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It is shown that in four space-time dimensions the
compact U(l) lattice gauge theory with general energy
function converges to a renormalized free electro-magnetic
field on the current sector as the lattice spacing
approaches zero, provided the coupling constant is
sufficiently large. For the Wilson energy function, it is
possible, by judicious choice of the Gibbs state, to get
convergence for arbitrary coupling strengths. Furthermore,
for all but a countable number of values of the coupling
constant, the limit exists and is independent of the

particular state chosen to define the lattice model.
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Frequently Used Notation

.| the set of oriented bonds on Zd

B+ the set of positively oriented bonds on Zd

(:,*) the natural bilinear form on differential or
lattice forms

Ck denotes a function which is k-times continuously
differentiable

k k .

C (M) the set of C -functions on M

CE(M) the subset of functions of Ck(M) with compact
support

d exterior derivative, exterior lattice derivative,
or the dimension of the space

*

d the adjoint of d with respect to the bilinear form
("')

F(A) the o-algebra generated by the lattice variables
over A

FA the o-algebra generated by the lattice variables
outside of A

|a] the number of elements in the set A

AccL AcL, and |A] ¢ =

#£(£E) Ifdp, the integral of f with respect to #

P the set of oriented plagquettes on Zd

?+ the set ot positively oriented plaquettes on Zd

S(md) the space of c”-functions with rapid decrease

S'(md) the space of tempered distributions on md

viii



Chapter 1

INTRODUCTION

Section 1.1 The Yang-Mills' Measure

The "quantized”" Yang-Mills' fields are widely taken as
the basic mathematical model for the description of the four
known forces of nature; strong, electro-magnetic, weak, and
the gravitational force. The problem of mathematical
existence of quantized Yang-Mills' fields is (on an informal
level) equivalent to defining a certain probability measure
on a space of connection forms. The informal description of

this (Yang-Mills') measure is

au(d) = 2 lexp j E trace(F?j(x)z)dx DA, (1.1.1)

lRd i4<3

1
292

where A runs over a space of connection forms (A) on the
N d A

trivial vector bundle € X R, F'= dA+AAA is the curvature
d

of A, DA =X I d d(A.(x)) is "infinite dimensional
. i
i=1 x€R

Lebesque measure"” on (A), 92 is a positive "coupling"
constant, and 2 is a normalization constant which makes g a
probability measure. The connection forms are restricted to
take their values in the Lie Algebra (G) of the structure
(or gauge) group (G), which is taken to be a closed subgroup
of U(N). See Appendix B and especially equation (B.2.9) for
motivation of (1.1.1).

The informal description of g has a number of ailments.



First, the infinite dimensional Lebesque measure is not well
defined. Second, the measure (g) will certainly give zero
measure to the space of differentiable or even continuous
connection forms. Third, the normalization constant (Z2) in
similar situations has the interpretation of being either
zero or infinite.

Besides these technical problems, the informal
description of g suffers from the algebraic property of
"gauge invariance". The exponent of (1.1.1) is invariant
under gauge transformations (Kobayashi and Nomizu [1]), that
is under the mapping A — AY. Here g:md—4 G is a ¢
function called a gauge transformation, and 29 (x) =
g(x)_lA(x) g(x) + g(x)_ldg(x). (Geometrically, a gauge
transformation is a change of global trivialization of the
trivial vector bundle ENxmd.) Due to this gauge invariance,
if # is to have a chance of being a probability measure,
equation (1.1.1) must be interpreted as describing a measure
on a space of gauge equivalence classes of connection forms.
See L. Gross [4] and [5] and the references therein for more
details.

Ignoring these details, it is expected (see Appendix B)
that from a precise description of the measure (), one will
be able to construct the quantum mechanical system
corresponding to the relativistic Yang-Mills' equations —

i.e. gquantized Yang-Mills' fields. At this time it is



impossible to formulate a precise theorem to this effect,
since the definition and existence of the measure (g) is
still unknown for non-abelian gauge groups in space-time
dimension d * 3 (but see Section 1.6). Hence the first step
in quantizing Yang-Mills' fields is to make precise

mathematical sense of the informal description of the

measure & in (1.1.1).

Section 1.2 Wilson's Lattice Approximation

As shown in Appendix B it is often possible to make
sense out of informal expressions of the form (1.1.1) by
"approximating” the measure with other measures that are
better understood. These approximating measures should
preserve as many symmetries of the theory as possible, so
that the symmetries persist after taking limits. 1In
particular for the Yang-Mills' measure it is desirable that
the approximating measures are gauge invariant.

The lattice approximation of Ken Wilson [1] nicely
preserves gauge invariance. The basic idea is to replace md
by the lattice aZd (a > 0), and the connection form A by its
corresponding parallel translation operators. For
motivation, let A be a C”connection form with compact
support. Recall (Kobayashi and Nomizu [1]) that

pPap) =1 + azF?j(x) + 0(ay, (1.2.1)

where PA(ap) denotes parallel translation with respect to



the connection form A around the curve (dp), and O(a3)/a3
remains bounded as a — 0. The curve (dp) traverses the edge
(in the correct direction) of an aXxa—-dimensional planar
square (p) parallel to the i'th and j'th coordinate
directions which contains the point x. Such a square (p)
is called a plaguette. Hence
*
Fis0?= -rh cord o

—a % pP(ap) - 111PP(ap) - 117 + o(a)

= 2a"%(rerP(ap) -11 + O(a), (1.2.2)
where O(a)/a remains bounded as a — 0. The fact that G is
a subgroup of U(N) (so G is a subspace of anti-hermetian
matricies) has been used in the first and third equalities.
With a little more care, it can be shown that

trace(F}, (x)%rax = a9 2 trace(ReP"(ap) -I1 + O(a),
gE 1<3 P
(1.2.3)
where the sum is over all "oriented" plaquettes (p) with
corners in the lattice aZd.

To define the approximating measures we need the
following notation which is covered in more detail in
Chapter 2. Let (B+) B denote the set of (positively)
"oriented" bonds on Zd, and (T+) P the set of (positively)
oriented plaquettes on Zd. Let & = {m:B+—4 G}, where w(b)

should be thought of as parallel translation (PA(b)) along

the oriented bond b. The configuration space ({}) is




identified with (@:B — G, such that @(-b) = @(b) 1}, where

-b denotes the bond b with the opposite orientation. I£f peP
is a plaquette, we put tracelw(dp)l] =
trace[m(b4)m(b3)m(b2)m(bl)] (corresponding to PA(ap)), see
Figure (1.2.1). Because of the trace, tracelw(dp)] is

independent of the corner from which we begin to traverse

the edge of p.

b
g 3 2
bq 9] b2
\ | »
bl

Figure 1.2.1

With this notation and the motivation of equation

(1.2.3) it is reasonable to "approximate" (1.1.1) by.

dya(m) = Z;lexp{a(d_4)—l§ } trace[Rew(dp) —I]}du(m),
29 pep
(1.2.4)
where dv(w) = I dA(w(b)) with A normalized Harr measure on
beB
+

G, and Za is the normalization constant to make K, a
probability measure. The expression (1.2.4) is to be
interpreted as a Gibbs state, see Appendix A, and Chapter 2.

Also the lattice aZd has now been implicitly identified with



the lattice Zd. This identification leads to technical
simplifications later on.

The ultimate goal is to show the measures u, converge
in some sense to a measure g with desirable properties, such
as gauge invariance, Euclidean invariance, "reflection
positivity", etc. This problem has proved to be very
difficult in general. However, the special case where the
gauge group is U(l) provides good testing grounds for
techniques of proving convergence. The reason is that the
measure g of (1.1.1) may be understood as an infinite
dimensional Gaussian measure. Before demonstrating this
well known fact, we first specialize (1.2.4) to the case
that G = U(1).

When G = U(l1), it is convenient to identify U(1l) with

[-n,n] with the end points identified. Under this

1l

identification @ is replaced by e~ , where now G:B+—4 R

The Harr measure on U(l) simply becomes normalized Lebesque
measure (A) on [-r,rm]l], and the measure in (1.2.4) then

becomes

d”a(“) = z'lexp{a(d_“—l7 2 [cos(w(dp)) - ll}du(m),

a
29 pPEFP
(1.2.5)

where dv(w) = X dx(w(b)).
bEB+



Section 1.3 U(l)-Model as a Gaussian Measure

We now specialize (1.1.1) to the case where the vector
bundle is Exmd and the gauge group is U(l). We also make a
slight change of conventions by replacing A by iA. This
makes A real, since the Lie algebra of U(l) is iR.
Expression (1.1.1) then becomes

“lexpt=t; (an,an)1pa, (1.3.1)

2g
where (:,+) denotes the natural bilinear form (see equation

du(A) = 2

(2.2.3)) on the compactly supported differential forms on
Rd. (Equation (1.3.1) is the same as (B.2.9) of Appendix
B.) Hence the connection form (A) only enters in the
exponent quadratically, so that the (1.3.1) would be
interpretable as an infinite dimensional Gaussian measure
(as in Section B.2) if it were not for the gauge problem
mentioned in Section 1.1.

Every smooth gauge transformation gzmd—4 U(l) is of the

form g = eix, where X:Rd—a R is a smooth function. This
follows by Poincare's lemma (Spivak [1l}) and the easily
verified fact that d(g_ldg) = 0, since U(l) is abelian.

(The function A is unique up to an integer multiple of 2n.)
We will identify the function A with its corresponding gauge

transformation g = elx, and write Ax for A9, In this case

A = A + dr. Hence, [A] = {A + dr: A:R9— R} is the gauge
equivalence class associated to the connection form A. As

has already been noted, it is such a space of [A]J's on which

the measure g should be defined.



In order to see how to proceed, I will consider the
analogous finite dimensional situation. Let B be a k by k
positive semi-definite matrix with a non-trivial kernel (N).
The analogue of (1.3.1) is

dm(x) = 2 expl3—(Bx,x)gk1dx, (1.3.2)
to be interpreted as a probability measure on the space
mk/N. Since mk is the orthogonal direct sum of N and M =
Nl, mk/N is naturally isomorphic to M. Hence, equation
(1.3.2) is naturally interpreted as the probability measure

du(m) = 2 lexplT3—(Bm,m) kIdm (1.3.3)
on M with dm denoting Lebesque measure on M. In effect the
"extra factor" of Lebesque measure (dn) on N has been
removed from the measure (dx) in (1.3.2).

Now choose a positive semi-definite matrix (C) such

that CIME 0, and C|:N — R is one to one. For such a C,

put
du.(x) = 2. expl2—((B + C)x,%x) k ldx (1.3.4)
C o 2 TR ’ T
where ZC is chosen such that Mo is a probability measure on
mk. Each function F:M — R may be considered to be a

function on mk by putting F(m + n)

F(m) if m€M and ne€N.
With this convention and definitions (1.3.3) and (1.3.4) it
is easy to check that

u(F) = yC(F), (1.3.5)
for all measurable g—-integrable functions F on M. Hence, g

and Mo have the same effect on all functions (F) on Rk which



are invariant under the action of N on mk; (X — x + n):mk—q
mk for each neN.
With this finite dimensional example in mind, we are

led to replace (1.3.1) by

dr (A) = Z_lexp[—lf((d*d + add )A,A) DA, (1.3.6)

29

where d* is the adjoint of 4, and a is any positive number.
One should think of B as d*d and C as add*. The expression
(1.3.6) should capture the meaning of (1.3.1) provided only
gauge invariant functions are integrated. Furthermore, this
"gauge fixing" process has rendered the exponent of (1.3.6)
non-degenerate, so g, may be interpreted as an infinite
dimensional Gaussian measure. (Compare with Section B.2,
specifically equation (B.2.5).) According to the discussion
above, the measures e should be independent of a > 0 when
acting on gauge invariant functions.

I will introduce some notation before giving the
precise definition of the free Euclidean measure. Let

Res' (RY)er? (s'(RY) is the space of tempered distributions]

be the space of generalized l-forms on md under the
d d
Ai(Ji), where A = 2 Aie. in

identification, A(3)

i=1 i=1

Res' (R emrd ang j =

i

1 is a test (c” with compact

i N0
.
e
Q
)

1
support) 1l-form on md. Let ¥ be the smallest
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o—-algebra on ReS'(md)@md such that the maps (A —

A(j)):ReS'(md)®{Rd — L are measurable for all test 1l-forms
*
(j) with d j = 0. The o—-algebra (F) is called the gauge
*
invariant o-algebra, since (A + dXx)(j) = A(J) + A(d j) =

A(§) for all A€Res' (RY).

Definition 1.3.1: The free Euclidean measure is the

unique probability measure (xg) on the gauge invariant
o-algebra (F) such that for all complex test l-forms (j) on

rRY with @735 = o,

. 2
J ef 3 pan) = exp(—3— (4 5,91, (1.3.7)
*
where A = —(d*d + dd ) is the Laplacian on forms, and (-, -)
is the natural complex bilinear form on test forms, see

equation (2.2.3).

Remark 1.3.1 The existence of the measure g is

guaranteed by a slight variation of Minlo's Theorem, see
Simon [2].

Remark 1.3.2: The right hand side of (1.3.7) is found

by using the informal expression (1.3.6) with a = 1 along
with a completion of the squares argument to compute
(informally) the left hand side of (1.3.7). Furthermore,
any different value of a > 0 will give the same measure on

i - * * -1 -1
F, since if Aa = -(d d + add ) then Aa = A -

-— — * — — *
(1—a)Aa1A l3a”. Hence, Aalj =415 148" = 0.

Remark 1.3.3: If * is a test 2-form, then the function

*
A — FA(P) = A(d ¥) is a gauge invariant function of A,
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*
since d*d ¢ = 0. Hence, the integral of functions of FA(?)
are defined independent of the method of gauge fixing which

*
we used, i.e. the choice of C = dd

Remark 1.3.4: Suppose ¥ dj, where j is a test

l1-form, then

A
JéF P uan) = expl-2— (e, ¢)1. (1.3.8)

Section 1.4: Convergence Results for d = 3

Let ¥ be a test 2-form on Rd and a > 0 (the lattice

spacing parameter), then put Pa(p) = I = taz?ij(ax).
ap
(Definition 2.2.1), where p€P is a plaquette, x is a corner

of p, and p is parallel to the i'th and j'th coordinate
directions. The function Pa is called a lattice
approximation to the form ¥. Also let F(p)(w) = sin(w(dp)),
where m:B+—4 R — compare with the imaginary part (G = U(1l))
of equation (1.2.1) and see Definition 2.3.2. Finally, let

(F,Pa)(m)

—%—2 F(p)(m)?a(p). The following theorem is due
pEP
to L. Gross [3].

Theorem 1.4.1: Let 4=3 and G=U(1l). Let ¥ = 4 with j

a real valued test l1-form on RB. Then

2

-1
a "(F.®0, _ expl (v, 91, (1.4.1)

: i
lim g_(e
alo 2@

where My is a translation and 90°—rotation invariant Gibbs

state corresponding to equation (1.2.5).
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Remark 1.4.1: As pointed out by L. Gross, the

requirement that ¥ be exact is related to the fact that the
lattice version of AF is not zero as it is for the free
Euclidean field (Definition 1.3.1). It is shown in Gross
{31, that if the cosine interaction in (1.2.5) is replaced
by the Villain action (Example 2.3.3), then

. * r

lim g_(|(F, (@ ¥) )] ) =0, (1.4.2)
a a

alo

for all real test 3-forms on R3 and r # 1. So in this case
the Bianci identity (dF = 0 ) holds in the limit, i.e. there
are no magnetic monopoles in the limit.

Remark 1.4.2: The statement of Theorem 1.4.1 is also

shown to hold (Gross [{31) for certain more general

interactions other than the cosine interaction of (1.2.5).

Section 1.5 Convergence Results for 4 > 3

When 4 > 3, the heuristics leading up to the lattice
approximating measures of equation (1.2.5) are not so
convincing. The key assumption was that w(dp) was "close"
to zero. When 4 = 3 the factor of a in the exponent of
(1.2.5) forces the measures "a to concentrate on
configurations for which w(dp) is close to zero, and in fact
this is a main ingredient of the proof of Theorem 1.4.1. On
the other hand when 4 > 3, the measures #y of (1.2.5) are no
longer concentrated on configurations with @(9p) small.
Nevertheless, similar results to Theorem 1.4.1 still hold in

four dimensions. In this case, the key fact is the
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clustering properties of extreme or unique Gibbs states, see
Theorems A.3.1 and A.3.2.

As in Gross [3], we restrict our attention to studying
the lattice current (J = d*F) rather than the field
strengths (F). This allows us to avoid the Dirac monopoles
(breakdown of the Bianchi identity) which are inadvertently
introduced into the lattice theory. Avoidance of the
monopoles seems reasonable in the abelian theory because a
similar mechanism for avoiding them in the non-abelian
theory is now available, Gross [4].

The results of this thesis pertain to a more general
statistical mechanical model than that indicated in (1.2.5).
We will be concerned with Gibbs states given informally by

1 (d-4) 1

exp{—a —5 E h(m(ap))}du(M), (1.5.1)

du(6) = z;
29 pep

where h:R — R is an (energy) function which is C2, even,
and 2m-periodic (See Section 2.3 ). The collection of Gibbs
states associated to (1.5.1) will be denoted by

G(g—Za(d—4)

h). The lattice version of the field strength
tensor (F) for this model is F(p)(w) = h'(w(dp)), this
agrees with the previous definition when h(x) = cos(x) - 1.
(See Chapter 2 and Appendix A for more precise definitions.)
The main results of this thesis will now be summarized.

The energy function h is assumed to have the properties

described above.
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Theorem 1.5.1 Let d > 4, and ¥ be a closed (4d¥ = 0)

complex valued test 2-form on md. For each a > 0, let
paEG(g—za(d—4)h), then
1im #_(expa'@ ¥ (F, e )) =1, (1.5.2)
a a
alo
where (F,Pa)(m) = —%—2 F(p)(m)Pa(p) as before.

pEP
Remark 1.5.1 The fact that ¥ is closed is equivalent

to the existence of a test l-form (j) such that ¥ = 4j
(provided @ > 2), as follows from standard compact De Rham
cohomology theory (Bott and Tu [1]). Hence the theorem is a
statement about the lattice current d*F, since (F,¥P) =
(@ F,3).
Proof: This is Theorem 3.3.1 after a rescaling of h.
In the following, we will assume that d = 4. This is
an exceptional case, since the interaction in (1.5.1) no
longer depends on the lattice spacing. The influence of the
lattice spacing is only felt in the lattice approximations
Pa to the test 2-form ¥..

Theorem 1.5.2 (d = 4) Suppose that G(g 2h) = {m}, is

a one element set. Then for any closed complex test 2-form
() on m4,
Lin ute'Fr¥a)) = exp(Sgie, ), (1.5.3)
a0

where a = g(h"(«(3p))) 2z 0 (independent of p€P).
Furthermore, a = 0 if and only if h is a constant function.

Proof: This is Theorem 3.2.2 and Lemma 3.2.1.
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Remark 1.5.3 The theorem says that the lattice Laplace

transforms restricted to closed 2-forms converge to the
corresponding Laplace transforms of the free Euclidean
field provided the coupling constant (gz) is renormalized by
the factor a.

Corollary 1.5.1 Let h be a given energy function, and

let the coupling constant (gz) be chosen sufficiently large
such that [sup(h) - inf(h)] < 2g2/9. Then |G(g %m)| = 1,
and hence the conclusion of Theorem 1.5.2 holds.

Proof: An application of Dobrushin's unigueness
theorem, see Lemma 3.2.1.

Theorem 1.5.3 (4 = 4) Let ¥ be a real valued exact

test 2-form on m4. Suppose that pEG(g-zh) is an extreme
Gibbs state which is also translation and 90°—rotation

invariant. Then
lim p(ei(F’Pa)
alo

where a is the constant defined in Theorem 1.5.1.

) = exp(:%—gz(P,P)), (1.5.4)

Proof: This is Theorem 3.2.2.

Remark 1.5.4 Theorem 1.5.3 is a special case of

Theorem 1.5.2 if IG(g_zh)I = 1.

Theorem 1.5.4 (d = 4) Suppose h is a Wilson-like
N
energy function, that is h(x) = b —2 bkcos(kx) with bk : 0
k=1
(Definition 5.1.1). Let ygEG(g_zh) be the Gibbs state

constructed by taking the thermodynamic limit with zero
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boundary conditions, see equation (5.1.2). Then pg
satisfies the hypothesis of Theorem 1.5.3, and hence also
the conclusion.

Proof: This is Theorem 5.1.1 and Corollary 5.1.1.

Theorem 1.5.5: (d = 4) Let h be a Wilson-like energy

function, and ¥ a closed real valued test 2-form on R4. Let
ngG(g—zh) denote any translation and 90%-rotation invariant
Gibbs state. Then for all but at most a countable number of
g > 0 (independent of ),

i(F,?a) 2

lim u (e ) = exp(—_—‘-;—-g (P, %)), (1.5.5)

alo
where a = pg(h"(m(ap))) independent of the particular choice
of the Gibbs state (ﬂg).

Proof: This is Theorem 5.2.1.

It should be pointed out that Theorems 1.5.3 - 1.5.5
are only needed when there is a first order phase transition
for the model, that is when |G(g_2h)| > 1. Otherwise the
stronger result of Theorem 1.5.2 would be applicable. The
existence of a first order phase transition is still an open
question for these U(1)4—gauge models. Recall that Guth's
theorem (Guth [1]) asserts that in d = 4, the U(l)4 lattice
gauge theory with the Villain action does have a phase
transition. However, this phase transition is characterized
by the decay properties of "Wilson loop variables" as the

size of the loop increases to infinity. It is not clear how

a phase transition of this type is related to the more
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standard phase transitions which are characterized by

smoothness properties of the thermodynamic potentials.

Section 1.6 Related Work and Discussion

T. Balaban {1-14] and P. Federbush [1-7] have some of
the most promising results towards constructing the
non-abelian Yang-Mills' measure (1.1.1). Balaban's idea is
to use a renormalization group transformation (modeled on
the transformation introduced in K. G. Wilson [2]) to
construct the measure in three and four space-time
dimensions. Balaban has found a number of "stability"
estimates on the renormalized lattice actions and partition
functions independent of the lattice spacing (a). P.
Federbush has some similar results for four space-time
dimensions using methods based, in part, on the "averaging"
techniques of Balaban.

C. King [1-2] has used the results and idea's of
Balaban [1-3] to prove the existence of the continuum
U(1l)-Higgs (abelian) model in two and three space-time
dimensions. The existence is in the sense of convergence of
Laplace transforms of the field strength variables (F(x))
and the gauge invariant renormalized Higgs field variables
(:|¢|2:(x)). However, the appoximating measures that King
uses are non—-compact versions of the Wilson lattice
approximation. The generalization of these non-compact

approximations to the non-abelian setting is as yet unknown.
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Part of the motivation of the work of Gross [3] and of
this thesis was to use an abelian model which did have a
non-abelian analogue. As already mentioned, the abelian
case is considered to be a testing ground for techniques to
be applied in the non-abelian case. With this criterion in
mind, one might object to using the smoothed field strengths
(F(¥)) as the basic variables of the theory, since they do
not immediately generalize to gauge invariant functions in
the non-abelian case. However, there are non-abelian
analogues of the field strengths (F(x)) (called lassos)
which are path dependent functions, see Gross [4] for their
definition and properties. It is hoped that these lassos
(which are essentially the field strengths when the gauge
group is abelian) will prove to be useful in defining the
Yang-Mills' measure in the non-abelian case.

Another collection of gauge invariant functions which
may be useful for defining the Euclidean Yang-Mills' fields
are the ("renormalized") Wilson-loop variables. (The
Wilson-loop variables are the maps (A — PA(a)) where PA(o)
denotes parallel translation around a closed curve (o) with
respect to the connection form A.). The Wilson-loop
variables have the disadvantage of being extremely singular.
In fact, it seems that the Wilson-loop variables are too
singular to be "smoothed" into a genuine measurable

function. (The free Euclidean electo-magnetic field,
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Definition 1.3.1, is a testing ground for these statements.)
For this reason the field strength variables seem more
desirable than the Wilson-loop variables. However, see
Chapter 8 of Seiler [1l] for a tentative set of axioms that
the Euclidean Yang-Mills' fields might satisfy in terms of

"expectations" involving the Wilson-loop variables.



Chapter 2

PRELIMINARIES

Section 2.1 Lattice Complexes and Forms

Definition 2.1.1 Let {ei}?=1 be the standard unit

vectors in md, and k be a non—negative integer less than d.

The positively oriented k-cells based at xEZd, are the

formal symbols: (ei AB G A ~€5 )x where

1 2 k
1Sil<iz< ------- <iksid, provided k1. The positive oriented
0~cells are the symbols (+)x’ where xEZd. When there is no

confusion (+)x will be abbreviated simply by x. We also

define negatively oriented k-cells based at x to be the

formal symbols —-(e. .e. ....... ~e. )_ if krl, and (-)_ or -x
i,771, i 'x X

for the 0-cells. Let (Zd)(k) denote the set of k-cells of

both orientations.
The basic k-cell (e, .e. ....... €. ) _should be
i i i, "x
1 2 k
thought of as a k-dimensional oriented cube with x as its
"lower left hand" corner. The edges of the cube consist of
translates of the unit vectors {e, }k
j j=1
Definition 2.1.2 A k-chain (c) is the formal sum of a

finite number of k-cells with integer coefficients:
c=alcl+ ------- +ancn (2.1.1)
where the ci's are k—-cells and the ai's are integers. 1If c

is a k—cell, identify -1lc with -c, where —-c denotes c with

the opposite orientation.

20
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Remark 2.1.1 Another way to state Definition 2.1.2 is:

the set of k-chains is the free Z-module generated by the
k-cells modulo the relation -lc = -c.

Definition 2.1.3 Let k # 2. The boundary operator (3)

applied to a k-cell (c = (e.1 ‘ei Ao s e e ‘ei )x ) is the k-1
1 2 k
chain:
1 K £+] -
ac =§ 2 (-1) (ei e, ,\..,\ei'..‘,‘e.l )x+ee. (2.1.2)
. 1l 2 3 k i,
=0 j=1 J

where the basis vector under the circumflex is to be
omitted. If k=1, and C=(ei)x’ put

dc = (+)x+e. — (+)x= (+)x+e.+ (—)x. (2.1.3)

1 1

If ¢c is a 0-cell, put 9c=0.

Remark 2.1.2 The definition of the boundary operator

conforms to the usual notion of the induced orientation of a
face determined by the "outward pointing normal".

Remark 2.1.3 An easy computation shows that az=aoa =0.

Definition 2.1.4 A (lattice) k-form is a homomorphism

on the Z module of k-chains to the complex numbers. So if ¥
is a k—-form and c¢ is the k-chain given in equation (2.1.1),
then
¥(c) = a,¥(c )+ --vr:- ta_¥(c_). (2.1.4)
n n
In particular, ¥(-c) = -¥(c).

Definition 2.1.5 A k-form is said to have compact

support if it is identically zero on all k-cells based

sufficiently far from 0.
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There is a natural complex bi-linear form on the
collection of compactly supported k-forms. Namely, if ¥ and

¥ are two k-forms with compact support, set
(P, ¥) = —— P(c)¥(c). (2.1.5)
2 a, (k)
ceE(27)

It is for later convenience that we do not conjugate one of
the factors in (2.1.5).

Definition 2.1.6 The differential (d¥) of k—-form (¥)

is the k+1 form determined on (k + 1l)-cells (c) by

a¥(c) = ¥(adc) = } ¥(p) (2.1.6)
p€dc

A k-cell p is said to be in dc if p is one of the summands
(including the correct orientation) of equation (2.1.2). 1If
¥ is a d-chain, then d¥ is to be interpreted as zero.

Remark 2.1.4 Since 62 = 0, we have also d2 = 0.

Definition 2.1.7 The co-differential (d %) of

(k+1)-form (¥) is the k form determined on k-cells (p) by

*
d ¥(p) = 2 ¥(c). (2.1.7)
c:p€dc

*
If ¥ is a O0-chain, then d ¥ is to be interpreted as zero.

Remark 2.1.5 It is easily checked that d and d are

adjoint to each other with respect to the bilinear form

(2.1.5) on the space of compactly supported forms.

Section 2.2 Approximation of Differential Forms

This section deals with approximating differential

forms on Rd by lattice forms on Zd. (A differential form is
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always assumed to be c®.) A "small" parameter (a) will be
introduced into the definitions which should be thought of
as the "lattice spacing”" of Zd. That is for conceptual
purposes it will often be clearer to think of the lattice Zd
as the lattice aZd.

Definition 2.2.1 If ¥ is a differential k-form on md,

and a>0, then put

¥, (c) = J ¥
ac
= ¥, . , (ax+s.e.++++s e, )ds,:+-+ds (2.2.1)
J Kk Iq1ig i 1 i, k i 1 k
{0,al
where ¢ = (e, .e. .*** .. ) and
i,771, i, x
| by
¥ = E ¥, | , dx “.+++.dx . The sum in the last
i,ijee-i
172 k
expression 1s over all increasing sequences il<iz<--- <ik’

and the dxl's are the standard basis forms on md. The
k—-form (Wa) is called a lattice approximation of the
differential k-form (¥).

Remark 2.2.1 By a change of variables, equation

(2.2.1) is the same as

wa(c)
_ _k
= a J ¥, i ...; (alx+s e +.--+s. e, 1) ds,--+ds, (2.2.2)
k 7172 k 1 k
[0,1]
Thus ¥ (c) = akW. . (ax) for a <close to zero.
a 1112---1k

If ¥ is a differential form on Rd, let d¥ denote its

exterior differential. The symbol (d) now has two uses.
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However, they are essentially the same, and after the next
lemma no distiction will be made between the two versions of
(d).

Lemma 2.2.1 Let ¥ be a differential k—-form on Rd and

Wa be a lattice approximation. Then (d‘!’)a and d(Wa) are the
same k—forms on Zd, where the first d is the exterior
differential and the second d is the lattice differential.

Proof: (dW)a(c) = J day = J ¥ = j ¥ = Wa(ac)

ac 2(ac) a(ac)
= (dWa)(c)
The second equality is Stokes' theorem, see Spivak [1l]. The
rest is only a matter of unwinding definitions. Q.E.D.

Recall the "usual" complex bilinear form on the space

of compactly supported differential k—-forms is

(¥,P) = } ¥, . . (x) ¥, . . (x) dx, (2.2.3)
Jlllz 1y Lhigroriy
IRd
where the sum is over increasing subsequences of length k of
{1,2,3,:-+:- ,d}, and ¥, . . (x) and . . . (x) are the
ii, i, ii, i,
components of the differential k—-forms ¥ and ¥ respectively.
Again the same notation is used for the inner products on
lattice forms as well as on differential forms. This should
cause no confusion since the type of form in the inner

product indicates which definition is in force.

Lemma 2.2.2 Let ¥ and ¥ be compactly supported

differential k—-forms on Rd, then
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(¥,%) = lim a(d—2k)
alo

Proof: Let £ =¥, . . be a fixed component of ¥,

—_— ijije-ri

172 k

and c = (ei A A ~e. )_. By the mean value theorem
1 2
and the definition of Wa(c) it follows that,
(k+1)

(Wa,Pa). (2.2.4)

|akf(ax) - ¥_(c) |« K-a sup |vE(y) |, (2.2.5)
where the supremum is over {yEmd: lax — y| ¢ Kal}, and K is a
dimension dependent constant. Let N be any number larger

than the dimension (4). Since the support of £ is compact,

there exists a constant (B) such that |[VE(y)]| ¢ B(l+|y|)_N
d

for all vy E R°. So for a sufficiently small
lagcax) — ¥ (o) | ¢ 2VkBa™™*P(1vafxp7N (2.2.6)
holds for all xGZd. Furthermore, the estimate
2 (1+axV < ca™d (2.2.7)
x€Zd

holds for a small, where C is a constant (C ( o since
N > d). Equation (2.2.7) is easily verified by comparing
the sum with an integral.

Using the estimates of the form (2.2.4 — 2.2.7) and

standard Riemann integral techniques, we find that

a(d-2k) (¥ ,P) = ad 2 2 ¥iog oLy a0 (ax)
xEZd 172 k 172 k
+0(a)., (2.2.8)
where 0(a) — 0 as a — 0. The lemma now follows by

Riemann integral techniques and equation (2.2.8).
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Section 2.3 Definition of the Model

Let h:R — R be a real twice continuously
differentiable even periodic function with period 2m. Any
such function (h) will be called an energy function. The
main examples of interest are given below.

Example 2.3.1 Wilson action: h(x)=l-cos(x).

Example 2.3.2 Generalized Wilson action: h(x) =

l-cos(mx), where m is any integer.

Example 2.3.3 Villain action: For each B8 > 0, define

b
hp Yy

2

[2e]
exp(—-8h_(x})) = cﬂ 2 expl-8(x-2nn)~ /21, (2.3.1)

n=—o

B

where Cp is a constant chosen such that the right hand side
is one at x=0.

The model will now be defined, following the notatidn
in the appendix. Let (B+) B be the set of (positively
oriented) one cells on 29. Let (P,) P be the set of
(positively oriented) two cells. The l-cells will also be
referred to as bonds and the 2-cells as plaguettes. The
lattice (L) for the model is the set of positively oriented
bonds B+. The state space for the model is S = Sl, the unit
circle. The unit circle will be identified with the
interval [-m,n] with the end points identified. The apriori
measure is normalized Lebesque measure (A) on [-m,m]. The

B

configuration space (92) is then (Sl) *.
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It is convenient to embed configuration space () in

B
(s!) , by defining @(-b) = -w(b) where b € B_ and @ € Q.

(Remember that the unit circle has been identified with
[-m,n]l.) With this convention each configuration may be
considered as a l-form on Zd.

Definition 2.3.1 Let h be a given energy function,

then the associated interaction potential (Ph= {Pg}BccB ) is
+

given by
h(dw(p)) if B = 3p for some p € P,
Ph(a) = { }. (2.3.2)
0 otherwise
where B denotes the set of bonds in B disregarding
orientation. (The notation BccB_ means BCB_ and |B| < e.)

The energy (Hg(wlm') ) of a configuraton (@) given the
boundary conditions (@') over BccB+ is

h iy '
HB(mlw ) = § o h(dlegX wB+\B](p)). (2.3.3)
pEP :pNB # ¢

h
The corresponding specification (HP ) is denoted by Hh =

{Rh} . If (£) is a continuous function on £ then,
B BccB+
h .,

e Hp(#' 18) £y &

B ..
B B+\B) da (MB), (2.3.4)

h _ oh -1
RB(m,f)— ZB(w) J
$2(B)

where Zg(w) is the normalization constant. The set of
{extreme ) Gibbs states will be denoted by (Ge(h)) G(h).

Definition 2.3.2 The lattice version of the field

strength tensor is

F(p)(w) = h'(dw(p)), (2.3.5)
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where p€P, and w€Ql. (Remember that each @ is extended to be

a l-form on Zd.)

Remark 2.3.1 Since the energy function (h) is assumed

to be even, h' is then odd. So for each configuration (®),

F(-)(w) may be considered a 2-form on Zd.

Definition 2.3.3 The "current"” associated to F is

J(b)(w) = d*F(b)(M) =Xz F(P)(w), (2.3.6)
PEP: be€aP

for all b€B, and we€EQ.

d-4) -2
( )g

Remark 2.3.2 The factor a in (1.5.1) has been

absorbed into the energy function (h). This factor is
easily re-inserted if one notes that F and J depend linearly

on h.

Section 2.4 Pressure

The purpose of this section is to generalize the notion
of pressure and its properties to the case where the
underlying lattice is B+. In this section the interaction
potential (%) is allowed to be arbitrary except for the
restriction of finite range. The results of this section
will only be used in the proof of Theorem 5.2.1 of
Chapter 5.

The group Zd naturally acts on the lattice B+ via

Tx[(ei) 1 = (e

y i)(x+y)° (2.4.1)

So Tx acts on a bond simply by translating the base point.

As in the appendix, the action on Zd naturally induces
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actions on 1, and the functions on 9.

Tx(m) woT (2.4.2)

X

T (£)(aw) f(woT_ ). (2.4.3)
X X

We will only consider interaction potentials (¥P) which are
translation invariant,

(MOTx) =P (&), (2.4.4)

(P
Tx(B) B

Definition 2.4.1 Let Ac2® the set of positively

oriented bonds associated to A is

AV = (e, | x€a% and i = 1,2,.---,d 3. (2.4.5)

Definition 2.4.2 The pressure (PA(m,P)) of a

translation invariant, finite range interaction potential

() on Q, given a configuration (@) and Acczd, is

P, (a,?) = |a|tintz? | ()1, (2.4.6)
A A(l)
where ZP (@) is the normalization constant in the

Al

definition of the specification, see Definition A.2.4.

Definition 2.4.3 If BccB, put B® = (x€2%|3 a bond beB

with x as its base point}, the base of B.

Theorem 2.4.1 The infinite volume pressure (P) defined

by the limit

P(¥) = 1im.P, (w,®) (2.4.7)
apzd A

exists and is independent of the boundary conditions (&), as
A increases to Zd through cubes. Furthermore, as in Theorem
A.8.1, there is a one to one correspondence between tangent

functionals to the pressure at ¥ and translation invariant
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Gibbs states of the interaction potential ¥. If g is a
translation invariant Gibbs state, the associated tangent

functional is

(2.4.8)

a(¥) = —p[ E |8°| L Yo
B: 0€B°
If a is a tangent functional, the associated translation
invariant Gibbs state is determined by
u(f) = - avd) (2.4.9)
where £ is a continuous F(A)-measurable function for some
AccB+, and
£ f(NOTx) if B = Tx(A) for some xEZd
WB(M) = { . (2.4.10)
0 otherwise
Proof: We will reduce this theorem to Theorem A.8.1 of
Appendix A. The procedure is to map a lattice system over
B+ to a lattice system over Zd. The state space of the new
system is T = Sd, where S is the unit circle as before. The
mapping between the two configuration spaces is K: SB+ —
Zd

12, given by K(@)(x) = {&( (e,) )19

X . ach i i
ilg) i E interaction

*
potential (%) over B+ maps to an interaction potential (¥ )
over Zd,

$ (K()) = 2 _ fp@, (2.4.11)
B€B+:B =A
where ACCL. By an easy computation we find
* P

P L] — L}
H, (K(w) |[K(a')) = HA(l)(mlm ), (2.4.12)

for all Acczd. Hence, the corresponding specifications obey
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*
1t (k(w), fok™Y) = 2¥ . (e, £), (2.4.13)
A

A (1)
where £ is any continuous function of Q = SB+. Using Remark
A.2.4 of Appendix A and equation (2.4.13), K induces an

affine bijection
*

(—ak ™ Y o’y — e’ (2.4.14)
which preserves the subset of translation invariant states.
The finite volume pressures of the two systems behave

in a similar fashion,

%* %*
PA(K(G),? ) = PA(l)(ﬂ.P), (2.4.15%)

*
where P 1is the pressure in the system over Zd.Passing to
the limit in equation (2.4.1%) yields
* *

P (P ) =DP(P). (2.4.16)
Hence the two systems are essentially the same. The theorem
follows by simply transcribing the known results about the
system over Zd to the desired results for the system over

B+. Q.E.D.



Chapter 3

CONVERGENCE RESULTS

General criteria are studied for the convergence of the
lattice Laplace and Fourier transforms (on the current
algebra) to the respective transforms of Euclidean free
electromagnetic field. The case of most interest will be
when the dimension (d) is four. The results for d=3 is the
subject of Gross [3]. If d>4, the Laplace transform
converges but to the trivial limit (the function 1).

Recall from the introduction, that d=4 has the distinguished
feature that the lattice measure does not depend on the
lattice spacing parameter (a).

The main theorems of this chapter.conclude that lattice
Fourier (Laplace) transforms restricted to the "current
algebra" converge to the (renormalized) Fourier (Laplace)
transforms of the free Euclidean electromagnetic field
provided the lattice measure is an extreme (unique) Gibbs
state. Furthermore, if d=4, the resulting transforms are
not "trivial" provided the energy function (Section 2.3) is

not constant.

Section 3.1 Schwinger — Dyson Equations

Lemma 3.1.1 (Schwinger-Dyson Equations, see Gross {31])

Let h be an energy function, w€G(h) be an arbitrary Gibbs

32
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state. Let f be a differentiable periodic function
depending on only finitely many bond variables (i.e. f is
F(B)-measurable for some BCCB+). Then for any bond b
p(df/0w(b)) = u(J(b)-£), (3.1.1)
where J(b) is the lattice current in Definition 2.3.3.

(d“‘l)g_2 have been absorbed into

(Recall that the constants a
the energy function (h), see Remark 2.3.2.)

Proof: Choose BccB+ such that f is F(B)-measurable and
such that b and the bonds of any neighboring plaquettes are
contained in B. Then by finite dimensional integration by
parts, noting that the boundary terms are zero by
periodicity,

b (w,8£/8u(b)) = Mh(w,d(b)-£), (3.1.2)
for all configurations @. See equations (2.3.3), (2.3.4)

and the definition of J(b) (Definition 2.3.3) and the

following computation.

aHg(m'|m)/am'(b) = } h'(de'(p))-8de’ (p)/de’ (b)
PEP, :pNB##
= 2 h*(de'(p)) = J(b)(w').
pEP:b€ap

In the second equality we used the assumption that h' is
odd, the convention of w' being extended to a 1-chain, and
the assumption that b was in the "interior" of B.

The theorem now follows by integrating both sides of
equations (3.1.2) with respect to the Gibbs state (u) and

using the D.L.R. equations (A.2.3). Q.E.D.
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We will see that this form of integration by parts is a
very power ful tool for studying the properties of U(1l)
lattice gauge models. This technique was put to good use by

Gross [3] in studying the case d=3.

Section 3.2 Convergence of Transforms in Dimension Four

Although the main results in this section are for d=4,
many of the results are dimension independent. Unless
explicitly stated, it is assumed that the dimension is 4.

Through out this section h will denote an energy
function as in Section 2.3, and j will be a test 1-form on
d

R A test l-form is a C” differential l-form with compact

support on md.

Definition 3.2.1 A Gibbs state, €G(h), is said to be

invariant if g is invariant under both translations and
90°—rotations.

Theorem 3.2.1 (d = 4) Let j be a complex valued test

l1-form on m4. Assume that there is only one Gibbs state (u)

associated to the energy function (h); G(h)={g}. Then

1im ute?79a?) = exp(-%-(a3,a3)) (3.2.1)
alo
where a=u(h"(dw(p))) — p is any plaquette. Note: the

bilinear form in the left hand exponent of (3.2.1) is on
lattice forms, whereas in the right hand exponent it is on
differential forms.

Remark 3.2.1 The Gibbs state g must be invariant
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(translation and 90°-rotation invariant), since such a Gibbs
state always exists (by Remark A.8.1) if the interaction
potential is invariant. Since g is unique, it must be the
invariant state. Thus the constant (a) is well defined.

Remark 3.2.2 The constant (a) must be nonnegative

otherwise the right hand side of (3.2.1) would be larger
than one when evaluated on purely imaginary test l1-forms,
which is impossible. This fact will also be shown
explicitly in Lemma 3.2.2, where it is also shown that a>0
if h is not a constant.

Lemma 3.2.1 If [sup(h) - inf(h)] < 2/(3(d-11), then

()| = 1.

Proof: We first note that G(h - ¢) = G(h) for any real

(h-¢) _ .h
B = g

Thus we may assume that h is normalized such that inn_=

constant (c), since X for all real c and BccB+.
1 .
—5—[sup(h) - inf(h)1].
An easy computation using the Definition 2.3.2 shows

sup 2 (|B|—1)uwgum = 3(d-1)lhn (3.2.2)
b€B “5.beB

in d-dimensions. The factor 3 is from the fact that |ap|=4
if p is a plagquette. The factor d-1 counts the number of
positively oriented plaquettes with b in the boundary. Thus
the lemma is a consequence of Dobrushin's uniqueness theorem
(Theorem A.4.1), and equation (3.2.2). Q.E.D.
As a consequence of Lemma 3.2.1 and Theorem 3.2.1, we

have the immediate corcllary.
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Corollary 3.2.1 If d=4 and (sup(h) - inf(h)] < 2/9,

then the conclusion of Theorem 3.2.1 holds.

Theorem 3.2.2 Suppose d=4, and x€G(h) (G(h) not

necessarily a one element set) such that x4 is both extreme
(among all Gibbs states not just the invariant states) and
invariant. Then

lim petlI- 30y o expi ~5—(di,di)), (3.2.3)
a+0

where j is a real test 1-form, and a as above.

Remark 3.2.3 The collection of Gibbs states (G(h)) is

not assumed to contain only one element in Theorem 3.2.2.
In fact, Theorem 3.2.2 would be a consequence of Theorem
3.2.1 if |G(h)]|=1.

Remark 3.2.4 It will be shown in Chapter 5 that for

Wilson "like" energy functions there always exists an
extreme and translation invariant Gibbs state. In fact, this
state may be found by taking the thermodynamic limit
resulting from zero boundary conditions.

The proofs of the two main theorems (Theorems 3.2.1 and
3.2.2) will be postponed. First we will prove a number of
lemmas which will lead to the main results.

Lemma 3.2.2 Let g be an invariant Gibbs state, then
1

azp(h" (de(p))) = (2(d=1)) L (I (:)2), (3.2.4)
where b is any bond, and d is the dimension. Furthermore,

a>0 if h is not a constant.
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Proof:

4(J(0)2) = w(aJ(b)/dw(b)) = ul gETET{ E F(p)})

p:b€aP

#( h"(dw(p))) = 2(d-1)a.
p:b€dp

The Schwinger-Dyson equations were used in the first

equality, the definition of J in the second, the definition
of F in the third, and the fact that 2(d-1) is the number of
plaquettes with a given bond in their boundaries. So the
validity of equation (3.2.4) has been shown,

Suppose that J(b) were identically zero. Let pEB+ with
b€dp, and choose b‘'€8p such that b'# b. Then 98J(b)/3a(b')=0
implies that h"=0. Hence, h' is a constant. Since h' is
odd, the constant must be 0. So J(b) is not identically
zero if h is not a constant.

Fix a bond b€B+, and let BccB+ be such that b€B and
J(b) is F(B)-measurable. If h is not constant there is a
neighborhood in @ with J(b)2>0, using the continuity of
g(m,J(b)2)>0 for all

configurations @, since finite dimensional Lebesque measure

h
("

D.L.R. equations, we conclude that y(J(b)2)>0, and thus a’>0.

J(b). It then follows that &
2
,J(b)7) by the

charges open sets. Since M(J(b)z) = ull

Q.E.D.

Lemma 3.2.3 (See Gross [3].) Let j be a lattice

es(J,J')

l-form with finite support, #€G(h), and u(s) = g( )

for s real. Then
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a'(s) = SE aj (p)2u(h" (dw(p) eS9-3)y (3.2.5)
pE?+
Proof: u'(s) = su( (J,j)es(J’J))
= (1/2)Zi (b)Y (I (myes -3,
_ . a s(J,3)
= (1/2)£J(b)ﬂ(55757e ))
_ : a (J,3) _s(J,3)
= (S/Z)EJ(b)ﬂ(m-)———e ), (3.2.6)
where the sums are over all bonds. The Schwinger-Dyson

equations were used in the third equality.
Set ¥=dj, so by Definitions 2.3.2 and 2.3.3, (J,J) =

(F,®*). We now compute the derivative in (3.2.6).
a(F,®)

E ———=j(b) =
b da(b)
=(1/2) g g j(b)P(p){h"(dm(p))[lap(b) - lap(—b)]}
=(1/2) Z P(p)h"(dw(p))[dij(p)—di(-p)]
P
=L P(p)Zh"(du(p)), (3.2.7)
p
1 if b€adp
where 1a (b)= { . (3.2.8)
p 0 otherwise

Plug (3.2.7) into (3.2.6) to finish the proof, noting the
extra factor of two in (3.2.5) arises from the restriction
of the sum to ?+. Q.E.D.

Proposition 3.2.1 (d=4) Suppose that j is a complex
4

valued test 1l-form on R® and w€G(h) is an invariant Gibbs

state. Define

s(J,]3

c(a)ssup( Jcov, (h"(du(p) e a’)|:per,, s€(0,11), (3.2.9)

where cov”(f,g) = pu(fg) — u(flu(g). Suppose that
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lim c(a) = 0, then

ailo
lim wed73a)y = exp(-3—(dj,d3)), (3.2.10)
ailo
with a as in Theorem 3.2.1.
Proof: Let k_ = a(dj_,di_), u (s)=ﬂ(es(J’ja)) and
—_— a a’"“a’’ Ta ’
va(s) = exp(—kasz/Z)-ua(s). Then by Lemma 3.2.3
. _ _ 2 _ .
va(s) = exp( kas /2)1{ kasua(s) + ua(s)}
= exp(—kasz/Z){(l/Z)s
X I dja(p)zcov#(h"(dw(p)).eS(J’Ja))} (3.2.11)
p
So
lv_*(s)| < K-cta)-n djauz (3.2.12)
where
K = sup ((s/2)exp(-k_s2/2)| 0cacl , 0<s<1), (3.2.13)
and
nai ¢ = (aj_,ai) (3.2.14)
a - a’ “a’: te

By Lemma 2.2.2 ka — k a(dj,dj) as a — 0, so that K<{w.

Since by assumption c(a) — 0 as a — 0, v!' — 0 as

a
a — 0 uniformly in s€[{0,1]. Since va(O) =1 (ua(0)= 1),
it follows that v, converges to one uniformly in s. Putting

k/2 as a — 0.

s=1, we conclude that ua(l) — e
Q.E.D.

In view of this proposition, the proofs of the main
theorems are reduced to showing 1in each case that c(a) —

0 as a — 0. The remainder of this section will be devoted

to this goal.
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Lemma 3.2.4 (Dimension = d.) Let j be a complex

lattice l1-form with finite support, €G(h) a translation

S(Jlj)

invariant Gibbs state, and u(s) = u(e ). Then

Juts)| < exp{(52/2)ude2-H h"il_}, (3.2.15)
where de"2 is defined in equation (3.2.14).

Proof: Without loss of generality, it may be assumed

that j is real since |u(s)] < ﬂ(leS(J’j)l) = y(eS(J’Rej)),
and IIdRe(j)II2 < denz. So assume j is real.
By equation (3.2.5),
Jur(s) ] ¢ stjHZHh"Hmp(s). (3.2.16)
Hence
|ln(u(s)/u(0))| < J |dln(u(t))/at|dt < de"znh"um§2/2.

te(0,s]
The lemma follows by exponentiating this last inequality

using u(0) = 1. Q.E.D.
For notational ease, let K(:,:,:-:-+,-) denote a generic
function which is increasing in each of its variables. From
lemma to lemma and even line to line there may be many such
functions K, which will all be denoted by the same letter.

Lemma 3.2.5 (Dimension = d) Let g€G(h) be an

invariant Gibbs state, and j be a complex lattice l-form on

29, with finite support. Then

pcle-3_ 1% K(nh"nm-denz)nh"um-ﬂdjng. (3.2.17)

Proof: Let

vis) = ull|e )
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= u(e?sRe(d ) 1 _ s03.3) _ o s(J.3), (3 2.18)

Differentiating (3.2.18) using equation (3.2.5) one easily
finds the estimate

Ivn(s)l < S"h"“ooz Idj(p)zl[F(IEZS(J’J)I) + F(IES(J’J)I)].
P
By using the estimate in equation (3.2.15) and this last

equation we conclude that
2

|v'(s)| < K(Ilh"llm-lldjllz)llh"llm-lldjll2 (3.2.19)
for s€(0,1)]. Since v(0) = 0, the same estimate holds for v.
Q.E.D.

The idea behind the proofs of the main theorems is to
use the cluster properties of unique or extreme Gibbs states
to conclude that c(a) — 0 as a — 0. To carry this
procedure out we must divide the test l-form into "near" and
"far" pieces. The cluster properties will be applied to the
far pieces. The following lemma enables us to control this
splitting of the test l-form.

For the remainder of this section let g be a real

infinitely differentiable function with compact support on
d

R~, Furthermore assume g is radial, 0 ¢« g £ 1, and
0 if |x| = 2
g(x) = { (3.2.20)
1 if x| < 1

Put gt (x) = g(r—lx) for all r > 0.

Lemma 3.2.6 Let j be a complex test 1l-form on Rd and

g'-j for all r > 0. Then

H(djr)ang < K-[Hj“i-r(d—Z) + de“i rd),  (3.2.21)

gr be as above. Define j©
d-4
a

(1]
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for all positive r and a. The sup-norms are supremums
over all the components of the forms and over all of md. K
is a constant which only depends on the dimension (d4d), and

the function (qg).

Proof:
.r 2 r . r R 2
H(dj )all2 < [M(dg AJ)aHZ + (g -dJ)aHZ]
r . 2 r . 2
< 2[l(dg Aj)aﬂz + (g -dJ)aHZI (3.2.22)

We estimate the two terms of (3.2.22) separately. Starting
with the first term observe,
r . r . . r
[tag™ 3y (p) | 2 fldg A s n:nm-J dg” [, (3.2.23)

ap ap
where the absolute value of a form denotes the maximum over

the absolute value of the components By the definition of

gr, there exists a dimension dependent constant (c) such

that
J |[dg®| = 0 if dist(ap,0) » cr. (3.2.24)
ap
Using the estimate,
lagt| = [r lvg(r7lx).ax| < r‘lnvguoo (3.2.25)
and (3.2.24) we conclude that
J lag™ | < HVg"mp—lazx(cr/a)(p) (3.2.26)
ap

where

1l if dist(p,0) ¢ 1
xs(p) { . (3.2.27)
0 otherwise

Combine the estimates (3.2.23) into (3.2.26) to get

r . . -1_2
| (ag An)a(p)l ¢ K3 r “a Xeor/a(P)- (3.2.28)
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Square and then sum this last estimate over all plaquettes

to obtain
a(d-4)ﬂ(dgrAj)aH§ < K-njnd.p (972 (3.2.29)
To obtain this last inequality I have used
|{p: dist(p,0) < cr/a}| < K-(r/a)9, (3.2.30)
where K denotes a constant only depending on 4.
By a similar (easier) argument it follows
a'9" M u(gTas) 12 < x-nazn? e, (3.2.31)

where K is a constant only depending on d.
The theorem now follows from the estimates (3.2.22),
(3.2.29) and (3.2.31). Q.E.D.

Theorem 3.2.3 (d=4) Let h be an energy function,

#€G(h), and j be a complex test 1l-form on R4. Fix a

plaquette (p_) based at 0ez?. Then

a) if |G(h)] = 1, then

(J’ja))l

lcov , (h" (du(p,).e < KCUIN, HAG 0, N3 1)) -0 (a)

o
(3.2.32)

b) i1f g is extreme (pGGe(h)) and j is purely
imaginary, then the estimate (3.2.32) still holds.

Where in (3.2.32), Op(a) denotes a function which is
o

independent of the test 1-form (j), and tends to zero as a

tends to zero.

Proof: Let r be a positive number less that one, jr be

as above, and put krs j - jr. For notational ease put j; =
(jr)a. k; = (kr)a, and f(e) = h"(dﬁ(po)). The parameter (r)



44

will eventually be chosen to be a function of a which

converges to zero as a goes to zero.

(J,3_)

First split covp(f,e a’) into two parts,

)

. r
(J,Ja) (J'Ja) e(J'ka )

covp(f,e ) = covp(f,e

.r r
(J'Ja)—lle(J'ka))

£,
covp( fe

r
(J, k)

+ covF(f,e ). (3.2.33)

Call the first term in (3.2.33) A and the second term B.
We now estimate |A],

Al

.r r
(Jo3) 1107k,

1A

20EN_p(|le

r r
) _ (J,k_)
a 1]HL2(”)He a “Lz(ﬂ)

.r
)-HdJaH

(J,3

1A

20EN _Nife
00

1A

K(naifn,, naktn
a a

27 2 2
K(de“m,Hme,ﬂdjaﬂz)'r, (3.2.34)

[P

where K(:,-,+) denotes a function (depending on h) which is
increasing in its arguments. The Cauchy-Schwartz inequality
was used in the second inequality, Lemma 3.2.4 and

Lemma 3.2.5 in the third, and NdkZN, < Nd3 I

Lemma 3.2.6 and r<l in the last inequality.

, + Naili,,

To estimate |B| we will have to divide the proof into
two cases corresponding to the two cases of the theorem.
However, first note that (J,k;)(m) depends only on the bond
variables outside a ball of radius (cr/a), where c is a
positive constant. At this time choose r = a(1/2), hence

r/a — o as a — 0.

Case (a) |G(h)] = 1: By the strong cluster property
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(Theorem A.3.2), there exists a function Op(a) as in the
o

statement of the theorem such that

r r
(J,ka))| (J'ka)|).

|IB] = |covp(f,e < Op(a)-p(|e (3.2.35)

o]
Using Lemma 3.2.4 , Lemma 3.2.6 and equation (3.2.35) we

conclude that

r
(J- k3| ). (3.2.36)

|covﬂ(f,e < Op(a)-K("j"m,de"m,“dja"

(o}

2
Case (b) u€G(h) is extreme and j is purely imaginary:
(J,k5)
The observation that |e "’ "a’| = 1 and the cluster property
of Theorem A.3.1 asserts again an estimate of type (3.2.36)
holds (with K independent of j in this case).
The estimate (3.2.32) follows from combining the

estimates (3.2.34), (3.2.36), and (3.2.33). Q.E.D.

Lemma 3.2.7 Suppose that g€G(h) is an invariant

(translation and 90D rotation invariant) Gibbs state

satisfying an estimate of the form (3.2.32), then

(3,3 ) . , .
lcov , (h" (de(p)).,e al) | ¢ K(igu,, ndsn,, 1a3j n,) -0, (a)

o
(3.2.37)

2

holds for all pe€®P.
Proof: Let Tx denote the natural translation operators
on differential forms and on lattice forms. Then if j is a
test 1-form
(Tax:i)a = ija’ (3.2.38)
So using (3.2.38) and the fact that both sides of the
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estimate (3.2.32) are invariant under translations of j,
allows us to conclude that inequality (3.2.37) is valid if
the plaquette (po) in the left hand side of (3.2.37) is
replaced by any of its translates. Using a similar
argument for rotations we conclude that the plaquette (po)
on the left hand side of the estimate (3.2.37) may be
replaced by any plaquette (p). Q.E.D.

Proof of Theorems 3.2.1 and 3.2.2: Let c(a) be as in

equation (3.2.9),

s(J:33)) |per,, s€10,11),

cl{a) = sup{cov”(h"(dm(p),e
By hypothesis of Theorem 3.2.1, Theorem 3.2.3 and Lemma
3.2.7 may be used to conclude that c(a) — 0 as a — 0 if j
is a test l-form. Similarly, under the hypothesis of
Theorem 3.2.2, c(a) — 0 as a — 0 if j is purely imaginary

test 1-form. Both theorems now follow by applying

Proposition 3.2.1. Q.E.D.

Section 3.3 Convergence for d > 4

In this section it is shown that the Laplace transform
of the lattice measure (on the current algebra) converges to
the function one, which is the Laplace transform of the Free
Euclidean measure with infinite coupling constant.
Unfortunately, the limiting value is rather uninteresting.

Theorem 3.3.1 Assume the dimension (d) is larger than

four. Let h be an energy function, a > 0 the lattice
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(d-4)

spacing parameter, and paGG(a h) be any Gibbs state of

the energy function éd_4)h. Then for each test 1-form (j)

d
on R,

lim g (exp[a(d—4)
a
alo

where J is the current associated with the energy function

(J’ja)]) =1, (3.3.1)

(h), see Definition 2.3.3.

Remark 3.3.1 By Dobrushin's uniqueness theorem (see
(d-4)

Lemma 3.2.1) |G(a h)|] =1, if a 1is sufficiently small.

So as in Remark 3.2.4 the measures (pa) in Theorem 3.3.1 are
invariant for small a.

Proof: For notational ease, let ¥ = d4j, nz(m',') =

a(d-4)h (d-4)

_ sa (J.,3
”B (s, ), and ua(s) = pa(e a’) for s€[(0,1].

Then by Lemma 3.2.3 with h replaced by a‘9™%p,

)

(d-4) . .
ul(s) = (s/2)ald™®) 2 Pa(p)zpa(h"(dm(p))esa (J,3.)y,

pEP
(3.3.2)

Since (s/2)a(d_4) 2 ‘Pa(p)2 — sS(¥P,P) as a — 0, it suffices

pEP
sald™ V(3,5 )
to show that pa(h"(dm(p))e ’“a’) — 0 uniformly in
p as a — 0, because ua(O) = 1.

Let p be a plagquette based at zero. Choose a subset
BCCB+ which contains all the bonds (disregarding
orientation) of any plaquettes having a bond in common with
p. By the finite volume Schwinger-Dyson equations (see

(d-4)

equation (3.1.2)) with h replaced by a h,
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a, , (d-4) - S (d-4) 2 ,
ﬂB(m ,a h"(de(p)) = HB(m ,a am(b)[h (da(p) )
= az‘d'4’ng(m',J(b)F(p)), (3.3.3)

where b is any bond in the Bpo, and ®'€Q is any
configuration. Dividing equation (3.3.3) by a(d_4), using
the fact that J and F are uniformly bounded, we £ind

Ka(d™%) (3.3.4)

Iﬂg(m',h"dm(p))l <
where K is a constant depending on iihh_ .
As in Theorem 3.2.3, split the l-form ja into its

"near" and "far" pieces,

{ ja(b) if b or -b is in B

32(b) = (3.3.5)
0 otherwise
and
£ _ . _ .n
i3 =3, iy - (3.3.6)
We do not have to be so careful in this case.
Now
(d-4) .
lu, (h" (Qu(p))re®? (J.3379
(d-4) n (da-4) £
= lpa(h"(dw(p))esa (J,3,) 52 (J'ja))l
(d-4) .n (d-4) i
= |ya{ﬂg[-,h"(du(p))esa (J,33) .52 ‘J"a’}|
Lo (d=3) _ (d-4) . £
< eKNJHNp -O(a(d 4))_”a(|esa (J'Ja))l)' (3.3.7)

where K is a constant depending on |B| and #ihii . The D.L.R.
equations were used in the second equality along with the
fact that (J,ji) is FB—measurable (i.e. only depends on the
bond variables outside of B). The inequality is a

consequence of equation (3.3.4) and the easy estimate
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(d-4) ; ,n (a-3) .
a alu ¢ N2 1, (3.3.8)

s (3,3

lle

where K only depends on |B|. But by Lemma 3.2.4 with h

replaced by a(d=by,
(d-4) . £
sa (J,32) (d-4), ..£,2
ya(le a’)]) < expla naj_ngunil_/2}
(da-4) 2
< expla Ildjallzllhllm/Z}, (3.3.9)
Combine the estimates (3.3.9) and (3.3.7) to get
(da-4) .
sa (J,3_) . (d-4), .. (d-4)
[«  (h"(dw(p))e a’)| ¢ Kuin _,a ndj_n,)-a ,
(3.3.10)
where K is an increasing function in its arguments. As in

Lemma 3.2.7 the estimate (3.3.10) remains valid when (p) is
any plaquette, since for small a the Gibbs state #y is

invariant. Hence we have shown that

(d-4)
sa (J,ja)

pa(h"(dm(p))e ) — 0 uniformly in p as a — 0,

so the theorem is proved. Q.E.D.



Chapter 4

CORRELATION INEQUALITIES

This chapter reviews some basic correlation
inequalities for statistical mechanical models with the
circle as state space and "cosine" type interactions. These
correlation inequalities along with their consequences will
be used in Chapter 5 to prove (among other results) for
"Wilson-like" actions the existence of an extreme invariant
Gibbs state.

I will follow closely the treatment of Messager,
Miracle-Sole, and Pfister [1]), and Pfister [l1]. Also see
Frohlich and Pfister (1] and (2]. For related material see

Bricmont, Fontaine and Landau [11].

Section 4.1 Notation

Let S = S1 be the unit circle which is to be identified

with [-n,n] with end points identified as before. Let N be

a positive integer. If & € RN and m € ZN, then let m-w
N

denote the usual inner product on RN, mo = 2 m. e, .

i=1
Definition 4.1.1 Let J and ¢ be real valued functions

N

on 2 with finite support. The associated probability

measure (ﬂi) on SN is

dpi(m) = Z(¢)—lexp{ E

meEZ

J(m)cos(m:w — 4>(m))} de, (4.1.1)
N

50
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where mE[—n,n]N, Z(¢) is the normalization constant, and de
is N-dimensional Lebesque measure. If ¢ is the zero

function, we write pg for yi.

Section 4.2 Correlation Inequalities

The following lemma is basic to all correlation
inequalities involving measures of the form (4.1.1), see
Ginibre [1].

Lemma 4.2.1 Let F:RN——a R be a bounded function which

is 2n-periodic in each coordinate when the other coordinates
are fixed. Furthermore, it is assumed that

G(w,w') = F((w+e'1/2)F([w-6']1/2) (4.2.1)
is 2m-periodic in each coordinate of @ and @', where

w,8' € RN. Then

2
J G(w,s' )dede’ = 4"“[] F(m)dm], (4.2.2)
where each integral in the above iterated integrals is over
any interval of length 2r (which interval is not important
due to the periodicity assumptions).
Proof: Let I be the left hand side of (4.2.2). By the

periodicity assumptions on G,

1 =27 2N J G(@,w')deds’ . (4.2.3)
(-2n,2n) 2N
Now make the change of variables a = [w+#'])/2 and

a'=[(w-w'1/2. Then dada'=2_Ndmdm', and the new domain of

integration is the N fold product of the domain DcIR2 which
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is the union of regions 1-4 in Figure 4.2.1. So,
1 =2N JF(a)F(a')dada'. (4.2.4)
DN

t a
2n

4 3
2 1

-2n 3 4 2n o'

1I 2!

-2n

Figure 4.3.1

Using the periodicity assumptions on F, it is easy to check
that for each component (ai,ai) the integral over any of the
regions 1-4 may be replaced by an integral over 1'-4°'
respectively. For instance, the change of variables
(ai,ai)—a(ai—ZH,ai—Zn) takes region 1 to region 1' without
changing the integrand in equation (4.2.4). Hence we may
integrate over [—2n,2n]ZN in (4.2.4) provided we divide the
result by ZN. But this is precisely the statement of the

lemma. Q.E.D.

Remark 4.2.1 The key result used from this lemma is

not the explicit expression on the right hand side of

equation (4.2.4), but the fact that this quantity is

non—negative.
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Proposition 4.2.1 Let J, J' and ¢ be real valued

functions on ZN with finite support. Furthermore, assume

that J(m) ¢ |J'(m)| for all m. Let <:-> and <->' denote the

expectations with respect to the measures pg and p%
N

respectively. Then for any m,n € 2= and real function ¥ on
ZN,
(cos(m:w)cos(n:w)> — <(cos(m:w - ¥(m))cos(n:e — ¥(n))>"'
2 |<cos(m+w)>:<cos(n:w — ¥(n))>' -
(cos(m:®w — ¥(m))>':<cos(n-w)>|. (4.2.5)

Remark 4.2.2 The special case when J = J', and both ¥

and ¢ are zero may be found in Ginibre [1]. The proposition
in this form is Proposition 1 of Messager et al. [1].

Proof: The trick in correlation inequalities is to
introduce auxilliary variables, and then reformulate the
inequalities in such a fashion that the normalization
constants of the measures play no role.

The inequality (4.2.5) is equivalent to showing the
quantities

ItE {cos{m'w)cos(n'w)> - (cos(m'ws — Y(m))cos(n'« — ¥Y(n))>"

* [<cos(m:'w)> -<cos(n® - ¥(n))>' -

{cos(m:w — Y(m))>"'-{cos(n:w)>] (4.2.6)
are greater than or equal to zero. But Ii may be written in
terms of auxilliary variables as
I, = —%—J]ﬁ(dw)ﬂ'(dm')[cos(m-m) -~ (f)cos(mw' — yim))]

X{cos(n-w) * cos(n:«' - ¥(in))l. (4.2.7)
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where g and g' denote pg and pi' respectively. So the lemma
is equivalent to showing this last expression is greater
than or equal to zero; a statement that is independent of
the normalization constants (the normalization constants are
positive).

The rest of the proof is a matter of using
trigonometric identities to get the expressions in (4.2.7)
into a form for which Lemma 4.2.1 is applicable. The

relevant identities are:

cos(m'w) + cos{(m:w' — ¥(m))

= 2cos(m- £ 52 — y(m)/2)cos(m L2 - w(m)/2) (4.2.8)
and

cos{m:w) — cos(m-w' — y¥(m))

= 2sin(m-“"; 2 - w(m)/2)sin(m-“"; 2~ Wwm)/2). (4.2.9)

The main consequence of these last two equations is that
arbitrary products with factors of the form {cos(m:w) *
cos(m'w' — ¥(m))] may be written as F(lw+e']/2)F([w-w"']1/2)
with F obeying the hypothesis of Lemma 4.2.1. Hence the
integral of such products is non-negative.

Now the measure p(de)u(de') is proportional to

exp{E (J(m)cos(m'w) + J'(m)cos(m:w' — ¥(m))lldewdw'. (4.2.10)
m
But the summand in the exponent may be written,

(J(m)cos(m:w) + J'(m)cos(m:a"® — y¥(m))]
= (1/2) [(J(m) + J'(m)][cos(m:-w) + cos(m-w' — ¥(m))]
+ (1/2) [(J(m) — J'(m)][cos(m:®w) — cos(m-&' — Y(m))].

(4.2.11)
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By assumption, the coefficients [J(m) * J'(m)] are greater
than or equal to zero. Thus upon expanding out the exponent
in (4.2.10) using the factorization (4.2.11) and the

expression (4.2.7) for I,, we find that I, may be written in

the form
t ' '
Ii = § ay jj Gk(a,w ) dede’, (4.2.12)
k
with Gi a function of the form in Lemma 4.2.1, and ak > 0.

So by Lemma 4.2.1, each term in the sum (4.2.12) is
non-negative which shows that I, 2 0. Q.E.D.

Corollary 4.2.1 With the same notation as above,

(cos(m:@)> 2z |<cos(m-& — ¥(m))>'], (4.2.13)
where ¥(m) is an arbitrary real number.

Proof: The case m = 0 is trivial, so assume m # 0.
Choose n = 0 and apply Proposition 4.2.1 with ¥(0) = 0 and
n, noting that the right hand side of (4.2.5) is larger than
or equal to zero. Q.E.D.

Corollary 4.2.2 (Messager et al. (1]) Suppose that

(cos(m'@)> = <cos(m+w)>' for some mEZN, then <(sin(m:w)>' =
0.

Proof: Again, if m = 0 the result is trivial, so
assume m # 0. Apply Proposition 4.2.1 to the case n = 0,
¥(m) = 0, and ¥(0) = ¥ (¥ an arbitrary real number) to find

cos(m:w)> z (cos(m:w - ¥)>'

cos(¥)<cos(m-w)>' + sin(¥)<{sin(m'w)>'. (4.2.14)

Using the assumption that <cos(m:@)> = (cos(m-@)>' in
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equation (4.2.14) yields

{1 - cos(¥)]1<cos(m:w)> > sin(¥)<{sin(m-a)>"'. (4.2.15)
Divide both sides of (4.2.15) by |¥] and then take the
limits as ¥ tends to zero from above and below to prove the

corollary. Q.E.D.

Corollary 4.2.3 Let m,nEZN and J be a non-negative

function on ZN with finite support. Then

a J
37(ny Mplcos(m:w)) 2 0. (4.2.16)
Proof: An easy computation shows that
a J _ ‘ -
a3 n) ﬂo(cos(m ®w)) = covﬂg(cos(m ®w),cos(n-w)). (4.2.17)

This last expression is non-negative by Proposition 4.2.1

with = ¢ =0, and J = J'z 0. Q.E.D.

Section 4.3 Extreme States

The above correlation inequalities are useful for
producing extreme Gibbs states in "ferromagnetic" models
with cosine interaction terms, see Messager et al. [1].

This will be demonstrated in an abstract setting. The
application to lattice gauge models will be given in
Chapter 5.

Following the notation in the appendix, the lattice (L)
will be a countable set, the state space (S) will be the
unit circle, and the configuration space ({2) will be the

L

collection of functions from L to S, € = S~. Let J be a

function on ZL satisfying the following assumptions:
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Al) J z 0 (ferromagnetic)
A2) There exists a positive integer M, such that
J(m) =0 if |supp(m)] > M, where supp(m)= {x€L:
m(x) # 0)}.
A3) For each x€L, |[{m: J(m) > 0, and x€supp(m) } |<e.

Definition 4.3.1 The interaction potential ¥ = PJ

associated to a function (J) satisfying A1-A3 is given by

Pi(m) = = 2 J(m)cos(m @), (4.3.1)
m:supp(m) = A
where m'o = E m(x)w(x). The sum in (4.3.1) is finite by
X€L

assumptions A2 and A3.
As in the appendix, the specification (HJ) associated

to the interaction potential PJ is determined by,

J =
HA(w,f) =
J —l ' [ :
ZA(m) j f(waQL\A)exp{ 2 J(m)cos(m-mAxmL\A})dmA'
Q(A) m:supp(m)NAg#é
(4.3.2)

where f is any continuous function on Q, Zi(w) is the
normalization constant, and dmA denotes Lebesque measure on
aca) = st

Lemma 4.3.1 Let AccL (AcL |A|< w) and m€zl with

supp(m)cA, then
|1} (@, cos(m-w*))| ¢ A%(0,cos(m-w')), (4.3.3)
where 0 denotes the zero configuration.
Proof: This is an immediate consequence of Corollary
4.2.2, and the definition of the specification in equation

(4.3.2). Q.E.D.
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Lemma 4.3.2 Let f be a continuous function on 2, and

max 19 (@, £). (4.3.4)

+
e
A weq A

Then H;(f) decreases as A increases.

Proof: Let ACA'CcL. Then by Lemma A.2.1

J _gJ J. . J + _ gt
HA.(m,f) = ”A'(”'”A( E)) 2 HA,(M,HA(f)) = HA(f) (4.3.5)

for all w€Q. Hence, R,,(£) £ H;(f). Q.E.D.

+
Al
+

As a result of this lemma, p+(f) = 1lim HA(f) exists for each

AL

continuous function £.

Remark 4.3.1 Lemma 4.3.2 is a standard result, see for

example Preston (1].

Lemma 4.3.3 For each continuous function (f),

£°(£) = lim H)(0, ) (4.3.6)
AfL
exists. Furthermore,
(el - (Ocos(mw)) = g (cos(m-@)) (4.3.7)

L

for any m€Z2- with finite support.

Proof: By the Stone-Weierstrass theorem, linear

ime

combinations of functions of the form e are dense (in

the sup-norm) in the set of continuous functions on Q. So
by an €/3 argument it suffices to show that (4.3.7) is

¢y = Hi(o,cos(m-m)), since by

valid. But 75(0,e'™
reflection invariance Hi(o,sin(m-a)) = 0. So by Lemmas

4.3.1 and 4.3.2, it follows that

o, im-o, _ J ima J

a (e ) = lim HA(O,e ) = 1lim HA(O,cos(m-m))
AtL AtL
= 1im H;(cos(m-m)) = ¥ (cos(m-a)). (4.3.8)
AL
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Lemma 4.3.4 The correlation inequality (4.2.5) still

holds with (:> replaced by po(-) (of equation (4.3.6)) and
(->' replace by u(:), where ¢ is any Gibbs state for the
interaction PJ. Consequently, the inequality

#°(cos(m-w)) 2> g(cos(m-®)) (4.3.9)
and the result that if #°(cos(m-®)) = g(cos(m-w)) then
#°(sin(m-)) = g(sin(m-@)) are still valid.

Proof: Let m and n be integer valued functions on Z
with finite support and ACCL be such that A contains the
supports of both m and n. By Proposition 4.2.1, inequality
(4.2.5) holds with <.> replaced by #5(0,:) and <:>'
replaced by Hi(m,-). Replace the absolute value in (4.2.5)
by (%), and then integrate the egquation with respect to the
Gibbs state . After using the D.L.R. equations we get
Hi(o,cos(m-m)cos(n-m)) - g(cos(m'w — ¥r(m))cos(n-w — ¥(n)))
> +[X)(0,cos(m-@))u(cos(n-e ~ y(n))

- #(cos(m:o - W(m))ﬂi(o,cos(n-m))], (4.3.9)
where ¥(m) and ¥(n) are arbitrary real numbers. The desired
inequality follows by letting A{L in equation (4.3.9). The
rest of the Lemma follows by the same arguments as in the
proofs of Corollaries 4.2.1 and 4.2.2. Q.E.D.

Proposition 4.3.1 The thermodynamic limit ﬂo(') (see

(4.3.6)) is an extreme Gibbs state. (See Theorem 1 of

Messager et al. [11].)
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Proof: Suppose that u° = suy + (l—s)y2 with s€(0,1).
I will show that L yo, so that yo must be extreme.

Let mGZL be a function of finite support. By Lemma
4.3.4, yo(cos(m-w)) > ﬂi(cos(m-w)), so ﬂo(cos(m-m)) =
pi(cos(m-w)) for i = 1 or 2. Hence, again by Lemma 4.3.4,
yo(sin(m-w)) = ﬂi(sin(m-m)) for i =1 or 2. Since linear
combinations of such cosines and sine functions are dense in
the continuous functions with the sup-norm topology
(Stone-Weierstrass theorem), it follows that yo(f) = pl(f) =
yz(f) for all continuous f£. So the probability (necessarily

Borel) measures yo, ”1’ and ”2 are all equal. Q.E.D.

Section 4.4 Invariance Properties of ”o

Let T:L—L be a bijection of the lattice (L). The map
(T) induces actions on  and functions on Q,
T(@) = woT (4.4.1)
and
T(f)(w) = £(woT) (4.4.2)

respectively.

Proposition 4.4.1 Let J be an integer valued function

on ZL satisfying the assumptions Al - A3 in Section 4.3 and
which is also invariant under the action of T, that is
J(meT) = J(m) for all mEZL. Then the Gibbs state ”o (see
(4.3.6)) is invariant under the action of T, yoT_l = yo.

Before proving Proposition 4.4.1, we first observe the

following easy lemma.
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Lemma 4.4.1 Let J satisfy the hypothesis of

Proposition 4.4.1, then the associated interaction potential

J J
(PJ), energy (HJ = HP ), and specification (nJE n? ) have
the transformation properties:
J oY
a PA(moT) = PT(A)(”) (4.4.3)
J . - uJ '
b) HA(GOTIa oT) = HT(A)(ulu ) (4.4.4)
J R |
c) EA(mOT,foT) = ”T(A)(“'f)’ (4.4.5)

where o, w'€Q)}, AccL,, and £ is a bounded function on Q.
Proof: a)

Pi(uoT) = 2 J(m)cos(m-woT) = E J(m)cos(meT L. @)

m:supp(m) = A m:supp(m) = A
= 2 J(moT Yycos(meT 1. 0) = 2 J(m)cos(m-®),
m:supp(m) = A m:supp(m) = T(A)
C wJ
= frea) (@)

where the invariance of J was used in the third inequality.
The proofs of (b), and (c) are also easy computations
of the same spirit as the proof of (a). Q.E.D.

Proof of Proposition 4.4.1: Let £ be a function on 1,

then
21 () = p°(£0T) = lim Hi(O,foT)
AL
J -1 .
= lim A& (0oT 1, £) =1im n (0, £)
AL T(A) AfL | T(A)
= u°(f),

where equation (4.4.5) was used in the third equality, the
fact that the zero configuration is invariant under the
action (T) in the fourth, and the observation that T(A){L as

AfL in the last equality. Q.E.D.



Chapter 5%

CONVERGENCE FOR WILSON ACTION

In this chapter we will find a class of interaction
functions (h) and associated Gibbs states which verify the
hypothesis of Theorem 3.2.2. Furthermore, for this class of
energy functions it will be shown (for all but a countable
number of values of the coupling constant) that the 1limit in
Theorem 3.2.2 exists and is independent of the invariant

Gibbs state chosen.

Section 5.1 Extreme States for Wilson-like Actions

Definition 5.1.1 The functions h:R — R of the form

N
h(x) =Db —z bkcos(k-x), (5.1.1)
k=1
where bk > 0,and b€ER are called Wilson-like energy
functions.

Remark 5.1.1 A Wilson-like energy function is an

energy function as defined in Section 2.3. The Wilson and
Generalized Wilson actions of Examples 2.3.1 and 2.3.2 are
examples of Wilson-like functions.

Remark 5.1.2 The constant b is irrelevant since the

associated specifications are independent b, see equation

(2.3.4).
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Theorem 5.1.1 Let h be a Wilson-like function and Hh
its associated specification, see equation (2.3.4). Then
the thermodynamic limit

#° = weak-lim ZR(0, ), (5.1.2)
BfB+

exists (independent of how BtB+), and furthermore po is an
extreme (translation and 90°-rotation) invariant Gibbs
state.
Proof: To each positively oriented plaquette (p), let
mp(b) = 1ap(b) - 1_ap(b), (5.1.3)

where bEB+ (so mpGZB+). Define an integer valued function

(J) on ZB+ ’

{ bk ifm = kmp for some p€P+ and k =1,:--,N

0 otherwise

J(m) =

r

(5.1.4)

with the bk's as in (5.1.1). With this definition of J it

J
is easy to check that the specification (HP ) as defined in

equation 4.3.2 is the same as the specification (Hh) as
defined in equation (2.3.4). Also the invariance of J with
respect to translations and 90°-rotations is obvious.

Hence, the existence of the limit in (5.1.2) and the fact
that po is extreme follows from Lemma 4.3.3 and Proposition
4.3.1 respectively. The invariance of thé measure follows
by applying Proposition 4.4.1 a number of times with T being
a translation in the various coordinate directions or a

90°—rotation. Q.E.D.
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Corollary 5.1.1 (d=4) Let h be a Wilson-like action,

po be the Gibbs state as in Theorem 5.5.1, and j be a real
valued test l-form on m4. Then
i(J,3.)

lim #°(e a’) = exp(:%—(dj,dj)), (5.1.5)

alo
where J is the lattice current associated to h, ja is the
lattice approximation to j, (Section 2.3), and a =
po(h"(dm(p))) where p is any plaquette.

Proof: The Corollary is a direct consequence of

Theorems 5.1.1 and 3.2.2. Q.E.D.

Seciton 5.2 Independence of the Limit

Theorem 5.2.1 (d=4) Let h be a Wilson-like energy

function, j a real valued test 1-form on R>, and 8 > 0 (8 =
g_z, where g is the coupling constant). Let ”p € G(Bh) be
any invariant Gibbs state. Then for all but at most a

countable number of B (independent of j),

lim w (et¢J-35)) - exp(73—(a3,d3)), (5.2.1)
alo B B
where a = pZ(h"(dm(p)) and p; is the Gibbs state for the

interaction Bh as defined in equation (5.1.2).

The proof of Theorem 5.2.1 will be postponed. Our
first goal will be to find a criteria on a Gibbs state which
insures that the limit in (5.2.1) exists and is the desired
value. The following theorem is closely related to Theorem

3.2.3, and will take its place in this setting.
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Theorem 5.2.2 Let h be a Wilson-like energy function,

P, be a fixed plaquette based at 0, and K€G(h) be any Gibbs
state such that ﬂo(cos(dm(po)) = p(cos(dm(po)). Then

103,30y ¢ KO3, a3 N, 05 W,) -0 (a),
o

(5.2.2)

|cov”(h"(dm(po)),e

where K is an increasing function in its arguments,

Opo(a) — 0 as a — 0, and j is any real test l1l-form on m4
(i.e. the estimate (3.2.32) is still valid).
Proof: For ease of notation set fo= h”(dm(po)). By
Theorem A.5.1 we may decompose g into its extreme states;
#(f) = I v(£)P(dv), (5.2.3)
G (h)
where P is a probability measure on Ge(h) and £ is any
continuous function on {. Set f = fo in (5.2.3) and use
#CE£) > #O(£) 2 v(£)) for all ve€G(h) (Lemma 4.3.4) to
conclude that
P{veG_(h): w(f)) = ﬂo(fo)} = 1. (5.2.4)

If £ is any continuous function on @, let %: Ge(h) — R be
the function E(u) = v(f). By definition, the function E is
measurable on Ge(h), see Theorem A.5.1. With this notation
we may restate (5.2.4) as %o = ﬂo(fo) P-almost surely.

Now if £ and g are two continuous functions on 2 and g
is given by equation (5.2.3), an easy computation shows that

cov ,(£,9) = J cov (£,9)P(dv) + covy(£,g).  (5.2.5)
G, (h)
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In particular if £ = fo’ then

covﬂ(fo,g) = J covu(fo,g)P(du), (5.2.6)
Ge(h)

since 26 is a constant P-almost surely. By Theorem 3.2.3,
for each vEGe(h) there exist functions K and Ou such that
|covv(fo,ei(J'ja))| < K(njm , najn_,udj_n,)-o (aj, (6.2.7)
where K is increasing in its arguments, Ov(a) — 0 as a —
0, and j is any real test l-form. Furthermore, looking at
the proof of Theorem 3.2.3, the function K may be chosen to
be continuous and independent of the Gibbs state v. For
later convenience the function K is also chosen to be larger
than one. It will be shown below (Lemma 5.2.3) that the
functions Ou(a) may be chosen so that for each fixed a the

map v — Ov(a) is measurable on Ge(h) and the map is bounded

by one. So use the estimate (5.2.7) in equation (5.2.6)
i(Jd,i))

with g = e a’ to get
i(J3,3i) . X .
Icovp(fo,e a’)] ¢ K(Wjn_, nasn_,uaj_u,) opo(a), (5.2.8)
where
Op (a) = J Ov(a) P(dv). (5.2.9)

o
Ge(h)

An application of the dominated convergence theorem shows

that 0p (a) — 0 as a — 0. Q.E.D.
o

Corollary 5.2.1 Let h be a Wilson-like energy function

and #€G(h) be an invariant Gibbs state such that

g(h"(dw(p))) = yo(h"(dm(p))) for some plaquette p (and hence
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all p's). Then for each real test l-form on m4,
1im pe77a)) = exp(H—aj, a3, (5.2.10)
alo

where a = #°(h"(de(p_))).

Proof: The proof is the same as the proof of Theorem
3.2.2 after using Theorem 5.2.2 in place of Theorem 3.2.3
part (b). Q.E.D.

This corollary is the desired convergence criteria that
we were seeking. Its proof will be complete once we
dispense with the technical detail of measurability in the
proof of Theorem 5.2.2.

Lemma 5.2.1 The collection of real continuous

functions on m4 with compact support (cc(m4)) is separable
in the sup-norm topology. Furthermore, a countable dense
set DcCc(R4) may be chosen to have the following property.
It fECc(R4) and n is sufficiently large such that the

supp(£)cB(0,n) = {xER4: |x|[ ¢ n}, then there exists g€D

It

arbitrarily close to £ with the supp(g)c B(0,n+l).
Proof: Let D' be the collection of continuous

functions formed by taking polynomials with rational

coefficients of the functions x — |x - y] :R? 5 R, where

yem4 with rational components. The collection D' is a

countable set. By the Stone-Weierstrass theorem the
collection D' when restricted to any compact set KCIR4 is

dense in C(K).
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For each positive integer n, choose gnGCC(R4) such that
supp(gn)cB(O,n+1), g, = 1 on B(O,n), and 0 £ 9n ¢l. We now
define the countable collection of functions (D) as D =
{fgn: f€D' and n a positive integer}. Then if fGCC(R4) with
supp(£)cB(0,n) there exists hkeD' such that
e -~ hk“Lw(B(O,n+1)) — 0 as k — . Hence If - gnh

as k — o, since lIf - gnhkllm € If - h

kﬂmra 0

k"L (B(0,n+1)) "
Q.E.D.

Definition 5.2.1 A continuous k-form (¥) on Rd is a

continuous function from Rd to the degree-k exterior algebra
over Rd. In other words, ¥ is a differential k-form except
that the standard coefficients are only required to be
continuous rather than smooth.

Lemma 5.2.2 Let a > 0 be fixed. Let X denote the

space of pairs <j,¥>, where j is a continuous l-form and ¥
is a continuous 2-form on R4 both with compact support. The

space X is given the norm

n<ji, N = Hj“mf“P“m+ﬂ?aH (5.2.11)

2°
With the above notation, the space (X,ll:ll) is a separable
space.

Proof: Put W<F, #>N = NjN_+ uwanm. Let Docx be the
collection of pairs which have all of their components in
the set D of Lemma 5.2.1. The countable set D° is clearly
dense in the space (X,H(-,-)Hm). So let € > 0, and <(j.,.¥P>€X
be given, and suppose that supp(<ji,¥>)cB(0,n). Then by

Lemma 5.2.1, there exist <jk,Pk>€Do supported in B(0,n+1)
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converging to <j,¥> in the sup-norm. It follows by the easy

estimate
4
(e - ‘Pk)all2 £ Kln + 1 + 2al’ll¥ Pkﬂm, (5.2.12)
that H(jk,Pk> - <j,P>l —m 0 as n — o, where K is the volume
of the unit sphere in 4-dimensions. Q.E.D.

Lemma 5.2.3 Let K be a continuous function, increasing

in its arguments, K 2z 1, and such that an estimate of form
(3.2.32) of Theorem 3.2.3 is valid for all extreme Gibbs
states v. Then for each a€(0,1), the function

Icovv(fo.ei(J’ja))l

O”(a) = sup{ : j is a test l—form.}

K(Hj"m,“dj“m,ﬂdjaﬂz)
(5.2.13)
is measurable as a function of uEGe(h). Furthermore Ou(a)
is uniformly bounded by 2nh"nm, and Ov(a) — 0 as a — 0.
Proof: FEach real test l-form (j) may be identified
with the element <j,dj>€X, where X is the space defined in
Lemma 5.2.2. The space of test l-forms given the norm
h3in = H<j,airn (5.2.14)
is a subspace of the separable normed space X, and hence is

separable. The expression in the bracket of equation
(56.2.13) is easily seen to be continuous in the H:lI -
topology. So it suffices to take the supremum in (5.2.13)
over a countable set. But the expression in the braces of
(5.2.13) when considered as a function of v is measurable

(by definition), and hence so is v — Ov(a).
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The estimate that O“(a) ¢ 20h"#_ is trivial. The fact
that Ou(a) — 0 as a — 0 is Theorem 3.2.3. Q.E.D.

The next objective is the proof of Theorem 5.2.1. 1In
view of Corollary 5.2.1, it is enough to show the following
proposition.

Proposition 5.2.1 (Dimension = d.) Let h be a

Wilson-like energy function, then each translation invariant
measure €G(Bh) satisfies g(h"(dw(p))) = #g(h"(du(p))) (p is
any plaguette), for all but at most a countable number of
8> 0.

Remark 5.2.1 This result is modeled on Corollary 4.3

of Pfister [1l], and Proposition 3.5 of Frohlich and Pfister
{1].

Proof: As noted in Remark 5.1.2 there is no loss of
generality in assuming that b = 0 in eguation (5.1.1).

Under this assumption

h"(x) = -h(x) = bkcos(kx). (5.2.15)
k=1
Let

p(p) = p(ehh) (5.2.16)
where P(Pﬁh) is defined in Theorem 2.4.1. By Theorem 2.4.1,
the function P(A) is a convex continuous function. So by
standard facts about convex functions, P'(B8) exists for all

but a countable number of B > 0. By Theorem 2.4.1, Theorem

aefh g
A.8.1, and T = L
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P (B) = —Bul E B 71D = -Buc 2 h(de(p))/4 )

BCB+:0€B° pc?+:0€6p°

-Bu( } h(dw(p)) ) = Bu( 2 h"(dw(p)) ),
pcP+:0€base(p) pcP, :0€base(p)

(6.2.17)

where u€G(Bh) is any translation invariant Gibbs state and B
is a point where P'(B8) exists. By equation (5.2.15), h" is
a sum of cosine terms with positive coefficients, and hence
by Lemma 4.3.4

#g(h"(de(p))) » u(h"(de(p))) (5.2.18)
for all plaquettes p and x€G(Bh). 1In view of equation
{5.2.17) and (5.2.18) we conclude that

Kg(h"(de(p))) = u(h"(de(p))) (5.2.19)
for all plaquettes p and translation invariant w€G(8h).
Equation (5.2.19) is valid for all B for which P'(8) exists,
that is for all but a countable number of 8's. Q.E.D.

Proof of Theorem 5.2.1: As already noted, Theorem

5.2.1 is a direct consequence of Corollary 5.2.1 and

Proposition 5.2.1. Q.E.D.



Appendix

COMPACT LATTICE BASICS

Section A.1 General Notation

This appendix is devoted to some of the basic facts
about compact lattice statistical mechanical models which
are used in this thesis. 1In particular the notion of Gibbs
states and their basic properties will be reviewed. The
proofs of the results stated here may be found in the
manuscripts of Israel (11, Preston (11, and Ruelle [1].

The following notation will be fixed in this appendix.
Let S (state space) be a compact metric space, L an
arbitrary countable set, and v a given probability measure
on the Borel sets of S. The configuration space () for the
system is defined to be SL. That is, @ is the collection of
functions from the lattice (L) to the state space (S8). More
generally, the configurations over A (Q(A)) is Q(A)= SA,
where ACL. Since A is a countable set, Q(A) may be
considered as a compact metric space.

The sets 2(A) may also be considered as measurable
spaces when endowed with the Borel o-algebra. The Borel
o-algebras on Q(A) may be pulled back to o-algebras on .
Namely, let F(A) be the smallest o-algebra on @ for which
the projection maps of © onto Q(A) are measurable. The

projection maps Q onto Q(A) will be denoted by &« — @,

72
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where @, is ® restricted to the set A. (A function (£f) is

A

F(A)-mesurable iff there is a measurable function (g) on

Q(A) with f(w) = g(mA).) It will also be convenient to set

F,=z F(LANA), F =N F, , and F the smallest o-algebra
A oo A
ACCL,
containing FA for all AccL. ( A function is TA measurable

if it only depends on the configurations outside of A.) For

ACL,, UAE I v will denote the product measure on 2(A).

i€eaA
Finally if AcL, it is natural to write Q as a product

of two factors, & 2 Q(A) x Q(L\A). Corresponding to this

decomposition we write ¢ =, x @

A LAAT

Section A.2 Definition of Gibbs States

Definition A.2.1 An interaction potential (¥) is a

collection {'PA}Ach of real functions on configuration space

(2), such that PA is F(A) measurable. The notation AcCcCL

denotes AcL and |A|<«, where |A]| is the cardinality of A.
The interaction potential ¥ = {'PA}Ach is said to be of
finite range if there exists a positive integer n, such that

©,=0 if [A]>n.

Remark A.2.1 The space of (finite range) interaction
potentials naturally forms a real vector space. For our
purposes it is sufficient to restrict attention to the
vector space of finite range interaction potentials. This
restriction will be assumed below without further mention,

even though the results hold with more general hypotheses.
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[A]™Y n e, w
L]

Definition A.2.2 HN¥Il = sup A

X€EL } A:X€EACCL
Definition A.2.3 Let AccL. The energy (Hi(m|m')) of a

configuration w€Q ("in" A) given a configuration «'€Q
("outside" of A) is defined by:

P [ ] — I

Hyolo')= 40 pinage Par (9a%@0\A) (A.2.1)

R . s s . P_ P
Definition A.2.4 The specification ¥ = {HA}Ach

assosciated to the interaction potential (¥) is the

collection of maps Hi:ﬂ X F—— [0,1), defined by:

) (A.2.2)

w
P _oP, -1 -Hi(e'le) A, _, -
”A(M,A)= ZA(u) IAe A v (dmA) Bu (dmL\A

L\A

where 5@ denctes the point mass at o on Q(L\A) and

L\A
P . ®
ZA(u) is chosen so that HA(m,Q) = 1.

L\A

Lemma A.2.1 The specifications Ri's have the following

properties:
a) Hi(-,A) is a continuous FA—measurable function on
Q for all ACcCL and A€F.
b) Hi(m,-) is a probability measure on (Q,F).
c) If A cC A'ccL,, then
AT JOTEI STEE LTI AT YO T
d) If £ is F, measurable, then My(:,£) = f

Remark A.2.2 Lemma A.2.1 follows by inspection and

straight forward computations. Property (c) and (d) lead to
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the interpretation of Hi(m,-) as conditional probabilities.
The probability measures Hi(u,-) are said to be a finite
volume Gibbs state over A with boundary conditions .

Definition A.2.5 An infinite volume Gibbs state (u)

for the interaction potential (¥) is a probability measure
on (Q,F) such that for each AcCCL and A€F:
il (-, B)=(R), (A.2.3)
P P
where pHA(-,A) = ﬂ(HA(-,A))

Remark A.2.3 The equations (A.2.3) are know as the

D.L.R. equations (Dobrushin, Lanford, and Ruelle).
Probabilisticly, the D.L.R. equations express the fact that
& is a Gibbs state iff Hﬁ = p(-lFA) 4-almost surely for all
AccL, where y(-IFA) is the conditional expectation of g
given FA. Let G(¥) denote the collection of Gibbs states
associated with the interaction potential (¥).

Remark A.2.4 By property (c) of Lemma A.2.1, to

determine if a probability measure is a Gibbs state, it
suffices to check the D.L.R. equations for any fixed
sequence Anch with Ant L.

Let #o= HA (Mn,-), with @ an arbitrary sequence in Q,

n

and Anch such that Anf L in the sense that An eventually
encloses any finite subset of L. By compactness we may pass
to a subsequence (again denoted by ﬂn) for which #o
converges weakly (ﬂn(f) — u(f) for all continuous £) to a

probability measure g on Q.
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Definition A.2.6 Any probability measure (g)

constructed above is called a thermodynamic limit.

Theorem A.2.1 The set of Gibbs states G(¥) is a

nonempty convex set of probability measures on {2. The set
G(¥) contains all thermodynamic limits. In fact G(¥) may be
constructed by taking convex combinations of the

thermodynamic limits.

Section A.3 Cluster Properties of Gibbs States

Definition A.3.1 A Gibbs state g is said to be extreme

if it can not be written as a convex combination of two
distinct Gibbs states. Let Ge(P) denote the set of extrenme
Gibbs states.

Definition A.3.2 A Gibbs state (g) is said to have the

cluster property (C) if for all £f€C(f2) there exists ACCL

such that if g€C(f2) and is FA measurable then

Icovﬂ(f,g)ls ng i, (A.3.1)
where cov”(f,g)z #(£g)-u(£)u(g). and #-ll_ is the sup-norm.
Theorem A.3.1 (Ruelle (1] or Preston [11}) A Gibbs

state g is extreme if and only if g has the cluster property
().

Corollary A.3.1 G(¥) contains only one element iff

each Gibbs state satisfies the cluster property (C).
The corollary is a direct consequence of the theorem,
since G(¥) has more than one element iff there exists a

non-extreme Gibbs state.
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Definition A.3.3 A Gibbs state (g) is said to satisfy

the strong cluster property (SC) if for all £f€C(Q) there
exists ACcCL such that if g€C(Q) and is FA measurable then
Icov”(f,g)ls uClal). (A.3.2)

Theorem A.3.2 (Ruelle [1]) If G(¥) consists of only

one element g, then g has the strong cluster property.

Section A.4 Dobrushin's Uniqueness Theorem

This section contains a version of Dobrusin's
uniqueness theorem which is a combination of Dobrushin's
results and an estimate of B. Simon (3]. See Dobrushin (1]
for Dobrushin's original work, or Gross (1] or Follmer (1]
for another proof. For related material on decay of
correlations see Gross (2], and Kunsch [1] and the
references therein.

Theorem A.4.1 Suppose sup Z (la]-1) u Pall, <1,
X€EL A:x€A

then G(¥) has only one element.

Section A.5 Simplex Properties of G(¥)

This section contains a version of the well known fact
that every Gibbs state is a unique convex decomposition of
extreme Gibbs states. The usual version appeals to theorems
about Choquet simplexes, for example see Ruelle [(l]). Rather
than taking this route, we will follow the treatment of
Dynkin {1] and Preston [1l], and apply a theorem of Dynkin's

on "Sufficient Statistics".
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Let Anch be a sequence increasing to L, and

Q = {w€Q : 1lim HP
o A
n—oo n

(w,f) exists for all f€C(Q) }.

Fix any yOEG(P) and put

o lim I (@,£) 1f w€q_

} /4 (m,f)s{ n—o n (A.5.1)

ﬂo(f) otherwise

where £ is any continuous function. It is easy to check
that HP(M,') is a positive linear functional with HP(G,I) =
1. Hence, by the Riesz representation theorem ﬂp(m,~) may
be considered as a probability measure on Q. In fact, if
wGQo then ﬂp(m,-) is a thermodynamic limit, and thus is also

a Gibbs state.

Lemma A.5.1 Let RP(-,-) be as above and g be any Gibbs

state, then:

a) ﬂp(-,A) is F_ measurable for all A€F.

b) p(Qo) =1

c) the conditional probability wm(A[|F_ ) = HP(-,A) i

almost surely.

d) I (e, )€G(P) for all weq.

Proof: Assertion (a) is clear by inspection, and (d)
has already been noted. Let {fn} be a countable dense
subset (in the sup-norm) for C(Q). By standard /3 argument

one finds that Qo= {w€Q : 1lim ﬂi (m,fm) exists for all m.}.
n—oo n

But for any fixed m: Xn = HAP(-,fm) is a reverse martingale
n

with respect to the measure # and the filtration FA
n
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Hence, by standard martingale convergence theorems (see
Ikeda and Watanabe [1l]) the set

{w€Q : lim HP (a,fm) exists } has g-measure 1 for each
n—oo n

fixed m. Since {fn} is a countable set, it follows that Qo
also has u—measure one, which proves (b). It is easy to
show that the conditional expectation g(£|F_ ) = L6
(#4—almost surely) if £ is a continuous function. By the
monotone class theorem one may extend the result to all

bounded measurable functions. This proves (c). Q.E.D.

Theorem A.5.1 For all u€G(P) there exists a unique

probability measure (P) on Ge(P) such that :

u(E) = I v(£) dP(w) (A.5.2)
Ge(P)
for all bounded F-measurable functions (f). The c-algebra

on Ge(P) is taken to be the smallest o-algebra such that
the maps v— v(f):Ge(P) — R are measurable for all
bounded F-measurable functions (f). Furthermore, the
measure (P) is explicitly given by

P(M) = u({w: R (w,-)EM }) (3.5.3)
where M is a measurable subset of Ge(P)

Remark A.5.1 Theorem A.5.1 is the content of Theorems

3.1 and 5.1 in Dynkin {1), specialized to compact lattice
models. See also Chapter 2 of Preston [(1].

Corollary A.5.1 To construct G(¥) it suffices to

consider only convex combinations of thermodynamic limits of
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the form lim HP (s, +) where An is any fixed sequence of
n—w “n

subsets of L converging to L, and «w€Q are points for which

the limit exists (weak limit).

Section A.6 Definition of Pressure

For the remainder of this appendix we specialize the

lattice (L) to be Zd where 2 is the set of integers and 4 is

Zd
the dimension — a positive integer. Hence, Q2 is now S .
Let Tx :Zd ——4Zd, be translation by the element xEZd. The
action of Tx naturally induces actions on € by Tx(w)suoT_x,
and on functions (f) on Q by T _(f)= £=T__, that is
Tx(f)(u)=f(uOTx). Note the abuse of notation of using the
same symbol Tx in all cases.

All interaction potentials ¥ = {'PA}Ach are now assumed
invariant under translations by elements of Zd. Explicitly,
this means that

PA+X(M)=PA(69TX), (A.6.1)
for all xEZd, AccL, and w€Q.

Definjtion A.6.1 The pressure of a translation

invariant interaction potential (¥), over a finite subset
Accz? with boundary conditions €@ is the function
-1 P
PA(m,P) = |4 1ln ZA(M), (A.6.2)
where Z:(w) is the normalization constant in Definition

A.2.4.
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Theorem A.6.1 Let An be a sequence of cubes in Zd with

4 12%. Then P(®) = lim P, (&,9) exists for all €@, and is

n—xe n

in fact independent of the boundary condition @, and the
sequence An. Furthermore, P(:) is a convex function of the
translation invariant interaction potentials and satisfies
the following estimate:

[P(P) - P(¥) s ¥ - ¥ 1l (A.6.3)
where ¥,and ¥ are any finite range interaction potentials.

(N was defined in Definition A.2.2.)

Section A.7 Convex Functions

Let (X, i) be a real normed linear vector space.

Definition A.7.1 A function P:X — R is said to be

convex if for all x,y€X and s€(0,1]
P(sx+(1-s)y)<sP(x)+(1-s)P(y). (A.7.1)

Definition A.7.2 Let P be a continuous convex function

on X, and x a fixed point in X. A tangent functional to P
at x is a continuous linear functional (a) on X such that

P(y)-P(x)2a(y—x) (A.7.2)
for all ye€X.

Theorem A.7.1 If P is a continuous convex function,

then

P(x+hy) - P(x)
h

atp(x)=1im
Y hlo

exists for all x,y€X, and furthermore there exists a tangent

(A.7.3)

functional a at x to P with a(y) = B;P(x).
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Proof: The fact that the limit in equation (A.7.3)
exists follows from the basic fact that convex functions of
one real variable have one sided derivatives everywhere.
For the rest of the proof we may assume without loss of
generality that x=0 and P(x)=0. Let Y be the subspace of X

which is the span of the vector y. Define a linear

functional a  on Y by ao(sy) sa;P(O) for all s€R. Then
aos P on the subspace ¥. So by the Hahn-Banach theorem (see
Reed and Simon [1]) there exists a continuous linear
functional (a) on X which is an extension of a  on b4
satisfying a £ P. This a is the desired tangent functional.

Q.E.D.

Corollary A.7.1 The continuous convex function (P) has

at least one tangent functional at each point x of X.

Section A.8 Equilibrium States

Definition A.8.1 An Equilibrium state is a translation

invariant Gibbs state. That is w€G(¥) is an equilibrium
state if .uOTx = g4 for all translations Tx'

Definition A.8.2 If ¥ is a translation invariant

interaction potential, put

Ay = —2 |A|_1'PA (A.8.1)
A:0€EACCL

Definition A.8.3 If £ is a continuous F(Ao)~measurab1e

function, (Aoch) ,» then let Wf be the interaction potential
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(A.8.2)

f(woT ) if A = A +x for some xEZd
£ _ b < o)

0 otherwise

Theorem A.8.1 There is a one to one correspondence

between equilibrium states and tangent functionals to the
pressure. Specifically, if ¥ is a finite range translation
invariant interaction potential, and ¥ an equilibrium state
for ¥ then the corresponding tangent functional a is

a(¥) = u(A¥) (A.8.3)
where ¥ is any other such interaction potential. On the
other hand, if a is a tangent functional to P at ¥, the
corresponding Gibbs state () is determined by

u(e) = -acvly, (A.8.4)
where £ and Wf are as in definition (A.8.3).

Corollary A.8.1 If ¥ is a translation invariant finite

range interaction potential then G(¥) contains an
equilibrium state.

Proof: This follows from Corollary A.7.1 and Theorem
A.8.1. Q.E.D.

Remark A.8.1 The corollary may also be proved by

taking any Gibbs state and then averaging over translations
by elements of finite subsets of Zd. By translation
invariance of the potential and convexity of G(¥), the
averages will still be Gibbs states. By compactness, there
will be a subsequence of these averages which converges to a

Gibbs state which is necessarily translation invariant.
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Corollary A.8.2: Let ¥ and ¥ be translation invariant

interaction potentials, then g;IOP(P + s¥) exists if and
only if #(A¥) = C (C a constant) independent of all geEG(¥)
which are translation invariant. Furthermore, when the

derivative exists it is given by the constant C.

Proof: By Theorem A.7.1 and Theorem A.8.1, if g(AY¥)

C independent of the translation invariant g, then 6;P(P)
C. Similarly, the left handed derivative 6;P(P) must also

be the constant C. Hence, gEIOP(P + s¥) exists and is equal

to C.
On the other hand, it is easy to check that
3LP(P) 5 al®) $ A LP(P) (A.8.5)
for all tangent functionals (a) to the pressure (P). So if
d . . _ a- _d
EIOP('P + s¥) exists, a(¥) = 3 P(¥) = 3.P(¥) = EE'OP“P + s¥)

independent of the tangent functional a. But by Theorem
A.8.1 the tangent functionals to the pressure are in one to
one correspondence with the translation invariant Gibbs

states. Q.E.D.



Appendix B

BASIC IDEAS OF CONSTRUCTIVE FIELD THEORY

Section B.1 Quantum Mechanics

This appendix discusses the basic ideas of constructive
quantum field theory, with the goal of motivating the
informal expression for the Euclidean Yang-Mills measure. I
will concentrate on the probabilistic approach first
introduced by Symanzik [1l] and Nelson [1l]. The
computational aspects will not be emphasized in an effort
not to obscure the main ideas. For more detailed accounts
see Glimm and Jaffe (1], Simon (1], and Simon [2] For a
more physical review, see Kogut [1], and Seiler [11].

Before jumping into field theory it is wise to first
look at the probabilistic approach applied to guantum
mechanics. For this purpose consider the classical
mechanical system described by Newton's equations of motion

x"(t) = -wWW(x(t)), (B.1.1)
where x:R — R3,and V:IR3 — R. The corresponding quantum
mechanical time evolution is given by the Schordinger
equation

iw'(t) = H¥(t), (B.1.2)
where y:R — Lz(m3,dx) (A is Lebesque measure), and H is the

Hamiltonian,

H=-(1/2)4 + Mv. (B.1.3)
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The symbol M,, denotes multiplication by the function V. The

\
domain of H is chosen such that H is self-adjoint. Hence,
by the spectral theorem the solution to (B.1.2) is given by
the unitary time evolution operator

uct) = e MR (B.1.4)

In order to incorporate probability theory into the

discussion in the relevant form it is necessary to evaluate
the time evolution operator at imaginary times
S(t) = U(-it) = e tH, (B.1.5)

where t z 0. The operators {S(t)} form a bounded

t:z0
semigroup provided that ho= inf spec(H) > -ew. (This
condition on the spectrum of H is physically reasonable,
since it prevents the system from releasing an infinite
amount of energy under small perturbations.) We now replace
H by the physically equivalent Hamiltonian ﬁ = H - AOI and

~

replace S(t) by §(t) = e—tH, then S is a contraction

semigroup of positivity preserving operators. Thus § may be
used to specify transition probabilities for a Markov
process (Xt). We will see below that the path space measure
(#) for the process (Xt) (started with the invariant measure
if it exists) is well characterized by the informal
expression

1

du(x) = 2 "exp I[—(I/Z)Ix'(t)|2+ V(x(t))lat|px. (B.1.6)

R

3

Where x€0Q = {x: x:M — R” and x is continuous},
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3 :
Dx =R R dx'(t) is "infinite dimensional Lebesque
i=1 tem

measure”, and 2 is a normalization constant so that # is a
probability measure on . Before giving a more precise
meaning to (B.1.6), it will be convenient to introduce some

notation.

For each T > 0, let QT {x: x:[{-T,T] — m3, X is
continuous}. The space QT is a Banach space when given the

sup-norm. Let Ve denote Wiener measure on the Borel

o-algebra of €, with the starting distribution of Lebesque

T

measure. Explicitly, v, is the unique measure on £, such

T T

that

I f(x(to),x(tz),"',x(tn))vT(dX) =

2y
Jf(xo,xz,---,xn)[pt -t (xo,xl)pt -t (xl,xz)---
1 0 2 1
IR3(n+l)
XPy _4 (xn_l,xn)]dxodxz---dxn, (B.1.7)
n n-1
. X 3(n+l) _
where £ is a bounded measurable function on R , =T =
t < t.< t,<+++<t_ =T, and p,(x,y) = (kernel of e™®/21(x,y)
0° F1° "2 n - Pei¥-¥ ¥

-3/2 _-(1/72t) |x-y|?

= (2mt) It should be noted that v, is

T
not a probability measure, in fact x(t) is distributed by
Lebesque measure for each t€{-T,Tl.

I will now describe a class of probability measures
which is closely related to the informal expression (B.1.6)
3

To each pair of non-negative functions f,gELZ(m ,d\), we

assign a probability measure (ﬂf g T) on QT. The measure Mo
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= ”f,g,T is uniquely determined by
n
J.H fi(x(ti))#T(dx) =
Q i=0
T
(ffO,S(tl—to)MfS(tz—tl)Mf---S(tn_l—tn_z)MfS(tn— tn_l)fng)
- 1 2 n—-1
(£,8(2T)qg)

(B.1.8)

where fi's are bounded measurable functions on m3, (+,+)

3

denotes Lz(m ,3\) inner product, and -T = t_ < t.<:-:( tn=T.

0 1

The existence of such a measure is guaranteed by the
Feynman-Kac formula if V is sufficiently nice, see the proof
of Theorem B.1.1 below.

Finally, to make the connection between the measures

He g, T with the expression (B.1.6), it is useful to

approximate xGQT by a piecewise-linear curve. If xGQT and P

is a partition of [-T,T] (P = {t -,tn} with

O'tl' e

—T=t0<t1<---<tn=T), let Xp be the piecewise linear

approximation to x which agrees with x on the partition P.
It should be noted that in this notation equation (B.1.7)

may be written as

J f(x(to),x(tz),'",x(tn))vT(dx) =
Q

T
-1
Zp I {f(x(to),x(tl),---,x(tn))
IR3(n+1)
T
-1 . 2
Xexp[—E—I |xp(t) | dt]}dx(to)dx(tl)---dx(tn)..
-T

(B.1.9)
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where Zp is a normalization constant. The constant ZP is

defined by
T
- -1 . 2 L
2y = I exp —f—j pr(t)l dt]dx(tl)dx(tz) dx(t ), (B.1.10)
IR3n -T

where x(to) is held fixed at some point xem3. (It is easily
checked that Zp is independent of which x is chosen.) To
make sense out of these last expressions one should
interpret dx(to)dx(tl)---dx(tn) as the measure on QT which

is induced by Lebesque measure on the "coordinates"

n L .
{x(ti)}i=0 . Similarly. dx(tl)dx(tz) dx(tn) is the
measure on QT induced by Lebesque measure on the coordinates
{x(ti)}?=1, which is concentrated on a set of paths for

which x(t) = x€r3,

Theorem B.1.1 Let V:ma—a R be continuous, and bounded

from below. (H = -(1/2)A + V is then essentially
self-adjoint on the set of infinitely differentiable

functions with rapid decrease.) Let X_, H, S, and oy =

He g9, T be as above and F(x) be a bounded continuous function

on QT. Then
Jf(x)ﬂT(dx) =
2y

T
= 1lim zplff(x(—T))g(x(T))F(xp)exp{—J [-%—|x§(t)|2
|P|—0 R3(n+l) |

+ V(xp(t))]dt}dx(to)dx(tz)-"dx(tn),

(B.1.11)
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where P =(—T=t0 < t1 < t2 <---<tn= T} is a partition (-T,T]},

ZP is a normalization constant such that for each P the
right hand side of (B.1.11) is 1 if F = 1, and |P| denotes
the mesh size of the partition P.

Proof: By replacing V by V—Ao we may assume that ko
is zero, since this change does not affect the right hand
side of (B.1.11). The extra factor in the numerator is
canceled by the same factor in the normalization constant of
(B.1.11).

By the Feynaman—-Kac formula and the Markov property of

the Wiener measure it is well known (Glimm and Jaffe (1] or

Simon [1 or 2}) that

[fT(x(—T))gT(x(T))F(x)]T
g T(F) = ’ (B.1.12)
[fT(x(—T))gT(x(T))]T

T
(G)l, = vT(G-exp{—I V(x(s))ds}). (B.1.13)
-~T
Equation (B.1.12) is first proved for F of the form

n
n fi(x(ti)) where the ti's form a partition for [-T,Tl, and
i=0

then extended to more general F by standard measure
theoretic arguments. An application of the dominated
convergence theorem implies

T
vT(fT(xP(—T))gT(xP(T))F(xp)e_I—T V(xp(s))ds,
ﬂT(F) = lim ‘
|P|—0

—IETV(X(S))ds

vT(fT(x(—T))gT(x(T))e )

(B.1.14)



91

The theorem now follows after using equation (B.1.9) in

(B.1.14) with

T
f(x(to),x(tl),---.x(tn)) = G(xp)g(x(T))exp{—J V(xp(t))dt}.

with G = F in the numerator of (B.1.14) and G = 1 in the

denominator. Q.E.D.

Remark B.1.1 Informally, Theorem 1.1.1 states that

IF(x)ﬂT(dx) = Z;ljf(x(—T))g(x(T))F(x)

2 2

T 2
xexp{—J [—E—Ix'(t)l + V(x(t))]dt}Dx.

(B.1.15)

It is instructive to view the informal expression
(B.1.6) as describing a measure (#) in the Gibbs state
formalism of statistical mechanics. Remark B.l1l.1 suggests
that the measures ”f,g,T should be considered as a "finite
volume" Gibbs states with "boundary conditions" determined
by the two functions £ and g. It is then natural to take
the "thermodynamic limit", that is the 1limit as T tends to
infinity. This is the subject of the next theorem. Before
stating the theorem we require some more assumptions on the
potential V.

Assume the potential V is continuous, bounded from
below, and chosen such that xo is an eigenvalue for the

operator H with eigenfunction ho‘ It is well known under
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these assumptions (see Corollary 3.3.4 of Glimm and Jaffe
{1]) that the multiplicity of ko is one and the
eigenfunction (ho) may be chosen to be strictly positive.
Furthermore, by the spectral and dominated convergence
theorems, g(t) converges strongly as t — o to the
orthogonal projection onto the ko eigenspace.

Theorem B.1.2 Assume V satisfies the assumptions

above, f£,g are fixed non-negative and non-zero

2,.3

L“(R”,dAx)-functions, and the measures ”T = are

Fe,g,T

defined as before. Then there exists a probability measure
(g#) on @ which is independent of the functions £ and g and
satisfies

lim MT(F) = u(F), (B.1.16)
T—300

for all bounded measurable functions F(x) of the form

F(x) ), (B.1.17)

= G(x'[—To.To]

where 0 < To { m, and G is a measurable function on QT
o

(Under this assumption the expression pT(F) makes sense for
T > To.) Furthermore, the value of u(F) is given by

g(F) = Hyoh T(F), (B.1.18)
o’ o’

where ho is the ground state for H and T is any number

larger than To‘

Proof: For T > T, and fer.2 (R3,an), put £ = §(T—To)f.

Using the definition of M g9, T it is easily seen that

”f,g,T(F) = Mg T (F). (B.1.19)

917 %
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(Again first check the validity of (B.1.19) on functions of

n
the form X f.(x(ti)) where the ti’s form a partition for
i=0

[-T,T), and then extended to more general F by standard
measure theoretic arguments.) 1In particular (B.1.19)

implies that My oh T(F) =My onh.T (F), since S(t)ho = ho
o’ o’ o’ 0" "o

for all t > 0. Hence the measures #y 4 g are consistently
o’ o’
defined, and thus define a unique measure on {2, see 1.3.5

Theorem of Stroock and Varadhan [1].

By equations (B.1.19), (B.1.12), and (B.1.13) we get
[fT(x(—To))gT(x(To))F(x)]T

Mg g T(F) = 0. (B.1.20)
[fT(x(—To))gT(x(To))]To
Since fT — (f,ho)ho in Lz(ma,dk), it follows that
X 2 .
fT(x(—To)) — (f,ho)ho(x(—To)) in L (QT,vTo) (x(t) is
distributed as Lebesque measure for each tE[—To,Tol). A

similar statement holds for the functions I Hence after
letting T — in equation (B.1.20) and canceling out the
common factor of (f,ho)(g,ho) in both the numerator and the

denominator, one finds that
[ho(x(—To))ho(x(To))F(x)]T

lim yT(F) o
T—i0 [ho(x(—To))ho(x(To))]To
(F) = u(F). (B.1.21)

M
ho'ho'To
Q.E.D.

Remark B.1.2 The combination of Theorems B.1l.1 and

B.1.2 show that the measure (g) defined in Theorem B.1l.2 may
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be described by approximations which are suggested by the
informal description of the measure (g) given in equation
(B.1.6).

Let us now take stock in what has been accomplished.

On one hand there is a natural measure () associated
to each quantum mechanical system associated to the
classical system described by (B.1l.1). On the other hand
Theorems B.1.1 and B.1.2 may be used to construct the
measure (g) without reference to any quantum mechanics (i.e.
operator theory.) The informal description (B.1.6) of the
measure () suggests the method of construction given in the
two theorems. Once we have constructed the measure g, we
may reconstruct the guantum mechanical Hilbert space, up to
a natural unitary equivalence. Indeed, {FELZ(Q,dy): F(x) =
£(x(0))} is equivalent to L2(R3, hédk) by the unitary
operator (£(x(0)) — £), where ho is the normalized ground
state for H. Since ho> 0, Lz(m3,dx) is naturally equivalent
to L2(m3,h§dx) by the unitary map (£ — £/h_). Furthernmore,
from the measure g, we may reconstruct the renormalized
guantum mechanical Hamiltonian ﬁ. To accomplish this, we
first note that § may be determined by

(fho’g(t)gho)Lz(ma,dx) = u(£(x(0))g(x(t))) (B.1.22)
for all bounded £, and g on m3. The operator ﬁ is then
determined by differentiating S,

HE= 1lim —§iﬁl—§—l~f, (B.1.23)

hio
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with the domain of H given by the set of fELz(ms,dk) for
which the limit exists.

So we have found that making sense out of the informal
expression (B.1.6) is essentially equivalent to "quantizing"

the classical mechanical system described by (B.1.1).

Section B.2 Quantum Field Theory

We now want to use the above ideas to quantize certain
partial differential equations, rather than the 0.D.E.
(B.1.1). This amounts to replacing the "3" in m3 by "w" in
some appropriate sense.

The simplest example to consider is the free Klein
Gordon equation

byt (—Ag+ ) = o, (B.2.1)
where ¢ = ¢(t,x)ER, (t,x)Eme3, 4, is the Laplacian only
acting on the x-variables, and m is a positive constant
called the mass. To make the connection of (B.2.1) with
(B.1.1) we consider ¢ as a map from R to ReL?(R3,dr). Then
(B.2.1) may be written as

$"(t) = -gradv(¢(t)), (B.2.2)

where V($(t)) = ——(d(t), (-a+ n®)d(t)) and grad

L2(m3,dx)’
denotes the functional gradient. 1In analogy with (B.1.6)
the informal description of the path space measure

associated to the equation (B.2.2) is
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Z_lexpj{( —1/2)0¢t (tyn2, 3

au($) L2 (®r3, an)

+———(¢(t),(—A +m )¢(t)) dt-D¢

(R3 dx)}

Z—lexp

(-1/2)($, (-8, + m )¢> (R dk)]D¢ (B.2.3)

where D¢ is an "infinite dimensional Lebesque measure", 2 is
the normalization constant, and A4 denotes the four
dimensional Laplacian acting on both t and x.

It is now possible to give precise meaning to the
measure & by following procedures analogous to Theorems
B.1.1 and B.1.2, see Simon [1]. Rather than going this
route we will instead exploit the fact that the "measure"

(#) is "Gaussian". Recall the finite dimensional Gaussian

Fourier transform formula
1

2 .

{QEEL%l} j el(x’y)exp( (Ax,x))dx = exp(:%—(A_ly,y)),
(2m) k

®

(B.2.4)
which is valid if A is a positive definite matrix on mk. In

analogy to (B.2.4), we define g to be the unique probability

measure on ReS'(R4) whose Fourier transform is

idp(£) _ -1 N 2,-1
e . du(d) = expl——(£, (=4, + n°) "£) 2 o4 41,
ReS'(R7)
(B.2.5)
where £ is in S(R4). The existence and uniqueness of the

measure g is guaranteed by Minlos' theorem, see Simon (2].

In analogy to the discussion at the end of Section B.1,
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the measure g may be used to construct a guantum mechanical
system associated to the partial differential equation
(B.2.1), see Simon (1] and Glimm and Jaffe (1] for more
details. The generalization to the case where the term m2¢
(B.2.1) is replaced by a polynomial in ¢ is also covered in
Simon (1] and Glimm and Jaffe (1] (in the case where the
spatial dimension is one rather than three).

As a final example, we will consider the free Maxwell's

equations. Let E(t,x)EIR3 denote the electic field and

B(t,x)EIR3 denote the magnetic field ((t,x)ERXR3). Put,

F = E-dxadt + B:do
= EldxlAdt + Ezdszdt + E3dx3Adt
+ Bldszdx3 - Bzdxlz\dx3 + B3dx1Adx2, (B.2.6)

a differential 2-form on R4 called the field-strength
tensor. With this notation the free Maxwell's equations may
be written
GF = 0 and 4 F = 0, (B.2.7)

where d* is the adjoint of d@ computed with respect to the
flat Minikowski metric (g) with signature (1,-1,-1,-1).

The Maxwell's equations (B.2.7) are first order in
time, and hence do not seem to be analogous to

"Newtonian—-like" equations of motion. This can be remedied

by noting that the equation dF 0 implies, by Poincare's
Lemma (Spivak (1]1), that there is a l1-form (A) such that F =

dA. 1In terms of this potential A, the Maxwells equations
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become,
a‘aa = 0. (B.2.8)
Equation (B.2.8) written in components yields a system of
four coupled partial differential equations, three of which
are second order in time. The other equation is a
"constraint" equation. The reason for this extra
complication of a constraint is due to the fact that the
potential A is not uniquely determined by the field strength
tensor F. This is the so called "gauge"”" problem. For the
purposes of finding the informal expression for the path
space measure, we will ignore this gauge problem (but see
Chapter 1 and especially Section 1.3).
In analogy to the previous examples, the informal

expression for the path space measure is

du(B) = Z—lexp[:%— I } dAij(x)zdx]DA (B.2.9)

r? T3

where 2 is a normalization constant, and DA is an "infinite

dimensional Lebesque measure" on a space of 1l-forms. Note
that E aa 0? = E Fis02 = [E@|? + |Bx) |2, which is
i3 i3
the classical energy of the electro-magnetic fields. (In
the examples above, it has always been the energy that went
into the exponents of the path space measure.) See Section
1.3 for a precise description of the informal expression
(B.2.9).
The informal description of the Yang Mills' measure

(equation (1.1.1)) is a natural generalization of (B.2.9).
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