). (7.13)
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From (7.11) and (7.13) one can show at the expense of increasing x that
lo(2) = o]l goo <xe Wl [1 4 o, — 0] 3. ]. (7.14)

In particular this shows that sup,., [|[6(¢) — o]l = < c0 for any solution to
(7.1), where J is any compact interval. For definiteness take J=[—1, 1].

Knowing that Z=sup,., [|6(t) — 0] g= < 0 allows us to apply Lemma
7.3(i). By Lemma 7.3, Burkholder’s inequality, and the boundedness of
W, I, I, H(g) and O(¢), it can be shown that there is a constant
K,=K(Z, p, |h'| ) such that

1C(a(#)) = Cla(zx)lsr < K, la(t) — (1)l (7.15)
and _
[R(a(£))— R(a(z))llsr < K, llo(t) — o(T)] o (7.16)

for 1, TeJ. (See also Lemma 4.6.) Since ¢ is B”-differentiable, (7.15) and
{7.16) show that C(¢) = C(a(t)) and R(¢) = R(o(t)) are also BP-continuous.
The remainder of the proof may be completed using the same techniques
as those in the proof of Proposition 6.3 with (6.5) and (6.6) replaced by
(7.4) and (7.5). Q.ED.

We are now ready to solve (7.1) by the method of Piccard iterates. For
a C'-function o:[~T, T]— %Y, let L(o): [T, T]-» #°R" be the
C'-function defined by

L(a)(:):a,,+f' H(o(t)) h d, (7.17)

where now all integrals are to be interpreted as Riemann integrals in B” for
all pe [2, o). The next lemma collects a number of estimates involving the
function L.

LEMMA 7.5. Let T>O0, k be as in Lemma 1.3, pe[2, o), f=xr |1,
and for o: [-T,T] - S *Y set
K,(o)=B-[1+ sup |la(t)—ol3,]. (7.18)

<7

Suppose that o, 6., and ¢, are C*-functions from [—T, T] —» S *Y, then L
satisfies the following inequalities:

(i) IL(6)(t) =0, llsp<e™ ' |h| || (p= o0 is permissible); (7.19)

(i) |JL(a)t)— L(a) ) pr < K, (0) |t—1| forall t,te[—T,T]; (7.20)
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(iii) IL(a)(t)~0,lp < K,(0)T; (7.21)

(iv)  IL(e,)()~L(e)()ll pr < C,

[ 1o =0i@lprde. |, (722

where Cp= Cp(supm< rllo(t)—ol =, SUp|g <7 lo2(t) — ol o).

Proof. Since the BP-norm dominates the S”-norm for p< oo, it is
permissible to estimate [L(o)(t)—o,|s» by lj{) |H(a(z)) Al sr dt|. This
immediately implies (7.19) for p < oo, since ||H(o(z)) h|lsp <&~ '|h].,. So
by passing to the limit p — o, (7.19) holds for p = co. The second estimate
follows from (7.10), the definition of K, in (7.18), and the estimate

IL(a)(t) — L{a)(1)| gr <

[ 1 (0 0)) 1l

The third estimate is a consequence of (7.10), the definition of K, in (7.18)
and the inequality

L0 .l < [ 1 0(0) M

For (iv), one estimates

IL()(0)~ L) (Ol v < ' J, N LH (@ () = H(o(e))] hlL o e

<26, 1. | [ 1H(0,(0)) = H(@x(6))l r i

<C, , (7.23)

J 1010 = ) g

where the second inequality is a consequence of Lemma 4.1(vii), and the
last inequality is a consequence of (7.8). Q.E.D.

ProposiTiON 7.2 (Local Existence). Let h: [0, 1] R" be a C'-function
such that h(0)=0, o, be a Brownian semimartingale in M such that
0,(0)=0, and |la,— 0| g= < 00. Then there is a constant T=T(o,, h) such
that there exists a C'-function o:[—T,T] > S°Y solving (7.1) with
d0)=g,.

Proof. For T>0 let X, be the set of C'-functions ¢: [~ T, T]» £*°Y
such that ¢(0)=o0,, and sup,, < 7 ll6(¢) — g, y= < 1. By (7.19) with p= o
and the compactness of M we see that L(c)(t)e ¥Y provided that
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[t| <ep/|h| ., Where p is the distance of M to the compliment of Y. By the
triangle inequality |6(t) — ol g= <1+ ||6, — 0] s~ for all o€ X;. Hence for

K=B[1+ 1+ |o,—o0llz=)*],

then sup,.y, Ko(0)<K<oo, where f and K, (o) are defined in
Lemma 7.5. Consequently by (7.21), [[L{g)(t)—o0,ll = <K |t| and hence
1L{c)(t)—0,]l = <1 provided 7] < 1/K. As a result of these comments L
maps X, back into X, provided T is less than 1/K and ep/|h],. Also
notice that the constant C, which occurs in (7.22) may be chosen to be
independent of ¢, and o, € X ;.

To summarize the above paragraph, for T sufficiently small L maps X,
back into X, and L satisfies, for all pe[2, c0), (7.20) and (7.22) with
constants C, and K, which can be chosen to be independent of g, ¢,, and
6, in X4 .

We now fix a T<min{1/K, ep/|h|,, }. Define o4(t)=0, for te [ - T, T],
so that a,€ X, and let o,(t)= L™(0,)(t), where L™ is the nth iterate of
L. Because of (7.22), it follows (as in the proof of Theorem 6.1) that o,
converges uniformly in the B”-norms for pe [2, o) to a Lipschitz function
6. [—T, T]—> ¥>Y. It is also clear from (7.22) that L(s) =g, ie.,

a(z)=a,,+j' H(o(c)) h dr.
0

But this last equation shows ¢: [ ~7T, T]— £ *Y is a C'-solution to (7.1).
Q.ED.

It is now easy to give the second proof of Corollary 6.3.

Proof of Corollary 6.3. First we start with the uniqueness assertion of
Corollary 6.3. Suppose that ¢ and 6: [ - T, T] » ¥ =Y are two necessarily
C!-solutions of (7.1) with initial condition ¢,. According to Lemma 7.4,
there is a constant C, depending on ¢, and ¢, such that (7.22) holds. Now
using L(o,)=0, and L(o,)=0,, iteration of the inequality (7.22) shows
g,=0, just as in the proof of uniqueness in Theorem 6.1. (See the
argument starting at Eq. (6.28).)

Suppose that T is as in Proposition 7.2, so there exists a necessarily
unique C'-solution o:[—T, T]— &*Y to (7.1) with values in Y. By
Proposition 7.1, ¢ is BP-Lipschitz for all pe[2, ). By Lemma 4.8,
6=no0:[-T,T]>F°M is a C'-function for which & is also B’-
Lipschitz for pe[2, o). (Recall in this section = maps Y to M and not
O(M) to M.) We will now see that ¢ also satisfies (7.1). Since, & is differen-
tiable, it suffices to identify the derivative of & with H(G)h. With the aid of
Kolmogorov’s Lemma we may assume that versions of ¢, 4, H(s), and
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H(&) have been chosen to be P-as. C"° as functions of (¢, s). For these
versions we have

(1) = P(a(1)) 6(t) = P(o(1)) H(a())h = H(&(1))h,

where the last equality is a consequence of Lemma 7.1. Thus ¢ is also a
solution to (7.1) with initial condition ¢(0)=n-0(0)=nrc0,=0,, where
mog,=0, because g, is in M and 7|, =id on M. (In fact by uniqueness,
6=6.) So we have shown for T=T(g,, h)>0, there exists a unique
solution ¢: [ -7, T] - ¥“M solving (7.1) and ¢(0)=o0,.

Up to now only intervals [ — T, T'] centered about ¢ =0 have been con-
sidered, but it is clear because Eq. (7.1) is autonomous that we may equally
well center the interval about any other ¢, in R. So as is standard in
ordinary differential equations, it is possible to construct (using uniqueness
and local existence) a “maximal” solution (o) to (7.1) with ¢(0)=0,. By
standard arguments, this maximal solution (o) will be defined on all of R
provided ¢ does not blow up in finite time. But (7.14) clearly rules out any
finite time blow up. Q.E.D.

8. QUASI-INVARIANCE OF THE FLow

One purpose of this section is to show the solution to (5.1) with initial
condition ¢(0) = ¢, equal to a Brownian motion has the “quasi-invariance”
property, i.c., the law of a(¢) remains equivalent to the law of ¢,. Recall
two measures P and @ are said to be equivalent if they are mutually
absolutely continuous with respect to one another. The other purpose of
this section is to use (5.1) to construct a flow on W(R") rather than a flow
on the space of Brownian semimartingales #®R". As mentioned in the
Introduction, these two issues are closely related. In order to solve both of
these problems it is necessary to assume that covariant derivative (V) has
the following skew symmetry condition.

DEerFINITION 8.1. The covariant derivative V is said to be torsion
skew symmetric (TSS) if for each meM and veT,M the map
(w—>T{v,w)): T,,M— T, M is skew symmetric with respect to the metric
&n=glr,m- An equivalent condition is that for each frame ue O(M) and
aeR", the map (b—0,{a,b)): R"> R" should be a skew-symmetric
linear transformation.

- ExampLe 8.1. (a) If V is the Levi-Civita connection, then V is TSS
because the torsion is zero.

(b) Suppose G" is a compact Lic group with Lie algebra g, and
choose an Adg-invariant inner product ((-, -)) on g. Define a metric (1) on
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G by the formula n{Lz.a, L,.b) =(a, b), where a,bey, geG, and L, is
left multiplication by geG. Clearly L,:G— G acts isometrically, and
because (-, -) is Ad-invariant, it also follows that the right multiplications
{R,}zeq act isometrically. If V is the left covariant derivative on TG (see
Example 5.1(b)) then V is TSS. The reason is that upon identifying R”
with g (so that a frame u at g is now an isometry from g to 7,G) one
finds for ue O,(G) and a, be ¢4 that 8,{a, b) = — 0~ '[Oa, Ob], where O
is the orthogonal transformation on g such that u=L,.0. Therefore,
0,{a,->= —07""ad,,0 which is skew-adjoint on ¢ for all ae ¢ because
of the Adg-invariance of (-, -).

(c) Keeping the same notation as above but now take V to be the
right covariant derivative on TG (See Example 5.1(c)), then V is TSS. Here
0,{a,->=0""ad,,0, where now O is the orthogonal transformation
such that u= R,.0. (The change in sign comes from the definition of the
Lie-Bracket in terms of left invariant vector fields rather than right
invariant vector fields. The function (g—g~!): G— G transforms right
invariant vector fields to left invariant vector fields.)

(d) Suppose that (G, n) is as in part (b) and that H is a closed sub-
group of G. Let M = G/H= {gH: g e G} be the homogeneous space of right
cosets. For ge G set §=gH, and let p: G » M be the canonical projection
p(g)=g. Then p:G—- M is a principal bundle with structure group H.
Let 4 be the Lie algebra of H, and #* be the orthogonal compliment
of Z in g relative to (-,-). Then for each geG, the map
P(8)=pyLgslsu: 5> Ty,M is an isomorphism. M can be made into a
Riemannian manifold by requiring p(g) to be an isometry for each geG.
(See [KN, pp. 154-155].) Similar to the Lie group case, it is convenient to
identify O,(M) with the set of isometries u from 4* to T, M. Given the
above data, there is a natural connection @ on p:G— M defined by
a?(ig)=(Lg‘.‘§g)4, where a, denotes the orthogonal projection of aeg
onto 4. The 4-valued 1-form (@) is easily seen to be a connection 1-form
using the fact that Ad, leaves both 4 and 4" invariant for all he H. Let
O(4") denote the orthogonal transformation on 4% and Ad: G — O(g)
denote the adjoint representation of G. Then Ad(H) leaves 4* invariant, so
Ad: H - O(#*) defined by Ad(h)|,. is an orthogonal representation of H.
Taking O,(M) to be the set of isometries («) from 4+ to TgM,' the map
p: G~ O(M) defined above is a principal bundle morphism covering the
identity of M such that p(gh) = p(g) Ad(h). -

The morphism p and connection @ on p: G —» M induce in a standard
way a unique connection (w) on O(M), such that @ =p*w, see [KN,
Proposition 6.1, p. 79]. The connection (w) has the property that a path
u(t) in O(M) over o(t) in M is horizontal iff u(¢)=p(g(r))O where
OeO(#*) and g(¢) is an @-horizontal path in G. The reader may now
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verify that for all ge G and a, be 4" that O, (a,b) = —[a, b],., where
[a,.b]ﬂ denotes the orthogonal projection of [a, #] onto 4. I't is now
easily seen that (b— @,,,{a, b)): 4* — 4* is skew symmetric.

The next proposition explores the relationship between a TSS covariant
derivative (V) and the Levi-Civita covariant derivative (V).

l.)ROPOSITION 8.1. Let (M, g) be a Riemannian manifold and suppose that
V is a metric compatible TSS covariant derivative on M. Let V denote the
Levi-Civita covariant derivative on M. Then for ve TM

(1) VU=VU+%T<U">’
where T is the torsion tensor of V, and (8.1)
(ii) the Laplacian constructed using V is the same as the Laplacian
constructed using the Levi-Civita covariant derivative V.

Remark. This proposition shows that the notion of a V-Brownian
motion and a V-Brownian motion agree. However, if V # V, the horizontal
lift operators H¥ and H" will be different. These observations seem to play
a crucial role in Gross’ paper on logarithmic Sobolev inequalities on loop
groups [Grd].

Proof. (i) Let X, Y, Zbein T, M, and let A{X ) be the operator on
T, M such that V, =V, + A{X). Because V is torsion free, it follows that
T{X,Y)=A{X)>Y— A{Y) X. From the metric compatibility of V and V
one learns that A{X) is skew adjoint on T,, M. Using these two properties
it is easy to show

28CACXY Y, Z5 =g<TX, Y3, Z) —g{TY, Z), X> +g{T{Z, X}, Y.

(8.2)
To verify.(8.2‘) just expand the right member of (8.2) in terms of the
A’s and simplify. Because of the skew symmetry properties, 7(Y, Z) =

—T{Z,Y) and Z - T(Y, Z) is skew symmetric, 0 = —g{T(Y, Z>, X> +
g<{T<{Z, X, Y. Therefore (8.2) simplifies to

28CACXS Y, Z) =g<T{X, Y, Z).

Since Z is arbitrary, this proves part (i).

c,S)ii) Let {E;}7_, be a local orthonormal frame near me M and f be
;1 C>*-function on M. Then by definition the Laplacian (4) constructed
rom V,

Af=Y, (VAf)KE, E) =} (E}f~df{VLE,>).
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By part (i), VzEi=VgE +(1/2) T<E, E;>=VE, so that the above
displayed equation may be written as

Af=Z (Elzf— df(vb‘,Ei>)7

which is the definition of the Levi-Civita Laplacian. Q.ED.

The next two lemmas will enable us to determine when solutions to (5.1)
have the quasi-invariance property. The second of the two lemmas is a
corollary of Girsanov’s theorem along with Novikov’s criterion. This
lemma will be used to prove quasi-invariance of the flow (5.1) when A%

is TSS.

Lemma 8.1. Let w=[Odb+[ads be a Brownian semimartingale,
where O is an nx n matrix valued continuous predictable process and o is an
R™-valued predictable process. If the laws w and b are equivalent, then the
process O is O(n)-valued P-a.s.

Proof. Let u,=w,Pand u=>5,P (Wiener measure) denote the laws of
w and b, respectively, on W(R"). Recall that if Q is a manifold and
{X(5)}se 0,17 15 a Q-valued continuous process, then X may also be viewed
as a function from Q to W(Q) by setting X(w)(s) = X(s, w). Also recall that
X, P denotes the measure on W(Q) such that X, P(f)=P(foX) for all
bounded measurable functions /> W(Q) - R.

Let &,: W(R")—> R" denote the coordinate map & (x)=x(s) where
xe W(R"). (I will write &, or &(s) interchangeably.) Since {&}iero.nn s 2
Brownian motion with respect to u, the quadratic covariation process
(&, &/](s) = 6,5 when computed relative to p. Since u,, is equivalent to g,
(&, &/](s)=6ys still holds relative to p,. From this it follows (see
Corollary 8.1 below) that [w', w/](s)=0;s P-as. Now, [w', w/](s) can
also be computed directly to find

v, w1() = [0(:) 0"()], ds'

Thus one finds that the P-as. j{) [O(s') O"(s')]; ds' = 0,s. Taking the
derivative of this last expression implies P-a.s. that [O(s) 0"(s)];=9;-
That is, O(s) O"(s)=1. Q.E.D.

LemMA 8.2 (Girsanov’s Theorem). Letw= [ O db+ [ « ds be a Brownian
semimartingale such that (0, ) is a predictable O(n)X R"-valued process.
Assume there is a non-random constant C > 0 such that P([§ la(s)* ds< C)=1,
then u=b, P and p,=w,P are equivalent.
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Proof. .I will follow closely the proof in Protter [Pr, Theorem 21,
p. 111]. First define the square integrable martingale M,=(ja-0db and
set

Z,=exp(—M,— L[ M, M],)=exp {—f %-0 db-%f a2 ds’}.
V] 1]

It is standard and easy to verify that dZ, = ~Z,dM,, so that Z is a
local martingale. Since [M, M1, = [} |a(s)|>ds < C, Plexp(3[M, M],)]<
e“?< 0. Therefore by Novikov’s criterion (see [RY, Proposition 1.15,
p.308]), Z is actually a martingale and in particular P(Z,)=P(Z,) =
P(1)=1 for all s.

Define Q=2Z2,-P, ie, Q is the probability measure on € such that
dQ/dP=Z,. Since Z, >0 P-a.s., the measures P and Q are equivalent. Let
ﬂ.be the P-martingale f={ O db, and notice that [f’, f/](s)=6%. By
Girsanov’s theorem (see [Pr, Theorem 20, p. 1091), the process

5"—jz-' d[Z, ﬁf]:ﬁ"+jd[M, dﬂ"]=ﬂ"+ja'ds=w"

is a Q-local martingale for each ie {1,2, .., n}. Since the measure P and Q
are equivalent, quadratic covariations computed with respect to P or Q
give the same answer. Therefore [w', w/] = 0,5 relative to Q. We may now
use Levy’s theorem [Pr, Theorem 38, Chap.II] to conclude that w is a
Q-Brownian motion.

We now know that weQ=u=>b,P. Thus given any bounded
measurable function f: W(R") - R, it follows that

P(f(b))=Q(f(w))=P(Z,f(w)). (8.3)

Suppose that f: W(R") >R is a non-negative measurable function. By
(83) and the fact that Z,>0 P-as. it is trivial to verify that the
fc‘)'l.lowing statements are equivalent: (i) u,(f)=0, (ii) P(f(w))=0,
(i) P(Z, f(w))=0, (iv) P(f(b))=0, and (v) u(f)=0. The equivalence of
statements (i) and (v) above clearly implies that u, and 4 are equivalent.

Q.ED.

Remark 8.1. It will be useful to note that P(Z7)< oo for all re R. To
see this first notice that »

s 2 .
Z:=exp{—rfo a~0db—%—f lalzds'}
0

r2—y s
X eXp { > fo ,aIZ ds’}s UA_. VS_ (84)
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By Novikov’s criterion U, is still a martingale and in particular P(U,)=1.
The second term (V,) in (8.4) is bounded by exp(Cs {r*—r|/2), and hence

P(Z7) <exp(Cs |r?—r|/2) < 0. (8.5)

COROLLARY 8.1. Keep the same assumptions and notation as in
Lemma8.2. Let p=du,/du be the Radon-Nikodym derivative of u,, with
respect to u, and let # be the o-field generated by the random variables w(s)
for s in [0, 1]. Then 1/p(w)=P(Z, | #). Furthermore for each re R, p" is
p-integrable. (Warning: the analogous formula in the proof of the Corollary
on p. 112 of [Pr] is missing the above conditional expectation and a proper
interpretation.)

Proof. Suppose that f is a bounded measurable function on W(R").
Then u,(f)=u(pf)=P(p(b) f(b))=P(Z,p(w)f(w)) by (8.3). Because
p(w) f(w) is # -measurable, u,(f)=P(P(Z, | H#) p(w) f(w)). On the other
hand by definition of pu,, p(f)=P(f(w)). Hence P(f(w))=
P(P(Z,| #) p(w)f(w)), and this holds for all bounded measurable
functions f: W(R") - R. Thus P(Z, | o) p(w)=1 P-as.

Because u(p’) = P(p'(b)) = P(Z,p"(w)) = P(P(Z,|#)p'(W)) =
P(P(Z,| #) "), the assertion that p" is u-integrable for all r is equivalent
to the assertion that P(Z, | #)" is P-integrable for all real r. This last
assertion follows from the following purely measure theoretic lemma and

Remark 8.1. Q.ED.

Lemma 8.3. Let (2, F, P) be a probability space. Suppose that # < F
is a sub-sigma field of #, and Z: 2 —» R, is an & -measurable function for
which Z'" is integrable for all re R, then U’ is integrable for all re R, where

U=sP(Z|#)
Proof. 1f r=1, then U'< P(Z" | s#) P-as. by Jensen’s inequality, so
that P(U") < P(Z") < 0. It now follows from Holder’s inequality that U" is

integrable for all r = 0.
Now suppose that r> 0, then

P(U")=J‘wru“"*”P(U<u)du, (+)

0

which is verified by the computation

v-! 0
P(U”)=P(J0 ry’"'dy)zP(j0 1{),<U-l}-ry”’dy)

=] P =[Py dy

=j°°ru—<’+“P(U<u)du.

0
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Since u~“* " is integrable for u near infinity and P(U <u)< 1, in order to
show P(U ") < oo for all r> 0 it suffices (by (*)) to show that for all k>0
there is a constant C, such that P(U < u) < C,u*.

By Chebyshev’s inequality for all § >0, P(Z<8)=P(Z~'>5"")< S,
where ¢, = P(Z*). Hence,

PU<u)=P(U<u, Z< )+ P(U<u, Z>9)
S8+ P(P(Z26| #); U<u).

Now again by Chebyshev’s inequality,

P(ZZ6| H)<67'P(Z| H#)=6"'U P-as.
Combining the last two displayed equations yields

PU<u)<c, 65+ 67"P(U; U<u)< ¢ 8% + 6~ 'uP(U < u).

Now set 6 = 2u, and solve for P(U <u) to find

P(U<u)<c 254 /(1— 1/2) = ¢, 28+ 1k = C .

This is the desired estimate and the lemma is proved. Q.E.D.

THEOREM 8.1.  Suppose that h: [0,1]— R" is a C'-function such that
h(0)=0. Also assume that the covariant derivative V is torsion skew sym-
metric (TSS). Let w,={0,db+(a,ds be an R"-valued Brownian semi-
martingale such that O, is an O(n)-value process and |a,| s < co. Let
w:R - FP°R" be the solution to (5.5) given in Theorem 6.1. Then the law of
w(t} (Bwy=w(t) P) is equivalent to u—Wiener measure on W(R").
Furthermore, if p is the Radon-Nikodym derivative p =d(w(t), P)/du, then
p" is p-integrable for all r € R.

Proof. We may restrict ¢ to a compact interval which for definiteness is
taken to be J=[—1,1]. Write w(t)=[ O(t)db+ [ a(t) ds, then the pair
(O, o) satisfies Egs. (6.5)-(6.6) with O(0) = 0, and a(0)=«a,. Because V is
TSS the process T(w(t)) = O.,y<h, - > (Where u(r) = I(w(r)), see Eq. (5.7)) is
so(n) valued. Therefore the process C(w(t)) = A(w(1)) + T(w(t)) is so(n)-
valued because A(w(t)) is always skew symmetric. Because of Proposi-
tion 6.3 and Corollary 6.1, we may find a version of (O, o) such that the
solution (0} to (6.5) with O(0)= 0, is an O(n)-valued process and |a(¢)]
is bounded by a non-random constant C independent of teJ. More
precisely, by an application of Lemma 6.1 to (6.6) using the estimates
(which are easily derived from (6.7) and (5.8))

|R(w(1))(s)] < CIh(s) + | (5)] ],
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and
[T(w())() =10 15y L), - D1 < C lA(s)],

we find that |o(s)(s)| < CeC ™. [a ()] + |A(s)| +|A'(s)]] for some
constant C. In particular this implies there is a constant C’ such that

J a6 a5 < Ce i [ Lo P T, (o)

Lemma 8.2 may now be used to conclude that the laws of w(r) and u are

equivalent for all ¢ Corolilary 8.1 shows that p” is u-integrable for all re R.
Q.E.D.

Up until now, Eqgs. (5.1) and (5.5) have been used to produce a flow on
the space of Brownian semimartingales. Now that we know that the flow
to (5.5) in the space of Brownian semimartingales has the quasi-invariance
property, it makes sense to try to consider (5.1) and (5.5) as flow equations
on W(M) and W(R"), respectively. In order to do this, it is necessary to
make a digression into the properties of stochastic integrals and differential
equations as functionals on path spaces. The discussion of the existence of
a flow on W(M) or W(R") will begin just before Definition 8.3 below.

Notation 8.1. Let V be a finite dimensional manifold, W(V)=
C([0,11, V), and for 0<s<1 let (V) be the o-algebra on W(V)
generated by the coordinate functions {&;:0<s'<s}, where ¢, (w)=
w(s)e Vfor all we W(V). For s > 1 set #(V) = H#,(V)—H#,(V) will also be
denoted simply by # (V). If Q is a measure on #(V), let #2 denote the
completion of # (V) with respect to Q. The extension of Q to #2 will still
be called Q. Let #(Q)= {Ae#?: Q(4)=0} be the null sets of Q. The
completion of the filtration {#(V)} with respect to Q is the filtration
{#2} where #2=a(H(V)U AN (Q))—the o-algebra generated by (V)
and all Q-negligible sets. Finally let #2,. =, #2, ,, so that {# },.,
is a right continuous complete filtration (with respect to Q) on W(V), ie.,
(W(V), {H#C, }s50, #2, Q) satisfies the usual hypothesis (see Section 3).

Remark 8.2. Clearly if Q' is another measure on (V) which is
equivalent to Q then #2=#2 for all s.

Suppose that (2, {#}, #, P)is a filtered probability space satisfying the
usual hypothesis and {X,},. o ;s a continuous adapted V-valued process
on £. (So we may view X as the function from Q — W(V) given by
we— (s> X (w))e W(V).) The condition that X, is Z-adapted is
equivalent to the function X being %, /() measurable for all se [0, 1].
The proof of the next lemma is easy and is left to the reader.
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LEMMA 8.4. Assume the notation in the above paragraph. Let Q = X, P
be the law of X on W(V), then X is %,/ # 2, -measurable for all s e [0, 1]

Keep the same notation as in Notation 8.1 except now suppose that V
is a finite dimensional vector space. Also assume that Q is a measure for
which the coordinate functions {& .}, (o ,; form a semimartingale on
(W(V), {#2 },50, #2, Q). Suppose that Z is another finite dimensional
vector space and that {Ax} is a Hom(V, Z)-valued #¢,-adapted con-
tinuous process on W(V). Let ¢ be a fixed continuous version of IA dé,
so that ¢ may be viewéd as a function from W(V)-— W(Z) which is
H# 2, |#(Z) measurable for all se [0, 1]. The next proposition is a special
case of [RW, Lemma 10.1, p.125] when Q is the standard Wiener
measure.

PROPOSITION 8.2.  Assume the setup in the above paragraph—so ¢ is a
fixed version of | A dE. Suppose {X,},. [o.17 i$ a V-valued semimartingale on
a filtered probability space (2, {#,}, P) satisfying the usual hypothesis and
X, P and Q are equivalent on (V). Then o X is a version ofjA )dX
or written more suggestively: ([ A(£) d&)o X ={ A(X) dX.

Proof. First notice by Lemma 8.4 that X is &% /#2, measurable for
each s, so that A(X) is & /#,(Hom(V, Z)) measurable for each s—i.e.,
A(X) is an Z-adapted continuous Hom(¥, Z)-valued process. Hence, the
stochastic integral jA X) dX is well defined. Similarly ¢oX: 2 - W(Z) is
&,/ #,(Z) measurable for all 5. In order to identify ¢ o X with | A(X) dX, we
apply [Pr, Theorem 21, p. 57] to learn for each ¢ >0 that

=3 Al —n)|>) 20 a5 Ko 86)

fe=

Q <Sup @

8

where s,=5f=5-i/K so that 0=5,<5,<$,< --- <sg=s is a partition of
[0, s] for each K. Since X, P is equivalent to Q, we may replace Q in (8.6)
by X, P, and use the fact that £ (X)= X, to find

K
P(sup (poX),— Y (Ao X), (X, .., — X, 1)) >s)—>0 as K- 0.
5 i=1
(8.7)
But again by [Pr, Theorem 21, p. 57] we know that
5 K
P<sup [ axyax- ¥ (4ox),(x,,,.,~X.,.) >g)

s 1Y -

-0 as K- o0. (8.8)

The proposition now follows from (8.7) and (8.8). Q.E.D.

QUASI-INVARIANCE 353

COROLLARY 8.2. Keep the same notation and assumptions as in Proposi-
tion 8.2 and for definiteness take V=R". For i,je{1,..,N} let y¥ be a
fixed version of [E,E/]. So that YV W(RY)— W(R), and each Y is
HL | H(R) measurable for all se€[0,1]. Then Y7o X is a version of
[X, X7], ie., [&) &0 X=X, X/].

Proof. By definition of the quadratic covariation ([, &/]), 7 is a ver-
sion of &'¢/ — &L EJ— [ & dE/— [ &7 dE'. Let ¢¥ be a fixed version of | &' d&/
for each i and j. Then ¢/ is indistinguishable from x = §'¢/ — &) - €5 — ¥
¢”. With the aid of Proposition 8.2 we find that ko X is a version of
XX/ —X4 X{—[ X'dX/—[ X/ dX' which is a version of [X', X’]. But
since X, P is equivalent to Q it easily follows that xkoX and ¥ X are
P-indistinguishable. Therefore ¥« X is also a version of [ X', X’]. Q.E.D.

CoROLLARY 8.3. Keep the same assumptions and notation as in
Corollary 8.2. Let Bi(R") denote the set of bi-linear forms on R" taking
values in some fixed finite dimensional vector space. For each # 2, -adapted
Bi(RY)-valued process (G) and any R"-valued semimartingale (Y), set

[G(r)cay,ary =Y [ G,(x)dry' 7],

where G (w)=G(w){e; e;> with {e;} the standard basis for R" and
we W(R"). Suppose that  is any fixed version of | G(E){d&, dE). Then
YoX is a version of [G(X)KdX,dX), ie, ([G(E)(dE dEd)oX=
jG(X ){dX, dX ). Recall we are assuming that X, P is equivalent to Q.
(Actually it does not matter that G is adapted for this lemma.)

Proof. Let y¥ be fixed versions of [¢/, /] for each i and j. Then ¢ is
Q-indistinguishable from Z,jj G, dy’. We can now use the Riemann sum
approximation argument as in Proposmon 8.2 and the fact that Y0 X and
[X’, X’7 are P-indistinguishable to conclude that o X is indeed a version
of {G(X){(dX,dX). (In this case the Riemann sums approximating
IG (&) dy¥ will converge uniformly Q-ass.) Q.E.D.

COROLLARY 8.4. Keep the same assumptions and notation as in
Corollary 8.2. Now assume that « =Y, a,dx’ is a one-form on R", and ¢ is
any fixed version of Jagoly =3, [a,(&) 8¢ Then @oX is a version of
[a(3X> =3, [ 0,(X) 6X', ic., ([acdEd)o X = [ alsX).

Proof. For any R"-valued semimartingale Y, by definition of the
Stratonovich integral and It6’s lemma,_ j' aldYy =¥, [a(Y)dY'+
13 8,0)(Y)d[ Y, Y71, where 0, = d/0x’. Therefore ¢ is a version of

S [a(@dg+1E [ a0 dre, ¢/
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So it follows from Proposition 8.2 and Corollary 8.3 that ¢ - X is a version
of

> f 0, (X)dX'+1 Y j 8,0, (X) d[ X', X'

‘which is a version of f addX). Q.E.D.

The next proposition is a special case of [RW, Theorem 10.4, p. 126]
(see also [IW, Theorem 3.1, p.178]) when Q is the standard Wiener
measure on W(R"Y),

PROPOSITION 8.3.  Keep the same setup as in Proposition 8.2 with V = R"
Jfor definiteness. Suppose that F: R" x R - Hom(R", RX) is a C®-function
and that q: W(R") » W(RX) is a #2, |#(RX) measurable function for
s€ [0, 1] which solves the Stratonovich differential equation

oq=F(C q)6  with ¢(0)=gq,, (8.9)

where q, is a fixed point in R". Then §=qo X is an (2, { %}, P)-semimar-
tingale solving the Stratonovich differential equation 6§ = F(X, q) X with
q(0)=gq,. (Again by Lemma 8.4 all processes are appropriately adapted for
the statement to make sense.)

Proof. First notice that for any R -valued semimartingale (Y),
the Stratonovich differential equation 6§=F(Y, §) Y is equivalent to
the It6 differential equation dg= F(Y, §)dY + G(Y, §){dY,dY), where
G(Y, §)<a, b) = i(d/dt)|, [F(Y + ta, q+tF(Y,q)a)b]. So by assumption
g: W(R") - W(IRX) satisfies

9=q,+ [ F(& q) de + [ G(&, q)(dt, de.
By Proposition 8.2 and Corollary 8.3, §=go X is P-indistinguishable from
g0+ [ (F& q)o X) dX + [ (G(&, 9)o X)(dX, dX.
Since F(£, q)o X =F(X, §) and G(¢&, q)o X = G(X, G), q satisfies
d=q,+ f F(X, q)dX + j G(X, g){dX,dX > =q,+ f F(X, §)oX. Q.ED.

From now on let 4 denote the standard Wiener measure on W(R"), and
v denote the Wiener measure on W(M) such that v(W,(M))= 1. Now for
each se [0, 1], let b(s) (G,(s)) denote the coordinate function on Ww(R™)
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(on W(M)) given by w— w(s) for we W(R") (we W(M)). With these
definitions, (W(R"), {#*, }, p) and (W(M), {H#., }, v) are filtered prob-
ability spaces which satisfy the usual hypothesis and & is a Brownian
motion on the first and ¢, is a Brownian motion on the second. It is well
known that ##, =#*, and #, =#, but we won’t need this here. We
also define y = H(G,),v=1I(b), 1 a probability measure on the “interpolat-
ing” path space W(O(M)). (See Theorem 3.3 for the definitions of 7 and H.)
Let u(s) denote the coordinate function #(s)(w)=w(s}) on W(O(M)).
Therefore (W(O(M)), {#7, },y) is also a filtered probability space on
which {a(s),. o, 17 is @ semimartingale because of the following lemma.

LEMMA 8.5. Let (2, {Z}, P) be a filtered probability space satisfying
the usual hypothesis, and V be a finite dimensional manifold. Assume that
X;:Q - Vis a V-valued semimartingale on (2, {#,}, P). Let y= X, P be the
law of X on W(M) and &, W(V)—>V be the coordinate function
¢(w)=w(s) for each se€[0,1]. Then {&,} is a V-valued semimartingale
defined on (W(V), {#7, }, 7).

Proof. Let f be a C®-function on M. We must show that fo ¢ is a real
semimartingale on (W(V), {#7, },7). But this. follows easily using the
“good integrator” definition [Pr, Definition, p.44] of a semimartingale
and fact that fo X is a semimartingale. The key points to note are: (i)
(using the notation in [Pr, pp. 43-44]) for each simple {#°7, }-predictable
function H and ¢>0

V(o (H) > €)= P(|1,, y(Ho X)| >¢),

and (ii) by Lemma 8.4, X: 2 > W(V) is %,/#, measurable for each s the
process Ho X is {%,} predictable. The reader can now easily finish the
proof. Q.ED.

Remark 8.3. One description of the measure v is the law ([no/(6)], 1)
of n(I(b)) with respect to u. Another description of v is the measure con-
centrated on W, (M) such that {G,(s)};cr0.17 i @ Markov process with
transition kernel given by the heat operator e“2. Here 4 is the Laplacian
in Definition 3.7 which according to Proposition 8.1 is the same as the
Levi-Civita Laplacian because V is TSS in this section.

_ DeriNiTioN 8.2 Let I: W(R") - W(O(M)) be a fixed version of I(b),
I: W(O(M)) - W(R") be a fixed version of the stochastic integral

[ 8¢a,

and H: W(M)— W(O(M)) be a fixed version of H(é,). (See Theorem 3.3
for the definition of 7 and H, and Definition 2.1 for the definition of the



356 BRUCE K. DRIVER

canonical !-form 3.) Let ¥Y=no] where n: O(M)— M is the canonical
projection and let ¥=/. f.

Remark 8.4. Because of Lemma 8.4, for each se [0,1], I'is £, | #? "
measurable, [ is #?, /#*, measurable, and A is A, |#?, measurable.
Consequently for each se[0,1], ¥:W(R")—> W(M) is HE !, -
measurable and ¥: W(M) > W(R") is A, [#*, -measurable.

THEOREM 8.2. Let (Q, {#}, P) be a filtered probability space satisfying
the usual hypothesis.

(i) Suppose that {b(s): 2 > R"} is an F-semimartingale such that
b, P is equivalent to y, then I(b) and [ob are P-indistinguishable.

(i)  Suppose that {c,(s): 2 » M} is an F-semimartingale such that
0.+ P is equivalent to v, then H(a,) is P-indistinguishable from Hoq,.

(ili) Suppose that {u(s): Q2> O0(M)} is an J”?,-senzimartingale such
that u, P is equivalent to y, then u is horizontal and fou is P-indistin-
guishable from I~'(u).

(iv) Yoy, W(R")—» W(R") is p-indistinguishable from the identity
map (b) on W(R").

(v) Woy: W(M)— W(M) is v-indistinguishable from the identity
map (6,) on W(M).

Proof. (i) By Theorem 3.1 we may consider 1(b) as the solution to a
Stratonovich differential equation having the form in Proposition 8.3 where
F depends only on ¢ and not & So (i) follows from Proposition 8.3.

(i) In the proof of Theorem 3.2 it was shown that H(o,) may be
considered as a solution to a Stratonovich differential equation having the
form in Proposition 8.3, see Eq. (3.6). So (ii) follows from Proposition 8.3,
and the pathwise uniqueness of solutions to (3.6). (To apply Proposi-
tion83let {=0,, g=u, and Fo,, u)= I'(e,){->u)

(ili) Let a=w in Corollary 8.4, in which case we may take ¢ =0 as
a version ofjw(éz?). So by Corollary 8.4 (see the remark below), 0 = Qou
is a version of [ w{du, which shows that  is indeed horizontal. To finish
the proof of (iii), apply Corollary 8.4 again, now with o = 9, and =1

Remark. Notice that M may be imbedded in R" for some N which
induces an imbedding of O(M) into R" x Hom(R", R") as in Lemma 2.2.
The form w may be extended to a form (@) on T(RY x Hom(R", R¥)). We
may now view u as an R" x Hom(R", R")-valued process and by definition
Jodlduy=[a{su) for any O(M)-valued semimartingale u. It should
now be clear to the reader that our first application of Corollary 8.4 in
(iii) above was valid. Similar comments are also needed for the second
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application of Corollary 8.4 above. Such comments in the future will be left
to the reader to fill in.

(iv) We will apply parts (i)-(iii) above with (£, {_3":}, P)=(W(R"),
(A4 ), 1) By (i), [=1obis y-ind_istinguishableifrom‘l(b),. so.th.at W=nol
is p-indistinguishable from moI(b). By (ii), Ho ¥ is p-indistinguishable
from HeomolI(b) which by Theorem 3.3 is p-indistinguishable from ().
So [oHo%¥ is p-indistinguishable from FoI(h) which by (i) 1s
p-indistinguishable from I~'< I(b). Because of Theorem 3.3, I ‘.‘ oI('b) and
b are p-indistinguishable, and hence Wo W =Io Ho ¥ is u-indlstlpgu1shable
from b. This proves (iv) because b: W(R") - W(R") is the identity map.

(v) The proof of (v) is similar to (iv), except one now applies
(i)~(iii) with (2, {#}, P)= (W(M), {#, }, V). Q.ED.

We are now ready to discuss the existence of the flows on W(M) fmd
W(R") generated by (5.1) and (5.5), respectively. First some more no_tat.lon.
Let w(t)=[ O(t) db+ [ G(r) ds be the solution to (5.5) with w(0)=5 given
in Theorem 6.1. (Here the underlying filtered probability space is
(W(R™), {#£*, }, n) with reference Brownian motion {b(s)}.) So O(t) and
&(t) solve equations (6.5) and (6.6) with O(0) = ide O(n), an_fi (0)=0. We
can and do assume that u-a.s. the function (¢, s) — (w(2)(s), O(t)(s), a(¢)(s))
is C!°, see Proposition 6.3 and Lemma 4.5.

DerNITION 8.3. Using the above notation, to each teR and to each
C'-function h: [0, 1] — R" such that 4#(0) = 0, define S*(¢): W(R") - W(R"),
O"(1): W(R") > W(O(n)), and a"(t): W(R")—> W(R") by S"(t)=w(t),
O0"(t) = O(t), and o’(1) = a(z). '

Remark 8.5. Notice for each se[0, 1] and te R that S*(¢) and «"(¢)
are #*, /#(R") measurable, and that O"(r) is #*, /#,(0O(n)) measurable.
In fact, by Theorem 8.1, Remark 8.2, and Lemma 8.4 it follows that S*(¢)
is also %, /#", measurable for each se[0,1], and in particulgr
S"(t)o S"(z) is still #*, /H#*, measurable for all se [0, 1]. (Recall that in
this section V is always assumed to be TSS.)

The next theorem shows that S"(¢) is the “universal” solution to equa-
tion (5.5) when the initial Brownian semimartingale w”=an db+ fo,ds
has the property that O, is an orthogonal process and a, is a bounded

process.

THEOREM 8.3. Suppose that h:[0,1] - R" is a C'-function such that
h(0)=0. Let (2, {#.}, {b(s)}, P) be a filtered probability space satisfying
the usual conditions equipped with an R"-valued Brownian motion b(s).
Assume (as in Theorem 8.1) that w,=[0,db+[a,ds is an R"-valued
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Brownian semimartingale such that O, is an O(n)-valued process and
log | g0 < 00. Let w:R—F*R" be the solution to (55) given in
Theorem 6.1. Then w(t) is P-indistinguishable from S*(t)ow,.

Proof. First notice by Lemma 8.2 that w(), P and S*(¢), u are equiv-
alent to u for each ¢. By Lemma 8.4, w,: Q - W(R") is #,/# *, -measurable
for all s€ [0, 1] and therefore so is S”( t)ow,. By Proposition 8.3, S*(t)ow,
is P-indistinguishable from

jo"(z)owo dw(,-i-Joc"(t)owo ds
- f O'(t)ow,-0, db+f [0"(t)ow,-a,+a’(t)ow,] ds.

So

S"(t)owo=f o(1) db+J'a(t) ds  Pas,

where O(t)=0"(t)ow,-0,, and a(t)=0"(t)ow,-a,+ a"(t)ow,. Because
0"(0)=ide O(n), and a"(0)=0eR", it follows that O(0)=0, and
a(0)=a,. So in order to show w(t)= S*(t)ow,, it suffices to show by the
uniqueness assertion in Theorem 6.1 that O(t) and «{t) are S?(P)-
continuously differentiable (for pe [2; o0)) solutions of (6.5) and (6.6).

I assert that 1 — O*(t)ow,, and ¢t - a”(¢t)ow, are S¥(P)-continuously dif-
ferentiable for all p > 2 with derivatives given by O*(t)ow,, and &"(t)ow,.
It is then clear that O(¢) and «(¢) are also S?(P)-continuously differentiable

with

O(t)= 0%(t)ow,- 0O, (8.10)

and

a(t)= O0"t)ow, a,+d"(t)ow (8.11)
The first assertion is an easy consequence of the following claim and the
fact that t— O"(t) and ¢—a”(t) are SP(u) continuously differentiable

functions for all p > 2.
Claim. 1If X: W(R")—> W(R") is a #4/#,(R")-measurable process

and pef2, o), then for each re(p, ®), there is a constant C=C(r, p)
independent of X such that

I Xow,l SPP) <C ”X”s'(,,)-
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To prove the claim, let p=d(w,.P)/duy which exists by Girsanov’s
Theorem (Lemma8.2). Then compute [Xow,| sqp using Holder’s
inequality,

[Xow,| seepy = 11X sPewee 2y = 1 X] SP(pu)

= ”X*Pl/p ”Ll’(y) < ”Pl/p I L7(y) X1 S7(s)>

where 1/r'=1/p—1/r. Set C=|p'?| ., which is finite by Corollary 8.1.
This proves the claim and the above assertions.

Set w(1) = S"(t)ow,=[ O(t) db + [ a(t) ds. The proof will be complete if
we can show O(¢) = C(w(t)) O(t) and a(t)— C(w(t)) a(t) + R(w(1)). To this
end we first define two functions C: W(R") > W(so(n)) and R: W(R")
which “implement” C and R. To motivate the definitions of these functions
let X=[{Odb+[ads be any R"-valued Brownian semimartingale such
that O is an orthogonal process and a is bounded. Then A(X) in (5.7) is
given by

A(X)=JQI(X)<ha ax) +%IQI(X)<O, h, O ds

= [ Q< dX> + 4 [ @y Cid by id> ds,

where id is the nxn identity matrix as follows, see Eq.(6.9), and
Remark 6.2. (See Definition 6.2 for the definition of Q.) Therefore, using
Lemma 8.2 and Theorem 8.2(ii),

CX) = A(X) + T(X) = A(X) + O ) <h, -
is given by

C(X)=]Q,—°X<h, ax> + %fﬁiox(id, h,id) ds+ @y, <{h,->.
With this as motivation define C as a fixed version of

j9,<h, db‘>+§j§,<id, h,id> ds+0;<{h, . (8.12)

It then follows by Proposition 8.2 and Lemma82 that CoX is
indistinguishable from C(X). Similarly, if we define (see (6.7) and
Remark 6.2) R: W(R") - W(R") by

R=1{Ric;<h,id,id) +O,<id, h,id)} + &’

= L{Ric;<h) +O,<id, b, id )} + A, (8.13)

then by Theorem 8.2(ii) and Lemma 8.2, Ro X = R(X).
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The rest of the proof is now a simple verification. By definition, we know
that O"(t)= Co S8"(t) 0*(1) and hence

O"(tyow,=CoSH(t)ow, O"(t)ow,=Cow(t)-O"(t)ow,. (8.14)
From (8.14) and (8.10) we find
O(t)= Cow(t) - O(t) = C(W) O(1),

as desired. Similarly by definition, a"(¢) = CoS"(t)-a”(t)+ R S"(¢), and
hence

6 (t)ow, = Co() - al(t)oW(t) + RoW(). (8.15)

By insertion of (8.14) and (8.15) into (8.11) and using the definition of a(t)
it follows that

a(t) = Cow(r)-aft) + Row(t) = C(W(1)) - oa(t) + R(%(1)). Q.E.D.

We can now easily prove our first version of the Cameron-Martin type
theorem. Because, as will be shown, S”(¢) is a flow on W(R") it is possible
to get a rather explicit Cameron—Martin type formula for the Radon-
Nikodym derivatives d(S”(¢), u)/du. Recall again that V is assumed to be
TSS in this section.

THEOREM 8.4. Suppose that h:[0,1] - R" is a C'-function such that
h(0)=0, and S’, a*, and O" are as in Definition 8.3. Then S" is a flow on
W(R") which leaves the Wiener measure (1) quasi-invariant. More explicitly,

(i) for all t, teR, S*(t+1)=S"t)oS8"(z) p-as., and
(ii) d(S"(t)*y)/du=Z(/1, t), where

Z(h, t)=exp {-J'l a(—1)-0"—1)db— %Jd la"(—1)(s))? ds}. (8.16)

Proof. (i) Because of Theorem 8.1, we may apply Theorem 8.3
with (2, {Z}, P) = (W(R"), {#* .}, n) and w, = S"z) to learn
=8"t)oS"(1) solves (5.5) with w(0)=S"(t). But the function
w(t)=S"(t+1) also solves (5.5) with the same initial condition (S"(t)),
and hence by the uniqueness assertion of Theorem 6.1, W(t)=w(s), ie.,
S'(t+1)=8"1) o S"(x).
(ii) From Eq. (8.3) of Lemma 8.2 with P=y, b=5, and w= S"(¢) it
follows that

w(fy=n(f (b)) = W(Z(h, —1) f(S"(1))) (8.17)
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for all bounded measurable functions f: W(R")— R. Replace f by
SoS8"(—t) and then ¢ by —¢ in (8.17) to find that

H(S(S™(1))) = w(Z(h, 1) 1), (8.18)
where part (i) was used to conclude that /o S*(¢)o S"(—¢) = f p-as. Equa-
tion (8.18) implies that d(S"(1), u)/du= Z(h, ¢). Q.ED.

I will leave it as an exercise to the reader to verify that in the
case M =R" with the usual covariant derivative that (8.16) reproduces
(1.2). One word of caution: du(w+ h)/du(w) in (1.2) is equal to
d(S™H(1), w(@))/du(w) not d(S"(1), p(w))/du(w).

Remark 8.6. At this point the ¢ in all of the above notation is
unnecessary. The reader can easily verify that S™(¢) and S*(t7) both satisfy
(5.5) with h replaced by th. Therefore, S*(1) is p-indistinguishable from
S”(t). For this reason, we introduce the following notation.

Notation 8.2. Let S(h)= S"(1): W(R") » W(R"), O(h) = 0*(1): W(R")~
W(O(n)), a(h)=a"(1): W(R") - W(R"), and Z(h) = Z(h, 1): W(R") - (0, c0).

We end this section by transferring Theorem 8.4 from W(R") to W(M).

THEOREM 8.5. Recall that G,(s): WM)—>M was defined by
0,(s)(w)=wl(s) and {G,(s)} is an M-valued Brownian motion on the prob-
ability space (W(M), {#:, },v). Let {b(s)=Pod (s)=¥ s}sero, 17 be the
fixed reference R"-valued Browman motion on this probability space, and
he C'([0, 1], R") be a given function such that h(0)=0. Also let 6(t) denote
the solution to (5.1), (d/dt) 6(t)= H(G(t))h) with 6(0)=¢&, whose existence
is guaranteed by Corollary 6.3 with (Q, {#}, P)=(W(M), {#", },v) and
6,=6,. Then

(i) 6(t)=¥oS"t)o ¥ are v-indistinguishable,
(ii) 6(t) is a flow on W(M) which leaves v quasi-invariant, and
(iii) d(6(1),v)/dv=Z(th)- ¥

Proof. Let o(1)=¥oS"(t), and notice that (1) is a {b(5)},cqo, 17~
Brownian semimartingale defined on (W(R"), {#*, }, u). Recall that
b(s)(w) = w(s) for we W(R™"), or as a function from W(R") to W(R"), b is
the identity map. By Theorem 8.2, ¢(¢) is indistinguishable from noI(S"(1)),
and so by Theorem 5.2, o(¢) solves the geometric flow equation (5.1),

6(t)=H(a(t))-h=Hoa(t)-h. (8.19)

The derivative is taken in the B”(u)-topologies, where the u signifies that
the reference probability space and Brownian motion is ( W(R"), ), {#4 )
{b(s)}, u). Now right compose both sides of equation (8.19) with Y’ to ﬁnd

a(t )o‘I’=Hoa(t)o‘I’-h. (8.20)
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Set 6(¢t) = a(t_)o V=¥oS"t)o ¥, then because of Lemma 8.6 below G(¢) is
a (W(M), {#,}, {b(s)}, v) Brownian semimartingale for each ¢ which is
B"(v)-continuously differentiable for all pe [2, c0). Furthermorc,'- the B?(v)
derivative of G(¢) is given by (d/dt) 6(t)=d(t)o ' Combining these last
remar.ks with (8.20) shows that &(¢) solves the same geometric flow
equation as a(¢):

%5(t)=1?o&(t)-h.
Because 6(0)=¥PoS5"0)o ¥ = W¥o ' which is indistinguishable from 4,
it follows by the uniqueness assertion of Corollary 6.3 that ¢(z) an‘:i
6(1)=¥oS"(r)o ¥ are indistinguishable.

Parts (ii) and (iii) of the theorem are a trivial consequence of
Theorems 8.2 and 8.4 and part (i) just proved. Q.E.D.

LEMMA 8.6. Keep tl_1e same notation as in Theorem 8.5. Let X = j' Adb+
fads be a (W(R"), {#%, }, {b(s_)}, u)-Brownian semimartingale, then

XoW=[AcWds+ oo ds (8.21)
and hence Xo ¥ is a (W(M), {H#, }, {b(s)}, v)-Brownian semimartingale.
Furthermore, | X o ¥| govy = | X1l go(y)-

_ Proof. EqUa_tion (8.21) follows from Proposition 8.2 and the fact that
boW=¥=W¥oi,=b. To see this last statement just compute

| Xo YI”B}(v) =|A4o (Il”sm) + Jloco P SP(v) = 1Al soi vyt ”“”sﬂ(v’gv)
= ”A”sr(u) + ”“”sr(u) = ||X| BP(u)»

where we have used Theorem 3.4 to conclude that Y7* v=U. Q.ED.

‘Remark 8.7. One might think that the notion of solution to Egs. (5.1)
or (5.5) depends on the particular choice of a reference Brownian motion.
However, this does not seem to be the case in the above path space setting.
Th_e reason is that every R”-valued Brownian motion (B) on (W(R")
{##*, }, n) necessarily has the form B= [ O db, where O is an O(n)-valueé
predictable process, see, for example, [Pr, Theorem 42, p.155]. Also
becausg _Y’: (W(RY), {#£* }, u) - (W(M), {s#,},v) is a measure
theqretlc isomorphism, it follows that any (W(M), {#", }, v)-Brownian
motion (B) must be of the form B= | O db where O is an J#, -predictable
O(n)-valued process. In particular, this shows, for the path Jsfpaces W(M)
and W(R"), that the B”-norms are independent of the choice of reference
Brownian motion.

e S S -

e vt e ki
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9. INTEGRATION BY PARTS

In this section we are primarily interested in the filtered ptobability space

: (W(M), {#", },v). To simplify notation let F.=#", and let b be the

R"-valued Brownian motion on (W(M), {#}, v) given by b= Y=Yoi,.
Again; as in Section 8, the covariant derivative V on TM is assumed to be
torsion skew symmetric (TSS), so that all the results of Section 8 are valid.

The purpose of this section is to use the results of Section 8 to derive an
integration by parts formula for the «f-derivative.” For the prototype of

this sort of result see Cameron [Ca]. It was L. Gross who first emphasized

the importance of and systematically studied the pointwise H-derivative in

the abstract Wiener space setting. A'history of the H-derivative may be

found in Gross’ paper [Gr3]. Before introducing the H-derivative
appropriate to our context, we introduce the reproducing kernel Hilbert

space H. '

Notation 9.1. Let H denote the Hilbert space of functions
h:[0,1]—>R" such that A is absolutely continuous, “#(0)=0, and
§o 10 (s)]? ds < co. .

In this section we fill fix a function A: W(M) - W(O(M)) as in Defini-
tion 8.2 for which H(X)= HoX for all M-valued semimartingales X with
law(X) equivalent to v. This should help avoid any possible confusion
between the horizontal lift operator H and the Hilbert space H.

DerFINITION 9.1. Let D denote the set of C2-cylinder functions on
W(M). That is, feD iff there is a positive integer k, a C2-function
FM*>R, and points $;,5,,.,5 in [0,1] such that- f(w)=
F(w(s,), @(s,), -, 0(sg)) for we W(M). For any he H, the h derivative
(3,f) of fe D is defined v-as. to be

k
(@)= X Si(@) H(w)(s:) h(s:)), 9.1)

Where f,((l))<0> = U(F((U(Sl), (D(Sz), sy w(si—l)’ ) w(si+l)’ ety w(sk)) fOI'
ve Ty, M and w e W(M). So f is the differential of F with respect to the
ith variable evaluated at (@(s,), @(53), .y @(Si))- (It will be shown in the
course of the proof of Theorem 9.1 below that d,f is well defined v-as,

independent of the way f is represented.)

Tueorem 9.1. Let (-, -) denote the L*(W(M), #;, v) inner product. For
he H define

z(h)EJ: [(Ricg<h) +6pCh))2+h']-db, 92)
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where Ricg{h) = Ricg{LLhI) = ¥,Qz{h,e,>e, and ég<h> =
Oull,h, I)=3%,0%e,, h, e;). See Definition 6.2 for more on this notation.
Then with respect to this inner product, 8} is a densely defined operator, the
domain D(0}) contains D, and for fe D

Oif=—0uf+z(h) [ (9.3)

Furthermore for each he H and pe [ 1, w0) there is a constant c, such that

1 172
=0 < | [ WG| 94)
This theorem immediately implies the following corollary.

COROLLARY 9.1. For each he H, the densely defined operator d, on
L*(W(M), dv) is closable.

Proof of Theorem9.1. The estimate in (9.4) is easily proved by
Burkholder’s inequality, the existence of a constant C bounding @, and
Ric, independent of we O(M) (by compactness), and the Sobolev
inequality

. 12
o< [ wera | ®)

So it only remains to prove (9.3).

For the moment assume that he HA C', and let 6(t) be as in the
statement of Theorem 8.5. So G(¢) is a version of ¥o S%(¢)o ¥ which is C*°
v-a.s. and satisfies

%6(’)= Hoa(t)-h  with &(0)=4,,

where the derivative is relative to the B”(v)-norms. To simplify notation,
we now drop the bars and write o(r) for G(¢). (Recall that ¢,=g, is the
process on W(M), such that as a function from W(M) to W(M) o, is the
identity map.) Suppose fe D (D as in Definition 9.1), then trivially d,f=
(d/dt)]o f(a(t)) v-a.s., which incidentally shows that 8, f is well defined inde-
pendent of the possible choices for &, s,, s,, .., 5, €[0,1], and F: M* >R
such that f(w) = Flw(s,), ®(s,), .., ©(s;)). By Theorem 8.5,

v(foa(t))=v(f-Z(th)o P) (9.5)

holds for all «. In Lemma 9.1 below it is shown that (d/dt)|, fo0(t)=0,fin
L?(v) for all pe[l, ). It follows from Lemma 8.6, _Proposition 8.2,
Theorem 8.2, and Lemma 9.2 below that (d/dt)|, Z(th)o ¥ = z(h) in L?(v)
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for all pe[1, o). Therefore, after differentiating (9.5) at t=0, one finds
that
v(0,f) =v(f - 2z(h)). (96)

Now replace f in (9.6) by f-g where g is also in D and use 0,(f-g)=
0,f-g+/f-0,g to find
(0:/,8)=(f, — 0,8 —Z(0)g) = (f, — g +2(h) &), (9.7)

which proves (9.3) for ke Hn C". .
For general he H, choose a sequence of functions h,e Hn C' such that

[ |h,—h'|*ds -0 as n— oo, and hence by (S), |h—h,,|(20 -0 as n— o0.
Now it is easy to show 10, f— 0,fll L=y < C lh— h,| - Which tends to zero
as n — oo, where 9,/ is given by (9.1). Since 9, f is well defined v-a.s. this
shows that @,.f is also well defined v-a.s. By these cqmmepts and (9.4), one
easily verifies that (9.7) holds for all he H by replacing 4 in (9.7) by A, and
passing to the limit n — co. Q.E.D.

LEMMA 9.1. Let he HNC', o(t), and fe D be as above. Then for all
pe[l, ), k(t)=foa(t) is LP-differentiable at t=0 with k=0,f.

Proof. By the fundamental theorem of calculus- (pointwise)
. 1¢er . .
[k(1) —k(0)]/t—k(0) =7 L [k(r) —k(0)] dr.

Taking the L? norms of both sides of this equations yields
x
. 1 ¢! . .
| k(1) —K(0) /1 =K (O}l r < } HRICORUMN P R

Now

k(z) —k(0) = i [fi(a()){Hoa(t)(s:) hlsi))
— {file,)(Hoa,(s) hs:)) ],

from which it is easy to get the estimate
k(1) — k(O o SC |Ho0(1) = Hoo, |0+ Clo(1) =01, (99)

where C = C(F, h) depends on the sup-norm of F and its de'rivatives up to
order two and the sup-norm of A. Take L” norms of both sides of (9.9)to

get
1k(t) — k(0)|s» < C'LIHoa(r)— Hoa,llsp+ (1) — 0,50 ]
<C,llo(1) = 0,1l ars (9.10)

S Ve Wbt . N PN L = Seo E(“"\\\
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where Lemmas 4.1 and 7.3 were used to get the last inequality. The con-
stant C, now depends on p. Now ¢ is B”-continuously differentiable and
hence Lipschitz. Therefore, combining (9.8), (9.10), and this last comment
shows there is a constant C,, such that

I Ck(1) = k(0)1/t — k(O] .» < C, 1),

This shows k is B”-differentiable at r=0. This proves the lemma, since in
the proof of Theorem 9.1 it has already been noted that the pointwise
derivative of k at t=01is 9, /. Q.E.D.

LEMMA 9.2.  The function Z(th) is L*(u) differentiable for all pe [1, )
and

1
7 Z(th)zj [Ric,<hY+ 6O KhY)2+h']-db=3(h).

) V]

Proof To simplify notation let O(t) = 0*(t), and a(t) = a”(t), where O*
and o are glven in Definition 8.3. Set D(t)( s).—.—j0 {t)-O(t) db—

(1/2) {5 la(t)(s")|? ds” so that Z(th)=eP =9, Let Y(r)(s) =€), clearly
it suffices to prove that Y(¢) is S”(u) differentiable at r=0 and that
Y(1)(1) = —Z(h).

Using Lemma 4.6 and the regularity properties of O and o (see
Corollary 6.1, Corollary 6.2, and Proposition 6.3), it is easily seen that
D:J— %R is a C'-function, and that D(t) is B”(u)-Lipschitz for all
pe[2, ©). By Lemma 4.5 we may and do assume that a version of D has
been chosen such that (¢, s) —» D(¢)(s) is C"° Hence, pointwise Y()(s)=

Y(t)(s) D(¢)(s), where [-a.s.

D(1)(s) = —J — (o))" a(1)] - db——j la(£)(s)2ds’.  (9.11)
By the same techniques used in the proof of Lemma 9.1 one has

| LY() = Y(0)1/t = V(050 < { e Hogd | ©12)

This last integrand is easily estimated with the aid of Holder’s inequality,
and Lemma 4.1 as

I1¥(2) = ¥(O)ll 5o < I(¥(2) = 1) D(x)]| 50 + |1 D(z) — DO)]| 55
<Y (@) = Dlise 1D s¢ + 1D(x) = DO s,
< CI(Y(1) = Dllse |1 D)l g0 + C 11D(x) — D(O)]| o
SCLIY () = Dllse + 71 ], (9.13)
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where the constant C may increase from line to line, and 1/p=1/g+ 1/q'".
The fact that D is B?(u)-Lipschitz was used to get the last inequality. Using
the fundamental theorem of calculus, Holder’s inequality, and Burkholder’s
inequality one finds that

1Y) = Dllse < ' J, 1Yl 1D

< (9.14)

c L 1Y ()l s 1 D(2)ll g e’

where 1/g=1/r + 1/r". By Remark 8.1 and a standard martingale inequality
(see Theorem 6.10, pp. 33-34, of [IW]) there exists a constant C such that
| Y(t')||s» < C for 1" € J. Because D(<') is B" continuous there is a constant
C such that |D(t")|| 3~ < C for 7' €J. These last two comments combined
with (9.14) imply the existence of a constant C such that 1(Y(z)—1)|lse <
C |t|. Combining this estimate with (9.12) and (9.13) shows there is a

constant C such that
I [Y(1)— Y(0))/t = Y(O)lis» < C 1},
which shows that Y is B”-differentiable at  =0. We also know that Y(0)=
eP©DP(0) = D(0) because D(0) =0, since a(0) =0. From (9.11), using (6.6),
(6.7), and the initial conditions «(0)=0, and 0(0)=id € O(n), it follows
that

Y(0)(1) = D(0)(1) = —j 4(0) - db——j (6) db

= - jl [(Ric,<h> + O ChY)2 +h]db=: —3(h). QED.

To conclude this section it will be shown that the “infinitesimal” density
z(h) is “highly” integrable. To simplify notation, for each heH set

1l = (f5 1h'(s)]? ds)'2.

PROPOSITION 9.1.  There exists constants 6>0, and K> 1 such that for
each he H, v(exp(8[z(h)/ |1kl 1%)) < K, where z(h) is defined in (9.2).

Proof. Let N be the martingale N(s)= _[f) [(Ricg<h)+ ég(h))/2 +4h']
-db. It is easy to see that there is a constant C> 0 such that [N, N](1) <
C ||h]|%. Now apply Lemma 9.3 below with é =¢/C. Q.ED.

LEMMA 9.3. There exists constants ¢ >0, and K> 1, such that for each
continuous local martingale N (on some filtered probability space
(2, {Z,}, P)) the following estimate holds:

P(exp(eNi/|| [N, Ny |l L=p) < K- (9.15)
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Proof. Tt is clear that if C=|[N, N],| wp =00 then (9.15) holds
since K>1 by assumption. So we may assume that C<oo. By the
Dambis, Dubins-Schwarz Theorem (see [RY, Theorem 1.7, p.171, or
RW, Chap IV, Sect.34]), on a possnb]y “enriched” probability space
(.Q, {#.}, P) there is local martingale N and a Brownian motion B such
that the laws of N and N are the same, the laws of [N, N]and [N, N] are
the same, and N(s)= B([ N, N](s)). Therefore,

P(exp(eN7/C)) = P(exp(eN7/C)) = P(exp(eB([ N, N(1)))*/C)
B(exp(e(BE)/C)), (9.16)

where B¥=sup, . |B,|. Now B(-) has the same law as C~"2B(C-), and
hence B¥ has the same law as C'2B¥. So (9.16) may be written as

P(exp(eN?/C)) < P(exp(e(BY))). (9.17)

But by Fernique’s Theorem (see [K3 pp. 159-160] or [IW, p. 4027) there
is a constant ¢ > 0, such that K = P(exp(e(B}?)) < oo. (Notice that only the
law of B enters here so that ¢ and K are mdependent of the particular
realization of the continuous Brownian motion B.) Q.E.D.

10. FINAL REMARKS

In this final section I will briefly discuss the two alternative methods
for “shifting” an M-valued semimartingale that were introduced after
Example 5.1. In each of these strategies the existence of the shifted process
is not at issue. However, in general, these alternative shifting strategies
will not have the desirable quasi-invariance properties. Since the results
of this section are negative in nature, I will only sketch the arguments
involved. For the rest of this section it will a/ways be assumed that the
covariant derivative (V) is torsion skew symmetric (TSS).

Let 4: [0, 1] —» R" be a C'-function such that #(0)=0 and let g, be an
M-valued semimartingale starting at o. As described after Example 5.1, one
might try to define o(¢) by a(¢)(s) =exp(tH(a,)(s) h(s)), where exp is the
geodesic flow with respect to the covariant derivative V. Notice that a(t) is
a semimartingale if o, is a semimartingale because of It6’s lemma. Let
T(o,)=a(t)=exp(tH(a,)h), so that T, transforms semimartingales on M
to semimartingales on M. In general T, is not a flow—ie., T,o T, # T,...

Remark 10.1 For the Riemannian manifolds in Example 5.1, T, is
actually a flow. The reason is because in each of these examples the
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curvature is zero so that the map T, is the flow generated by (5.1)—see
Remark 10.2. However, as soon as V has curvature, the map T, will no
longer in general be a flow. This happens even on a non-commutative
compact Lie group with the Levi-Civita connection, which is the average
of the left and right connections.

The other main flaw of the map T, is that it does not have the quasi-
invariance property. I will now explain why this property fails when the
curvature is not zero. As has been done throughout this paper, we will pull
T, back to a mapping on R"-valued semimartingales where it is easier to
decide quasi-invariance questions. To this end set w(¢)=1""0 H(o(¢)).

To simplify notation let wu(t)= H(o(t)), u,=H(c,), and v(t)(s)=
e'BHE (y (5)), where B{h(s)) is the standard horizontal vector field in
Definition 2.2. Since ¢ =nov=mou, it makes sense to define the O(n)-
valued semimartingale g(z)(s) by g(¢)(s)=u(t)(s) ' v(¢)(s). So v(t)(s)=
u(t)(s) g(t)(s), which is just the decomposition of the non-horizontal O(M)-
valued semimartingale (v) into a horizontal piece (1) and a “vertical” piece
(g). It is convenient to define another R"-valued semimartingale by
x(t)(s) =j§,9(5v(t)). The two processes w and x are related by g, namely
w=[gdx. Now suppose that ¢, is a Brownian motion on M, so that
b=w(0)=x(0) is a Brownian motion in R” Because o, is a Brownian
semimartingale it follows that u, v, w, and x are all Brownian semimar-
tingales.

We can now understand why, in the case of nonzero curvature, the laws
of w(¢) and b are not in general equivalent. The idea is to use Lemma 8.1
along with the non-orthogonality (to be shown) of the process O(t), where
O(t) and «(¢) are processes such that w(t)sj 0(t)db+j'oc(t) ds. Because
the process g is orthogonal it will suffice to show that Q(¢)=g~'(¢) O(¢) is
not orthogonal. Since

x=[g™! 5w=jg-10db+jﬁds=fgdb+fﬁds
for some process f§, in order to find Q we need to find the differential (dx)

of x.
Start by computing dx,

d)'c=g;9<6v) =d3{b, vy +(9¢v))

=00, 00> —w A 3B, 6v) + 6(I{B))
= @b, 0v) + wldv) o) +dh
=0,{h, ox)+wldv) h+dh, (10.1)



370 BRUCE K. DRIVER

where we have used the first structure equation (@=d3+ w A 9),
w{>=0, and I{o)=h Also compute (d/dt) w{év)=dw<{v, ov)+
d(w(B))=Q,{h, 6x) so that

w{5u(1)) =fo Qi Ch, (1)), (10.2)

Writing x=[Qdb+ [ fds, and substituting this expression for x into
(10.1) using (10.2) one finds (by comparing the coefficients in front of db)
that Q satisfies

O() = Ous Q-+ [ Duo(h Q)-Y e, (103)

Because x(0) = b, the initial condition for (10.3) is Q(0)=Id.

Remark 10.2. 1If the curvature of V is zero then v(r)=u(t), which
follows from the stochastic version of Eq. (2.5). In this case (10.3) is the
same as (6.5), and Q(¢) will be orthogonal if V is TSS.

For simplicity assume that V is the Levi—Civita covariant derivative on
M so that @ =0. If Q(¢) were orthogonal for all ¢, then 2,,,{%, - > h would
necessarily have to be so(n) valued, since

d .
Qoo ) h=— . [~ o)1 (10.4)

But it is not generally true that 2,,<4, - ) h is so(n)-valued, as can be seen
by taking M to be the standard n-sphere (S”) with the Levi-Civita connec-
tion. For M=S8", Q,{a,b)> c=(a,c)b—(b,c)a for all a, b, ceR* and
ue O(M), and hence 2,,{A, - ) h is the non-skew symmetric linear trans-
formation on R”

c—(hh)c—(h c)h

Now let us consider the second alternative for ¢(t) introduced after
Example 5.1. For this example let X:[0,1]xM —>TM be a smooth
s-dependent vector field, such that X(0)(o)=0,,—the zero vector in T,, M.
Define o(¢) using the flow of the vector field X(s) by a(¢)(s)=e**(a,(s)).
Since, a(¢)(s) is a smooth function of the semimartingale s — (s, o,(s)), o(f)
is still a semimartingale. Similarly, if ¢, is a Brownian semimartingale then
so is a(¢). Let T, be defined by T,(5,)(s) = a(t)(s)=e"*(q,(s5)), then T, is
clearly a flow on the space of semimartingales. However, we shall indicate
that T, has the quasi-invariance property iff each of the vector fields X(s)
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(for se [0, 1]) is a Killing vector field. In other words, for each se [0, 1]
the flow e’*®) should be a one parameter (¢) family of isometries on M.
To investigate the quasi-invariance, again set w(t)=1""'oH(o(t)) and
u(t)= H(o(t)). Assume that ¢, is a Brownian motion on M so that
b=w(0) is a Brownian motion on M, then w(¢) is a Brownian semimar-
tingale. Again let us compute d(z),

dw=% (8¢ouy)=d3<u, ouy +6(3<u))

=01, dud) —w A 3, du) + 6(8{u))
=0,& owy —wlu) dw+d¢, (10.5)

where &(t, 5)=3a(t)(s)> = u~ 1 (1)(s) X(s)(a(t, s)). Since s—u(t)(s) is
horizontal one finds that

SE(t, 5)=u(t, s) ' [X'(s)(a(t, 5)) + Vo ) X(5)]
=u(t, s)" ' [X'(s)(0(t, )+ Ve ) swins) X (5)] (10.6)

The interpretation of the last term in (10.6) requires some explanation.
What is needed is a definition for the stochastic covariant differential. Let
Ye I'(TM) be a vector field. Define ¥: O(M)— R" by Y(u)=u""Y(n(u)),
recall the correspondence Y — ¥, from I'(YM) to the smooth functions
¥: O(M) > R" such that Y(ug)=g '¥(u) for ue O(M) and geO(n), is
a 1-1 correspondence. Then given an M-valued semimartingale o(s)
define u~'V,, Y =d¥{du), where u is a horizontal lift of ¢. In the case of
interest, d0 =u éw or equivalently du= B{dw)(u). So set u 'V, Y=
dY(B{Sw)(u)>. I will leave it to the interested reader to verify using these
definitions the validity of (10.6).

Now insert (10.6) into (10.5) to find

di(t) =0,y (1, +), dw(t) ) —wu(1) ) ow(e)
+u(t) " LX (N o)) + Vi swin X ()], (10.7)
where X'(s)(m) = (d/ds) X(s)(m).

Defining (O, a) by w(t)= [ O(t) db+ | a(t) ds, one finds from (10.7) b
considering the coefficients in front of the db terms that O satisfies

0=0,{0->+A0+u"'V X, (10.8)

where 4= —wd{u). Since ©,(¢, > and A4 are so(n)-valued processes, in
order for O(1) to be orthogonal for all  we must require that the linear

transformation on R” given by
a— uo(s) -t Vu,,(s)aX(s)
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is P-as. skew symmetric with the null set independent of s. Here
uo(s) = u(0)(s). The only likely way to satisfy this condition is to require for
each se [0, 1] and ue O(M) that the linear transformation

a—-u='v,X() (10.9)

be skew symmetric. This last condition is equivalent to requiring for each
meM and se[0,1] that the map (v— V,X(s5)): T,,M — T,,M be skew
symmetric with respect to the metric g, ie., g{V,X(s),v)>=0 for all
s5€[0,1] and ve TM. If V is the Levi—Civita connection, then it is well
known that this condition is equivalent to X being a Killing vector field.
The next lemma asserts this is still true provided that V is TSS.

LEMMA 10.1.  Suppose that (M, g) is a Riemannian manifold with metric
g, and that V is a TSS g-compatible covariant derivative on TM. Let X be
a vector field on M, then the condition that g{V,X,v> =0 for all ve TM is
equivalent to X being a Killing vector. Recall that X is a Killing vector field
iff Lyg=0, where Lyg denotes the Lie derivative of g with respect to X.

Proof. Let Y be an arbitrary vector field on M and compute

(Lyxg)Y, Y =X(g{Y, Y))—2¢<{[X, Y], ¥Y>=2g{V, Y- [X, Y], ¥)

where the last equality used torsion skew symmetric assumption on V.
Because g is symmetric and hence so is L,g, this last equation shows
Lyg=0iff g{V,X, Y>=0. Q.E.D.

The condition that X{(s) be a Killing vector field is very strong, and in
fact can imply that X(s) = 0. For example, by Bochner’s Theorem (see [Bo,
Theorem 1] or [W, Theorem 1]), if the Ricci curvature with respect to the
Levi-Civita connection is negative definite (or at least “quasi-negative”),
then g does not admit any non-trivial Killing vector fields. The absence of
non-trivial Killing vector fields is what one would expect for “generic”
metrics (g). The implication of these remarks is that in general the flow
T (0,(s)) =e™**)(a,(s)) can not be expected to have the quasi-invariance
property for any choice of an s-dependent vector field X.

It should be noted that Lie groups and more generally homogeneous
spaces do have metrics which admit non-trivial Killing vector fields. For
example, if M =G is a Lie group with the metric and connection given as
in Example 8.1(b), then the s-dependent vector fields X(s)(g)= L, h(s),
where 4: [0, 1] — ¢ is any function, are all Killing vector fields. (Recall
from Example 5.1 that in the case of a Lie group with the left (flat)
covariant derivative, all three possible shifting methods agree.) More
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generally, suppose that M = G/H is a homogeneous space with the metric
and connection defined as in Example 8.1(d). It has already been shown in
Example 8.1(d) that this connection is torsion skew symmetric (TSS).
Given a function A: [0, 1] — ¢, define the s-dependent vector field (X) by
X(s)(m) = (d/dt)|, p(e™*)g), where me M and g is any element in p~'({m})
and p: G —» M is the canonical projection. So X(s) is the generator of the
1-parameter flow given by the left action of e”” on M. Now by definition
of the metric on M, each element of G acts isometrically on M, from which
it follows that X(s) is a Killing vector field. Therefore, in this case the shift
(g (5)) =" .5 ,(s) does have the quasi-invariance property provided
that #(0)=0 and A’ is L? integrable.

The two examples in the last paragraph were studied in [MMI, Shl,
Sh2]. In [MM1] it is also shown that the above flows have the quasi-
invariance property with respect to any Brownian bridge measure on
W(M) provided, of course, that & also satisfies 4(1) =0, The reader should
also see [AH, Fr, Gr4] on the question of quasi-invariance in the case of

compact Lie groups.
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