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1. INTRODUCTION

These notes represent a much expanded and updated version of the “mini course”
that the author gave at the ETH (Ziirich) and the University of Ziirich in February
of 1995. The purpose of these notes is to first provide some basic background
to Riemannian geometry and stochastic calculus on manifolds and then to cover
some of the more recent developments pertaining to analysis on “curved Wiener
spaces.” Essentially no differential geometry is assumed. However, it is assumed
that the reader is comfortable with stochastic calculus and differential equations
on Euclidean spaces. Here is a brief description of what will be covered in the text
below.

Section [2]is a basic introduction to differential geometry through imbedded sub-
manifolds. Section [3|is an introduction to the Riemannian geometry that will be
needed in the sequel. Section [d] records a number of results pertaining to flows of
vector fields and “Cartan’s rolling map.” The stochastic version of these results
will be important tools in the sequel. Section [5|is a rapid introduction to stochas-
tic calculus on manifolds and related geometric constructions. Section [6] briefly
gives applications of stochastic calculus on manifolds to representation formulas for
derivatives of heat kernels. Section[7]is devoted to the study of the calculus and in-
tegral geometry associated with the path space of a Riemannian manifold equipped
with “Wiener measure.” In particular, quasi-invariance, Poincaré and logarithmic
Sobolev inequalities are developed for the Wiener measure on path spaces in this
section. Section [§]is a short introduction to Malliavin’s probabilistic methods for
dealing with hypoelliptic diffusions. The appendix in section [J] records some basic
martingale and stochastic differential equation estimates which are mostly used in
section

Although the majority of these notes form a survey of known results, many proofs
have been cleaned up and some proofs are new. Moreover, Section [8| is written
using the geometric language introduced in these notes which is not completely
standard in the literature. I have also tried (without complete success) to give an
overview of many of the major techniques which have been used to date in this
subject. Although numerous references are given to the literature, the list is far
from complete. I apologize in advance to anyone who feels cheated by not being
included in the references. However, I do hope the list of references is sufficiently
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rich that the interested reader will be able to find additional information by looking
at the related articles and the references that they contain.

Acknowledgement: Tt is pleasure to thank Professor A. Sznitman and the ETH
for their hospitality and support and the opportunity to give the talks which started
these notes. I also would like to thank Professor E. Bolthausen for his hospitality
and his role in arranging the first lecture to be held at University of Ziirich.

2. MANIFOLD PRIMER

Conventions:

(1) If A, B are linear operators on some vector space, then [A, B] := AB— BA
is the commutator of A and B.

(2) If X is a topological space we will write A C, X, AC X and ACC X to
mean A is an open, closed, and respectively a compact subset of X.

(3) Given two sets A and B, the notation f : A — B will mean that f is
a function from a subset D(f) C A to B. (We will allow D(f) to be the
empty set.) The set D(f) C A is called the domain of f and the subset
R(f) := f(D(f)) C B is called the range of f. If f is injective, let f~! :
B — A denote the inverse function with domain D(f~!) = R(f) and range
R(fYH =D(f).If f: A— Band g: B — C, then go f denotes the
composite function from A to C' with domain D(go f) := f~1(D(g)) and
range R(go ) i= g o f(D(g o /) = g(R(f) N D(g)).

Notation 2.1. Throughout these notes, let £ and V' denote finite dimensional
vector spaces. A function F' : E — V is said to be smooth if D(F’) is open in
E (D(F) = 0 is allowed) and F : D(F) — V is infinitely differentiable. Given a
smooth function F' : E — V, let F'(z) denote the differential of F at x € D(F).
Explicitly, F'(x) = DF (z) denotes the linear map from E to V determined by

(2.1) DF (z)a = F'(z)a := %|0F(x+ta) Vac€kE.
We also let
(2.2) F"(z)(v,w)=F"(x)(v,w) = (0,0, F) (z) = %|0%|0F (z+tv+ sw).

2.1. Imbedded Submanifolds. Rather than describe the most abstract setting
for Riemannian geometry, for simplicity we choose to restrict our attention to
imbedded submanifolds of a Euclidean space E = RY. E|We will equip RY with the
standard inner product,

N

<CL, b> = (a, b)]RN = Zaibi.

i=1
In general, we will denote inner products in these notes by (-, -).
Definition 2.2. A subset M of E (see Figure[l]) is a d — dimensional imbedded

submanifold (without boundary) of E iff for all m € M, there is a function
z: E — RY such that:

(1) D(z) is an open neighborhood of E containing m,

IBecause of the Whitney imbedding theorem (see for example Theorem 6-3 in Auslander and
MacKenzie [9]), this is actually not a restriction.
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(2) R(z) is an open subset of RY,

(3) z:D(z) — R(z) is a diffecomorphism (a smooth invertible map with smooth
inverse), and

(4) 2(M ND(2)) =R(z) N (R x {0}) C RV,

(We write M9 if we wish to emphasize that M is a d — dimensional manifold.)

DHNM

2AD(z)NM)

FIGURE 1. An imbedded one dimensional submanifold in R2.

Notation 2.3. Given an imbedded submanifold and diffeomorphism z as in the
above definition, we will write z = (2<,2s) where 2z is the first d components
of z and 2z~ consists of the last N — d components of z. Also let  : M — R?
denote the function defined by D(z) := M ND(z) and x := z<|p(y). Notice that
R(z) := x(D(x)) is an open subset of R? and that =1 : R(x) — D(z), thought
of as a function taking values in F, is smooth. The bijection z : D(x) — R(z) is
called a chart on M. Let A = A(M) denote the collection of charts on M. The
collection of charts A = A(M) is often referred to as an atlas for M.

Remark 2.4. The imbedded submanifold M is made into a topological space us-
ing the induced topology from E. With this topology, each chart z € A(M) is a
homeomorphism from D(x) C, M to R(z) C, R%

Theorem 2.5 (A Basic Construction of Manifolds). Let F : E — RY~4 be qa
smooth function and M = F~1({0}) C E which we assume to be non-empty.
Suppose that F'(m) : E — RN~ is surjective for all m € M. Then M is a d -
dimensional imbedded submanifold of E.

Proof. Let m € M, we will begin by constructing a smooth function G : E — R?
such that (G,F)(m) : E — RY = R? x RN=4 is invertible. To do this, let
X = Nul(F’(m)) and Y be a complementary subspace so that £ = X &Y and
let P : E — X be the associated projection map, see Figure 2] Notice that
F'(m): Y — RN~% is a linear isomorphism of vector spaces and hence

dim(X) = dim(E) — dim(Y) = N — (N — d) = d.

In particular, X and R? are isomorphic as vector spaces. Set G(m) = APm where
A : X — R? is an arbitrary but fixed linear isomorphism of vector spaces. Then
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forx € X and y €Y,

(G, F) (m)(x +y) = (G (m) (@ +y), F'(m)(z +y))
= (AP(x +y), F/(m)y) = (Az, F'(m)y) € R? x RV

from which it follows that (G, F))'(m) is an isomorphism.

RN-d  (G(e),[e))

(G(m),F(m)) G(e)=APe

FIGURE 2. Constructing charts for M using the inverse function
theorem. For simplicity of the drawing, m € M is assumed to be
the origin of E =X @Y.

By the inverse function theorem, there exists a neighborhood U C, E of m
such that V := (G, F)(U) C, RY and (G,F) : U — V is a diffeomorphism. Let
z = (G, F) with D(z) = U and R(z) = V. Then z is a chart of E about m satisfying
the conditions of Definition Indeed, items 1) — 3) are clear by construction. If
p € MND(z) then z(p) = (G(p), F(p)) = (G(p),0) € R(2)N(R? x {0}). Conversely,
if p € D(z) is a point such that z(p) = (G(p), F(p)) € R(z) N (R? x {0}), then
F(p) =0 and hence p € M ND(z); so item 4) of Definition [2.2]is verified. [

Example 2.6. Let gl(n,R) denote the set of all n x n real matrices. The following
are examples of imbedded submanifolds.

(1) Any open subset M of E.
(2) The graph,

L(f):={(z,f(x)) eER xRV :2eD(f)} CD(f) x RN CR",

of any smooth function f : R* — R¥ =% as can be seen by applying Theorem
with F (z,y) := y — f(z). In this case it would be a good idea for
the reader to produce an explicit chart z as in Definition such that
D(z) =R (z) =D(f) x RN,

(3) The unit sphere, SN~ := {z € RN : (x,2)g~ = 1}, as is seen by applying
Theoremwith E =RY and F(z) := (z,x)p~y — 1. Alternatively, express
SN=1 ]ocally as the graph of smooth functions and then use item 2.

(4) GL(n,R) :={g € gl(n,R)|det(g) # 0}, see item 1.

(5) SL(n,R) := {g € gl(n,R)|det(g) = 1} as is seen by taking E = gl(n,R)
and F(g) := det(g) and then applying Theorem [2.5( with the aid of Lemma
2.1 below.
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(6) O(n) := {g € gl(n,R)|g""g = I} where g'" denotes the transpose of g. In
this case take F'(g) := g*%*g — I thought of as a function from E = gl(n,R)
to S(n), where

S(n) :={A € gl(n,R): A" = A}
is the subspace of symmetric matrices. To show F’(g) is surjective, show
F'(g9)(gB) = B+ B" for all g € O(n) and B € gl(n,R).

(7) SO(n) :={g € O(n)|det(g) = 1}, an open subset of O(n).

(8) M x N C E xV, where M and N are imbedded submanifolds of E and
V respectively. The reader should verify this by constructing appropriate
charts for E x V by taking “tensor” products of the charts for E' and V'
associated to M and N respectively.

(9) The n — dimensional torus,

"i={reCfml=1fori=12,...,n} = (S1)",

where z = (21,...,2,) and |z;| = /2z;Z;. This follows by induction us-
ing items 3. and 8. Alternatively apply Theorem with F'(z) :=

(|Zl|2 - 17' "a|2n‘2 - 1) .

Lemma 2.7. Suppose g € GL(n,R) and A € gl(n,R), then
(2.3) det’(g)A = det(g)tr(g ' A).

Proof. By definition we have
d d
det '(g)A = £|0 det(g +tA) = det(g)a\o det(I +tg~"A).

So it suffices to prove %|odet(I + ¢tB) = tr(B) for all matrices B. If B is upper
triangular, then det(I 4+ tB) =1, (1 + ¢Bj;) and hence by the product rule,

|0det (I +1tB) ZBu_tr

This completes the proof because; 1) every matrix can be put into upper triangular
form by a similarity transformation, and 2) “det” and “tr” are invariant under
similarity transformations. [ |

Definition 2.8. Let £ and V be two finite dimensional vector spaces and M? C E
and N* C V be two imbedded submanifolds. A function f : M — N is said to be
smooth if for all charts € A(M) and y € A(N) the function yo foz~—! : R? — R*
is smooth.

Exercise 2.9. Let M? ¢ E and N*¥ C V be two imbedded submanifolds as in
Definition 2.8

(1) Show that a function f : RF — M is smooth iff f is smooth when thought
of as a function from R* to E.

(2) If F: E — V is a smooth function such that F(M ND(F)) C N, show that
f=F|ym: M — N is smooth.

(3) Show the composition of smooth maps between imbedded submanifolds is
smooth.
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Proposition 2.10. Assuming the notation in Definition[2.8, a function f: M —
N is smooth iff there is a smooth function F : E — V such that f = F|p.

Proof. (Sketch.) Suppose that f: M — N is smooth, m € M and n = f(m).
Let z be as in Definition and w be a chart on N such that n € D(w). By
shrinking the domain of z if necessary, we may assume that R(z) = U x W where
U Co RY and W C, RV~% in which case z(M ND(z)) = U x {0} . For ¢ € D(z), let
F(€) == f(271(2<(€),0)) with z = (2<, 2>) as in Notation[2.3] Then F': D(z) — N
is a smooth function such that F|ynp(.) = f|lmnp(z). The function F' is smooth.
Indeed, letting = 2<|p(z)nnr,

we o F =weo f(z71(2(6),0)) =w< o foa™ o (2<(-),0)

which, being the composition of the smooth maps w- o foz~! (smooth by assump-
tion) and £ — (2<(£),0), is smooth as well. Hence by definition, F' is smooth as
claimed. Using a standard partition of unity argument (which we omit), it is pos-
sible to piece this local argument together to construct a globally defined smooth
function F': E — V such that f = F|p. |

Definition 2.11. A function f: M — N is a diffeomorphism if f is smooth and
has a smooth inverse. The set of diffeomorphisms f : M — M is a group under
composition which will be denoted by Diff (M).

2.2. Tangent Planes and Spaces.

Definition 2.12. Given an imbedded submanifold M C E and m € M, let 7, M C
FE denote the collection of all vectors v € E such there exists a smooth path o :
(—e,e) = M with 0(0) = m and v = “|go(s). The subset 7,,M is called the
tangent plane to M at m and v € 7, M is called a tangent vector, see Figure

Bl

T M

FIGURE 3. Tangent plane, 7,,, M, to M at m and a vector, v, in 7,,, M.

Theorem 2.13. For each m € M, 7, M is a d — dimensional subspace of E. If
z: E — RY is as in Definition then T, M = Nul(z{ (m)). If « is a chart on
M such that m € D(x), then

(5clox™ (alom) + sea)

is a basis for T, M, where {e;}%_, is the standard basis for R9.
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Proof. Let 0 : (—£,e) — M be a smooth path with o(0) = m and v = “|0(s)
and z be a chart (for E) around m as in Definition such that © = z.. Then
z>(o(s)) =0 for all s and therefore,

0= 2oz (o(s) = L (mho
which shows that v € Nul(z{ (m)), i.e. 7,,M C Nul(24 (m)).
Conversely, suppose that v € Nul(z4 (m)). Let w = 2L (m)v € R? and o(s) :=
27 (z<(m)+sw) € M — defined for s near 0. Differentiating the identity 2~ loz = id

at m shows )
(z71) (2(m))z'(m) = 1.

Therefore,

and so by definition v = ¢’(0) € 7,, M. We have now shown Nul(z{ (m)) C 7, M
which completes the proof that 7, M = Nul(z{ (m)).
Since 2. (m) : T,M — R? is a linear isomorphism, the above argument also
shows J
d—|0$_1(x(m) + sw) = (2L (m)|TmM)_1 w € T M Y w e RY,
s

In particular it follows that
d, _ —1
{£|0x Ha(m) + se) oy = {(ZL(m)|rm) et

is a basis for 7,, M, see Figure |4] below. [
The following proposition is an easy consequence of Theorem [2.13] and the proof
of Theorem 2.5

Proposition 2.14. Suppose that M is an imbedded submanifold constructed as in
Theorem [2.5, Then 7, M = Nul(F’(m)).

Exercise 2.15. Show:

(1) 7nM = E, if M is an open subset of E.

(2) 7,GL(n,R) = gl(n,R), for all g € GL(n,R).
(3) T SN=1 = {m}+ for all m € SN-1L.

(4) Let sl(n,R) be the traceless matrices,

)

(24 sl(n,R) := {A € gl(n,R)| tr(A4) = 0}.

Then
7,SL(n,R) = {A € gl(n,R)|g" A € sl(n,R)}
and in particular 71.SL(n,R) = si(n,R).
(5) Let so(n,R) be the skew symmetric matrices,
so(n,R) :={A € gl(n,R)|A = —A"}.

Then
7,0(n) ={A € gl(n,R)\gflA € so(n,R)}
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and in particular 770 (n) = so (n,R). Hint: g~ = ¢'* for all g € O(n).
(6) If M C E and N C V are imbedded submanifolds then

T(m,n)(MXN) =1mM x 1,N C EXYV.

It is quite possible that 7,,, M = 7,,, M for some m # m/, with m and m/ in M
(think of the sphere). Because of this, it is helpful to label each of the tangent
planes with their base point.

Definition 2.16. The tangent space (T,,M) to M at m is given by
TpM :={m} x 7, M C M x E.

Let

TM :=UnepmTmnM,
and call TM the tangent space (or tangent bundle) of M. A tangent vector
is a point v, := (m,v) € TM and we let 7 : TM — M denote the canonical
projection defined by 7(v,,) = m. Each tangent space is made into a vector
space with the vector space operations being defined by: c¢(v.,) = (cv),, and
U + Wy i = (U + W)y
Exercise 2.17. Prove that TM is an imbedded submanifold of £ x E. Hint:
suppose that z : £ — RY is a function as in the Definition Define D(Z) :=
D(z) x E and Z : D(Z) — RN x RN by Z(x,a) := (2(x),2'(x)a). Use Z’s of this
type to check T'M satisfies Definition [2.2

Notation 2.18. In the sequel, given a smooth path o : (—¢,2) — M, we will abuse
notation and write ¢’ (0) for either

d
£\00(3) € To(0)M

or for
d
(O‘(O), 7d5|00(8)) S TO’(O)M = {0‘(0)} X Ta(O)M~

Also given a chart z = (z%,22,...,2%) on M and m € D(z), let 9/9x¢|,, denote
the element T}, M determined by 9/9z%|,, = ¢/(0), where o(s) := 2~ (z(m) + se;),
i.e.

0 d

(2.5) @|m = (m, s

loz ™ (x(m) + se;)),
see Figure 4

The reason for the strange notation in Eq. will be explained after Notation
By definition, every element of T}, M is of the form ¢’ (0) where o is a smooth
path into M such that o (0) = m. Moreover by Theorem {0/02% |}, is a
basis for T, M.

Definition 2.19. Suppose that f: M — V is a smooth function, m € D(f) and
Um € Ty M. Write

vnf = () 1= o f(0(5)),

where o is any smooth path in M such that ¢’(0) = v,,. The function df : TM — V
will be called the differential of f.
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FIGURE 4. Forming a basis of tangent vectors.

Notation 2.20. If M and N are two manifolds f : M x N — V is a smooth
function, we will write ds f (-, n) to indicate that we are computing the differential
of the function m € M — f(m,n) € V for fixed n € N.

To understand the notation in (2.5)), suppose that f = Fox = F(z!,22,...,2%)
where F : R? — R is a smooth function and z is a chart on M. Then

af(m) 9
- = ~|lmJ — DZF 5
) = 2 ff = (DiF)(a(m)
where D; denotes the i*" — partial derivative of F. Also notice that dz’ (% m) =4y,
so that {dmﬂTmM}j:l is the dual basis of {9/07¢|,,}%_, and therefore if v,,, € T}, M
then

d
; 0]
(26) o = Y e (o)
This explicitly exhibits v, as a first order differential operator acting on “germs”
of smooth functions defined near m € M.
Remark 2.21 (Product Rule). Suppose that f: M — V and g : M — End(V) are

smooth functions, then

vm(gf) d

= ol
or equivalently

9(0(5))f(a(s))] = vmg - f(m) + g(m)vm f

d(gf)(vm) = dg(vm) f(m) + g(m)df (vy).
This last equation will be abbreviated as d(gf) = dg - f + gdf.

Definition 2.22. Let f : M — N be a smooth map of imbedded submanifolds.
Define the differential, f., of f by

fevm = (f00)'(0) € Ty N,
where v, = 0’(0) € T, M, and m € D(f).

Lemma 2.23. The differentials defined in Definitions [2.19 and [2.29 are well de-
fined linear maps on T, M for each m € D(f).
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fm)

Jevy=(foo)' (0)

FI1GURE 5. The differential of f.

Proof. T will only prove that f, is well defined, since the case of df is similar.
By Proposition there is a smooth function F' : E — V, such that f = F|p,.
Therefore by the chain rule

@D S = (o0 = [ GAE)] =P,

where ¢ is a smooth path in M such that ¢'(0) = v,,. It follows from (2.7)) that
f+vm does not depend on the choice of the path o. It is also clear from (2.7)), that
f+ is linear on T,, M. ]

Remark 2.24. Suppose that F': E — V is a smooth function and that f := F|y,.
Then as in the proof of Lemma [2.23

(2.8) df (vm) = F'(m)v

for all v, € T,, M, and m € D(f). Incidentally, since the left hand sides of (2.7)
and ([2.8]) are defined “intrinsically,” the right members of (2.7)) and (2.8) are inde-
pendent of the possible choices of functions F' which extend f.

Lemma 2.25 (Chain Rules). Suppose that M, N, and P are imbedded submanifolds
and V 1is a finite dimensional vector space. Let f : M — N, g : N — P, and
h: N — V be smooth functions. Then:

(2.9) (g0 f)svm = gu(fivm), YV vm €TM
and
(2.10) d(ho f)(vm) = dh(fivm), Y v, € TM.

These equations will be written more concisely as (go f)x = g« f« and d(ho f) = dhf,
respectively.

Proof. Let ¢ be a smooth path in M such that v,, = ¢/(0). Then, see Figure [6]

(g0 [)vm = (go foo)(0)=g.(foa)(0)
= g*f*cfl(()) = G« foUm.
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Similarly,

d(ho f)(vm) = %b(h o foo)(s)=dh((fo0)(0)
= dh(f*a'/(())) - dh(f*vm)

f*vm,: (fOG)/( 0)

G fi0m=(go foo) (0)=(go Pyv,,, 4]

FIGURE 6. The chain rule.

If f: M — V is a smooth function, z is a chart on M, and m € D(f) N D(z),
we will write df(m)/dz* for df (8/0x"|,,,) . Combining this notation with Eq. (2.6)
leads to the pleasing formula,

d
N Of
(2.11) df = ; 5o,

by which we mean

d
df (vm) = > aggg‘) dz (vpn).
=1

Suppose that f : M% — N is a smooth map of imbedded submanifolds, m € M,
x is a chart on M such that m € D(x), and y is a chart on N such that f(m) € D(y).
Then the matrix of

f*m = f*'T.,,,J\/[ T M — Tf(m)N

relative to the bases {9/0x'|m}l, of T,,M and {9/0y|¢m)}i=y of TimN is
(O(y? o £)(m)/0z"). Indeed, if v, = Zle v'0/0x" |, then
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(y o f)(m)3/0Y | f(m) (by Eq. (210))

W <’ (vm)0/0y’ [ my  (by Eaq. @11))

I
'MHM»E

~
Il
-
<
Il
-

M-

oy’ o f)(m)
or’

|
]~
M=

0'0/0Y | f(m)-

Il
-

Example 2.26. Let M = O(n), k € O(n), and f : O(n) — O(n) be defined by

f(g) := kg. Then f is a smooth function on O(n ) because it is the restriction of a
smooth function on gi(n,R). Given A4, € T,0(n), by Eq. .,

fuAg = (kg, kA) = (kA)kg
(In the future we denote f by Ly; Ly is left translation by k € O(n).)

.
I
—

Definition 2.27. A Lie group is a manifold, GG, which is also a group such that the
group operations are smooth functions. The tangent space, g := Lie (G) := T.G,
to G at the identity e € G is called the Lie algebra of G.

Exercise 2.28. Verify that GL(n,R), SL(n,R), O(n), SO(n) and T" (see Example
are all Lie groups and
Lie (GL(n,R)) 2 gl(n,R),
Lie (SL(n, R))) = si(n, R)
Lie (O(n))) = Lie (SO(n))) = so(n,R) and
Lie (T™)) = (iR)" c C".
See Exercise for the notation being used here.

Exercise 2.29 (Continuation of Exercise [2.17). Show for each chart z on M that
the function

HZ

O () = (x(m), dz(vy)) = TV
is a chart on T'M. Note that D(¢) := Upep(a)TmM.

The following lemma gives an important example of a smooth function on M
which will be needed when we consider M as a “Riemannian manifold.”

Lemma 2.30. Suppose that (E,(-,-)) is an inner product space and the M C E
is an imbedded submanifold. For each m € M, let P(m) denote the orthogonal
projection of E onto T, M and Q(m) := I — P(m) denote the orthogonal projection
onto T,, M*+. Then P and Q are smooth functions from M to gl(E), where gl(E)
denotes the vector space of linear maps from E to E.

Proof. Let z : E — R be asin Deﬁnition To simplify notation, let F((p) :=
z>(p) for all p € D(z), so that 7., M = Nul (F'(m)) for m € D(z) = D(z)NM. Since
F'(m) : E — RY~% is surjective, an elementary exercise in linear algebra shows

(F/(m)F/(m)*) :RNfd*)RNfd



14 BRUCE K. DRIVER

is invertible for all m € D(x). The orthogonal projection @ (m) may be expressed

as;

(2.12) Q(m) = F'(m)*(F'(m)F'(m)*) " F'(m).

Since being invertible is an open condition, (F”(-)F'(-)*) is invertible in an open

neighborhood AN C E of D(z). Hence @Q has a smooth extension @ to N given by
Q(z) == F'(2)*(F'()F'(2)") ' F'(x).

Since Q|p(z) = Q|D(I) and Q is smooth on N/, Q|p(z) is also smooth. Since z as
in Definition was arbitrary and smoothness is a local property, it follows that
Q@ is smooth on M. Clearly, P := I — @ is also a smooth function on M. ]

Definition 2.31. A local vector field Y on M is a smooth function Y : M — T'M
such that Y(m) € T,,, M for all m € D(Y), where D(Y) is assumed to be an open
subset of M. Let I'(T'M) denote the collection of globally defined (i.e. D(Y) = M)
smooth vector-fields Y on M.

Note that 9/dx" are local vector-fields on M for each chart z € A(M) and
i=1,2,...,d. The next exercise asserts that these vector fields are smooth.

Exercise 2.32. Let Y be a vector field on M, x € A(M) be a chart on M and
Y :=dz*(Y). Then

d
Y(m) := ZYi (m)0/0x|,, ¥ m € D (x),

which we abbreviate as Y = E?:1 Y?9/0x". Show the condition that Y is smooth
translates into the statement that each of the functions Y is smooth.

Exercise 2.33. Let Y : M — T M, be a vector field. Then

Y(m) = (m,y(m)) = y(m)m
for some function y : M — E such that y(m) € 7, M for all m € D(Y) = D(y).
Show that Y is smooth iff y : M — E is smooth.

Example 2.34. Let M = SL(n,R) and A € sl(n,R) = 7;SL(n,R), ie. Aisa
n x n real matrix such that tr (A) = 0. Then A(g) := Ly« Ac = (g,9A) for g € M is
a smooth vector field on M.

Example 2.35. Keep the notation of Lemma[2:30} Let y : M — E be any smooth
function. Then Y (m) := (m, P(m)y(m)) for all m € M is a smooth vector-field on
M.

Definition 2.36. GivenY € I'(T'M) and f € C*°(M),let Y f € C°°(M) be defined
by (Y f)(m) := df (Y (m)), for all m € D(f) ND(Y). In this way the vector-field ¥’
may be viewed as a first order differential operator on C'*°(M).

Notation 2.37. The Lie bracket of two smooth vector fields, Y and W, on M is
the vector field [Y, W] which acts on C*°(M) by the formula
(2.13) Y, WIf = (W)~ WY f), ¥ feC=(M).

(In general one might suspect that [Y, W] is a second order differential operator,
however this is not the case, see Exercise ) Sometimes it will be convenient to
write Ly W for [Y, W].
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Exercise 2.38. Show that [Y,W] is again a first order differential operator on
C>(M) coming from a vector-field. In particular, if = is a chart on M, Y =
2?21 Yi9/02z" and W = Zle W9/0xt, then on D(z),
(2.14) Y, W] =Y (YW' - WY*")9/0x".

i=1
Proposition 2.39. IfY(m) = (m,y(m)) and W(m) = (m,w(m)) and y,w : M —
E are smooth functions such that y(m),w(m) € 1, M, then we may express the Lie
bracket, [Y,W](m), as
(2.15) [V, W](m) = (m, (Yw = Wy)(m)) = (m,dw(Y (m)) — dy(W (m))).

Proof. Let f be a smooth function M which we may take, by Proposition [2.10)
to be the restriction of a smooth function on E. Similarly we we may assume that
y and w are smooth functions on E such that y(m),w(m) € 7,,M for all m € M.
Then

YW -WY)f =Y [f'w] - W[fy]
= f"(y,w) — f"(w,y) + f' (Yw) = f (Wy)
(2.16) = f'(Yw—Wy)
wherein the last equality we have use the fact that mixed partial derivatives com-
mute to conclude

' (u,v) = f"(v,u) := (0,0, — 0,0,) f =0V u,v € E.
Taking f = 2z~ in Eq. (2.16]) with z = (2, 2z~) being a chart on F as in Definition
shows
0= (YW —-WY)zs (m) = 24 (dw(Y (m)) — dy(W(m)))
and thus (m, dw(Y (m)) —dy(W(m))) € T,, M. With this observation, we then have
' Yw—Wy) =df (m,dw(Y(m)) — dy(W(m))))
which combined with Eq. (2.16]) verifies Eq. (2.15)). |

Exercise 2.40. Let M = SL(n,R) and A,B € sl(n,R) and A and B be the
associated left invariant vector fields on M as introduced in Example Show

[fl, B} = [;l—,\_B/] where [A, B] := AB — BA is the matrix commutator of A and B.

2.3. More References. The reader wishing to learn about manifolds is referred
to [1, [} (9] @1, @2, ©5] 111, (112} (113, (114} (115} [164]. The texts by Kobayashi and
Nomizu are very thorough while the books by Klingenberg give an idea of why
differential geometers are interested in loop spaces. There is a vast literature on
Lie groups and there representations. Here are just two books which I have found
very useful, [24 [178].

3. RIEMANNIAN GEOMETRY PRIMER

This section introduces the following objects: 1) Riemannian metrics, 2) Rie-
mannian volume forms, 3) gradients, 4) divergences, 5) Laplacians, 6) covariant
derivatives, 7) parallel translations, and 8) curvatures.
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3.1. Riemannian Metrics.

Definition 3.1. A Riemannian metric, (-,-) (also denoted by g), on M is a
smoothly varying choice of inner product, g, = (-, -}m, on each of the tangent spaces
T.,M, m € M. The smoothness condition is the requirement that the function
m e M — (X(m),Y(m)),, € R is smooth for all smooth vector fields X and Y on
M.

It is customary to write ds? for the function on TM defined by
(3.1) ds*(Vm) = Vs Um)m = Gm (Vi V) -
By polarization, the Riemannian metric (-, -) is uniquely determined by the function
ds?. Given a chart x on M and v € T,, M, by Egs. (3.1)) and (2.6 we have
(3.2) ds?(vm) = > _ (0/02" |, 0/027 1) mda’ (vm)da? (vy,).
i,j=1

We will abbreviate this equation in the future by writing

d
(3.3) ds® =Y gida'da’
i,j=1
where
gi ;(m) := (0/0x 1, 0/027 | ;p)m = g (8/8xi\m, 6/8xj|m) .
Typically g;; will be abbreviated by g;; if no confusion is likely to arise.

Example 3.2. Let M = RY and let = (2!,22,...,2") denote the standard
chart on M, i.e. &(m) = m for all m € M. The standard Riemannian metric on

RY is determined by
N

N
ds® = Z(dxi)2 = Zdzi -da?,
i=1 i=1
and so ¢ is the identity matrix here. The general Riemannian metric on RY is
determined by ds® = E%Zl gijdz'dz?, where g = (g;;) is a smooth gl(N,R) —
valued function on RY such that g(m) is positive definite matrix for all m € RV

Let M be an imbedded submanifold of a finite dimensional inner product space
(E,{,-)). The manifold M inherits a metric from E determined by

ds*(vm) = (v,v) Y v, € TM.

It is a well known deep fact that all finite dimensional Riemannian manifolds may
be constructed in this way, see Nash [143] and Moser [138] 139, [140]. To simplify the
exposition, in the sequel we will usually assume that (E, (-,-)) is an inner product
space, M? C E is an imbedded submanifold, and the Riemannian metric on M is
determined in this way, i.e.

(U, W) = (U, WypN, YV Uy Wiy € Ty M and m € M.

In this setting the components g7 ; of the metric ds? relative to a chart z may be
computed as g7 ;(m) = (¢,i(z(m)), ¢,;(x(m))), where {e; 4 | is the standard basis
for R,

¢:=2"" and ¢.(a) := %|0¢(a + te;).
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Example 3.3. Let M = G := SL(n,R) and A4, € T,M.
(1) Then
(3.4) ds?(A,) = tr(A*A)
defines a Riemannian metric on G. This metric is the inherited metric from

the inner product space E = gl(n, R) with inner product (A, B) := tr(A*B).
(2) A more “natural” choice of a metric on G is

(3.5) ds®(Ag) = tr((g ' A)* g A).

This metric is invariant under left translations, i.e. ds?(Lg.Ay) = ds*(Ay),
for all K € G and A; € T'G. According to the imbedding theorem of Nash
and Moser, it would be possible to find another imbedding of G into a
Euclidean space, F, so that the metric in Eq. is inherited from an
inner product on F.

Example 3.4. Let M = R3 be equipped with the standard Riemannian metric
and (r, ¢, 0) be spherical coordinates on M, see Figure Here 7, ¢, and 6 are

FIGURE 7. Defining the spherical coordinates, (r,#, ¢) on R3.

taken to be functions on R\ {p € R®: po = 0 and p; > 0} defined by r(p) = |p|,

¢(p) = cos™!(ps/Ipl) € (0,7), and (p) € (0,27) is given by O(p) = tan™" (p2/p1) if
p1 > 0 and p, > 0 with similar formulas for (p1,p2) in the other three quadrants of
R2. Since ! = rsinpcosf, 2 = rsinpsinf, and 3 = r cos ¢, it follows using Eq.
that,
1 1 1
det = %dr + %%dga + %dé’
= sin ¢ cos 8dr + r cos p cos Ody — rsin p sin 6d0,

daz? = sin psin fdr + r cos @ sin @dy + 7 sin @ cos 6d6,
and
da® = cos pdr — rsin @dp.
An elementary calculation now shows that
3
(3.6) ds* = Z(dxi)2 = dr? + r2dg® 4 r* sin® pdb?.

i=1
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From this last equation, we see that
0 0
2 0

1
(3.7) gre =10 r
0 0 r?sin®p

Exercise 3.5. Let M := {m € R? : |m|> = p?}, so that M is a sphere of radius p
in R3. Since r = p on M and dr (v) = 0 for all v € T},, M, it follows from Eq. (3.6))
that the induced metric ds? on M is given by

(3.8) ds* = p?dp® + p*sin? pdb?,
and hence
2
() _ | P 0
(39) g |: 0 p2 Sil’l2g0 :| .

3.2. Integration and the Volume Measure.

Definition 3.6. Let f € C°(M) (the smooth functions on M9 with compact
support) and assume the support of f is contained in D(x), where x is some chart
on M. Set

/ fdx = foz(a)da,
where da denotes Lebesgue measure on R?.

The problem with this notion of integration is that (as the notation indicates)
I} 1 Jdx depends on the choice of chart x. To remedy this, consider a small cube
C(9) of side 0 contained in R(z), see Figure |8} We wish to estimate “the volume”
of ¢(C(8)) where ¢ := 27! : R(x) — D(x). Heuristically, we expect the volume of
$(C(8)) to be approximately equal to the volume of the parallelepiped, C(§), in
the tangent space T,, M determined by

d
(3.10) C(0) == {Z 8i0 - ¢i(x (m))|0<s; <1, fori=1,2,.. .,d} ,
i=1

where we are using the notation proceeding Example|3.3] see Figure (8| Since T,,, M

¢.Lx(m))

¢.4(x(m))

#(C(©)

p=-i

\

FIGURE 8. Defining the Riemannian “volume element.”



CURVED WIENER SPACE ANALYSIS 19

is an inner product space, the volume of 0(6) is well defined. For example choose
an isometry 6 : T, M — R® and define the volume of C(8) to be m (9(6’(6))) where
m is Lebesgue measure on ~Rd. The next elementary lemma will be used to give a
formula for the volume of C (§).
Lemma 3.7. If V is a finite dimensional inner product space, {'Uz}?;nllv is any
basis for V and A:V — V is a linear transformation, then

det [(Av;, v;
(3.11) det (4) = et [lAvi v)]

det [(vi, v;)]

where det [(Av;,v;)] is the determinant of the matriz with i-j™ — entry being
(Av;,v;5). Moreover if

d
C(0) := {Zésiwitogsigl, fori:1,2,...,d}

i=1

then the volume of C (8) is §%\/det [(v;, v;)].
Proof. Let {ei}?i:nlnv be an orthonormal basis for V, then
(Av,v5) = Z(ﬂi,€z><A€l,€k><6k7Uj>
1k
and therefore by the multiplicative property of the determinant,
det [{Avi, vj)] = det [(vy, e1)] det [(Aer, ex)] det [(ex, ;)]

(3.12) = det (A) det [(v;, €7)] - det [(ex, v;)] .
Taking A = I in this equation then shows
(3.13) det [(vi, vj)] = det [(vs, e)] - det [{er, v;)] -
Dividing Eq. (3.13)) into Eq. (3.12) proves Eq. (3.11)).

For the second assertion, it suffices to assume V = R¢ with the usual inner-
product. Define T : R¢ — R? so that Te; = v; where {ei}?zl is the standard basis

for R?, then C' (§) =T <[0, 5]d> and hence
m (é (5)) = |det T|m ([o,a}d) = §%|det T| = §%/det (TT)
= 5d1 /det KT“T@Z‘, €j>] = 5d det [<T€i, T€j>} = 5d det [<U¢, ’Uj”.
[

Using the second assertion in Lemma the volume of C(6) in Eq. (3.10)
is 6%y/det g*(m), where g¥;(m) = (¢i(x(m)), ¢.;(x(m)))m. Because of the above
computations, it is reasonable to try to define a new integral on D () C M by

fdrp) = / fVgdz,
) D(z)

D(z

i.e. let Ap(,) be the measure satisfying
(3.14) d/\D(x) = V/g%dx,
where /g7 is shorthand for y/det g=.
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Lemma 3.8. Suppose that y and x are two charts on M, then

oz’ Oxd
1 .
(3.15) % :1 9iin y* 8y

Proof. Inserting the identities
d

i oz’
dz' = 8kdy and dz’ = Zal !
and into the formula ds? = Zf =19, jdﬂcidxj gives
d
0z Ox7
2 _ k
ds” = Z maykgldydy
1,5,k 1=1
from which (3.15)) follows. ]

Exercise 3.9. Suppose that = and y are two charts on M and f € C*(M) such
that the support of f is contained in D(z) ND(y). Using Lemma and the change
of variable formula show,

/ Sgde = / N
(z)ND(y) D(x)ND(y)

Theorem 3.10 (Riemann Volume Measure). There exists a unique measure, Ay
on the Borel o — algebra of M such that for any chart  on M,

(3.16) dAy () = dAp(zy = Vg°dx on D (z).
Proof. Choose a countable collection of charts, {z;}32; such that M =

U2, D (z;) and let Uy := D(x1) and U; := D(x;) \ (U;-:1 D(z )) for ¢ > 1. Then if
B C X is a Borel set, define the measure A\js (B) by

(3.17) A (B) =Y Ap, (BNU;).
i=1

If z is any chart on M and B C D(x), then BNU; C D (z;) N D (z) and so by
Exercise Ap(z;) (BN U;) = Ap(z)(B). Using this identity in Eq. (3.17) implies

A (B) ==Y Ap) (BOU:) = Ap(y) (B)
i=1
and hence we have proved the existence of A\j;. The uniqueness assertion is easy
and will be left to the reader. ]

Example 3.11. Let M = R? with the standard Riemannian metric, and let z
denote the standard coordinates on M determined by z(m) = m for all m € M.
Then Ags is Lebesgue measure which in spherical coordinates may be written as

dAgs = 12 sin pdrdpdd
because /g#9) = 12 sin o by Eq. (3.7). Similarly using Eq. (3.9),
d\yr = p? sin pdpdh
when M C R? is the sphere of radius p centered at 0 € R3.



CURVED WIENER SPACE ANALYSIS 21

Exercise 3.12. Compute the “volume element,” dgs, for R? in cylindrical coor-
dinates.

Theorem 3.13 (Change of Variables Formula). Let (M, (-,-)ar) and (N, {-,")n)
be two Riemannian manifolds, ¥ : M — N be a diffeomorphism and p €
C™ (M, (0,00)) be determined by the equation

= /det [Y& 1. for all m € M,

where Y& denotes the adjoint of 1., relative to Riemannian inner products on
TouM and TymyN. If f: N — Ry is a positive Borel measurable function, then

/NfdAN - /M"” (f o) dAar.

In particular if v is an isometry, i.e. Yum : TnM — Ty N is orthogonal for all

m, then
/fd)\N:/ fo dhyy.
N M

Proof. By a partition of unity argument (see the proof of Theorem |3.10)), it

suffices to consider the case where f has “small” support, i.e. we may assume that

the support of f o4 is contained in D () for some chart x on M. Letting ¢ := 271,

by Eq. (3.11)) of Lemma [3.7]

det [(9i (¥ 0 ¢) (), 0; (¢ © @) (1)) ]
det [(9i¢ (), 059 (£)) aa]
_ det [(¢. z¢( ), x0;¢ ()] _ det [(V".0i6 (1) , ;¢ (1)) ]
det [(9:¢ (), 0;¢ (£)) aa] det [(9i¢ () , 059 (£)) aa]

= det [l/fi:z)(t)i/)*qb(t)} = P2 (o (t))-
This implies

[sow=[ fowes <t>¢det[<ai<¢o¢> (t).0; (W o 8) ()]t
N R(x)

:/ (fot)o \/det (0i9 (), 0;0 (t)) nedt
-/ (fow)~p-\/g7dm=/ p-fou du.
D(z) M

Example 3.14. Let M = SL(n,R) as in Example[3.3|and let (-, )5 be the metric
given by Eq. (3.5). Because Ly : M — M is an isometry, Theorem implies

/ f(gz)dXg (z) = / f(x)d\g (z) for all g € G.
SL(n,R) SL(n,R)

That is Ag is invariant under left translations by elements of G and such an invariant
left invariant measure is called a “left Haar” measure on G.

Similarly if G = O (n) with Riemannian metric determined by Eq. , then,
since g € G is orthogonal, we have

ds?(Ag) == tr((g7 A)"g 7 A) = tr((g"A)* g7 A) = tr(A7gg T A) = tr(A"A)
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and
tr((Ag=1)*Ag™1) = tr(gA*Ag™!) = tr(A*Ag~'g) = tr(A* A).

Therefore, both left and right translations by element g € G are isometries for this
Riemannian metric on O (m) and so by Theorem

fanie) = [ f@oe@= [ JE)dew
O(n) O(n)

for all g € G.

3.3. Gradients, Divergence, and Laplacians. In the sequel, let M be a

Riemannian manifold, = be a chart on M, g;; = (9/9z%,0/027), and ds® =

Z;i,j=1 gijdztda’.

Definition 3.15. Let g% denote the i-j™" — matrix element for the inverse matrix
to the matrix, (g;;).

Given f € C>*°(M) and m € M, dfy, := df|r, m is a linear functional on T, M.
Hence there is a unique vector v, € T,, M such that df,, = (U, ).

Definition 3.16. The vector v, above is called the gradient of f at m and will
be denoted by either grad f(m) or Vf (m).
Exercise 3.17. If z is a chart on M and m € D(x) then

d

B 0
(3.19) 1) = madfm) = 3 o ) 2 b

where as usual, g;; = gi; and g = (9i;)"" . Notice from Eq. l) that V£ is a
smooth vector field on M.

Exercise 3.18. Suppose M C RY is an imbedded submanifold with the induced
Riemannian structure. Let F': RN — R be a smooth function and set f := F|y.
Then grad f(m) = (P(m)VF(m))m, where VF(m) denotes the usual gradient on
RY, and P(m) denotes orthogonal projection of R onto 7, M.

We now introduce the divergence of a vector field Y on M.

Lemma 3.19 (Divergence). To every smooth vector field Y on M there is a unique
smooth function, V- Y = divY, on M such that

(3.19) /M Y fdy = —/M divY - fdhy, Y fe€CE(M).

(The function, V.Y = divY, is called the divergence of Y.) Moreover if x is a
chart on M, then on its domain, D(x),

d

1 0(/gY)  K,0Y | dlogy/g.
(3.20) V.Y =divy = Z\f o 7;{8xi+ o IBVIyiy

where Y := dx*(Y) and V9 = V9* = y/det (gfj)
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Proof. (Sketch) Suppose that f € C°(M) such that the support of f is con-
tained in D(x). Because Y f = Z?,l Yiof/oxt,

/de)\M /ZY&f/Bx - Vgdr = — /Zf *g;lyl da

4 a( \f Y?)
[ M
\[ 8%‘1
where the second equality follows by an integration by parts. This shows that if
divY exists it must be given on D(z) by Eq. (3.20). This proves the uniqueness
assertion. Using what we have already proved, it is easy to conclude that the
formula for divY is chart independent. Hence we may define smooth function

divY on M using Eq. (3.20) in each coordinate chart = on M. It is then possible to
show (again using a smooth partition of unity argument) that this function satisfies

Eq. (3.19). n
Remark 3.20. We may write Eq. (3.19) as
(3.21) / (Y, grad f) dA\y; = —/ divY - fdhy, Y feC®(M),

M M

so that “div” is the negative of the formal adjoint of “grad.”
Exercise 3.21 (Product Rule). If f € C>*° (M) and Y € T' (T'M) then
V- (fY)=(VY)+ [V Y.

Lemma 3.22 (Integration by Parts). Suppose thatY € T(TM), f € C°(M), and
h e C*(M), then

/ Yf-hd\y = f{=Yh—h-divY}dApy.
M M
Proof. By the definition of divY and the product rule,

/ FhdivY dhy = — [ Y(fh)dAy = —/ (WY f + fYh}dAy.
M M M
| ]

Definition 3.23. The Laplacian on M is the second order differential operator,
A:C®(M)— C*(M), defined by

(3.22) Af :=div(grad f) =V - V.

In local coordinates,

1 < .
3.23 Af=—— 0 9.1},
(3.23) f \/51-;:1 V99”7 0;f}

where 9; = 8/0x", g = g*, \/g = V/detg, and (§") = (g§;) "
Remark 3.24. The Laplacian, A f, may be characterized by the equation:
/ Af-hdy = —/ (Vf,Vh) dAy,
M M
which is to hold for all f € C*°(M) and h € C°(M).
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Example 3.25. Suppose that M = RY with the standard Riemannian metric
ds®> = YV (dz")?, then the standard formulas:

grad f = Zaf/ax d/0x', divy = Z@Y’/ax and Af = Z

=1 =1

83:’

are easily verified, where f is a smooth function on R and Y = 22:1 Yi0/0z" is
a smooth vector-field.

Exercise 3.26. Let M = R3, (r,,0) be spherical coordinates on R?, 9, = 9/0r,
, = 0/0p, and 0y = 0/0g. Given a smooth function f and a vector-field ¥ =
Y, 0, + Y0, + YgOy on R? verify:

1

grad f = (0, f)0, ) (3 oy + — (00.f)O8,
r sin? o
. 1 . . .
divy = m{&n(r2 sin pY;.) + 0, (1 sin Y,,) + 1% sin pdp Yo }
1 1 .
— 7237"(7“25?) + ﬁaw(sm ©Y,) + 00Ys,
and
Af = 50,(r20,f) + —=—0, (sin 90, f) + ———— 3.

o2 mor r2sing St ede r2sin? o 0

Example 3.27. Let M = G = O (n) with Riemannian metric determined by Eq.
(3.5) and for A € g:=T.G let A € T (T'G) be the left invariant vector field,

~ d
A(z) = Ly A= %\Oxem

as was done for SL(n,R) in Example Using the invariance of d\g under right
translations established in Example [3.14] we find for f,h € C! (G) that

/GAf (z) - h(z)d\g (z) = /G %w (ze') - b (2) dAg ()
= jto/af (ze') - h(z) dAg (2)

%\o /G f (@) h(ze™ ™) dAg (2)

= / f(z)- £|0h (meftA) dXg ()

/ /(@) Ah (@) dre ().
Taking h = 1 implies
0= /G Af (x) drg (2) = /G (A(@).97 (@) drc (@)

__/ V-A(z) f(z)drg (2)
G

from which we learn V - A = 0.
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Now letting Sy C g be an orthonormal basis for g, because L, is an isometry,
{A(g) : A € Sy} is an orthonormal basis for T,G for all g € G. Hence

Vi)=Y (V). A9)Alg) = Y (Af) (9)A(9).

A€eSy AeSo

and, by the product rule and V-A= 0,

Af=V-Vf=> V. [(flf)/q -y <ﬁjxf,!1>: 3 A%,

A€Sy A€Sy A€eSy

3.4. Covariant Derivatives and Curvature.

Definition 3.28. We say a smooth path s — V(s) in TM is a vector-field along
a smooth path s — o(s) in M if 7o V(s) = o(s), i.e. V(s) € Ty5)M for all s.
(Recall that 7 is the canonical projection defined in Definition )

Note: if V' is a smooth path in TM then V is a vector-field along ¢ := wo V. This
section is motivated by the desire to have the notion of the derivative of a smooth
path V(s) € TM. On one hand, since T'M is a manifold, we may write V'(s) as an
element of TTM. However, this is not what we will want for later purposes. We
would like the derivative of V' to again be a path back in TM, not in TTM. In
order to define such a derivative, we will need to use more than just the manifold
structure of M, see Definition [3.31] below.

Notation 3.29. In the sequel, we assume that M? is an imbedded submanifold of
an inner product space (E =R (.,.}), and that M is equipped with the inherited
Riemannian metric. Also let P(m) denote orthogonal projection of E onto 7, M
for all m € M and Q(m) := I — P(m) be orthogonal projection onto (7, M)*.

The following elementary lemma will be used throughout the sequel.

Lemma 3.30. The differentials of the orthogonal projection operators, P and Q,
satisfy
0=dP +dQ,
PdQ = —dPQ = dQQ and
QdP = —dQP = dPP.

In particular,
QAPQ = QdQQ = PdPP = PdQP = 0.

Proof. The first equality comes from differentiating the identity, I = P + @Q,
the second from differentiating 0 = P and the third from differentiating 0 = QP.
|

Definition 3.31 (Levi-Civita Covariant Derivative). Let V(s) = (o(s),v(s)) =
v(8)s(s) be a smooth path in T'M (see Figure @, then the covariant derivative,
V'V (s)/ds, is the vector field along o defined by

VV(s) d

(3.24) 2 = (0(s), P(o(s)5-0(5))

Proposition 3.32 (Properties of V/ds). Let W(s) = (o(s),w(s)) and V(s) =
(o(s),v(s)) be two smooth vector fields along a path o in M. Then:
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T, M

VU pyerondW
o =PoE

FIGURE 9. The Levi-Civita covariant derivative.

(1) VW (s)/ds may be computed as:

(3.25) V) (o), Lanls) + (dQ(o (s)) ().
(2) V is metric compatible, i.e.
B26) LWV = (T V) + (), Yo,

Now suppose that (s,t) — o(s,t) is a smooth function into M, W (s, t) =

(o(s,t),w(s,t)) is a smooth function into TM, o’ (s, t) := (o(s,t), Lo (s,1))
and &(s,t) = (o(s,t), Lo(s,t)). (Notice by assumption that w(s,t) €

Tys,0yM for all (s,t).)
(3) V has zero torsion, i.c.
Vo' _ Vs
dt — ds’

(3.27)

(4) If R is the curvature tensor of V defined by

(3.28) R(tm, V) wm, = (m, [dQ(um), dQ(vm)]w),
then
PO L] PO A 0 A S

Proof. Differentiate the identity, P(o(s))w(s) = w(s), relative to s implies

(AP0’ (5)))(s) + Plo(s)) cw(s) = Lu(s)

from which Eq. (3.25) follows.
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For Eq. just compute:
d d
(W (), V(s)) = o (w(s),v(s)
d d
= <dsw(s),v(s)> + <w(s), dSU(S)>

— (2u(s) Ploo)uts) ) +
)

- <p(g(s))‘iw(s),v(s)
- <V3/s(5),v<s)> + <W(S), I

where the third equality relies on v(s) and w(s) being in 7,(;)M and the fourth

equality relies on P(o(s)) being an orthogonal projection.
From the definitions of o/, &, V/dt, V/ds and the fact that mixed partial deriva-

tives commute,
Vo'(s, ) Vv d d
= (0 (t:),0'(5,) = (0(t,8), Plo(5,6) 50 (1,5))

dt
d
g0 (68) = Val(s t)/ds,

= (a(t,5), P(o(s,1))

which proves Eq. ([3.27).
For Eq. (3.29) we observe,

VAV v d '
T 25V (s:t) = (o (s,0), =w(s,t) + dQ(o' (s, ))w(s, 1))
= (U(S7t)an+(57t))

where (with the arguments (s,t) suppressed from the notation)
Ny = % [j w+dQ(c") } +dQ(0o) [(st + dQ(a’)w]
= St () v+ dQ() G+ 4Q(6) v + Q)R

Therefore

dt’ ds
where 7)_ is defined the same as 14 with all s and ¢ derivatives interchanged. Hence,
it follows (using again %%w = %E ) that

] I = [ (Qe) e + [4Q(6).dQ( ),

[V V] W= (o,n+ —1n-),

dt’ ds
The proof of Eq. (3.28) is finished because
d , d . dd d d B
ﬁ(dQ(U ) — g(dQ(U)) = ££(Q ©0) ££(QOU) =
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Example 3.33. Let M = {m € RY : |m| = p} be the sphere of radius p. In this

case Q(m) :p%,mmtr for all m € M. Therefore

1
dQ(vm) = = {vm" + mv"} V v, € T,,M
p
and hence

dQ(tm)dQ(vy,) = p%{umtr + mu Hom"™ + mo'}

= %{p%w“ + (u, v)Q(m)}.

So the curvature tensor is given by
1

1
R(tm, V)i = (m, = {uv" — vu'"Iw) = (m, = {(v, wyu — (u, w)v}).
P P
Exercise 3.34. Show the curvature tensor of the cylinder
M = {(z,y,2) €R3: 2® +y* = 1}
is zero.

Definition 3.35 (Covariant Derivative on I'(T'M)). Suppose that Y is a vector
field on M and vy, € T,,M. Define V,, Y € T,, M by

v,y YY)
ds
where o is any smooth path in M such that o/(0) = vy,.
If Y(m) = (m,y(m)), then
Vo, Y = (m, P(m)dy(vm)) = (m, dy(vm) + dQ(vm)y(m)),

Um

‘s:Oa

from which it follows V,, Y is well defined, i.e. V,, Y is independent of the choice
of o such that ¢’ (0) = v,,. The following proposition relates curvature and torsion
to the covariant derivative V on vector fields.

Proposition 3.36. Let m € M, v € T,,M, X,Y,Z € I'(TM), and f € C>*(M),
then the following relations hold.
1. Product Rule: V,(f-X) =df(v) - X(m)+ f(m) -V, X.
2. Zero Torsion: VxY —Vy X — [X,Y] =0.
3. Zero Torsion: For all vy, Wy, € Ty M, dQ(vpm) W, = dQ (Wi ) Uy
4. Curvature Tensor: R(X,Y)Z = [Vx,Vy|Z — V|x y|Z, where
[Vx, Vy}Z = Vx(vYZ) - Vy(VXZ).
Moreover if u,v,w, z € T, M, then R has the following symmetries
a: R(Umvvm) = _R(U'm; um)
b: [R(tm,vm)]" = —R(tm, vm) and
c: if zym € T M, then
(3.30) (R (U Uy ) Winy Zm) = (R(Wny 2o ) Uiny Vrn )
5. Ricci Curvature Tensor: For each m € M, let Ricy,, : T, M — T, M
be defined by

(3.31) Ric,, Uy, i= Z R(vm, a)a,
acs
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where S C T,, M is an orthonormal basis. Then Ricﬁfb = Ric,, and Ric,,
may be computed as

(3.32) (Ricpu, v) = tr(dQ(dQ(uw)v) — dQ(v)dQ(w)) for all u,v € T,, M.

Proof. The product rule is easily checked and may be left to the reader. For
the second and third items, write X(m) = (m,z(m)), Y(m) = (m,y(m)), and
Z(m) = (m, z(m)) where z,y,z : M — RY are smooth functions such that z(m),
y(m), and z(m) are in 7, M for all m € M. Then using Eq. , we have

(VxY = Vy X)(m) = (m, P(m)(dy(X (m)) — dz(Y (m))))
(3.33) = (m, (dy(X(m)) — da(Y (m)))) = [X, Y](m),

which proves the second item. Since (VxY')(m) may also be written as
(VxY)(m) = (m,dy(X(m)) 4+ dQ(X (m))y(m)),

Eq. (3.33) may be expressed as dQ(X(m))y(m) = dQ(Y (m))z(m) which implies
the third item.
Similarly for fourth item:

VxVyZ =Vx(,Yz+(YQ)z)
=, XYz+ (XYQ)z+ (YQ)Xz+ (XQ)(Yz+ (YQ)z2)),

where YQ := dQ(Y) and Yz := dz(Y). Interchanging X and Y in this last expres-
sion and then subtracting gives:

[Vx, Vy]Z = (- [X, Y]z + (X, Y]Q)z + [XQ,YQ]2)

The anti-symmetry properties in items 4a) and 4b) follow easily from Eq. (3.28]).
For example for 4b), dQ (u,,) and dQ(v,,) are symmetric operators and hence

[R(tm, vm)]™ = [dQ (1), Q)] = [dQ(vrm)"™, dQ(tm)"]
= [dQ(vm)adQ(Um)] = _[dQ(um)’dQ(Um)} = —R(tm,Vm).

To prove Eq. (3.30) we make use of the zero - torsion condition dQ(v,,)w,, =
dQ(wy, )vy, and the fact that dQ (u,,) is symmetric to learn

dQ(um), dQ(vm)]w, z)

dQ(um)dQ(vm) — dQ(vim)dQ(um)]w, z)

Um )W, dQ(um)z) — (dQ(um)w, dQ(vm)z)

w)v, dQ(z)u) — (dQ(w)u, dQ(z)v)

[dQ(2), dQ(w)] v, u) = (R (z,w) v,u) = (R (w, z) u,v)

(R(Upn, V) w, 2) =

(3.34)

where we have used the anti-symmetry properties in 4a. and 4b. By Eq. (3.34)
with v = w = a,
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(Ricu, z) = Z (R(u,a)a, z)

acs

=" [(dQ(a)a, dQ(u)z) — (dQ(u)a, dQ(a)z)]

acs

= [{a,dQ(a)dQ(u)z) — (dQ(u)a, dQ(z)a)]

a€S

= [{a,dQ(dQ(u)z)a) — (dQ(2)dQ(u)a, a)]

a€S
= tr(dQ(dQ(u)z) — dQ(2)dQ(u))
which proves Eq. (3.32). The assertion that Ric,, : T, M — T, M is a symmetric
operator follows easily from this formula and item 3. ]

Notation 3.37. To each v € RV, let 0, denote the vector field on RY defined by

Op(at ©) = vy = 4

p lo(x + tv).

So if F € C*(RY), then
d
(0pF)(z) := $|0F(x +tv) = F' (z)v
and
(00w F) () = F" (z) (v,w),
see Notation 211
Notice that if w : RN — R¥ is a function and v € RV, then
(0u0uF) (@) = 0, [F () w ()] (&) = F' () Dy (2) + F" (2) (v, () .
The following variant of item 4. of Proposition [3.36] will be useful in proving the
key Bochner-Weitenbock identity in Theorem below.
Proposition 3.38. Suppose that Z € T'(TM) ,v,w € T,, M andlet X, Y € T'(TM)
such that X (m) =v and Y (m) = w. Then
(1) V24,2 defined by
(3.35) ViewZ = (VxVyZ —Vy, yZ)(m)
18 well defined, independent of the possible choices for X and Y.
(2) If Z(m) = (m,2z(m)) with z : RY — RN a smooth function such z(m) €
TmM for allm € M, then

(3.36)

VigwZ = dQ (v) dQ (w) 2 (m) + P (m) 2" (m) (v,w) — P (m) 2’ (m) [dQ (v) w].
(3) The curvature tensor R (v, w) may be computed as
(3.37) Vi2owZ — VigeZ = R (v,w) Z (m).

(4) If V is a smooth vector field along a path o (s) in M, then the following
product rule holds,

v
(3.38) = (Vvw?2) = (V%V(S)Z) + Vi oevisZ-
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Proof. We will prove items 1. and 2. by showing the right sides of Eq.
and Eq. are equal. To do this write X (m) = (m,z(m)), Y(m) = (m,y(m)),
and Z(m) = (m, z(m)) where x,y,2z : RY — RY are smooth functions such that
xz(m), y(m), and z(m) are in 7, M for all m € M. Then, suppressing m from the
notation,

VxVyZ —Vvy,vZ = PO, [POyz] — POpy,yz
= P (0,P) 0yz + P0,0yz — POpo,y2
= P(0,P)0yz + P2" (z,y) + P2’ [0,y — PO,y
= (0. P) Q0yz + Pz" (x,y) + P2 [Q.y] .

Differentiating the identity, Qy = 0 on M shows Q9,y = — (0,Q) y which combined
with the previous equation gives

(3.39)  VxVyZ—Vy,yZ = (0,P)Qdyz + P2" (z,y) — P2 [(0,Q) Y]
= —(0,P) (9,Q) z + P2" (X,Y) — P [(0,Q) Y].

Evaluating this expression at m proves the right side of Eq. (3.36).
Equation (3.37)) now follows from Eqs. (3.36]) and (3.28), item 3. of Proposi-

tion and the fact the z” (v,w) = 2" (w,v) because mixed partial derivatives
commute.

We give two proofs of Eq. . For the first proof, choose local vector fields
{Ei}?zl defined in a neighborhood of o (s) such that {F; (¢ (s))}?:1 is a basis for
T,(syM for each s. We may then write V' (s) = 2?21 Vi (s) E; (o (s)) and therefore,

(3.40) %V (s) = i {V/ (s) Ei (0 (5)) + Vi (5) Vor(s) Ei }
and
Y (Vvw?) =~ iv () (VE2) (0 <s>>>
= Zv (5) (V. 2) (0 (5)) + Z Vi(8) Vor(s) (VE2).

Using Eq. (3.35),
Vorsy (Ve Z) = V§'(3)®Ei(a(s))z + (Vvoms)Ei Z)

and using this in the previous equation along with Eq. (3.40) shows

\V d

_ - 2
75 (Vv Z) = Vi (v mios) i)V, 2} 2 + > Vil$) Vamer oenZ

i=1

= (Vevm?) + Vi ievin?:
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For the second proof, write V' (s) = (0(s),v(s)) = v(s), and p(s) :=
P (o (s)), then
\Y d P
= (WZ) = (VeyZ) = po (0 () = p¥ (pv)
=p[p'? (v) +pz" (o', v) + p2’ (V)] — p2’ (pv')
=pp'? (v) +pz" (o', v) + p2’ (qv')
=p'q?’ (v) +p2" (0',v) = pz’ (¢'v)
_ o2
- V(r’(s)(X)V(s)Z
wherein the last equation we have made use of Eq. (3.39). [
3.5. Formulas for the Divergence and the Laplacian.
Theorem 3.39. Let Y be a vector field on M, then
(3.41) divY = tr(VY).

(Note: (v, — V,,, Y) € End(T,,M) for each m € M, so it makes sense to take the
trace.) Consequently, if f is a smooth function on M, then

(3.42) Af =tr(Vgrad f).

Proof. Let z be a chart on M, §; := 0/9x%, V; := Vp,, and Y* := dx'(Y). Then
by the product rule and the fact that V is Torsion free (item 2. of the Proposition

;
d _ d , _
Y =) Vi(Y79;) =) (0:Y0; + YIV,0;),
. =
and V;0; = V;0;. Hence,

d
:dei(ViY Zayw Z dz*(Y7V,0;)

3,j=1

_Zanerx (YIV;0;).

4,5=1
Therefore, according to Eq. -7 to finish the proof it suffices to show that

d
> da'(V;0;) = 0;1og \/g.
i=1

From Lemma @

1 1
0jlog /g = iaj log(det g) = §tr 18]9 Z gklajgkl7
kl 1

and using Eq. (3.26) we have
ajgkl = 8j<8k7al> = <Vj8k, 8l> + <8k7 Vj81>.
Combining the last two equations along with the symmetry of g** implies

d d
Ojlog /g =Y g"(V;06,0) = da*(V;0%),
k=1

k=1
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where we have used
d
Z gkl (" 81) =
k=1
This last equality is easily verified by applying both sides of this equation to 9; for
i1=1,2,...,n. ]

Definition 3.40 (One forms). A one form w on M is a smooth function w :
TM — R such that w,, := w|r,, a is linear for all m € M. Note: if z is a chart of
M with m € D(z), then

sz )da' |1, 0,

where w; 1= w(9/dx"). The condltlon that w is smooth is equivalent to the condition
that each of the functions w; is smooth on M. Let Q'(M) denote the smooth one-
forms on M.

Given a one form, w € Q(M), there is a unique vector field X on M such
that wy, = (X(m),)m for all m € M. Using this observation, we may extend the
definition of V to one forms by requiring

(3.43) Vonw = (V,, X,y € Ty M = (T,,M)".

Lemma 3.41 (Product Rule). Keep the notation of the above paragraph. Let
Y eT(TM), then

(3.44) U [w(Y)] = (Vy,,w)(Y (M) + w(V,, Y).
Moreover, if  : M — (RN)* is a smooth function and
W(vm) == 0(m)v
for all v, € TM, then
(3.45) (Vo w) (W) = dO(vm)w — 6(m)dQ(vy,)w = (d(0P)(vm))w,
where (0P)(m) := 6(m)P(m) € (RN)*.
Proof. Using the metric compatibility of V,
vm(W(Y)) = vm((X,Y) = (Vy,, X, Y (m)) + (X(m), Vs, Y)
= (Vo 0)(Y(m)) + w(Va, Y)
Writing Y (m) = (m,y(m)) = y(m), and using Eq. , it follows that
(Vo @) (Y (m)) = vm(w(Y)) = w(V,, Y)
= vm(0(-)y(-)) = 0(m)(dy(vm) + dQ(vm)y(m))
= (dO(vm))y(m) — 0(m)(dQ(vm))y(m).

Choosing Y such that Y (m) = w,, proves the first equality in Eq. (3.45). The
second equality in Eq. (3.45) is a simple consequence of the formula

d(0P) = do(-)P + 0dP = do(-)P — 6dQ.

|
S

]
Before continuing, let us record the following useful corollary of the previous
proof.
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Corollary 3.42. To every one — form w on M, there exists f;,g; € C°(M) for
i=1,2,...,N such that

N
(346) w = Z fidgz‘~
=1

Proof. Let fi(m) := 0(m)P(m)e; and g; (m) = x*(m) = (m,e;)gpy where
{ei}fil is the standard basis for RY and P (m) is orthogonal projection of RY onto
TmM for each m € M. [
Definition 3.43. For f € C°°(M) and v, wy, in T,, M, let

Vdf (v, win) = (Vo df ) (wm),
so that
Vdf : Umek[(TmM X TmM) — R.
We call Vdf the Hessian of f.
Lemma 3.44. Let f € C°(M), F € C*(RY) such that f = F|y, X,Y € T(TM)
and Uy, Wy, € Ty, M. Then:
(1) VAf(X,Y) = XY f — df(VxY).
(2) Vdf (VW) = F"(m)(v,w) — F'(m)dQ (v, )w.
(3) Vdf (Um, W) = Vdf (Wi, vm) — another manifestation of zero torsion.
Proof. Using the product rule (see Eq. (3.44)):
XY f=X(df(Y)) = (Vxdf)(Y) + df (VxY),
and hence
Vdf(X,Y) = (Vxdf)(Y) = XY [ —df (VxY).
This proves item 1. From this last equation and Proposition (V has zero
torsion), it follows that
Vdf(X,Y) = Vdf (Y, X) = [X,Y]f —df (VxY — VyX) =0.

This proves the third item upon choosing X and Y such that X(m) = v, and
Y (m) = wy,. Item 2 follows easily from Lemma applied with 6 := F”. |

Definition 3.45. Given a point m € M, a local orthonormal frame {Ei}?:l at

m is a collection of local vector fields defined near m such that {E; (p)}f=1 is an
orthonormal basis for 7, M for all p near m.

Corollary 3.46. Suppose that F € C®(RY), f := F|y, and m € M. Let {e;}L,
be an orthonormal basis for 7, M and let {E;}{_, be an orthonormal frame near
m € M. Then

d
(3.47) Af(m) =Y Vdf(Ei(m), Ei(m)),
=1

d
(3.48) Af(m) = Z{EiEifxm) — df (Vg m) i)},
and )

d

(3.49) Af(m) = F"(m)(ei, e;) — F'(m)(dQ(E; (m))e;)

i=1
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where E; (m) := (m, ¢e;) .

Proof. By Theorem Af = Z?:l (VE, grad f, E;) and by Eq. (3.43),
Vg, df = (Vg grad f,-) . Therefore

Af = ZVEdf ZVdf E;, E),

which proves Eq. - Equations (3.48) and - ) follows from Eq. and
Lemma 3.441

Notation 3.47. Let {ei}il be the standard basis on RY and define X; (m) :=
P(m)e; forallme M and i =1,2,...,N.

In the next proposition we will express the gradient, divergence and the Laplacian
in terms of the vector fields, {Xl}fil . These formula will prove very useful when
we start discussing Brownian motion on M.

Proposition 3.48. Let f € C*° (M) andY € T' (T M) then
(1) vy = Z?;(Uvai (m))X; (m) for all vy, € T,, M.
(2) Vf=gradf =31, Xif - X;
(3) V.Y =div(Y) = XN (Vx,Y, X;)
4) oL, Vx,Xi =0
N
(5) Af =301, X7f.

Proof. 1. The main point is to show

N d
(3.50) > Xi(m) @ Xi(m) =) w; ®u
i=1 =1

where {u,} _, is an orthonormal basis for 77, M. But this is easily proved since

ZXi( ZP )ei @ P (m)e;

and the latter expression is independent of the choice of orthonormal basis {ei}ﬁil
for RY. Hence if we choose {ei}f\il so that e; = u; for t =1,...,d, then

N
ZP( e; ® P(m Zuﬂ@uz
i=1

as desired. Since Zf\;(vm, X; (m))X, (m) is quadratic in X;, it now follows that

N d

Z<Um, X; (m))X; (m) = Z(Um,ul)ui = Upy.

i=1 i=1
2. This is an immediate consequence of item 1:

N

grad f (m) = D _(grad f (m), X; (m)) X (m) = 3 Xif (m) - Xi (m).

i=1
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3. Again Zi]\;(VXiY, X;)(m) is quadratic in X; and so by Eq. l} and
Theorem [3.39]
N d
SV, X) (m) = 3 (Vi Vi) (m) = div(Y).
i=1 1=1
4. By definition of X; and V and using Lemma [3.30
N
(3.51) Z (Vx,X;) ZP Xi(m))ei =Y _dP(P(m)e;)Q(m)e;.
i=1 i=1
The latter expression is independent of the choice of orthonormal basis {ei}f\il for
RY. So again we may choose {ez} _, so that e; = u; for i =1,...,d, in which case
P (m)e; =0 for j > d and so each summand in the right member of Eq. (3.51)) is
ZETO.
5. To compute Af, use items 2.— 4., the definition of v f and the product rule
to find
N
Af=V- (V)= (Vx,V[ X;)

i=1

N N N
. =1 i=1

]
The following commutation formulas are at the heart of many of the results to
appear in the latter sections of these note.

Theorem 3.49 (The Bochner-Weitenbéck Identity). Let f € C*° (M) and a,b,c €
T M, then

(3.52) (ViesV1.0) = (Vag V1. b)

and if S C Ty M is an orthonormal basis, then

(3.53) Z Va®a = (grad Af)(m)+RicVf (m).
acs

This result is the first indication that the Ricci tensor is going to play an im-

portant role in later developments. The proof will be given after the next technical
lemma which will be helpful in simplifying the proof of the theorem.
Lemma 3.50. Given m € M and v € T,,M there exists V € T'(TM) such that
V(m)=v and V,,V =0 for all w € T,,, M. Moreover if {ez} _1 is an orthonormal
basis for T, M, there exists a local orthonormal frame {E} _1 near m such that
VwE; =0 for all w € T, M.

Proof. In the proof to follow it is assume that V, () and P have all been extended
off M to smooth function on the ambient space. If V is to exist, we must have
0=V,V=V"(m)w+0,Q (m)v
i.e.
V' (m)w = —8,,Q (m) v for all w € T,,, M.
This helps to motivate defining V' by
V(z):=P(x)(v—(0g—mQ) (m)v) € Ty M for all x € M.
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By construction, V (m) = v and making use of the identities in Lemma [3.30}

(
VoV =0y [P (2) (0 = (02-mQ) (M) V)] [o=m + (0u,Q) (M) v
= (0w P) (m)v ( )(aw ) (m) v+ (0wQ) (M) v
= (0w P) (m)v +Q (m) (9uwQ) (M) v = (9 P) (m) v + (0u,Q) (m) v =0
as desired.
For the second assertion, choose a local frame {V}f 1 such that V; (m) = ¢;
and V,,V; = 0 for all 4 and w € T,,,M. The desired frame {E} _1 is now con-
structed by performing Gram-Schmidt orthogonalization on {V;} i—1 - The resulting

orthonormal frame, {Ei}jzl , still satisfies V,, E; = 0 for all w € T,,, M. For example,
E = (Vl,V1>_1/2V1 and since

w(Vi, Vi) = 2(V, Vi, Vi (m)) =0
it follows that
VB, =w (<v1, V1>_1/2) Vi (m) + (Vi, Vi) ~Y2 (m) Vo Vi (m) = 0.

The similar verifications that V,,E; = 0 for j = 2,...,d will be left to the reader.
|

Proof. (Proof of Theorem ) Let a,b,¢ € T,,M and suppose A,B,C €
' (T'M) have been chosen as in Lemma so that A(m) = a, B(m) = b and
C(m)=cwithV,A=V,B=V,C =0 for all w € T,, M. Then

ABCf = AB(Vf,C) = A(VpV f,C) + AV f,VC)
= (VaAVEVS,C) + (VpVf,VaC) + A(Vf,VpC)

which evaluated at m gives
(ABC) (m) = ((VaVpV1.C) + A(V£,V50)) (m)
= (V2 V1.0) + (A(V£,V5C) ) (m)

wherein the last equality we have used (V 4B) (m) = 0. Interchanging B and C in
this equation and subtracting then implies

(A[B,C] f) (m) = (V2 V f.c) = (V3 V1) + (A(V S, VC ~ Ve B)) (m)
= (V2 V1, 0) = (V2. V1,0) + (A(V L, [B,CT)) (m)
= (V2o Vf.) = (Vig Y f.b) + (A[B.CIf) (m)

and this equation implies Eq. .
Now suppose that {Ei};'l:l C T, M is an orthonormal frame as in Lemma m
and e; = E; (m). Then, using Proposition
(3.54)
d d d

Z< ez®ezvf7 > - Z< e; ®cvf’ €1> = Z( c®e; Vf+R(ez7 )6f (m)7ei>~

i=1 i=1 =1
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Since

S (V2 Fhie) = Z (<vovEﬁf, E)) (m) = S (C(VEV 1 ED) (m)

i=1 i=1 =1

d
Z(R(ei, c)V Z (c,ei)eq)
= (Vf (m),Ricc) = (Ric V[ (m) , ),

Eq. is implies
d
> (V2 0o VFi0) = ((VAF) (m) + Rie V f (m) )

i=1
which proves Eq. (3.53)) since ¢ € T,,, M was arbitrary. ]
3.6. Parallel Translation.

Definition 3.51. Let V be a smooth path in TM. V is said to parallel or co-
variantly constant if VV (s)/ds = 0.

Theorem 3.52. Let o be a smooth path in M and (vo)s() € Tr0)M. Then there
exists a unique smooth vector field V' along o such that V is parallel and V(0) =
(v0)e(0y- Moreover if V (s) and W (s) are parallel along o, then (V(s), W (s)) =
(V(0),W(0)) for all s.

Proof. If V and W are parallel, then

%(V(s), W(s)) = <ZSV(S)’ W(s)> + <V(s>, ZSW(S)> =0

which proves the last assertion of the theorem. If a parallel vector field V(s) =
(o(s),v(s)) along o(s) is to exist, then

(3.55) dv(s)/ds +dQ(a'(s))v(s) =0 and v(0) = vp.

By existence and uniqueness of solutions to ordinary differential equations, there is
exactly one solution to Eq. . Hence, if V exists it is unique.

Now let v be the unique solution to Eq. and set V(s) := (o(s),v(s)).
To finish the proof it suffices to show that v(s) € 7,(,)M. Equivalently, we must
show that w(s) := ¢(s)v(s) is identically zero, where ¢(s) := Q(o(s)). Letting
v'(s) = dv(s)/ds and p(s) = P(o(s)), then Eq. states v/ = —¢'v and from
Lemma [3.30] we have p¢’ = ¢’q. Thus the function w satisfies

w =qv+q =qv-qdv=pdv=qq=qu
with w(0) = 0. But this linear ordinary differential equation has w = 0 as its unique
solution. ]

Definition 3.53 (Parallel Translation). Given a smooth path o, let //4 (o) :
Ty0)M — TyyM be defined by //s(o)(vo)s0) = V(s), where V is the unique
parallel vector field along o such that V(0) = (vo)s (). We call //.(o) parallel
translation along o up to time s.
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Remark 3.54. Notice that //i(0)vs) = (u(s)v)s), where s — u(s) €
Hom(7,(0)yM, R?) is the unique solution to the differential equation
(3.56) u'(s) +dQ(a’(s))u(s) =0 with u(0) = P (c(0)).

Because of Theorem [3.52, u(s) : 7,(0)M — RY is an isometry for all s and the
range of u(s) is 7,(s)M. Moreover, if we let @ (s) denote the solution to

(3.57) @ (s) — u(s)dQ(c’(s)) = 0 with @ (0) = P (¢ (0)),
then

[@(s)u(s)] = (s)u(s) +u(s)u (s)
= u(5)dQ(0"(s))u (s) — u(s) dQ(o'(s))u(s) = 0.

Hence @(s)u(s) = P(o(0)) for all s and therefore @(s) is the inverse to wu(s)
thought of as an linear operator from 7,)M to 7,(5)M. See also Lemma w
below.

&l

The following techniques for computing covariant derivatives will be useful in
the sequel.

Lemma 3.55. Suppose Y € T'(TM), o (s) is a path in M, W (s) = (o (s),w (s))
is a vector field along o and let //s = //s (o) be parallel translation along o. Then

(1) W (s)=//sg= [//5'W (s)] .-
(2) For any v € T, M,

v

ds
where Vi,(s)(@//va was defined in Proposition .
Proof. Let u be as in Eq. (3.57)). From Eq. (3.25),

TR~ (o) a0 epata)

(3.58) Vi1V =Voige.Y

while, using Remark

= (u' (s) W (s) +u(s)w (8))o(s)
= (u(s)dQ (o'(s)) w (s) +u(s)w' (5))y(s)
VW (s)

This proves the first item. We will give two proves of the second item, the first
proof being extrinsic while the second will be intrinsic. In each of these proofs there
will be an implied sum on repeated indices.
. N . . "
First proof. Let {X;},_; C I'(T'M) be as in Notation then by Proposition

B.48,
(3.59) []sv={//sv, X (0()))Xi (0 (s) = (v, /[T Xi (0 (5)))Xi (0 (5))
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and therefore,

V¥ = a0 Xi (0 () (Tx,Y) (0 (9))

(3.60) = {//sv, Xi(0(5))) - Vor(s) (Vx,Y) + {/ /50, Vo () Xi) - (Vx,Y) (0 (5)) -
Now

Vors) (Vx.Y) = Viigex,Y + Vorsx,Y

and so again using Proposition [3.48|

(3.61)

(//50,Xi (0 () Vors) (VX,Y) = Vi (@Y + /[0, Xi (0 () - Vorsyx, Y.
Taking V/ds of Eq. shows

0={//sv,Vor(syXi) Xi (0 (5)) + (/ /50, Xi (0 (5))) Vo () Xi-

and so

3.62)  {//sv,Xi(0(5)) Voro)x,Y = —=(//sv,Vor(5Xi) - (Vx,Y) (0) (5) -

Assembling Eqgs. (3.59)), (3.61) and (3.62) proves Eq. (3.58).
Second proof. Let {Ei}le be an orthonormal frame near o (s), then

TV )¥ = o0 B () (V. ¥) (o (5))]
(363) = (/0. Vo Bi) (VBY) (0(9) +{//s0, Fi (0. (5)) - Voo VY-

Working as in the first proof,
U0 i (0 () Vori VY = /a0, B (0 (5)) - (ViomY + Ve,,mY)

2
— val(s)@)//va + V(//sv,Ei(a(s)))va,(s)EiY

and using

0= %//sv =(//s0, Vo5 Ei) - Ei (0 (5)) +{//sv, Ei (0 (5))) - Vor(s) Ei
we learn
(//sv,Ei(0(s))) - Vo (s)VEY = V(QT’(S)@)//SUY —(//sv, vo’(S)Ei> (VEY) (0 (s))-

This equation combined with Eq. (3.63) again proves Eq. (3.58). ]
The remainder of this section discusses a covariant derivative on M x RY which

“extends” V defined above. This will be needed in Section [0, where it will be
convenient to have a covariant derivative on the normal bundle:

N(M) := Upen({m} x 7,nM*) € M x RN,

Analogous to the definition of V on T'M, it is reasonable to extend V to the
normal bundle N(M) by setting

YV~ (0(), Qo) (5)) = (0(3),v/(5) + dP(o’ (s))u(s),

for all smooth paths s — V(s) = (c(s),v(s)) in N(M). Then this covariant deriva-
tive on the normal bundle satisfies analogous properties to V on the tangent bundle
TM. The covariant derivatives on TM and N (M) can be put together to make a
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covariant derivative on M x RY. Explicitly, if V(s) = (o(s),v(s)) is a smooth path
in M x RN, let p(s) := P(c(s)), q(s) := Q(c(s)) and then define

YV o (0(5),pls) - (pls)o(s)} + als) = {als)o(s)}).

Since

V‘C;S(S) = (o(s), %{p(S)U(S)} +q'(s)p(s)v(s)

+ 2 4g(suls)} + 2 (S)als)o()
= (0(5),0/(5) +  (Ip()o(s) + 2 (Da(s)e(s))
= (0(5),0/(5) + dQ(0’ () Plo(s))u(s) + dP(o" () Qo ())o(s)
we may write VV (s)/ds as

(3.64) YY) — (o(s).0/(5) + Do/ (5)u(s)
where
(3.65) I'(wm)v = dQ(wpm,)P(m)v 4+ dP(w,)Q(m)v

for all w,, € TM and v € RV.

It should be clear from the above computation that the covariant derivative
defined in agrees with those already defined on TM and N(M). Many of the
properties of the covariant derivative on T'M follow quite naturally from this fact

and Eq. (3.64).

Lemma 3.56. For each w,, € TM, T'(w,,) is a skew symmetric N x N — matriz.
Hence, if u(s) is the solution to the differential equation

(3.66) u'(s)+ (o' (s))u(s) =0 with u(0)=1I,
then u is an orthogonal matriz for all s.

Proof. Since I' = dQP + dPQ and P and @ are orthogonal projections and
hence symmetric, the adjoint I'** of T is given by

' = PdQ + QdP = —dPQ — dQP = —T.

where Lemma |3.30| was used in the second equality. Hence T is a skew-symmetric
valued one form. Now let u denote the solution to (3.66) and A(s) := I'(¢’(s)).

Then
d

au“u = (—Au)"u 4+ v (—Au) = u" (A — A)u = 0,

which shows that u**(s)u(s) = u'*(0)u(0) = I. [
Lemma 3.57. Let u be the solution to . Then

(3.67) u(s)(To(0) M) = To(s) M

and

(3.68) w(s)(Tpio) M) = 1o )M+

In particular, if v € To(0)M (v € To0)M ™) then V(s) := (c(s), u(s)v) is the parallel
vector field along o in TM (N(M)) such that V(0) = v, (0.
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Proof. By the product rule,
(3.69) C%{u"P (o)u} =u"{T (o) P (o) +dP (¢') — P (o) T (o) }u.
Moreover, making use of Lemma [3.30]
T'(¢')P(o)—P(o)T (¢') +dP(d")
=dP (0') + [dQ(0") P(0) + dP(c")Q(a)] P (o)
= P (0)[dQ(c")P(0) + dP(c")Q(0)]
=dP (¢') +dQ(c")P(c) — dP(c")Q(0)
=dP (0') +dQ(c") =0,
which combined with Eq. shows 4 {u" P (c)u} = 0. Therefore,
u"(s)P (o (s)) u(s) = P(c (0))
for all s. Combining this with Lemma [3.56] shows
P (0 (s)) u(s) = u(s)P(0 (0)).

This last equation is equivalent to Eq. (3.67)). Eq. (3.68)) has completely analogous
proof or can be seen easily from the fact that P+ Q = I. ]

3.7. More References. Irecommend [86] and [42] for more details on Riemannian
geometry. The references, [II, 19, [4T] 42} [86, ©5], 111 [112] 113, 114 115, 149] and
the complete five volume set of Spivak’s books on differential geometry starting
with [164] are also very useful.

4. FLows AND CARTAN’S DEVELOPMENT MAP

The results of this section will serve as a warm-up for their stochastic counter
parts. These types of theorems will be crucial for the path space analysis results to
be developed in Sections [7] and [§] below.

4.1. Time - Dependent Smooth Flows.

Notation 4.1. Given a smooth time dependent vector field, (t,m) — X; (m) €
T,nM on a manifold M, let T;X (m) denote the solution to the ordinary differential

equation,

d

%TtX (m) = X; o T;* (m) with T5* (m) = m.
If X is time independent we will write €' (m) for T;X (m). We call TX the flow
of X. See Figure

Theorem 4.2 (Flow Theorem). Suppose that X; is a smooth time dependent vector
field on M. Then for each m € M, there exists a maximal open interval J,, C R
such that 0 € J,, and t — T;X(m) exists for t € Jp,. Moreover the set D (X) :=
Um (Jm X {m}) C R x M is open and the map (t,m) € D(X) — TX(m) € M is a
smooth map.

Proof. Let Y; be a smooth extension of X; to a vector field on E where F is the
Fuclidean space in which M is imbedded. The stated results with X replaced by
Y follows from the standard theory of ordinary differential equations on Euclidean
spaces. Let T} denote the flow of Y on E. We will construct 7% by setting
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X(m)

F1GURE 10. Going with the flow. Here we suppose that X is a
time independent vector field which is indicated by the arrows in
the picture and the curve is the corresponding flow line starting at
m € M.

TX (m) :== T} (m) for all m € M and t € J,,. In order for this to work we must
show that TY (m) € M whenever m € M.

To verify this last assertion, let « be a chart on M such that m € D (z), then
o (t) solves 6 (t) = Xy (o (t)) with o (0) = m iff

& lroo (] = de (6 (1)) = de (X, (0 (1) = do (X, 00~ (oo (1)

with zoo (0) = m. Since this is a differential equation for xoo () € R (2) and R (2)
is an open subset R, the standard local existence theorem for ordinary differential
equations implies z o o () exists for small time. This then implies o (t) € M exists
for small ¢ and satisfies

o (t) =X (o(t)) =Y (o(t)) with o(0) =m.

By uniqueness of solutions to ordinary differential equations, we must have
TY (m) = o (t) for small ¢ and in particular T (m) € M for small t. Let

Ti=sup{t € J, : T (m) € M for 0 < s <t}

and for sake of contradiction suppose that [0,7] C J,,. Then by continuity,
TY (m) € M and by repeating the above argument using a chart z on M cen-
tered at TY (m), we would find that T} (m) € M for t in a neighborhood of 7. This
contradicts the definition of 7 and hence we may conclude that 7 is the right end
point of J,,. A similar argument works for ¢ € J,, with t < 0 and hence T} (m) € M
for all t € J,,. [ |

Assumption 1 (Completeness). For simplicity in these notes it will always be
assumed that X is complete, i.e. J,, = Rforall m € M and hence D (X) = Rx M.
This will be the case if, for example, M is compact or M is imbedded in RY and the
vector field X satisfies a Lipschitz condition. (Later we will restrict to the compact
case.)

Notation 4.3. For g, h € Diff (M) let Adyh := gohog~t. We will also write Ad,
for the linear transformation on I' (T'M) defined by

d s d s _ _
Ade:£|0AdgeY:£|0goeyog 1:g*(Yog 1)
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for all Y € T'(T'M). (The vector space I'(T'M) should be interpreted as the Lie
algebra of the diffeomorphism group, Diff (M).)

In order to verify T/X is invertible, let Tth denote the solution to

d
ﬁTtﬁ = X, o T}, with T.% = id.

Lemma 4.4. Suppose that X; is a complete time dependent vector field on M, then
TX € Diff(M) for all t and

_ —Ad X
(4.1) (%) =1 =1, T

where
(Ad(TX)_1X>t = Ad(TtX)—lXt.

Proof. If s,t,u € R, then S; := T/ o T, solves
Si = X, 08, with S, = T2,

which is the same equation that ¢ — Tt),; solves and therefore Tt),i = Tt)fs oT qu In

particular, To)ft is the inverse to T;X. Moreover if we let T; := T;X and S; := T; !
then

d d .
O:aZdzﬁ[TtOSt}:XtoTtoSt+Tt*St~

So it follows that S; solves
Sy = —TtllXt oTio0S; = — (AthaXt) oS;
which proves the second equality in Eq. (4.1). [

4.2. Differentials of T;X. In the later sections of this article, we will make heavy
use of the stochastic analogues of the following two differentiation theorems.

Theorem 4.5 (Differentiating m — T;X (m)). Suppose V is the Lem’-C@'vitcﬂ co-
variant derivative on TM and T, = T/ as above, then

(4.2) %Tt*v =V, X for allveTM.

If we further let m € M, //1 = //+ (T — T (m)) be parallel translation relative to
V along the flow line 7 — T, (m) and z; := //t_th*m, then

(4.3) %ztv =//i'V Xt for all v € T, M.

(This is a linear differential equation for z; € End (T,,M).)

Proof. Let o (s) be smooth path in M such that ¢’ (0) = v, then

\% VvV d VvV, d
it txU = %£|0Tt (o(s)) = £|O%Tt (o (s))

= 210X (Ti 0 (5))) = V.o Xe

wherein the second equality we have used V has zero torsion. Eq. (4.3) follows
directly from Eq. (4.2) using ¥ = //; %//t_l, see Lemma ]

2Actually, for those in the know, any torsion zero covariant derivative could be used here.
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Remark 4.6. As a warm up for writing the stochastic version of Eq. (4.3]) in Itd
form let us pause to compute an (Vr,,,Y) for Y € T'(TM). Using Egs. 1)
(3-37) and (3.35) of Proposition |3.38

\%
%th*UY = v%ﬁ(fﬂ)@Tt*’UY + V%Tt*’UY = Vg{t(Tt(m))(@Tt*UY + vat,*”XtY
= Vi voxinmyY + RY (X (T (m)), Tpv) Y (Ti (m)) + Vv, ,x,Y
(4.4) = RY (X; (Ty (m)) , Trev) Y (T; (M) + V1,0 (Vx,Y).

Theorem 4.7 (Differentiating 7/ in X). Suppose (t,m) — X; (m) and (t,m) —
Y; (m) are smooth time dependent vector fields on M and let

d S
(4.5) T = £|0T§<+ Y
Then
t 1 t
(4.6) Oy T =Tp / (TX) Y, oTXdr = T / Adx Ydr.
0 0 T

This formula may also be written as

¢ t
(4.7 T = </ AthXTYTdT) oTX = </ AthXO(TX)—ldeT) oTX.
0 ’ 0 "

Proof. To simplify notation, let T} := T;¥ and define V; := (T}% )71

Then Vg = 0 and 9y T;X = T;XV; or equivalently, for all f € C°°(M),

oy TX.

d S
o f o T = (TEVh) f = Vi (f o T7Y).
Given f € C*°(M), on one hand we have

d d s d .

Tt ds OfoTtXJr Y= I [Vt(f OTtX)] = V;f(foTtX> + Vt(thoTtX)
= (Tt)th> f+ Vt(thOTtX)

while on the other hand

d, d

S d S
£|O£f OTtX—hY = %|0 [((Xt +sYy) f) OTtX—HY] = Yif) OTtX +Vi (thOTtX)

=Y, oT}X) f+ Vi (Xuf o TY) .
Since [%,%b] = 0, the previous two displayed equations imply (Tt),f Vt) f =
(Y; o T;*) f and because this holds for all f € C>(M),
(4.8) TXV, =Y, o T/X.

Solving Eq. (4.8) for V, and then integrating on ¢ shows

t
1% :/ (TX) 7Y, o TXdr.
0

which along with the relation, 9y T;X = T/XV;, implies Eq. (4.6).
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We may now rewrite the formula in Eq. (4.6 as
t t
WT =T ( / Adz YTdT) o (TX) " o T = Adpx ( / Adgk Y-,—d7'> o T
0 T t 0 T
¢ ¢
= ( / Adqpx Ad Y-,—dT) o = ( / AdTXO(TX)IYTdT> oT¥
0 g 0 ¢ T

t
= (/ Athx Y-,—dT) o TtX
0 <
which gives Eq. (4.7). ]

Example 4.8. Suppose that G is a Lie group, g := Lie(G), A; and B; are two
smooth g — valued functions and g{* € G solves the equation

d 4

3% = A, (gf‘) with gi' =e € G

where A, (z) := L;+A; is the left invariant vector field on G associated to A; €

g, see Examples and Then
t
Opg{ = Rya, / AdyaBdr
0
where
AdgA = Rg—l*Lg*A for all g € G and A € g.
Proof. Let TtA denote the flow of A;. Because A; is left invariant,
TA (z) = zgf* = Rjax
as the reader should verify. Thus
t -
Ougi' = 05T (€)= Ry [ (Rys) ™ Bro Rya (0)dr
“Jo
! -1 = K -1
= Rops [ (Ryp) ™ Bo (o) dr = By, [ (Ryas) " Ly Bodr
0 0
t
= Rng*/ Adga B-dr.
"~ Jo

The next theorem expresses [X;, Y] using the flow 7. The stochastic analog of
this theorem is a key ingredient in the “Malliavin calculus,” see Proposition
below. -

Theorem 4.9. If X; and T;X are as above and Y € T (TM), then

d 1 1
(4.9) I [(Tt)>5> Yo TtX} = (Tt):) (X, Y]o T}
or equivalently put
d 1 -1
(4.10) %AthX = AthXLXt

where LxY = [X,Y].
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Proof. Let V; := (Tt)f)_1 Y o TX which is equivalent to TXV; = Y o T/X, or
more explicitly to

YioT = (YoT[X) f=(TAVi) f = Vi (fo T}) for all f € C(M).
Differentiating this equation in ¢ then shows
(XY f)o TtX =V (f OTtX) + Vi (th ° TtX)

= (TXV3) £ + (T2 Vi) Xof

_ (thth) F+ (Y oTX)X,f

= (TXV) £+ (v Xof) o T,
Therefore

(75Ve) £ = (X0 Y1 P o T

from which we conclude TXV; = [X;, Y] o T;X and therefore

Vi = (1X) 7 [X0, Y] o T,

*

4.3. Cartan’s Development Map. For this section assume that M is compactﬂ
Riemannian manifold and let W (ToM) be the collection of piecewise smooth
paths, b : [0,1] — T,M such that b(0) = 0, € T,M and let W*(M) be the
collection of piecewise smooth paths, ¢ : [0,1] — M such that ¢ (0) =0 € M.

Theorem 4.10 (Development Map). To each b € W (ToM) there is a unique
o€ W (M) such that

(4.11) o'(s) := (0(s),do(s)/ds) = //s(a)b'(s) and o(0)=o,
where //s(0) denotes parallel translation along o.

Proof. Suppose that o is a solution to Eq. (4.11) and //s(0)v, = (0, u(s)v),
where u(s) : 7,M — R¥. Then u satisfies the differential equation
(4.12) u' (s) +dQ(o’(s))u(s) =0 with  u(0) = up,
where ugv := v for all v € 7,M, see Remark Hence Eq. (4.11) is equivalent
to the following pair of coupled ordinary differential equations:

(4.13) o' (s) =u(s)t/(s) with ¢(0) =o,
and
(4.14) u' (s) +dQ((o(s),u(s)b'(s)u(s) =0  with  u(0) = up.

Therefore the uniqueness assertion follows from standard uniqueness theorems for
ordinary differential equations. The slickest prove of existence to Eq. is to
first introduce the orthogonal frame bundle, O (M), on M defined by O (M) :=
UmemOm (M) where O,,, (M) is the set of all isometries, u : T,M — T, M. It is then
possible to show that O (M) is an imbedded submanifold in RY x Hom (7,M, RY)
and that coupled pair of ordinary differential equations and (4.14) may be
viewed as a flow equation on O(M). Hence the existence of solutions may be deduced

31t would actually be sufficient to assume that M is a “complete” Riemannian manifold for
this section.
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from the Theorem see, for example, [47] for details of this method. Here I will
sketch a proof which does not require us to develop the frame bundle formalism in
detail.

Looking at the proof of Lemma [2.30, ) has an extension to a neighborhood
in RY of m € M in such a way that Q(x) is still an orthogonal projection onto
Nul(F’(x)), where F(z) = z-(z) is as in Lemma Hence for small s, we may
define o and u to be the unique solutions to Eq. (4.13]) and Eq. with values in
RY and Hom(7,M,RY) respectively. The key point now is to show that o(s) € M
and that the range of u(s) is 7,5y M.

Using the same proof as in Theorem w(s) := Q(o(s))u(s) satisfies,

Q
w' =dQ(0")u+Q(o)u =dQ (o) u—Q(0)dQ(c')u
=P (0)dQ (") u=dQ(¢')Q (o) u=dQ (o) w,
where Lemma was used in the last equality. Since w(0) = 0, it follows by
uniqueness of solutions to linear ordinary differential equations that w = 0 and
hence
Ran [u(s)] € Nul [Q(c(s))] = Nul [F'(o(s))].
Consequently
dF(o(s))/ds = F'(o(s))do(s)/ds = F'(a(s))u(s)V/(s) =0

for small s and since F(c(0)) = F(0) = 0, it follows that F(o(s)) =0, i.e. o(s) € M.
So we have shown that there is a solution (o, u) to and for small
s such that o stays in M and u(s) is parallel translation along s. By standard
ordinary differential equation methods, there is a maximal solution (o, u) with these
properties. Notice that (o, u) is a path in M x Iso(T, M, RY), where Iso(T,M,RY)
is the set of isometries from T,M to RY. Since M x Iso(T,M,R") is a compact
space, (o, u) can not explode. Therefore (o, u) is defined on the same interval where
b is defined. ]

The geometric interpretation of Cartan’s map is to roll the manifold M along a
freshly painted curve b in T, M to produce a curve o on M, see Figure

Notation 4.11. Let ¢ : W>(ToM) — WS°(M) be the map b — o, where o is
the solution to (4.11)). It is easy to construct the inverse map ¥ := ¢~!. Namely,
¥(o) = b, where

Ue(o) =b(s) := /OS //T(J)flal(r)dr.

We now conclude this section by computing the differentials of ¥ and ¢. For more
details on computations of this nature the reader is referred to [46] [47] and the
references therein.

Theorem 4.12 (Differential of ¥). Let (t,s) — X(t,s) be a smooth map into M
such that X(t,-) € W°(M) for all t. Let

H(s) :=%(0,5) := (2(0,5),d%(t, s)/dt|i—o),

so that H is a vector-field along o := £(0,-). One should view H as an element of
the “tangent space” to WS°(M) at o, see Figure[13 Let u(s) := //(0), h(s) :=
//s(0)"tH(s) b:= V(o) and, for all a,c € T,M, let

(4.15) (Ru(a,c))(s) == u(s) " R(u(s)a,u(s)c)u(s).
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FIGURE 11. Monsieur Cartan is shown here rolling, without “slip-
ping,” a manifold M along a curve, b, in T, M to produce a curve,

o, on M.

Then
(4.16) dV(H) =dV(3(t,-))/dtli=0 = h +/ (/ Ru(h,éb)> 0b,
0

0

where 6b(s) is short hand notation for b'(s)ds, and [, féb denotes the function
s — [y f(r)V (r)dr when f is a path of matrices.

H(s)=%(0, 5)

FIGURE 12. A variation of ¢ giving rise to a vector field along o.

Proof. To simplify notation let “ - 7= %|0, “rr= %, B(t,s) := ¥(Z(t,-))(s),
U(t,s) = //s(Z(t,), u(s) := //s(o) = U(0, s) and
b(s) := (dU(H))(s) := dB(t, s)/dt|,—o.
I will also suppress (¢, s) from the notation when possible. With this notation

(4.17) Y =UB', ¥ =H=uh,
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and
vU
4.18 — =0
(4.18) I
In Eq. (4.18), % : T,M — Ts M is defined by % = P (X) U’ or equivalently by
Ea = vV (Ua) for all a € T, M.
ds ds
Taking V/dt of (4.17)) at t = 0 gives, with the aid of Proposition m
U . .
Vd—th:ob’ bl = VY /dt)—y = VE/ds = ull.
Therefore,
(4.19) W =h+ AV,
where A = —U"1Y|,_g, ie.
vU
—(0,) = —uA.
720,) =
Taking V/ds of this last equation and using Vu/ds = 0 along with Proposition
[3:32] gives
v
—uA = vy = X,Y U =R ,Hu
dsdt |,_, ds’ dt =0
and hence A’ = R,(h,b'). By integrating this identity using A(0) = 0
(VU(t,0)/dt = 0 since U(t,0) := //o(X(t,-)) = I is independent of t) shows
(4.20) A= /Ru(h,éb)
0
The theorem now follows by integrating (4.19) relative to s making use of Eq. (4.20))
and the fact that b(0) = 0. L]

Theorem 4.13 (Differential of ¢). Let bk € W (ToM) and (t,s) — B(t,s)
be a smooth map into T,M such that B(t,-) € W (ToM) , B(0,s) = b(s), and

B(0,s) = k(s). (For example take B(t,s) = b(s) + tk(s).) Then

6uln) = 100 B(t,)) = /. ()h,

where o := ¢(b) and h is the first component in the solution (h,A) to the pair of
coupled differential equations:

(4.21) K =h+AV, with h(0)=0
and
(4.22) A= R, (hV) with  A(0) =0.

Proof. This theorem has an analogous proof to that of Theorem We can
also deduce the result from Theorem by defining ¥ by X(t,s) := ¢5(B(t,-)).
We now assume the same notation used in Theorem and its proof. Then
B(t,-) = ¥(X(t,-)) and hence by Theorem

k= %b\lf@(t, ) =dU(H) =h+ /O(/O Ry (h, 0b))db.

Therefore, defining A := fo R, (h,6b) and differentiating this last equation relative
to s, it follows that A solves (4.22)) and that h solves (4.21]). ]
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The following theorem is a mild extension of Theorem [£.12] to include the possi-
bility that X(¢,-) ¢ W°(M) when t # 0, i.e. the base point may change.

Theorem 4.14. Let (t,s) — X(t,s) be a smooth map into M such that o :=
¥(0,) € W(M). Define H(s) := dX(t,s)/dt|t=0, 0 = X(0,-), and h(s) :=
//s(c)"1H(s). (Note: H(0) and h(0) are no longer necessarily equal to zero.) Let

Ut s):=//s(5(:))//1(X(,0)) : ToM — Ty 0 M,

so that VU (t,0)/dt = 0 and VU(t,s)/ds = 0. Set B(t,s) := [§ U(t,r)"'%'(t,r)dr,
then

(4.23) b(s) := %bB(t, s) = hs + /O (/ Ru(h, 5b)> ob,

0
where as before b := V(o).

Proof. The proof is almost identical to the proof of Theorem [£.12] and hence
will be omitted. ]

5. STOCHASTIC CALCULUS ON MANIFOLDS

In this section and the rest of the text the reader is assumed to be well versed
in stochastic calculus in the Euclidean context.

Notation 5.1. In the sequel we will always assume there is any underlying filtered
probability space (Q, {Fs}s>0,F, p) satisfying the “usual hypothesis.” Namely, F
is p — complete, F contains all of the null sets in F, and Fy is right continuous. As
usual E will be used to denote the expectation relative to the probability measure

L.

Definition 5.2. For simplicity, we will call a function ¥ : Ry x Q — V (V a vector
space) a process if ¥; = 3(s) := (s, ) is Fs — measurable for all s € Ry := [0, 00),
i.e. a process will mean an adapted process unless otherwise stated. As above, we
will always assume that M is an imbedded submanifold of RY with the induced
Riemannian structure. An M — valued semi-martingale is a continuous R"-
valued semi-martingale (3) such that X(s,w) € M for all (s,w) € Ry x Q. It will
be convenient to let A be the distinguished process: A (s) = A; := s.

Since f € C°°(M) is the restriction of a smooth function F on RY, it follows
by It6’s lemma that f oYX = F o ¥ is a real-valued semi-martingale if ¥ is an M
— valued semi-martingale. Conversely, if ¥ is an M — valued process and f o X is
a real-valued semi-martingale for all f € C*°(M) then ¥ is an M — valued semi-
martingale. Indeed, let z = (x!,... ,xN) be the standard coordinates on RY, then
Y := z' o ¥ is a real semi-martingale for each i, which implies that ¥ is a RY-
valued semi-martingale.

Notation 5.3 (Fisk-Stratonovich Integral). Suppose V is a finite dimensional vec-
tor space and
7T={0=So<81<82<'~'}

is a partition of Ry with lim,_. s, = oco. To such a partition 7, let |x| :=
sup; |si+1—s;| be the mesh size of m and sAs; := min{s, s;}. To each Hom (R", V)



52 BRUCE K. DRIVER

— valued semi-martingale Z; and each M — valued semi-martingale ¥;, the Fisk-
Stratonovich integral of Z relative to ¥ is defined by

o0

5 1
/ Z6Y = \1i|1n0 5 (Zs/\si + Zs/\sH_l) (Es/\s,;_H - z;s/\s,;)
0 =0

:/Zdz+1/ dzds eV
0 2 0

where
/ Zd¥ = \h|mOZ Zs/\si(zs/\si+1 - Es/\&') ev
0 =0
is the It integral and
s [e%S)
[Z, E}S = / dzdy = \h|mOZ (Zs/\si - Zs/\si+1) (Zs/\swrl - Zs/\si) eV
0 =i=o0

is the mutual variation of Z and ¥. (All limits may be taken in the sense of
uniform convergence on compact subsets of R in probability.)

5.1. Stochastic Differential Equations on Manifolds.

Notation 5.4. Suppose that {X;};" , C I (T'M) are vector fields on M. For a € R"
let

Xo(m) =X (m)a:=Y_a;X;(m)
i=1

With this notation, X (m) : R* — T, M is a linear map for each m € M.
Definition 5.5. Given an R™ — valued semi-martingale, 35, we say an M — valued
semi-martingale X5 solves the Fisk-Stratonovich stochastic differential equation

(5.1) 0%, = X (8,) 68 + Xo (B,) ds == > X; (3,) 0% + Xo (Bs) ds
i=1

if for all f € C>(M),

Of () =) (Xif) (4) 68 + Xof (8s) ds,

i=1
ie. if
FEI=FE) Y [ @05+ [ Xof (5)dr
i=170 0
Lemma 5.6 (Itd Form of Eq. (5.1))). Suppose that = B is an R"™ — valued Brow-
nian motion and let L := 33" | X2 + Xo. Then an M — valued semi-martingale
Y5 solves Fyq. iff
62 fE)=fE+Y [ G E) s+ [ LE)
— Jo 0

for all f € C(M).
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Proof. Suppose that 3 solves Eq. (5.1)), then

(X;X:f) (8,) 0BL + XoXif () ds

[M]=

d[(Xif) (%)) =

1

.
Il

-

(X;X:f) (%) dB] + d (BV)

Jj=1

where BV denotes a process of bounded variation. Hence

| s 63172 [} cn s+ g [axn ez,
:Z/O (Xif) (2,)dB! + = Z/ (X;X,f)(2,)dBldB:

1]1

n

S [ [ S,

i=1"0
Similarly if Eq. (5.2) holds for all f € C* (M) we have
d[(Xif) (Z)] = (X; X f) (5,) dBL + LX; f (35) ds

and so as above

/Os(Xif)(Er)éBf,:i/os(Xif) )dBi + /ZX?J‘(E

Solving for [ (X;f) (3,)dB: and putting the result into Eq. shows
n s ‘ 1

¥,) = f(Z X f) (%) 0B — X2f(%,)d Lf(%,)d

1) =10+ 3 [ (%) (o) 2/2 Sydrs [CLf () ar

=7+ Y | cnEem+ [ Yo

To avoid technical problems with possible explosions of stochastic differential
equations in the sequel, we make the following assumption.

Assumption 2. Unless otherwise stated, in the remainder of these notes, M will
be a compact manifold imbedded in E := RV.

To shortcut the development of a number of issues here it is useful to recall
the following Wong and Zakai type approximation theorem for solutions to Fisk-
Stratonovich stochastic differential equations.

Notation 5.7. Let { Bs }cjo,7] be a standard R"—valued Brownian motion. Given
a partition

T={0=sy<s81<82<..<8=T}
of [0, 7], let

|7 = max {s; —s;_1:1=1,2,...,k}
and

A;B
BW(S) = B(Sifl) + (8 — Sifl) A‘S

if se (87;,1,81'},
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where A;B := B(s;) — B(si—1) and A;s := s; — s;_1. Notice that B, (s) is a
continuous piecewise linear path in R"™.

Theorem 5.8 (Wong-Zakai type approximation theorem). Let a € RY,
f:R" x RY — Hom(R",RY) and fo : R" x RY — RY

be twice differentiable functions with bounded continuous derivatives. Let m and
B be as in Notatz'on and & (s) denote the solution to the ordinary differential
equation:

(5:3)  &(s) = [(Br(5),&x () Br(s) + fo(Br(s),&x(s)), & (0) =a

and & denote the solution to the Fisk-Stratonovich stochastic differential equation,

(54) dé—s = f(Bsag.S)(SBS + fO(BSags)ds7 €0 =a.

Then, for any v € (0,1) and p € [1,00), there is a constant C(p,7) < oo such that

(5.5) lim E [sup 6n(s) - f#] < O,y
|7 s<T

—0

This theorem is a special case of Theorem 5.7.3 and Example 5.7.4 in Kunita
[I16]. Theorems of this type have a long history starting with Wong and Zakai
[I80, 181]. The reader may also find this and related results in the following partial
list of references: |7, [10] 11, 20} 22} 44} [68], [94) 103 107, [T08, 118 117, 126}, [129] 132,
(1341 135, 141, 142}, 15T, 166l [174] 167, 175, 1°77. Also see [8,[53] and the references

therein for more of the geometry associated to the Wong and Zakai approximation
scheme.

Remark 5.9 (Transfer Principle). Theorem is a manifestation of the transfer
principle (coined by Malliavin) which loosely states: to get a correct stochastic
formula one should take the corresponding deterministic smooth formula and re-
place all derivatives by Fisk-Stratonovich differentials. We will see examples of this
principle over and over again in the sequel.

Theorem 5.10. Given a point m € M there exits a unique M — valued semi
martingale ¥ which solves Fq. with the initial condition, X9 = m. We will
write Ts (m) for X4 if we wish to emphasize the dependence of the solution on the
initial starting point m € M.

Proof. Existence. If for the moment we assumed that the Brownian motion
B; were differentiable in s, Eq. (5.1)) could be written as

Y= X, () with £ =m

where
n

X, (m) =Y Xi(m) (BY) (s) + Xo (m)
=1

and the existence of X5 could be deduced from Theorem [£2] We will make this
rigorous with an application of Theorem [5.8
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Let {Y;};, be smooth vector fields on E with compact support such that ¥; = X;
on M for each i and let B; (s) be as in Notation and define
X7 (m) = Z X; (m) (Bf,)/ (s) + Xo (m) and
i=1

YT (m) =Y Yi(m) (BL) (s) + Yo (m).
i=1
Then by Theorem we may use X” and Y™ to generate (random) flows 7™ :=
TX" on M and T™ := TY" on E respectively. Moreover, as in the proof of Theorem
we know T7(m) = T7(m) for all m € M. An application of Theorem [5.8 now
shows that ¥, := T (m) = lim| ;g T7(m) = lim| ;o 77 (m) € M existd’| and
satisfies the Fisk-Stratonovich differential equation on FE,

(5.6) ds, = Z Y; (3,) 0B + Y, (X,) ds with $g = m

Given f € C™(M), let F € C*(E) be chosen so that f = F|j;. Then Eq. (5.6)
implies

(5.7) ZYF YOB! 4+ Yo F (%) ds.

Since we have already seen ¥, € M and by construction ¥; = X; on M, we have
F (X5) = f(Zs) and Y3 F (35) = X f (X5) . Therefore Eq. (5.7) implies

ZXf )OBL + YoF (X,) ds,

i.e. X  solves Eq. ( as desired.
Uniqueness. If Z is a solution to Eq. (5.1 , then for F' € C*°(E), we have

ZXF )OB: 4+ X F (%) ds

—ZYF )OB: 4+ Yo F (%) ds

which shows, by taking F' to be the standard linear coordinates on F, ¥, also solves
Eq. (5.6). But this is a stochastic differential equation on a Euclidean space E with
smooth compactly supported coefficients and therefore has a unique solution. =

5.2. Line Integrals. For a,b € RY let (a,b)p~y = Zf\;l a;b; denote the standard
inner product on RY. Also let g/(N) = gl(N,R) be the set of N x N real matrices.
(Tt is not necessary to assume M is compact for most of the results in this section.)

Theorem 5.11. As above, for m € M, let P(m) and Q (m) denote orthogonal
projection or RN onto 7,,M and 7, M* respectively. Then for any M — valued
semi-martingale 3,

0= Q(2)5Y and dS = P (X) 6%,

4Here we have used the fact that M is a closed subset of RV,
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€.
Y — Yo = / P(%,)6%,.
0

Proof. We will first assume that M is the level set of a function F' as in Theorem
Then we may assume that

Q(z) = ¢(a)F'(x)" (F' () F'(x)") "' F' (),

where ¢ is smooth function on RY such that ¢ := 1 in a neighborhood of M and the
support of ¢ is contained in the set: {z € RY|F’(z) is surjective}. By Itd’s lemma

0=d0=d(F(X)) = F'(2)%.

The lemma follows in this special case by multiplying the above equation through
by ¢(Z)F'(X)*(F'(X)F'(X)*)~1, see the proof of Lemma

For the general case, choose two open covers {V;} and {U;} of M such that each
V; is compactly contained in U;, there is a smooth function F; € Ce(U; — RN_d)
such that V; N M = V; N {F;*({0})} and F; has a surjective differential on V; N M.
Choose ¢; € C2°(RY) such that the support of ¢; is contained in V; and > ¢; = 1
on M, with the sum being locally finite. (For the existence of such covers and
functions, see the discussion of partitions of unity in any reasonable book about
manifolds.) Notice that ¢; - F; = 0 and that F; - ¢, = 0 on M so that

0= d{¢:(2)Fi(X)} = (¢5(2)IX) Fi(X) + ¢s(2) F (X)d%
= ¢i(2)F; ()0
Multiplying this equation by W;(X)F/(X)*(F/(X)F/(2)*)~!, where each ¥; is a

smooth function on RY such that ¥; = 1 on the support of ¢; and the support of
U, is contained in the set where F! is surjective, we learn that

(5-8) 0= i(D)F(2)"(F/(2)F(2)") T F{ ()03 = ¢;(2)Q()0%

for all 7. By a stopping time argument we may assume that 3 never leaves a compact
set, and therefore we may choose a finite subset I of the indices {i} such that
Yicr $i(X)Q(X) = Q(X). Hence summing over i € [ in equation shows that
0=Q(X)0%. Since Q + P = 1, it follows that

Y. = I6Y = [Q(X) + P()] 6% = P (%) 6.

]
The following notation will be needed to define line integrals along a semi-
martingale X.

Notation 5.12. Let P (m) be orthogonal projection of R onto 7, M as above.
(1) Given a one-form « on M let & : M — (RY)* be defined by

(5.9) a(m)v = a((P(m)v)m,)

for all m € M and v € RV,

(2) Let I(T*M ® T*M) denote the set of functions p : UpepyTmM @ Ty M —
R such that p,, := plr, meT, M is linear, and m — p(X(m) ® Y (m))
is a smooth function on M for all smooth vector-fields X,V € I'(TM).
(Riemannian metrics and Hessians of smooth functions are examples of

elements of T'(T*M @ T*M).)
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(3) For pe T(T*M @ T*M), let p: M — (RN @ RN)* be defined by
(5.10) p(m)(v @ w) := p((P(m)v)m @ (P(m)w)m).

Definition 5.13. Let a be a one form on M, p e T(T*M @ T*M), and 3 be an M
— valued semi-martingale. Then the Fisk-Stratonovich integral of a along ¥ is:

(5.11) / a(dX) = / a(X)ox,
0 0

and the It6 integral is given by:

(5.12) / a(dy) = / a(x)dx,
0 0

where the stochastic integrals on the right hand sides of Egs. (5.11) and (5.12)) are
Fisk-Stratonovich and Itd integrals respectively. Formally, dX := P(X)dX. We also
define quadratic integral:

(5.13) /O'p(dze@dz) - /0 H(E)(dS @ d) - Z/ (i @ e[S, 571,

1,7=1

where {e;}Y | is an orthonormal basis for RV, %' := (e;, 3), and d[%?, %7] is the
differential of the mutual quadratic variation of ¥* and ¥7.

So as not to confuse [X¢, ¥7] with a commutator or a Lie bracket, in the sequel
we will write dX¢d%7 for d[X?, ¥7].

Remark 5.14. The above definitions may be generalized as follows. Suppose that
« is now a T* M — valued semi-martingale and ¥ is the M valued semi-martingale
such that o € Ty, M for all s. Then we may define

Qv 1= QS((P(ZS)U)ES)a

(5.14) /0 a(6%) = /O aoy,

and
(5.15) / a(dy) = / ady.
0 0
Similarly, if p is a process in T"M @ T* M such that ps € T5; M @ T%, M, let
(5.16) / p(dS @ d5) = / AdE ® d),
0 0
where

Ps(v @ w) = ps((P(Es)v)s, ® (P(Es)v)s,)

and
N . .
(5.17) AN @dS =Y e ®e;dS'dy’
i,j=1

as in Eq. (5.13).
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Lemma 5.15. Suppose that o = fdg for some functions f,g € C°(M), then
[ aton) = [ 1psig(o)
0 0

Since, by Corollary any one form « on M may be written as o = Zf\il fidg;
with fi,g; € C°(M), it follows that the Fisk-Stratonovich integral is intrinsically
defined independent of how M 1is imbedded into a Euclidean space.

Proof. Let G be a smooth function on RY such that g = G|p;. Then a(m) =
f(m)G'(m)P(m), so that
/ a(dX) = / fE)G (X)P(X)6%
0 0
:/ FX)G ()62 (by Theorem [5.11])
0

= /0' F(X)[G(%)) (by Itd’s Lemma)

- / FEOGEL (9 = GE)

Lemma 5.16. Suppose that p = fdh ® dg, where f,g,h € C*>°(M), then

/ p(dS ® dE) = / FD)dh(E), ()] = / FD)dRE)]d[g(S)].
0 0 0

Since, by an argument similar to that in C’orollary any p € T(T*M @ T*M)
may be written as a finite linear combination p = Y, fidh; ® dg; with f;, hi, g; €
C™®(M), it follows that the quadratic integral is intrinsically defined independent of
the imbedding.

Proof. By Theorem 0¥ = P(X)d%, so that

»i :zg+/ (e;, P(X)dX) + B.V.
0

=3+ Z/o (es, P(X)ex)dXF + B.V.,
k

where B.V. denotes a process of bounded variation. Therefore
(5.18) d[¥', 2] =Y (e;, P(S)ex) (e, P(S)er)dxkdxt.
Kl

Now let H and G be in C°(R") such that h = H|y; and g = G|5s. By Ito’s lemma
and Eq. (5.18),

d[h(%),9(2)] = Z(H’(E)ei)(G’(E)ej)d[Zi7 ]
= Y (H'(D)e) (G (D)e)(es, P(E)ex)(es, P(S)er)dEdS!
i,7,k,1

= (H'(2)P(2)ex) (G () P(L)e)d ds!
k,l
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Since
p(m) = f(m) - (H'(m)P(m)) @ (G'(m)P(m)),
it follows from Eq. (5.13]) and the two above displayed equations that

/' f(X)d[h(Z / H'(S)P(Z)er) (G (2)P(D)e;)dxkax!
0 0 k,l

:/0 A(E)(AE @ d5) = /O'p<dz®d2).

Theorem 5.17. Let a be a one form on M, and X be a M — wvalued semi-
martingale. Then

(5.19) /O a(6%) = /0 a(d) + / Va(ds @ d5),

where Va(vy, @ wy,) := (Vy,, @) (wy,) and Va is defined in Definition[3.40, also see
Lemma . (This shows that the Ité integral depends not only on the manifold
structure of M but on the geometry of M as reflected in the Levi-Civita covariant
derivative V.)

Proof. Let & be as in Eq. (5.9). For the purposes of the proof, suppose that
& : M — (RM)* has been extended to a smooth function from RY — (RV)*. We
still denote this extension by &. Then using Eq. (5.18),

/O'a((sz) - /0 G(3)5%

:/0' a&(X)de + ; / A (2)(dX)dY
Z / )(ei)ej (e, P(D)er)(es, P(2)e))dSF ds!

/ z]kl
= .oz 1 — & e e dxFay!
- [ atas)+ 22 | d@pEapadstas
. ) -
:/0 a(d2)+2;/0 da((P(X)er)s)P(X)edLrdxt.

But by Eq. (3.45)), we know for all v,,, w,, € TM that
Vo (v @ wp,) = dé(vm)w

which combined with the previous equation implies

/0.0‘(52) = /0. / Va((P(D)er)s ® (P(X)e;)s)dSk dx!

:/0 a(d2)+2%:/0 Va(ds @ dx).
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Corollary 5.18 (It6’s Lemma for Manifolds). If u € C* ((0,T) x M) and X is an
M —wvalued semi-martingale, then

dlu(s,2s)] = (0su) (s,25) ds
(5.20) +das [u (s, )] (d2g) + % (Vdpru (s,+)) (dXs @ d35),

where, as in Notation dpyru (s, +) is being used to denote the differential of the
map: m € M — u(s,m).

Proof. Let U € C*=((0,T) x RY) such that u(s,-) = U (s,-) |as. Then by Ité&’s
lemma and Theorem [5.11

dfu(s,5,)] = d[U (5,5.)] = (0,U) (5. 5.) ds + DsU(s, £,)0%,
= (0:U) (8,%s) ds + DsU(s,25)P(Xs)02

— (Ovu) (5, 50) ds + dag [u (s, )] (65)

— (D) (5, 54) ds + da [u (5, )] (4)

+ 5 (Vdaru (s, ) (45, © %),

wherein the last equality is a consequence of Theorem ]

5.3. M — valued Martingales and Brownian Motions.
Definition 5.19. An M — valued semi-martingale ¥ is said to be a (local) mar-
tingale (more precisely a V-martingale) if
_— 1
(5.21) / df(dX) = f(X) — f(Xo) — 5/ Vdf (d¥ @ dX)
0 0
is a (local) martingale for all f € C*°(M). (See Theorem for the truth of the
equality in Eq. (5.21)).) The process ¥ is said to be a Brownian motion if
1
(5.22) £ - 1(20) - 5 [ ArEix
0
is a local martingale for all f € C>(M), where A(s) := s and [j Af(X)d\ denotes
the process s — [ Af(X)dA

Theorem 5.20 (Projection Construction of Brownian Motion). Suppose that
B = (Bl,BQ, .. .,BN) is an N — dimensional Brownian motion. The there is a
unique M — valued semi-martingale X which solves the Fisk-Stratonovich stochastic
differential equation,

(5.23) 0X. = P(X)dB  with Xp=o0¢€ M,
see Figure[I3 Moreover, ¥ is an M — valued Brownian motion.

Proof. Let {ei}f\il be the standard basis for RN and X; (m) := P (m)e; € T,, M
foreachi=1,2,..., N and m € M. Then Eq. (5.23) is equivalent to the Stochastic
differential equation.,

ZX B with Yg=oeM



CURVED WIENER SPACE ANALYSIS 61

xr3
5B,

FI1GURE 13. Projection construction of Brownian motion on M.

which has a unique solution by Theorem [5.10] Using Lemma[5.6] this equation may
be rewritten in It6 form as

N N
df () =D Xif()dB' + %ZX?f (2)ds for all f € C=(M).
i=1 i=1

This completes the proof since Zf\il X2 = A by Proposition n

Lemma 5.21 (Lévy’s Criteria). For eachm € M, let T(m) := Z?Zl E;®E;, where
{E;}4_, is an orthonormal basis for T,,M. An M - valued semi-martingale, 3, is
a Brownian motion iff ¥ is a martingale and

(5.24) dY ® d¥ = I(3)dA.

More precisely, this last condition is to be interpreted as:

(5.25) / p(dS @ d5) = / D(Z(S))AA V p € T(T* M & T* M).
0 0

Proof. (=) Suppose that ¥ is a Brownian motion on M (so Eq. (5.22]) holds) and
fyg € C°(M). Then on one hand

d(f(2)g(%)) = d[f(X)] - 9(X) + f(X)d [g(E)] + d[f (), g(¥)]
= %{Af(E)g(Z) +F(X)Ag(E) A+ d[f (%), 9(2)],

where “ 2" denotes equality up to the differential of a martingale. On the other
hand,

d(f(X)g(%))

1

S A(fg)(E)ax

1
F(Af(E)g(E) + F(E)Ag(X) + 2(grad £, gradg) () }dA.
Comparing the above two equations implies that

dlf(2),9(¥)] = (grad f, gradg)(X)d\ = df ® dg(Z(%))d\.
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Therefore by Lemma [5.16] if p = h - df ® dg then

/ p(dS @ dE) = / )L (), 9(D)]

0 0

— [ @ @ dE@)ir= [ s

0 0

Since the general element p of I'(T*M ® T*M) is a finite linear combination of
expressions of the form hdf ® dg, it follows that Eq. (5.24]) holds. Moreover, Eq.
(5.24) implies

(5.26) (Vdf) (dS @ dX) = (Vdf) (Z(£))dA = Af(Z)dA

and therefore,
1
f(2) = f(Z0) - 5/0 Vdf (d ® dX)

(5.27) = £ = 12— 5 [ Af)an

is a martingale and so by definition ¥ is a martingale.

Conversely assume ¥ is a martingale and Eq. (5.24)) holds. Then Eq. (5.26]) and
Eq. (5.27) hold and they imply ¥ is a Brownian motion, see Definition ]

Definition 5.22 (§VV := P§V). Suppose a is a one form on M and V is a
T M —valued semi-martingale, i.e. Vi = (Xg,v;), where X is an M — valued semi-
martingale and v is a RV-valued semi-martingale such that vy € 7 M for all s.
Then we define:

(5.28) /0.04(6VV) - /O.d(E)(sz/O-a(E) (P () ov).

Remark 5.23. Suppose that a(v,,) = 6(m)v, where § : M — (RY)* is a smooth
function. Then

.Ol v = . v = . v v
/O 6vV) - /9(2)13(2)5 /9(2){5 +dQUS)),

0 0

where we have used the identity:
(5.29) YV = P(X)év = v + dQ(6%)v.

This last identity follows by taking the differential of the identity, v = P(X)v, as
in the proof of Proposition [3.32

Proposition 5.24 (Product Rule). Keeping the notation of above, we have
(5.30) S(a(V) =Va(dX @ V) 4+ a(sVV),

where Va(0X @ V) 1= v(dX) and v is the T*M — valued semi-martingale defined
by
7 () 1= Va(w ® Vi) = (Vya) (Va) for any w € Ts, M.

Proof. Let 6 : RV — (RM)* be a smooth map such that &(m) = 6(m)|., u
for all m € M. By Lemma I(O(X)P(X)) = d(6P)(6%) and hence by Lemma
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d(O(X)P(X))v = Va(dEZ ®@ V), where Va(v, @ wy,) = (V,,, a)(w.,) for all
VU, Woy, € T M. Therefore:
I(a(V)=580(Z)v) =5(0(Z)P(X)v) = (d(OP)(0X))v + 0(X)P(X)dv
= (d(OP)(6%))v + &(X)dv = Va(6X @ V) + a(sVV).

5.4. Stochastic Parallel Translation and Development Maps.

Definition 5.25. A TM - valued semi-martingale V' is said to be parallel if
YV =0,ie [;a(6VV) =0 for all one forms o on M.

Proposition 5.26. A TM — valued semi-martingale V = (2,v) is parallel iff
(5.31) / P(X)év = / {6v+dQ(6X)v} = 0.
0 0

Proof. Let z = (x!,...,2") denote the standard coordinates on R™. If V is
parallel then,

OE/O'dxi(aVV):/'<ei,P(z)5v>

0
for each ¢ which implies Eq. . The converse follows from Remark [
In the following theorem, V{ is said to be a measurable vector-field on M if
Vo(m) = (m,v(m)) with v : M — RY being a measurable function such that
v(m) € T, M for all m € M.

Theorem 5.27 (Stochastic Parallel Translation on M x RN). Let 3 be an M -
valued semi-martingale, and Vo(m) = (m,v(m)) be a measurable vector-field on M,
then there is a unique parallel T M -valued semi-martingale V' such that Vo = V(o)
and Vs € Ts;,, M for all s. Moreover, if u denotes the solution to the stochastic
differential equation:

(5.32) u+T(0X)u=0  with wug=1I¢€O(N),

(where O (N) is as in Ezample and T is as in Eq.  (3.65)) then V, =
(X5, usv(2g). The process u defined in is orthogonal for all s and satisfies
P(E5)us = usP(Xg). Moreover if X9 = 0 € M a.e. andv € 1,M and w L 17,M,
then usv and usw satisfy

(5.33) 0 [usv] +dQ (0X) usv = P (X) 0 [usv] =0
and
(5.34) 0 [usw] + dP (0%) usv = Q (X) 6 [usv] = 0.

Proof. The assertions prior to Eq. are the stochastic analogs of Lemmas
|3.56| and |3.57, The proof may be given by replacing % everywhere in the proofs of
Lemmas [3.56/ and [3.57] by d5 to get a proof in this stochastic setting. Eqs. (5.33)
and (5.34)) are now easily verified, for example using and P (X) uv = uv, we have

0 [uv] =0 [P (X)uv] = P(0X)uv + P (X2) 0 [uv]
which proves the first equality in Eq. . For the second equality in Eq. ,
P(2)duv] =—=P ()T (62) [uv]
= —P(2)[dQ(6X)P(X) + dP(0X)Q(X)] [uv]
= —dQ(6X)Q (X) P(X)d [uv] =0
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where Lemma was used in the third equality. The proof of Eq. (5.34)) is
completely analogous. The skeptical reader is referred to Section 3 of Driver [47]
for more details. [

Definition 5.28 (Stochastic Parallel Translation). Given v € RY and an M -
valued semi-martingale ¥, let //5(X)vs, = (X5, usv), where u solves (5.32)). (Note:
Ve=//s(E).)

In the remainder of these notes, I will often abuse notation and write u, instead
of //s :=//s(2) and vs rather than V; = (g, vs). For example, the reader should
sometimes interpret usv as //s(X)vs, depending on the context. Essentially, we
will be identifying 7,, M with T,, M when no particular confusion will arise.

Convention. Let us now fix a base point o € M and unless otherwise noted,
we will assume that all M — valued semi-martingales, X, start of o € M, i.e. ¥g =0
a.e.

To each M — valued semi-martingale, ¥, let ¥(X) := b where

b::/ //*152:/ u*léz::/ u'T oY
0 0 0

Then b = ¥(X) is a T, M — valued semi-martingale such that by = 0, € T,M. The
converse holds as well.

Theorem 5.29 (Stochastic Development Map). Suppose that o € M is given and
b is a T,M — valued semi-martingale. Then there exists a unique M — valued
semi-martingale X such that

(5.35) 0¥ = //s6bs = usdbs  with ¥g=o0
where u solves . .

Proof. This theorem is a stochastic analog of Theorem and the reader is
again referred to Figure To prove the existence and uniqueness, we may follow
the method in the proof of Theorem [£.10} Namely, the pair (£,u) € M x O (N)
solves an Stochastic differential equation. of the form

0X =udb with Xp=o0
ou=-T(6X)u=-T (udb)u with wuyg=1¢€ O(N)

which after a little effort can be expressed in a form for which Theorem [5.10| may
be applied. The details will be left to the reader, or see (for example) Section 3 of
Driver [41]. [

Notation 5.30. As in the smooth case, define ¥ = ¢(b), so that

W) = (b) = / ()7,

In what follows, we will assume that bs, us (or equivalently //4(X2)), and Xy are

related by Equations (5.35) and (5.32), i.e. ¥ =¢ (b) and u = // = //(¥). Recall
that d¥ = P (X) dY is the Ito differential of ¥, see Definition

Proposition 5.31. Let ¥ = ¢ (b), then
(5.36) d¥ = P(X)dY = udb.
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Also

d
(5.37) A2 ® dY = udb @ udb := »_ ue; @ ue;db'dh’,

ij=1

where {e;}¢_, is an orthonormal basis for T,M and b = Zle bie;. More precisely

. .d
/ p(dY ® dX) :/ > plue; ® uej)db'db,
0 0

i,j=1
forallp e I(T*M @ T*M).
Proof. Consider the identity:

d¥ = udb = udb + %dudb

1 1
= udb — §F(5Z)udb = udb — if(udb)udb
where I is as defined in Eq. (3.65]). Hence

d¥ = P(X)dY = udb — % zd: P(S)T((ue;)s)ue;db'db.
ij=1
The proof of Eq. is finished upon observing,
PT'P = P{dQP + dPQ}P = PdQP = PQdQ = 0.
The proof of Eq. is easy and will be left for the reader. n
Fact 5.32. If (M,g) is a complete Riemannian manifold and the Ricci curvature
tensor is bounded from belowﬂ then A = A, acting on Cg°(M) is essentially self-

adjoint, i.e. the closure A of A is an unbounded self-adjoint operator on L%(M, d\).
(Here d\ = \/gdz'...dz™ is being used to denote the Riemann volume measure

on M.) Moreover, the semi-group e/2/2 has a smooth integral kernel, p;(z,y), such
that

pi(x,y) >0 for all z,y € M

/ pi(x,y)d\(y) =1 for all x € M and
M

(¢220) @ = [ mle.n)r)ire) for al 1 € L2(00)

If f e C&(M), the function u (t,x) := e!™/2f (1) is smooth for t > 0 and z € M
and Let2/2 f () is continuous for t > 0 and & € M for any smooth linear differential

operator L on C* (M) . For these results, see for example Strichartz [165], Dodziuk
[43] and Davies [41].

Theorem 5.33 (Stochastic Rolling Constructions). Assume M is compact and let
Y, us = //s, and b be as in Theorem[5.29, then:

(1) X is a martingale iff b is a T,M — valued martingale.
(2) X is a Brownian motion iff b is a T,M — valued Brownian motion.

5These assumptions are always satisfied when M is compact.
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Furthermore if ¥ is a Brownian motion, T € (0,00) and f € C*(M), then
M, = (e(T—s)A/zf) ()
is a martingale for s € [0,T] and
(5.38) aM; = (deT=IR2F ) (udby)s, = (deT=I22F) (//,db).

Proof. Keep the same notation as in Proposition and let f € C(M).
By Proposition @ if b is a martingale, then [jdf(dX) = [, df(udb) is also a
martingale and hence ¥ is a martingale, see Definition Combining this with
Corollary [5.18 and Proposition [5.31]

d[f(2)] = df (dS) + %Vdf(dE ® d¥)

= df (udb) + %Vdf(udb ® udb).

Since u is an isometry, if and b is a Brownian motion then udb ® udb = Z(X)dA.
Hence

dLF(D)] = df (udb) + SAF(S)dN

from which it follows that ¥ is a Brownian motion.
Conversely, if ¥ is a M — valued martingale, then

N . N . .
(5.39) N = Z/ dz'(d%)e; :Z/ (e;,udb)e; :/ udb
i=170 i=170 0
is a martingale, where x = (x!,..., ") are standard coordinates on R" and {e;}
is the standard basis for RY. From Eq. , it follows that b = fo u~1dN is also
a martingale.

Now suppose that ¥ is an M — valued Brownian motion, then we have already
proved that b is a martingale. To finish the proof it suffices by Lévy’s criteria
(Lemma to show that db ® db = Z(0)d\. But ¥ = N + (bounded variation)
and hence

N
i=1

db@db=u"'dX @ u 'dX = v 'dN @ v {dN
=u'® u_l)(dE ® dY)
= (u* @ u HIZ(D)d\ = Z(0)d\,

wherein Eq. was used in the fourth equality and the orthogonality of u was
used in the last equality.

To prove Eq. (5.38), let My = u (s, X5) where u (s, z) := (e(T_s)Amf) (2) which
satisfies

1
Osu (s, ) + §Au (s,2) =0 with u (T,z) = f(x)
By It&’s Lemma (see Corollary [5.18) along with Lemma and Proposition [5.31]

dM, = Ogu (5,3,) ds + das [u (s, )] (d2s) + %VdM [u(s,-)] (dXs ® d3s)
= Osu (s,25)ds + %Au (s,Xs)ds + (dMe(Tfs)A/2f> ((usdbs)s.)

- (dMe<T*5>5/2 f) (ugdby)s, ).
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]
The rolling construction of Brownian motion seems to have first been discovered
by Eells and Elworthy [63] who used ideas of Gangolli [87]. The relationship of the
stochastic development map to stochastic differential equations on the orthogonal
frame bundle O(M) of M is pointed out in Elworthy [66, 67, 68]. The frame
bundle point of view has also been extensively developed by Malliavin, see for
example [130}, 129, [I3T]. For a more detailed history of the stochastic development
map, see pp. 156-157 in Elworthy [68]. The reader may also wish to consult
[r4, 103, 116l 132, A1l 101].

Corollary 5.34. If ¥ is a Brownian motion on M,
7={0=sp<s1<--<8, =T}
is a partition of [0,T] and f € C* (M™), then
n

(5.40) Ef (Bsyy.--328s,) = f(ml,xg,...,xn)HpAis (Ti—1, @) dX (x5)

M’IL 'L:l
where A;s := 8; — 8;_1, Tg := 0 and A := Ap. In particular X is a Markov process
relative to the filtration, {Fs} where Fy is the o — algebra generated by {X, : 7 < s}.

Proof. By standard measure theoretic arguments, it suffices to prove Eq. (|5.40))
when f is a product function of the form f(z1,22,...,2,) = [[;; fi (z:) with
fi € C>*(M). By Theorem M, = e(T=9)2/2f (5,) is a martingale for s < T
and therefore

Elf (Zs,..-,2s,)]=E

n—1
I1# ) M| =E
=1

n—1
H fl (291) ' MSW,—1‘|
=1

n—1
I /(50 (P (28”1)1 |

(5.41) —=F

In particular if n = 1, it follows that
Elfi (5r)] =E[ (72211 (%0)] = /MpT(o,xl)fl (1) dA (1).

Now assume we have proved Eq. (5.40) with n replaced by n — 1 and to simplify
notation let g (x1,x9,...,&p_1) := H;:ll fi (z;). It would then follow from Eq.

that
E [f (251’ Tt EST,,)]

n—1

= / g(x1,m2,. .., Tp 1) (e S Afn) (@n-1) [ [ pacs (i1, 2:) dA ()
Mn=t i=1
- / 9(1‘1,$27~-~7$n—1) l:/ fn (-rn)pAns (xn—laxn) X (xn):l X
Mn—1 M
n—1
< [ pacs @io1, ) dA (x;)
=1
= f@raa, o xn) [ pas (@i, @) dX (@)

M i=1

This completes the induction step and hence also the proof of the theorem. [
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5.5. More Constructions of Semi-Martingales and Brownian Motions.
Let T be the one form on M with values in the skew symmetric N x N matrices
defined by I' = dQP + dPQ as in Eq. . Given an M —valued semi-martingale
Y, let u denote parallel translation along ¥ as defined in Eq. of Theorem

Lemma 5.35 (Orthogonality Lemma). Suppose that B is an RN — valued semi-
martingale and X is the solution to

(5.42) 0¥ = P(£)0B  with Yo=o0€ M.
Let {e;}Y, be any orthonormal basis for RN and define B® := (e;, B) then
P(£)dB & Q( ZP Jei @ Q(X)e; (dB'dB7) = 0.
i,5=1

Proof. Suppose {vi}f\il is another orthonormal basis for RY. Using the bilin-
earity of the joint quadratic variation,

[(ei, B), (ej, B)] = Z[<ei,vk><vk7B> (ej, vi) (v, B)]
Z ei, Vi) (e;, v) (v, B), (v, B)].
k,l

Therefore,

ZP Jei ® Q(X)e; - d [B', BY)

1,j=1
N
= > [P(D)e: @ Q()ej] (es, vi){ej, vi)d[(vx, B), (v, B)]
i,5.k,l=1
jN
= > [P(D)ve @ Q(X)wr] dl(vy, B), (v1, B)]
k=1
which shows P(X)dB ® Q(X)dB is well defined.
Now define

B:= / uw'dB and B’ := (e;, B) = / (ue;, dB)
0 0

where u is parallel translation along ¥ in M x RY as defined in Eq. (5.32). Then

N
Z P(X)ue, ® Q(S)ue(e;, uer)(e;, uey) (dB'dB?)
0.4,k d=1

P(X)dB @ Q(X)dB

I
WE

P(S)uer, @ Q(S)ue, (dékdél)

k=1

I
M=

uP(0)er @ uQ(o)e (dékdél)

k,l=1

s
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wherein we have used P(X)u = uP(0) and Q(X)u = uQ(0), see Theorem[5.27] This
last expression is easily seen to be zero by choosing {e;} such that P(o)e; = e; for
i=1,2,...,dand Q(0)e; =e¢; for j=d+1,...,N. [

The next proposition is a stochastic analogue of Lemma [3.55| and the proof is
very similar to that of Lemma [3.55)

Proposition 5.36. Suppose that V is a TM — valued semi-martingale, ¥ = w (V)
so that ¥ is an M — valued semi-martingale and Vs € T, M for all s > 0. Then

(5.43) /)8, [//7V] = 6T Vi =: P(S,) 8V,

where [/s is stochastic parallel translation along . If Y, € T'(TM) is a time
dependent vector field, then

B G =/ () G ds /e,
and for w € T,M,
113165 [V wYs] = 85 [//3V 17,0 Y]

_ _ d
(5.45) T e e a1

Furthermore if 3¢ is a Brownian motion, then

ATV =17 Yot 117 (7. B s

d
1 —1v72
(546) + 5 Z //s v//sei®//se7zysd8
=1

where {ei}?zl is an orthonormal basis for T,M.

Proof. We will use the convention of summing on repeated indices and write
us for stochastic parallel translation, //s, in TM along 3. Recall that us solves

dus + dQ (63s) us = 0 with ug = I, pr.
Define u, as the solution to:
0t = usdQ (08s) with ug = I, ar.
Then
0 (tsus) = —tsdQ (0%s) us + usdQ (6Xs) us = 0

from which it follows that wisus = I for all s and hence @, = uz'. This proves Eq.

(5.43]) since

TR [us_le} = U, [us_ldQ (02:) Vi + us_léVs}
= dQ (529) Vs + 5‘/9 = 5sty

where the last equality comes from Eq. (5.29).
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Applying Eq. (5.43) to V := Y (X,) gives

85 [//31Y (B9)] =1/ P (6) 65 [Ys ()]

d

=1/ P (£ (%) (B ds /7P )Y, (2) 6.5,

=//7! (in) (Bs)ds+//5'Vs.5.Ys,

which proves Eq. (5.44]).
To prove Eq. let X; (m) = P(m)e; for i =1,2,..., N. By Proposition
348,
(547) V//Sst - <//5U), Xz (ES» (szYvS) (ES)
= (w, //71Xi (2)) (Vx,Ys) (Z5)
and
[/sw = (//sw, Xi (£5)) Xi (35) = (w, //5_le (Zs)) X (35)

or equivalently,
(5.48) w=(w,//7'Xi (8))/ /71 Xi ().
Taking the covariant differential of Eq. , making use of Eq. , gives
= (//sw,Vs,5,.Xi) (Vx,Y5) (Zs) + {//sw, X; (35)) V5,2, Vx,Ys
d
+ e xm) (x (17) ) o ds
= {//sw,Vi5.2,.X:) (Vx,Ys) (85) + {/ /50, X; (2)) V5 5,0x, Y
d
UL X (B Ve (Vi (7)) (B

- (v<//5w1vz5525Xi>Xi(Es)+<//5w,Xi(Es)>V5szsXiYS) (Zs)

(5.49) #hms ¥t (Vi (500) ) s
Taking the differential of Eq. implies
0= odw=(w,//; Vs,2,X:)/ /3 X: (Bs) + w, /T X (B))/ /5 V5.5, X
which upon multiplying by //s shows
(//sw,Vs,5,Xi)Xi (3s) + (//sw, Xi (54)) V.5, X = 0.

Using this identity in Eq. (5.49)) completes the proof of Eq. (5.45).
Now suppose that ¥ is a Brownian motion and b5 = ¥ (¥) is the anti-developed

T,M — valued Brownian motion associated to 3. Then by Eq. (5.44),
_ 4 (d _
AV = /)3 (555 ) G ds 19 Y,

=// (sts) (Bs)ds+ (//5'V /.. Ys) ObL.
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Using Eq. (5.45),
(/Y e Ys) 80 = (/ /31 /7, Ys) db, + %d (//31Y /).e,Ys) dby
= /15w Yo + %//legza.@//seiysdbi
= /13" aw Y + %//lei/seje@//seﬁ@dbidbg

_ 1,
= //9 1v//3db"‘l/s + 5//§ 1v3/sei®//sei)/sd8'
Combining the last two equations proves Eq. (5.46). ]

Theorem 5.37. Let X5 denote the solution to Eq. with ¥g=0€ M, =B
and bs = U, (X) € T,M. Then

bs= [ //;(2)[X(2,) 8B, + Xo (%) dr]
0

(5.51) o [ [QZW&X»@THXO@» dr.

Proof. By the definition of b,
dbs = /[ (2) X (2s) 0Bs + Xo (Xs) ds]

= /) )X (20 By + Xo (8)ds) + 5d [//7 (X (2,)] dB,

= /2 )X (S 4By + Xo (S)ds] 4 1 1/ (9) Vs, X] 4B,
7 (D) K (B B+ s+ 5/ () Y (VX)) (£, dBiaB:

i,j=1
which combined with the identity,
d[//7H(2)X ()] dBs = [//1 (2) Vag, X] dBs = [/ /7 (2) Vx(s,)an, X] dBs
i,j=1
proves Eq. (5.50). u

Corollary 5.38. Suppose By is an R™ — valued Brownian motion, ¥ is the solution
to Eq. with B =B and >, (Vx, Xi) + Xo =0, then ¥ is an M — valued
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martingale with quadratic variation,

(5.52) ds ® d¥s —ZXk ) ® Xy () ds.
k=1

Proof. By Eq. (| and Theoremm ¥ is a martingale and from Eq. (5.1)),

dxidy) = Z Xi(z 3)dB*dB' = ZXk 2 ds
k,l=1

where {e;} 1, is the standard basis for RN, ¥ := (3, ¢;) and X} (%) = (X (), ;).
Using this identity in Eq. (| -, shows

A, @dSe = Y Y ei®e; X} (D)X, ds—ZXk ) @ X, (35) ds.
i,j=1k=1
(]
Corollary 5.39. Suppose now that B, is an RN — valued semi-martingale and
is the solution to Eq. in Lemma . If B is a martingale, then ¥ is a

martingale and if B is a Brownian motion, then ¥ is a Brownian motion.
Proof. Solving Eq. is the same as solving Eq. withn= N, 8= B,
Xo=0and X; (m)=P(m)e; for all i =1,2,..., N. Since
Vx,X; = PdP (X;)e; = dP (X;) Qej = dP (Pe;) Qe;,
it follows from orthogonality Lemma that

> (Vx.X;)(5,)dBidB] = 0.
i,j=1
Therefore from Eq. , by = fos //710%, is a T,M — martingale which is
equivalent to ¥ being a M — valued martingale. Finally if B is a Brownian motion,
then from Eq. , Y. has quadratic variation given by
N
(5.53) dS, @ dS, =Y P (3,)e; @ P () esds
i=1

Since va L P(m)e; ® P(m)e; is independent of the choice of orthonormal basis for
RYM | we may choose {e;} such that {e;}2; is an orthonormal basis for 7, M to learn

ZP Je; @ P(m)e; = I(m).

Using this in Eq. (5.53) we learn that d¥X; ® dXs = Z (X4)ds and hence ¥ is a
Brownian motion on M by the Lévy criteria, see Lemma [5.21 ]

Theorem 5.40. Let B be any RY -valued semi-martingale, ¥ be the solution to Eq.

(549,
(5.54) b::/ u*152:/ u'P(X)B
0 0

be the anti-development of ¥ and

(5.55) B = /O'u—lQ(z)dB = Q(o0) /0 u~'dB
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be the “normal” process. Then

(5.56) b= /0 u ' P(X)dB = P(o) /0 u~'dB,

i.e. the Fisk-Stratonovich integral may be replaced by the Ité integral. Moreover if
B is a standard RN — valued Brownian motion then (b, 3) is also a standard RN —
valued Brownian and the processes, bs, 3s and //s are all independent of (.

Proof. Let p = P(X) and u be parallel translation on M x RY (see Eq. (5.32)),
then

d(u™tP(%))-dB = u ' [[(6X)P(X)dB + dP(6%)dB]
=u ' [(dQUOX)P (X) + dP(62)Q (X)) P(X)dB + dP(6%)dB]
=~ [dQ(0X)P(X)dB — dQ(6%)dB]
= —u'dQ(62)Q(X)dB = —u'dQ(P () dB)Q(X)dB = 0

where we have again used P (X)dB ® Q (X)dB = 0. This proves (5.56).

Now suppose that B is a Brownian motion. Since (b, 3) = [, u~'dB and u is an
orthogonal process, it easily follow’s using Lévy’s criteria that (b, 3) is a standard
Brownian motion and in particular, 8 is independent of b. Since (X, u) satisfies the
coupled pair of stochastic differential equations

d¥ = uéb and du + T'(udb)u = 0 with
Yo = o and uy = I € End(R"),
it follows that (3, u) is a functional of b and hence the process (X, u) are independent

of 3. [ |

5.6. The Differential in the Starting Point of a Stochastic Flow. In this
section let By be an R™ — valued Brownian motion and for each m € M let T (m) =
Y5 where X, is the solution to Eq. with X9 = m. It is well known, see Kunita
[116] that there is a version of T (m) which is continuous in s and smooth in m,
moreover the differential of T (m) relative to m solves the stochastic differential
equation found by differentiating Eq. . Let

(5.57) Zy = Tawo and 2z, := / /5 Z, € End (T, M)
where //; is stochastic parallel translation along X := T (0) .
Theorem 5.41. For allv e T,M

(5.58) 6Y Zw = (Vz.,X)6Bs + (V2.,X0) ds with Zyv = v.
Alternatively z, satisfies

(5.59) dzsv =/ (V)/,20X) 6Bs + / /51 (V7.2,0X0) ds.

Proof. Equations (5.58) and (5.59) are the formal analogues Eqgs. (4.2) and

4.3) respectively. Because of Proposition Eq. (5.58)) is equivalent to Eq.
5.59)). To prove Eq. (5.58)), differentiate Eq. (5.1) in m in the direction v € T,M

to find

dsZsv = DX, (Xs) Zsv o 5B2 + DXy (X5) Zsvds with Zov = v.
Multiplying this equation through by P (X;) on the left then gives Eq. (5.58). m
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Notation 5.42. The pull back, Ric/,_, of the Ricci tensor by parallel translation
is defined by

(5.60) Ric,,, == //; " Rics, //s.

Theorem 5.43 (It form of Eq. ) The It6 form of Eq. is

(5.61) dzsv=//7"(V)).2.0X) dBs + ads

where

(5.62)

g i= /)7t [V//stv (2_:1 Vx, X; +X0> — ;;RV (//s250, Xi (2)) X5 () | ds.

If we further assume that n = N and X; (m) = P (m)e; (so that Eq. (5.1) is

equivalent to Eq. if X0 =0), then as = —% Ric,,, zsvds, i.e. Eq. 18
equivalent to

1
(5.63) dzev=//; P (2s)dP (//s25v) dBs + {//S_lv//szstO ~5 Ric,,, zsv] ds.

Proof. In this proof there will always be an implied sum on repeated indices.
Using Proposition [5.36

d [//;1 (v//szsvx)] ng = //:1 {Vg((zs)st(@//szSUX + V//SdZSvX:| ng
= //s_l {vi(zs)stea//szst + V(V//SZS,UX)dBSX} dBs

(5.64) — [vg(i(gsw/szsvxi + V(900X )Xl-] ds.
Now by Proposition [3.38
V%Q(ZS)@//szsti = V?/szswg,xi(zs)XidS +RY (Xi (Bs),//szsv) Xi ()
= V7, cvexim Xids — RY (//s250, X, (54)) X (5s)
=[V))ro Vx, Xi — VV//SzﬁinXi]
—- RY (//s2sv, X; (85)) X ()

which combined with Eq. (5.64]) implies
(5.65)
dl//: (V) ewX) ] dBs = 1/ [V)) 2o Vix, Xi — RY (/] 5250, X (5)) Xi (S5)] ds.

Eq. (5.61)) is now a follows directly from this equation and Eq. (5.59).
If we further assume n = N, X; (m) = P (m)e; and X (m) = 0, then

(5.66) (V)20 X)dBs = /7' P (3,) dP (//s25v) dBs.

Moreover, from the definition of the Ricci tensor in Eq. (3.31) and making use of
Eq. (3.50) in the proof of Proposition we have

i

(5.67) RY (//s25v, X: (55)) X; (£5) = Ric,, //s2s0.
Combining Eqgs. (5.66|) and (5.67) along with Vx, X; = 0 (from Proposition [3.48)
with Egs. (5.61)) and (5.62)) implies Eq. (5.63)). [

In the next result, we will filter out the “redundant noise” in Eq. (5.63)). This is
useful for deducing intrinsic formula from their extrinsic cousins, see, for example,

Corollary and Theorem below.
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Theorem 5.44 (Filtering out the Redundant Noise). Keep the same setup in The-
orem with n = N and X; (m) = P (m)e;. Further let M be the o — algebra
generated by the solution ¥ = {X4 : s > 0}. Then there is a version, Zs, of E [z5|M]
such that s — Zs is continuous and Z satisfies,

s 1
(568) ZsU =10 + / |://7a1 (v//TZTvXO) — 5 RiC//T Zyv| dr.
0
In particular if Xo =0, then
d _ 1. o .
(5.69) =Ty Ric//, z, with zy = id,

Proof. In this proof, we let bs be the martingale part of the anti-development
map, U, (X)), ie.

bs := / /) tP(%,) 0B, = / // 1P (%,)dB,.
0 0
Since (X4, us) solves the stochastic differential equation,
0% = usdbs + Xo (Xs) ds with g = o
du=-T(62)u = —T (udb) u with ug = I € O(N)
it follows that (3, u) may be expressed as a function of the Brownian motion, b.

Therefore by the martingale representation property, see Corollary [7.20] below, any
measurable function, f (X), of ¥ may be expressed as

f(2)=f0+/0 <ar,dbr>=fo+/0 (ar, /=1 [P (S,) dB,]).

Hence, using PdP = dP(Q), the previous equation and the isometry property of the
It6 integral,

E { [ i ar ) <z>}
s 1
=E{ [ ur iz | <P<zr>//rar,dBr>}
—E { / 4P (r2) Q(S0) P (S)) /var] dr} 0.

This shows that s
E [/ P(3,.)dP (//rzrv) dBAM} =0
0

and hence taking the conditional expectation, E [-|M], of the integrated version of
Eq. implies Eq. . In performing this operation we have used the fact
that (3, //) is M — measurable and that z, appears linearly in Eq. (5.63). I have
also glossed over the technicality of passing the conditional expectation past the
integrals involving a ds term. For this detail and a much more general presentation
of these ideas the reader is referred to Elworthy, Li and Le Jan [71]. ]

5.7. More References. For more details on the sorts of results in this section,
the books by Elworthy [69], Emery [74], and Tkeda and Watanabe [104], Malliavin
[132], Stroock [I71], and Hsu [I01] are highly recommended. The following articles
and books are also relevant, [14] 20} 21}, 40} [64], [63], [65], 110, 129, [137] 144 154 155
156, [179].
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6. HEAT KERNEL DERIVATIVE FORMULA

In this short section we will illustrate how to derive Bismut type formulas for
derivatives of heat kernels. For more details and much more general formula see,
for example, Driver and Thalmaier [58], Elworthy, Le Jan and Li [71], Stroock
and Turetsky [I73), 172] and Hsu [99] and the references therein. Throughout this
section X, will be an M — valued semi-martingale, //s will be stochastic parallel
translation along ¥ and

by = U, (%) ;:/ /)16,
0
Furthermore, let Q5 denote the unique solution to the differential equation:

dQs
ds

See Eq. (5.60) for the definition of Ric,, .
Lemma 6.1. Let f: M — R be a smooth function, t > 0 and for s € [0,t] let
(6.2) F(s,m) := (=222 f)(m).

If X5 is an M - walued Brownian motion, then the process s € [0,t] —
Qs//7'VF(s,%s) is a martingale and

(6.3) a[Qu//TVF(s. 2] = Qu/ /7Y 1, VF (5.):

Proof. Let W, := //;'VF(s,%,). Then by Proposition and Theorem

(6.1)

1
= —§QSRiC//S with Qg = 1.

1< 1 _ .
AW, = {//s 'Vo,F(s,%;) + 3//s V3, w0 VE(s, .)] ds
+ //S_lv//seiﬁF(Sa )db;
Ly SF(s.) - (FAFGs) (2] d
ol //sei®//sei 5, ER s s
+//3'V .0V (s, -)db,
1 Vi hd .
=5//g1 Ric VF(s,5s)ds + //5'V .. VF(s,)db.
1 B B i
:i RlC//S Wsds + //S IV//SGiVF'(S7 )dbs

where {ei}jzl is an orthonormal basis for T,M and there is an implied sum on
repeated indices. Hence if @ solves Eq. (6.1)), then

1 1 - )
d [QSWS] = _iQS RiC//S Wsds + Qs |:2 Ri(?//S Wsds + //glv//seiVF(S, -)db,

= Qs//;lv//seiﬁF(s’ ')dbi
which proves Eq. (6.3) and shows that QsWj is a martingale as desired. ]

Theorem 6.2 (Bismut). Let f : M — R be a smooth function and ¥ be an M -
valued Brownian motion with X9 = o, then for 0 <ty <t < oo,

(6.4) o) = 5[ ([ uan ) 550
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Proof. The proof given here is modelled on Remark 6 on p. 84 in Bismut
[21] and the proof of Theorem 2.1 in Elworthy and Li [72]. Also see Norris [145],

1441 [146]. For (s,m) € [0,t] x M let F be defined as in Eq. (6.2). We wish to
compute the differential of k, := (fos Qrdbr) F(s,Xs). By Eq. 1D d[F(s,2s)] =

(V(F(s,))(Zs), //sdbs) and therefore:

ik, = F(s.5.)Qudb. + ( / ’ Qrdbr) (F(E(s,))(Sa). //adbs)
d

+ Z<€(F(S’ ))(29)7 //sei>Q56¢ dS.

=1

From this we conclude that
to d .
B fh] = Elku] +E [ (/7 () (50, Qe
— [ B[O E)] s
0

= [ E[@u//5 9 0. ) )] ds = w22 1)(0)

wherein the the third equality we have used (by Lemma that s —
Qs// 'V (F(s,-))(Z,) is a martingale. Hence

v 0 = 1B [( [ Q) (22 iz,

from which Eq. (6.4) follows using either the Markov property of X or the fact
that s — (e*=*)2/2f) (,) is a martingale. [

The following theorem is an non-intrinsic form of Theorem [6.2] In this theo-
rem we will be using the notation introduced before Theorem Namely, let
{X;}! o, C T (I'M) be as in Notation B be an R™ — valued Brownian motion,
and Ty (m) = X where X is the solution to Eq. with ¥, = m € M and
8 =DB.

Theorem 6.3 (Elworthy - Li). Assume that X (m) : R® — T,,, M (recall X (m)a :=
Yo Xi (m) a;) is surjective for all m € M and let

71 n
(6.5) X (m)* = [X (m) INuxmy~]  : TmM — R",

where the orthogonal complement is taken relative to the standard inner product
on R™. (See Lemma below for more on X (m)*.) Then for all v € T,M,
0<t,<t<ooand feC(M)we have

(6.6) v (etL/Qf) - %E [f () /Oto (X (2)* Zyv,dB,)

0

where Zs = Tsyo as in Eq. .

Proof. Let L =" | X? 42X, be the generator of the diffusion, {7 (m)}eso-
Since X (m) : R® — T,, M is surjective for all m € M, L is an elliptic operator on
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C> (M) . So, using results similar to those in Fact it makes sense to define
Fs(m):= (e(t_S)L/Qf) (m) and N = F, (Ts (m)) . Then

1
OuF, + 5 LF, = 0 with F; = f

and by It6’s lemma,

(6.7) ANI" = d[F, (T, (m))] = Y (X;F,) (T, (m))dBL.
1=1

This shows N is a martingale for all m € M and, upon integrating Eq. (6.7) on
s, that

£ (T (m)) = /2 f(m) + 3 / (X.F.) (T, (m))dB:.
=1

Hence if a, € R™ is a predictable process such that E fot \as|2 ds < oo, then by the
It6 isometry property,

E [f ) [ fa, dB>] -/ "E((X,F) (T, (m))ai(s)] ds

(6.9) = [ EldyF) (X(T, (m))e ) s

Suppose that ¢, € R is a continuous piecewise differentiable function and let
as =X (ES)# Zsv. Then form Eq. we have

(6.9) E {f (Et)/ot@'sX(Es)# st,stﬁ Z/Otf;E [(drrF) (Zsv)] ds.

Since NI = F, (T (m)) is a martingale for all m, we may deduce that
(6.10) v(m — NI") =dpFs (Tseov) = dy Fs (Z5v)

is a martingale as well for any v € T, M. In particular, s € [0,t] — E [(da Fs) (Zsv)]
is constant and evaluating this expression at s = 0 and s =t implies

(6.11) El(duFy) (Zw)] = v (H2F ) = El(du ) (Ziv)].
Using Eq. (6.11)) in Eq. then shows
t
E [f (zt)/ (X (5,)* zsv,dB;} = (t— to) v ()
0
which, by taking /s = s A g, implies Eq. . ]

Corollary 6.4. Theorem[6.5 may be used to deduce Theorem[6.2

Proof. Apply Theorem with n = N, Xo = 0 and X; (m) = P(m)e; for
i=1,...,N to learn
(6.12)

o) = Lu s | t°<zsv,st>} — 2|1 | t° () zevan)]

0
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where we have used L = A (see Proposition ) and X (m)# = P (m) in this
setting. By Theorem [5.40

/O<//stv,st>:/O(//stuP(Es)dBS)
0 0

_ /Ot0<zsv, JJ7LP (S,) dBy) = /Ot0<zsv,dbs>

and therefore Eq. (6.12)) may be written as
1 fo
v (em/2f) =K {f (Et)/ <stadbs>:| .
to 0
Using Theorem to factor out the redundant noise, this may also be expressed
as
1 to 1 to
013 o (e22) = e[ [Mana)] = Lu s [osa)]
0 0 0 0

where z; solves Eq. (5.69). By taking transposes of Eq. (5.69)) it follows that z!*
satisfies Eq. (6.1) and hence z!" = Q. Since v € T, M was arbitrary, Equation (6.4))
is now an easy consequence of Eq. (6.13) and the definition of V(e*2/2f)(0). ]

7. CALCULUS ON W (M)

In this section, (M, 0) is assumed to be either a compact Riemannian manifold
equipped with a fixed point o € M or M = R¢ with o = 0.

Notation 7.1. We will be interested in the following path spaces:
W(T,M) :={w € C(]0,1] - T,M)|w(0) =0, € T,M},

1
H (T,M) == {h € W(T,M) : h(0) =0, & (h, )z = /O 1B (5)|2, prds < o0}

and

W(M):={ceC(0,1]] > M):0(0)=0€ M}.
(By convention (h, h)g = oo if h € W (T, M) is not absolutely continuous.) We refer
to W(T,M) as Wiener space, W (M) as curved Wiener space and H (T, M)
or H (Rd) as the Cameron-Martin Hilbert space.
Definition 7.2. Let p and iy (ar) denote the Wiener measures on W (T, M) and
W (M) respectively, i.e. p = Law (b) and py (ary = Law (X) where b and ¥ are
Brownian motions on T,M and M starting at 0 € T,M and o € M respectively.
Notation 7.3. The probability space in this section will often be (W (M), F, ,uW(M)) ,
where F is the completion of the o — algebra generated by the projection maps,
Y5 : W (M) — M defined by X, (0) = o, for s € [0,1]. We make this into a filtered
probability space by taking F; to be the o — algebra generated by {3, : r < s} and
the null sets in F;. Also let //5 be stochastic parallel translation along X.

Definition 7.4. A function F : W (M) — R is called a C* — cylinder function
if there exists a partition

(7.1) Ti={0=89 <81 <82+ < 8, =1}
of [0,1] and f € C*(M™) such that
(7.2) F(o)= f(osy,...,04,) forallc € W (M).
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If M = R?, we further require that f and all of its derivatives up to order k have at
most polynomial growth at infinity. The collection of C* — cylinder functions will
be denoted by FC* (W (M)).

Definition 7.5. The continuous tangent space to W (M) at o € W (M) is the
set CT,W (M) of continuous vector-fields along o which are zero at s =0 :

(7.3) CT,W(M)={X € C([0,1],TM)|X, € T,,M V¥ s € [0,1] and X(0) = 0}.

To motivate the above definition, consider a differentiable path in v € W(M) go-
ing through o at t = 0. Writing ~ (¢) (s) as v (¢, s) , the derivative X, := £|v(t,s) €
T,(syM of such a path should, by definition, be a tangent vector to W (M) at o.

We now wish to define a “Riemannian metric” on W (M). It turns out that the
continuous tangent space CT,W (M) is too large for our purposes, see for example
the Cameron-Martin Theorem below. To remedy this we will introduce a
Riemannian structure on a an a.e. defined “sub-bundle” of CTW (M).

Definition 7.6. A Cameron-Martin process, h, is a T,M — valued process
on W (M) such that s — h(s) is in H, pw) — a.e. Contrary to our earlier
assumptions, we do not assume that h is adapted unless explicitly stated.

Definition 7.7. Suppose that X is a T'M — valued process on (W (M) 7UW(M))
such that the process 7w (X)) = X, € M. We will say X is a Cameron-Martin
vector-field if

(7.4) hs = //7' X,
is a Cameron-Martin valued process and
(7.5) (X, X)x =E[(h,h) ] < 0.

A Cameron-Martin vector field X is said to be adapted if h := //~!X is adapted.
The set of Cameron-Martin vector-fields will be denoted by X and those which are
adapted will be denoted by AX,.

Remark 7.8. Notice that X is a Hilbert space with the inner product determined
by (-,-)x in (7.5)). Furthermore, X, is a Hilbert-subspace of X.

Notation 7.9. Given a Cameron-Martin process h, let X" := //h. In this way we
may identify Cameron-Martin processes with Cameron-Martin vector fields.

We define a “metric”, GE| on X by
(7.6) G(X" X"y = (h,h)y.
With this notation we have (X, X)r =E[G(X, X)].
Remark 7.10. Notice, if o is a smooth path then the expression in could be

written as .
v v
GX,X)= —X(s),—X d
0= [ (X0 X)) ds
where % denotes the covariant derivative along the path ¢ which is induced from

the covariant derivative V. This is a typical metric used by differential geometers
on path and loop spaces.

6The function G is to be loosely interpreted as a Riemannian metric on W (M).
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Notation 7.11. Given a Cameron-Martin vector field X on (W (M) ,uW(M)) and
a cylinder function F € FC (W (M)) as in Eq. (7.2)), let XF denote the random
variable

n

(7.7) XF (o) := Z(gradiF(a), X,, (0)),
where
(7.8) grad, F (o) := (grad, f) (0s,,...,05,)

and (grad; f) denotes the gradient of f relative to the i variable.

Notation 7.12. The gradient, DF, of a smooth cylinder functions, F, on W (M)
is the unique Cameron-Martin process such that G (DF,X) = XF for all X € X.
The explicit formula for D, as the reader should verify, is

(7.9) (DF),=//s <Zs A si//si_lgradiF(a)> )

The formula in Eq. (7.9) defines a densely defined operator, D : L? (1) — X with
D (D) =FCt (W (M)) as its domain.

7.1. Classical Wiener Space Calculus. In this subsection (which is a warm up
for the sequel) we will specialize to the case where M = R% o = 0 € R% To
simplify notation let W := W(RY), H := H (Rd), B= pw (), bs (W) = wy for
all s € [0,1] and w € W. Recall that {F,:s € [0,1]} is the filtration on W as
explained in Notation [7.3] where we are now writing b for ¥. Cameron and Martin
[25, 26, 28, 27] and Cameron [28] began the study of calculus on this classical
Wiener space. They proved the following two results, see Theorem 2, p. 387 of [26]
and Theorem II, p. 919 of [28] respectively. (There have been many extensions of
these results partly initiated by Gross’ work in [90], 91].)

Theorem 7.13 (Cameron & Martin 1944). Let (W, F,u) be the classical Wiener
space described above and for h € W, define T, : W — W by Tp(w) =w + h for all
weW. If h is C1, then ,uT,;1 s absolutely continuous relative to p.

This theorem was extended by Maruyama [I33] and Girsanov [88] to allow the
same conclusion for h € H and more general Cameron-Martin processes. Moreover
it is now well known uT," ! <« piff h € H. From the Cameron and Martin theorem
one may prove Cameron’s integration by parts formula.

Theorem 7.14 (Cameron 1951). Let h € H and F,G € L™ (1) := Mi<p<ooL? (1)
such that Op F := d%FOTEh|5:0 and On,G = d%GOTgh|€:0 where the derivatives are
supposed to 6m'le| in LP(u) for all1 < p < oo. Then

/8hF-Gdu:/ Fo;G dp,
w w

where 0;G = —0p,G + z,G and z, := f01<h' (s),dbs)pa.

"The notion of derivative stated here is weaker than the notion given in [28]. Nevertheless
Cameron’s proof covers this case without any essential change.
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In this flat setting parallel translation is trivial, i.e. //s = id for all s. Hence the
gradient operator D in Eq. (7.9)) reduces to the equation,

(DF), (w) = (Z s A sigradiF(wS)> .

i=1

Similarly the association of a Cameron-Martin vector field X on W(R?) with a
Cameron-Martin valued process h in Eq. is simply that X = h.

We will now recall that adapted Cameron-Martin vector fields, X = h, are in
the domain of D*. From this fact it will easily follow that D* is densely defined.

Theorem 7.15. Let h be an adapted Cameron-Martin process (vector field) on W.
Then h € D(D*) and

1
Dh = / (W, db).
0

Proof. We start by proving the theorem under the additional assumption that

(7.10) sup |hl| < C,
s€0,1]

where C' is a non-random constant. For each t € R let b(¢, s) = bs(t) = bs + ths. By
Girsanov’s theorem, s — b,(¢) (for fixed t) is a Brownian motion relative to Z; - u,

where 1 1
1
Z = exp <_/ t<h;,dbs> - 7t2/ <h;’h;>d8> :
0 2 0

Hence if F' is a smooth cylinder function on W,
E[F (b(t,")) - Z:) = E[F(D)].

Differentiating this equation in ¢ at t = 0, using
d d !
DF = —|oF : —|oZ; = — ¢
(DF.Wys = o (b(t.)) and oz = = [ (v,
shows .
E[(DF,h)g] —E [F/ (h’,db)] =0.
0

From this equation it follows that h € D(D*) and D*h = f1<h’7 db). So it now only
remains to remove the restriction placed on h in Eq. ((7.10]).
Let h be a general adapted Cameron-Martin vector-field and for each n € N, let

(7.11) hn(s) :=/ (1) - Ly vy <ndr
0

(Notice that h,, is still adapted.) By the special case above we know that h,, €
D(D*) and D*h,, = [, (hl,,db). Therefore,

1
E|D*(hp — hy)|* = IE/ |h! —h')%ds — 0 as m,n — co
0

from which it follows that D*h,, is convergent. Because D* is a closed operator,
h € D(D*) and

1 1
D*h = lim D*h, = lim (R.,, db) :/ (B, db).
0

n—oo n—oo 0
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Corollary 7.16. The operator D* is densely defined and hence D is closable. (Let
D denote the closure of D.)

Proof. Let h € H and F and K be smooth cylinder functions. Then, by the
product rule,

(DF, Kh)x = E[(KDF, hyy] = E[(D (KF) — FDK, h) ]
= E[F - KD*h — F(DK, h)p).
Therefore Kh € D(D*) (D(D*) is the domain of D*) and
D*(Kh) = KD*h — (DK, hg.
Since the subspace,
{Kh|h € H and K is a smooth cylinder function},

is a dense subspace of X', D* is densely defined. [

7.1.1. Martingale Representation Property and the Clark-Ocone Formula.

Lemma 7.17. Let F(b) = f(bs,,...,bs,) be the smooth cylinder function on W as
in Definition[74), then

1
(7.12) F:]EF+/ (as,dby),

0
where as is a bounded, piecewise-continuous (in s) and predictable process. Fur-
thermore, the jumps points of as are contained in the set {s1,...,sp,} and as =0
15 S > Sp.

Proof. The proof will be by induction on n. First assume that n = 1, so that
F(b) = f(b;) for some 0 < t < 1. Let H(s,m) := (e#=92/2f)(m) for 0 < s < t and
m € R Then, by It6’s formula (or see Eq. (5.38)),

dH (s,bs) = (grad H (s, bs), dbs)

which upon integrating on s € [0, ] gives

Fb) = ("2 ) (0) + /0 (gradH (s, by), db,) — EF + /0 (ay, dbs),

where a; = 1,<¢//5 " grad H(s, bs). This proves the n =1 case. To finish the proof
it suffices to show that we may reduce the assertion of the lemma at the level n to
the assertion at the level n — 1.

Let F(b) = f(bsy,---,bs,)s

(Anf)(xla'r% s 7$n) = (Ag)(xn) and
(grad,, f)(z1,22,...,2pn) = ﬁg (zn)

where g(z) := f(z1,22,...,2n—1,2). (So A, f and grad,, f is the Laplacian and the
gradient of f in the n'" — variable.) It6’s lemma applied to the process,

S € [Sn—1,8n] — H(s,b) := (e(s"_s)A"/Qf)(bsl, ceoybs, 1y bs)

gives
dH (s,b) = (grad, e =)8n/2 )by ... by, bs,dbs)
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and hence
F(b) = (elonn =222 f) by, . b,y ba, )
-+u/ﬂn (grad,, e =2n/2f)(by,, ... by, _,, b, dby)
Sn—1
(7.13) ::(e“"‘“"—l)A"/Qf)(bs“...,bsnfl,bsnfl)—%y/ﬁn (aus, dby),
Sn—1
where v, := (grad,, e =98 /2 f)(by, ... by, bs) for s € (s,_1, 8,). By induction

we know that the smooth cylinder function
(e(sn_snfl)An/Qf)(bﬁ veeebs gy bs, )

may be written as a constant plus f01<as7 dbs), where as is bounded and piecewise
continuous and as = 0 if s > s,_1. Hence it follows by replacing as by as +
1( 5n)s s that

F@:c+/n@@@
0

for some constant C. Taking expectations of both sides of this equation then shows

C =E[F(b)]. =

Remark 7.18. By being more careful in the proof of the Lemma (as is done in
more generality later in Theorem it is possible to show a, in Eq. may
be written as
n
j{:lsgsigradif(bs“...,bsn).f;].
i=1

This will also be explained, by indirect means, in Theorem below.

(7.14) as =E

Corollary 7.19. Let F be a smooth cylinder function on W, then there is a pre-
dictable, piecewise continuously differentiable Cameron-Martin process h such that
F =EF + D*h.

Proof. Let h, := [ a,dr where a is the process as in Lemma n

Corollary 7.20 (Martingale Representation Property). Let F' € L?(u), then there
18 a predictable process, as, such that Efol las|?ds < co, and

(7.15) F:EF+/%m%)
0

Proof. Choose a sequence of smooth cylinder functions {F,} such that F,, — F
as n — oo. By replacing F' by F' — EF and F,, by F,, — EF,, we may assume that
EF = 0 and EF,, = 0. Let a™ be predictable processes such that F,, = fol (a™, db)
for all n. Notice that

1
E/ la? — a™?ds = E(F,, — F,,,)?> — 0 as m,n — oo.
0
Hence, if a := L?(ds x du) — lim,, o a™, then
1 1
Fn:/ a”'dbﬂ/ (a,db) as n — 0.
0 0

This show that F = [\ (a, db). -
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Theorem 7.21 (Clark — Ocone Formula). Suppose that F' € D (D) , the7ﬁ

(7.16) F = 1EF+/O1 <IE Li (DF), (b)\]—"s} ,dbs>.

In particular if F = f (bs,,...,bs,) is a smooth cylinder function on W (M) then

(7.17) FEFJr/l <]E fs] ,dbs>.
0

Proof. Let h be a predictable Cameron-Martin valued process such that
E fol |h;\2 ds < oco. Then using Theorem and the Itd isometry property,

Z 1s§sigradif (bsl ] bsn)
i=1

E(DF,h)y =E[FD*h] =E {F/OIWS, dbs)}

(7.18) —]EK]EF+/01<a,db>> /01<h’5,dbs>} =E {/01<as,h’s>ds}

where a is the predictable process in Corollary [7.20} Since h is predictable,
Y/d
B B li
E(DF, h)y = E [/ < (DF) h> ds}
0 ds s ’

(7.19) _E [/01 <E Lfs (DF)S‘]-"S] ,h;>ds] .

Since h is an arbitrary predictable Cameron-Martin valued process, comparing Egs.

(7.18) and (7.18) shows

d
as =E |:ds (DF)S fs:|
which combined with Eq. (7.12)) completes the proof. ]

Remark 7.22. As mentioned in Remark it is possible to prove Eq. (7.17)) by
an inductive procedure. On the other hand if we were to know that Eq. (7.17)) was
valid for all F € FC! (W), then for h € X,

E [F/()l(h’s,dbs)] =E :(EFJF/; <E [;S DFSI}'S} ,dbs>> /01<h;,dbs>}
o[ (e[ orio] e

rprl
—E / <dDFS,h’S>ds]:<DF,h>X.
LlJo ds

This identity shows h € D (D*) and that D*h = f01<h’s, dbs), i.e. we have recovered
Theorem [7.15] In this way we see that the Clark-Ocone formula may be used to
recover integration by parts on Wiener space.

8Here we are abusing notation and writing E [% DF; (b)} .7-'5] for the “predictable” projection

of the process s — %DFS (b) . Since we will only really use Eq. 1) in these notes, this
technicality need not concern us here.
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Let £ be the infinite dimensional Ornstein-Uhlenbeck operator defined as the
self-adjoint operator on L?(u) given by £ = D*D. The following spectral gap
inequality for £ has been known since the early days of quantum mechanics. This is
because L is unitarily equivalent to a “harmonic oscillator Hamiltonian” for which
the full spectrum may be found, see for example [162]. However, these explicit
computations will not in general be available when we consider analogous spectral

gap inequalities when R? is replaced by a general compact Riemannian manifold
M.

Theorem 7.23 (Ornstein Uhlenbeck Spectral Gap Inequality). The null-space of
L consists of the constant functions on W and L has a spectral gap of size 1, i.e.
(7.20) (L:F7 F>L2(u) > (F, F>L2(u)

for all F € D(L) such that F € Nul(£)* = {1}*.

Proof. Let F € D(D), then by the Clark-Ocone formula in Eq. (7.16)), the
isometry property of the It integral and the contractive properties of conditional
expectation,

2

E(F -EF)> =E /01 <E [CZ DF, (b)| fs] ,dbs>}

:IE_:/OIELEZDFS(bﬂfS]st}
<E _/01 (E stDF (b)’ |st2ds]
- 1
S]E-/O E
[ 1
:]E/O

In particular if F € D(L), then (DF, DF)x = E[LF - F], and hence

|jSDFS (b)

2
.7:51 ds

2

d
ds

—DF (b)

= (DF,DF)x.
dS < ) >X

(7.21) <,CF,F>L2(H) > <F—EF,F—]EF>L2(H).
Therefore, if F' € Nul(£), it follows that FF = EF, i.e. F is a constant. Moreover if
F 11 (i.e. EF =0) then Eq. (7.20) becomes Eq. (|7.21]). |

It turns out that using a method which is attributed to Maurey and Neveu in
[29], it is possible to use the Clark-Ocone formula as the starting point for a proof
of Gross’ logarithmic Sobolev inequality which by general theory is known to be
stronger than the spectral gap inequality in Theorem [7.23]

Theorem 7.24 (Gross’ Logarithmic Sobolev Inequality for W (Rd)). For all F €
D (D),
(7.22) E [F?log F?| < 2E[(DF,DF)y] + EF? - log EF?.

Proof. Let F € FC'(W), e > 0, H. :== F?+¢ € D(D) and a, =
E [4 (DH.), |F,] . By Theorem

1
H. =EH. + / (a, db)
0
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and hence
M, :=E[H.|F,)=E[F? +¢|F,] > ¢
is a positive martingale which may be written as

Ms = M0+/ <&,db>
0

where My = EH..
Let ¢ (z) = zlnz so that ¢’ (z) = Inz + 1 and ¢” (z) = 2~!. Then by Itd’s
formula,

416 (M,)] = 6 (M) + 6 (M,)dM, + 56" (M,)a, |* ds

_ / 1 1 2
= 6 (Mo) +¢ (M) dM. + 5= lasf ds.
Integrating this equation on s and then taking expectations shows
1 1
(7.23) Blo ()] = 6 (£ + 38 | [ 3l ds].
0 s
Since DH. = 2F DF, Eq. (7.23)) is equivalent to
E[6(H.)] = ¢ (EH.) + AE [/11 E [ZF(DF)' \f} st}
) 72 Uy E[H|F] < ‘

Using the Cauchy-Schwarz inequality and the contractive properties of conditional
expectations,

2

’E [zpjs (DF). m]

co(effgon] )

’jg (DF)

<4E[F?*|F,]-E

S

2
m] |
Combining the last two equations, using
E [F?|F,] E [F?|F,]

(724 E[ILIF] ~ E[F2F] +e =

gives,

E[¢ (HE)] < ¢(EHE) +2E/0 E

d 2
‘ds (DF), |.7-'51 ds

2

1
:¢(EH5)+2E/ j ds.
0

S

(DF),

We may now let € | 0 in this inequality to find Eq. is valid for ' € FC* (W).
Since FC! (W) is a core for D, standard limiting arguments show that Eq. (7.22)
is valid in general.

The main objective for the rest of this section is to generalize the previous
theorems to the setting of general compact Riemannian manifolds. Before doing
this we need to record the stochastic analogues of the differentiation formula in

Theorems and ]



88 BRUCE K. DRIVER

7.2. Differentials of Stochastic Flows and Developments.

Notation 7.25. Let 77 (m) = X, where X, is the solution to Eq. (5.1) with
Y9 =m and (s is an R™ — valued semi-martingale, i.e.

0%s = ZXi (E5) 688 + Xo (X5) ds with Xg = m.
i=1

Theorem 7.26 (Differentiating ¥ in B). Let B = Bs be an R™ — valued Brownian
motion and h be an adapted Cameron-Martin process, hy € R™ with |h)| bounded.
Then there is a version of TEH" (m) which is continuous in s and differentiable in
(t,m). Moreover if we define 0,T (0) := &L [,TE+*" (o), then

(7.25) onTB (0):Zs/ Z7 X (Zr)dr://szs/ 2t )7 Xy (3 dr
0 0

where Zg = (TSB)*O7 //s is stochastic parallel translation along ¥, and zs :=

/s Zs. (See Theorem for more on the processes Z and z.) Recall from Nota-
tion [5.4) that

Xo(m) = a;X; (m) =X (m)a.
i=1

Proof. This is a stochastic analogue of Theorem Formally, if By were
piecewise differentiable it would follow from Theorem (.7 with s = ¢,

X (m) =X (m) B, + Xo (m) and Ys (m) = X (m) hl,.

(Notice that %|o [X (m) (B, +th)) + Xo (m)] = Ys.) For a rigorous proof of this
theorem in the flat case, which is essentially applicable here because of M is an
imbedded submanifold, see Bell [12] or Nualart [148] for example. For this theorem
in this geometric context see Bismut [20] or Driver [47] for example. |

Notation 7.27. Let b be an T,M = R¢ — valued Brownian motion. A T,M —
valued semi-martingale Y is called an adapted vector field or tangent process
to b if Y can be written as

S S
(7.26) Y, :/ q,db, —|—/ odr
0 0

where ¢, is an so(d) — valued adapted process and « is a T, M such that

1
/ los|?ds < o0 ae.
0

A key point of a tangent process Y as above is that it gives rise to natural
perturbations of the underlying Brownian motion b. Namely, following Bismut (also
see Fang and Malliavin [78]), for ¢ € R let b%, be the process given by:

(7.27) bt ::/ etqrbr—&—t/ odr.
0 0

Then (under some integrability restrictions on «) by Lévy’s criteria and Girsanov’s
theorem, the law of b’ is absolutely continuous relative to the law of b. Moreover
b° = b and, with some additional integrability assumptions on ¢, % lob! =Y.

Let b be an T,M = R¢ — valued Brownian motion, ¥ := ¢ (b) be the stochastic
development map as in Notation and suppose that X" = //h is a Cameron-
Martin vector field on W (M) . Using Theorem as motivation (see Eq. ({.16))),
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the pull back of X under the stochastic development map should be the process Y
defined by

(7.28) YS:her/ (/ Ry, (hy, 8b, )(Sbr

where

(7‘29) R//s(hsvébs) ://s_lR(//shsv//s(Sbs)//s
like in Eq. (4.15). Since

" 1
(/ Ry, (hy,db, )51) _</ Ry, (hp,8b,) )dbr+2R//p(hp,dbp)dbp
0
1 d
(/ Ry (hy,db,) )dbr+2i_le//p(hp,ei)eidp

where {el} ', is an orthonormal basis for T,M, Eq. (7.28) may be written in Tt6

form as

(7.30) Y. :/ C’Sdbs+/ reds,
0 0

where

s 1
(731) C, = ‘/O R//U (hg, (51)0), ry = hls + 5 ].:{iC//S hs and
(7.32) Ric,/ a:=//;'Ric//sa V¥ a € T,M.

By the symmetry property in item 4b of Proposition the matrix Cjs is skew
symmetric and therefore Y is a tangent process. Here is a theorem which relates

Y in Eq. to X" = //h.

Theorem 7.28 (Differential of the development map). Assume M is compact
manifold, o € M is fized, b is T,M = RY — valued Brownian motion, ¥ := ¢ (b),
h is a Cameron-Martin process with |h,| < K < oo (K is a non-random constant)

andY is as in Eq. . As in Eq. let
(7.33) b= / etCrdb, 4+t / redr.
0 0

Then there exists a version of ¢ (b) which is continuous in (s,t), differentiable in
t and Lo (b') = X"

Proof. For the proof of this theorem and its generalization to more general h,
the reader is referred to Section 3.1 of [45] and to [47]. Let me just point out here
that formally the proof is very analogous to the deterministic version in Theorems

[{12] and AT3 n

7.3. Quasi — Invariance Flow Theorem for W (M). In this section, we will
discuss the W (M) analogues of Theorems and

Theorem 7.29 (Cameron-Martin Theorem for M). Let h € H(T,M) and X" be
the py (ary — a.e. well defined vector field on W (M) given by

(7.34) X"Mo) = //s(0)hg for s € [0,1],
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where |/ (o) is stochastic parallel translation along o € W (M) . Then X" admits

a flow e'X" on W(M) (see Figure and this flow leaves the Wiener measure,
Hw (a), quasi-invariant.

o /s@h(s)=Xo)

FIGURE 14. Constructing a vector field, X", on W (M) from a
vector field h on W (T,M). The dotted path indicates the flow of
o under this vector field.

This theorem first appeared in Driver [47] for h € H (T,M)NC*([0,1],T,M) and
was soon extended to all h € H (T, M) by E. Hsu [96, [97]. Other proofs may also
be found in [76], 1277, [146]. The proof of this theorem is rather involved and will not
be given here. A sketch of the argument and more information on the technicalities
involved may be found in [49].

Example 7.30. When M = R%, // (0)v, = v,, for all v € R? and o € W (R?).

Thus X"(0) = (hs),, and etX" (6) = o + th and so Theorem becomes the
classical Cameron-Martin Theorem [7.13]

Corollary 7.31 (Integration by Parts for py(ar)). For h € H(T,M) and F €
FCH W (M)) as in Eq. (7.9), let

d h
(X"F)(0) = LoF (X" (2)) = G (DF, X*)
as in Notation|7.11. Then

/ X" F dpy (ary :/ F 2" dpw ary
W(M) W (M)

1
1
h, .
2 /<h/+2RIC// b, dbs),

where

be0) =W 0) = [ /1700,
and Ric,, € End(T,M) is as in Eq. (-)
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Proof. A special case of this Corollary with F(o) = f(o,) for some f €
C>(M) first appeared in Bismut [2I]. The result stated here was proved in [47] as
an infinitesimal form of the flow Theorem Other proofs of this corollary may
be found in [2, 5, 50, 72, [73, [70, 176, [78, (96, 07, 122} 123, 127, [46]. This corollary
is a special case of Theorem below. [

7.4. Divergence and Integration by Parts. In the next theorem, it will be
shown that adapted Cameron-Martin vector fields, X, are in the domain of D* and
consequently D* is densely defined. For the purposes of this subsection, we assume
that b is a T,M — valued Brownian motion, ¥ = ¢ (b) is the evolved Brownian
motion on M and //, is stochastic parallel translation along .

Theorem 7.32. Let X € X, be an adapted Cameron-Martin vector field on W (M)
and h := //7'X. Then X € D(D*) and

1 1
1
(7.35) X*1=D*X = / (B(h),db) = / (h + 5 Ricy/. hs,dbs),
0 0
where B is the random linear operator mapping H to L?(ds,T,M) given by
1.
(7.36) [B(h)], == hi, + 3 Ric//, hs.

Remark 7.33. There is a non-random constant C' < oo depending only on the bound
on the Ricci tensor such that || B[ ;_, 1245 1,01y < C-

Proof. I will give a sketch of the proof here, the interested reader may find
complete details of this proof in [45]. Moreover, we will give two more proofs of
this theorem, see Theorem [7.40] and Corollary below.

We start by proving the theorem under the additional assumption that h :=
//' X satisfies sup,c (o 1) || < K, where K is a non-random constant.

Let b% be defined as in Eq. (7.33). (Notice that b is not the flow of the vector-
field Y in Eq. l) but does have the property that %|0b’fg =Y;.) Since C; is
skew-symmetric, e’ is orthogonal and so by Levy’s criteria, s — [ e/“rdb, is a
Brownian motion. Combining this with Girsanov’s theorem, s — b, (for fixed t) is
a Brownian motion relative to the measure Z; - i, where

(7.37) 7, = exp (- /O ety — %tQ /0 i r)ds) .

For t € R, let X(t,-) := ¢(b*) where ¢ is the stochastic development map as in
Theorem Then by Theorem X" = 4|,%(t,-) and in particular if F' is a
smooth cylinder function then X"F = 4| F(X(¢,-)). So differentiating the identity,

E[F(2(t,)Z] =E[F (2)],
at t = 0 gives:
E[XF]-E {F/lmdb}] =0.

This last equation may be written alternatively as

1
(DF,X)x =E[G (DF,X)] =E {F /0 <B(h),db>] .
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Hence it follows that X € D(D*) and

DX = /1<B(h),db>.
0

This proves the theorem in the special case that A’ is uniformly bounded.

Let X be a general adapted Cameron-Martin vector-field and h := //~1X. For
each n € N, let h, (s) := fos B'(r) - 1jpr(ry|<ndr be as in Eq. (7.11). Set X" :=
//hn, then by the special case above we know that X™ € D(D*) and D*X"™ =
fol (B(hy,),db). It is easy to check that

(X —X"X-—X"y=E(h—hy,h—hp)g — 0asn— oco.

Furthermore,
1
E|D*(X™ = X" =E [ |B(hm — hy)|?ds < CE(hy, — hay, b — b )1,
0

from which it follows that D*X™ is convergent. Because D* is a closed operator,
it follows that X € D(D*) and

1 1
D*X = lim D*X" = Tim [ (B(hy),db) = / (B(h), db).

Corollary 7.34. The operator D* : X — L* (W (M), pw (ar)) is densely defined.
In particular D is closable. (Let D denote the closure of D.)

Proof. Let h € H, X" := //h, and F and K be smooth cylinder functions.
Then, by the product rule,

(DF,KX")» =E[G (KDF,X")] =E[G (D (KF) — FDK, X")]
=E[F-KD*X" - FG (DK, X")].
Therefore K X" € D(D*) (D(D*) is the domain of D*) and
D*(KX") = KD*X" — G(DK, X").
Since
span{ K X"|h € H and K € FC*} C D(D*)

is is a dense subspace of X', D* is densely defined. [

Corollary 7.35. Let h be an adapted Cameron-Martin valued process and Qs be
defined as in Fq. . Then

. 1
(7.38) (x@) 1= / (QH, db).
0
Proof. Taking the transpose of Eq. (6.1) shows Q' solves,

d 1
(7.39) Q" + 5 Ricy, Q" = 0 with QFf = Id.
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Therefore, from Eq. (7.35)),

N 1
(x9) 1:/ ((Q“h)/+%Ric//Q“h,db>
0

! d 1 s tr
:/0 <[d5+2RIC//:| (Q h),db>
— / 1<Q“h’,db>.
0

m

Theorem[7.32] may be extended to allow for vector-fields on the paths of M which

are not based. This theorem and it Corollary will not be used in the sequel
and may safely be skipped.

Theorem 7.36. Let h be an adapted T,M — valued process such that h(0) is non-
random and h — h(0) is a Cameron-Martin process, X := X" := //h, E, denote
the path space expectation for a Brownian motion starting at x € M, F : C([0,1] —
M) — R be a cylinder function as in Deﬁnitz’on and X" F be defined as in Eq.

(7). Then (writing (df,v) for df (v))
(7.40) E,[X"F] = E,[FD*X"] + (d(E(,F), h(0),),
where

1 1 1
D x* ;:/ (R, + 3 Ricy, h dby) ::/ (B(h), db),
0 0
as in Eq. and B(h) is defined in Eq. (7.56)).

Proof. Start by choosing a smooth path a in M such that &(0) = h(0),. Let
C = /R//(h,ab),

1
r=h+ iRiC//(h),

S S
bgz/ etcdb—&—t/ rd\ and
0 0

1 1
1
Zy = exp — {/ t(r, et db) + 5152/ (r, r)ds}
0 0

be defined by the same formulas as in the proof of Theorem Let ug(t) denote
parallel translation along «, that is

dug(t)/dt +T(&(t))uo(t) =0 with  ug(0) = id.
For t € R, define 3(¢,-) by
Y(t,65) = u(t,s)ob.  with  2(¢,0) = a(t)

and

u(t,8) + T(u(t, 8)6:b%)u(t,s) =0  with  u(t,0) = u,(t).
Appealing to a stochastic version of Theorem (after choosing a good version
of ¥) it is possible to show that $(0,-) = X, so the XF = L|oF[S(t,-)]. As in
the proof of Theorem bt is a Brownian motion relative to the expectation E;



94 BRUCE K. DRIVER

defined by E.(F) := E[Z;F]. From this it is easy to see that X(¢,-) is a Brownian

motion on M starting at «(t) relative to the expectation E;. Therefore, for all ¢,
E [F (Z(tv )) Zt] = ]Ea(t)F

and differentiating this last expression at t = 0 gives:

E[XF(X)] - E [F /O 1(7’, db)] — (dE () F, h(0),)-

The rest of the proof is identical to the previous proof. [

As a corollary to Theorem we get Elton Hsu’s derivative formula which
played a key role in the original proof of his logarithmic Sobolev inequality on
W (M), see Theorem below and [98].

Corollary 7.37 (Hsu’s Derivative Formula). Let v, € T,M. Define h to be the
adapted T,M — valued process solving the differential equation:

(7.41) hl + %Ric//s he =0 with hg=wv,.
Then
(7.42) (d(E)F),vo) = Eo[X"F].
Proof. Apply Theorem to X" with h defined by (7.41). Notice that h has
been constructed so that B(h) =0, i.e. D*X" = 0. |

The idea for the proof used here is similar to Hsu’s proof, the only question is
how one describes the perturbed process (¢, -) in the proof of Theorem above.
It is also possible to give a much more elementary proof of Eq. based on the
ideas in Section [6] see for example [58].

7.5. Elworthy-Li Integration by Parts Formula. In this subsection, let
{X;}_y C T(T'M), B be a R" — valued Brownian motion and 77 (m) denote
the solution to Eq. with 6 = B be as in Notation We will further
assume that X (m) : R® — T,,, M (as in Notation [5.4) is surjective for all m € M
and let X (m)* = [X (M) |nvurx (m)) -] asin Eq.

an elementary exercise in linear algebra.

. The following Lemma is

Lemma 7.38. For m € M and v,w € T, M let
W, W) = (X (m)* v, X (m)* w)gn.
Then
(1) m — (-, -)m 145 a smooth Riemannian metric on M.
(2) X (m)" = X (m)* and in particular X (m) X (m)" = idy, v for all m €
M.
(3) Every v € T,, M may be expanded as

n

(7.43) v =310, X; (m)X; (m) = 3 (0,X (m) ;)X (m) ;

Jj=1 Jj=1

where {ej};;l is the standard basis for R™.

The proof of this lemma is left to the reader with the comment that Eq. (7.43)
is proved in the same manner as item (1) in Proposition
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Theorem 7.39 (Elworthy - Li). Suppose ks is a T,M valued Cameron-Martin

process such that E fol |K.|” ds < oo and F : W (M) — R is a bounded C ~ function
with bounded derivative on W, for example F could be a cylinder function. Then

T
E [(dwonF) (Zk)] =E | F (5) /O (Z.k. X (5) dB,)

T
(7.44) —E|FP() [ (X(2)" Z.k,.dB)
0

where and Zs = (TSB)*O is the differential of m — TP (m) at o.

Proof. Notice that Z;ks € Tx, M for all s as it should be. By the reduction
argument used in the proof of Theorem |7.32] it suffices to consider the case where
|k.| < K where K is a non-random constant. Let hs be the T, M — valued Cameron-
Martin process defined by

hy = /O X (2,)" Z,k.dr.
Then by Lemma [7.38] and Theorem [7.26]
oLTE (0) = Z, /0 Z7IX(2,) hldr
=7, / Z7IX(2) X ()" Z, KL dr = Zk,.
0
In particular this implies
onF (T (0)) = (dF (£), 0T (0) = {dw ) F (5), Zk)

and therefore by integration by parts on the flat Wiener space (Theorem [7.32)) with
M = R") implies

T
E [(dwonF) (%) (Zk)] =E[0, [F (D) = E | F (%) / (., dB.)

F(2) / X (20" 2K dBy)

]
By factoring out the redundant noise in Theorem [7.39] we get yet another proof
of Corollary which also easily gives another proof of Theorem [7.32]

Theorem 7.40 (Factoring out the redundant noise). Assume X (m) = P (m) and
Xo = 0, ks is a Cameron-Martin valued process adapted to the filtration, F> =
o(X,:r<s), then

E[(dwanF) (//Qk)] =E

F(3) / <Q§rk;7dbs>]

where Q4 solves Fq. ,
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Proof. By Theorems [7.39] and [5.40] we have

E [(dwanF) (//zk)] =E | F(2) / (/<2 P (S2) dBy)

F(2) / (22", dby)

Combining this with Theorem implies

E [(dwanF) (//2k)] = E

F(E)/o <zsk;,dbs>].

As observed in the proof of Corollary Z; = Q4" which completes the proof. m

The reader interested in seeing more of these type of arguments is referred to
Elworthy, Le Jan and Li [71] where these ideas are covered in much greater detail
and in full generality.

7.6. Fang’s Spectral Gap Theorem and Proof. As in the flat case we let
L = D*D — an unbounded operator on L? (W (M) 7MW(M)) which is a “curved”
analogue of the Ornstein-Uhlenbeck operator used in Theorem It has been
shown in Driver and Rockner [56] that this operator generates a diffusion on W (M).
This last result also holds for pinned paths on M and free loops on RY, see [6].
In this section, we will give a proof of S. Fang’s [79] spectral gap inequality for
L. Hsu’s stronger logarithmic Sobolev inequality will be covered later in Theorem

[7.52] below.

Theorem 7.41 (Fang). Let D be the closure of D and L be the self-adjoint operator
on L? (MW(M)) defined by L = D*D. (Note, if M = R% then L would be an infinite
dimensional Ornstein-Uhlenbeck operator.) Then the null-space of L consists of the
constant functions on W (M) and L has a spectral gap, i.e. there is a constant
¢ > 0 such that (LCF, F>L2(HW(M)) > ¢(F, F>L2( ) for all F € D(L) which are

perpendicular to the constant functions.

Hw (M

This theorem is the W (M) analogue of Theorem The proof of this theorem
will be given at the end of this subsection. We first will need to represent F' in
terms of DF. (Also see Section below.)

Lemma 7.42. For each F € L? (W (M),/LW(M)), there is a unique adapted
Cameron-Martin vector field X on W (M) such that

F=EF+ D*X.

Proof. By the martingale representation theorem (see Corollary [7.20)), there is
a predictable T, M —valued process, a, (which is not in general continuous) such that

1
]E/ las|?ds < oo,
0

and

1
(7.45) F=EF + / (a5, dby).
0
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Define h := B~!(a), where B is as in Eq. (7.36); that is to say let h be the solution
to the differential equation:

1
(7.46) .+ 5 Ric/, hs = as with hg = 0.

Claim: B! is a bounded linear map from L?(ds,T,M) — H for each o € W (M),

and furthermore the norm of B, ! is bounded independent of ¢ € W (M).
To prove the claim, use Duhamel’s principle to write the solution to (|7.46|) as:

s
(7.47) ho= [ Q@) e
0
where Q, is as in Eq. (6.1). Since, W, := Q' (Qi‘")_1 solves the differential equation
1
W, + iRic//sWS =0 with W, =1

it is easy to show from the boundedness of Ric,, and an application of Gronwall’s
inequality that

Qv (@)=l <c.

where C' is a non-random constant independent of s and 7. Therefore,

1
1
(h,h) g = /0 las — 5 Ric//, hs|?ds

1 1
1
SQ/O |as|2ds+2/0 |§Ric//s he|?ds
1
§2(1+02K2)/ |las|*ds,
0

where K is a bound on the process %Ric//s . This proves the claim.

Because of the claim, h := B~!(a) satisfies E[(h, h) ] < oo and because of Eq.
(7.47), h is adapted. Hence, X := //h is an adapted Cameron-Martin vector field
and

1 1
DX = / (B(h), db) = / (a, db).
0 0
The existence part of the theorem now follows from this identity and Eq. ([7.45)).
The uniqueness assertion follows from the energy identity:

E[D*X]? = E/l B(h)[2ds > CE [(h, )]
0

Indeed if D*X = 0, then h = 0 and hence X = //h = 0. |
The next goal is to find an expression for the vector-field X in the above lemma
in terms of the function F itself. This will be the content of Theorem [7.45] below.

Notation 7.43. Let LZ(pw () : L?*(ds, T,M)) denote the T,M — valued pre-

dictable processes, v, on W (M) such that ]Efo1 |us|” ds < oo. Define the bounded
linear operator B : X, — LZ(puw (ary : L?(ds, T,M)) by

B(X) = B/ X) = L [J/7X,] + 3/ Rie X..

Also let Q: X — X denote the orthogonal projection of X onto X,.



98 BRUCE K. DRIVER

Remark 7.44. Notice that D*X = f;(B(X), db) for all X € X,. We have seen that
B has a bounded inverse, in fact B~!(a) = //B~(a).

Theorem 7.45. As above let D denote the closure of D. Also let T : X — X, be
the bounded linear operator defined by

T(X) = (B*B)"'0X

for all X € X. Then for all F € D(D),
(7.48) F =EF + D*TDF.

It is worth pointing out that B* is not //B* but is instead given by Q//B*.
This is because //B* does not take adapted processes to adapted processes. This
is the reason it is necessary to introduce the orthogonal projection, Q.

Proof. Let Y € X, be given and X € X, be chosen so that F = EF + D*X.
Then

(Y, QDF)x = (Y,DF)x =E[D*Y - F|

=E[D'Y - D*"X] =E[(B(Y), B(X))2(as)]

= (Y, B"B(X))x,
where in going from the first to the second line we have used E [D*Y] = 0. From
the above displayed equation it follows that QDF = B*B(X ) and hence X =
(B*B)~'QDF = T(DF). .
7.6.1. Proof of Theorem[7.41. Let F € D(D). By Theorem

E[F — EF]’ = E [D*TDF|* = E|B(TDF) 224y 7,a1) < C{DF, DF)

where C'is the operator norm of BT. In particular if F' € D(L), then (DF, DF)» =
E[LF - F], and hence

<LF,F>L2( )>C‘1<F—EF,F—EF>L2(

Bw(Mm)) — #W(M>)'

Therefore, if F' € Nul(£), it follows that FF = EF, i.e. F is a constant. Moreover if
F 11 (e. EF = 0) then

(LF, F>L2( ) > O YF, F>L2(

Bw(M)) — MW(M))’

proving Theorem with ¢ = C~1.

7.7. W (M) — Martingale Representation Theorem. In this subsection, ¥ is
a Brownian motion on M starting at o € M, //, is stochastic parallel translation
along ¥ and

b= v, = [ /170,

is the undeveloped T, M — valued Brownian motion associated to ¥ as described
before Theorem (.29

Lemma 7.46. If f € C* (M™') and i < n, then

E[//: erad f (S, 86, Ssni )| Foon]
(7.49) =/ /5 grad,(elnrimem)Ban 2y (5 B R ).
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Proof. Let us begin with the special case where f = g®h for some g € C*° (M™)
and h € C*(M) where g @ h(z1,...,Znt1) =g (x1,...,Zn) h (Tpt1). In this case

[/ erad, f (S, B, Benin) = /)5 eradig (Ss,, .-, Es,) - b (Ssis)

where // 1 grad; g (3,,...,%s,) is Fs, — measurable. Hence by the Markov prop-
erty we have

E[//: erad, f (S, ey Ssnis )| Fon ]

= /[ erad,g (Sey, .. S, ) E[h (Ss,00) | Fe.

= //3 eradyg (S, -, B, ) (eCrr =582 (33, )
= //5 grad(elnr o) Ban 2y (5 B R ).

Alternatively, as we have already seen, M, := (e(*n+1=9)8/2p) (5, is a martingale
for s < s,41, and therefore,

E[h(Se)| Fon] =B [ M, | Fe] = My, = (elsnt1=sm)B/2py (53 .
Since Eq. (7.49) is linear in f, this proves Eq. (7.49) when f is a linear combination
of functions of the form g ® h as above.

Using a partition unity argument along with the standard convolution ap-
proximation methods; to any f € C° (M "+1) there exists a sequence of f; €

Cc™> (M ”+1) with each fi being a linear combination of functions of the form g ® h
such that fi along with all of its derivatives converges uniformly to f. Passing to

the limit in Eq. (7.49) with f being replaced by fx, shows that Eq. (7.49) holds
for all f € C>° (M™*1). n

Recall that @, is the End (T, M) — valued process determined in Eq. (6.1) and

since J J
b H1__ 1| & ~1
dSQS Qs |:dSQS:| s
Q7! solves the equation,
d 1
(7.50) £Q;1 = 5 Ric//, Q7' with Q' =1.

Theorem 7.47 (Representation Formula). Suppose that F is a smooth cylinder
function of the form F (o) = f (0s,,...,0s,), then

1
(7.51) F¥) = EF+/ (as, dbg)

0
where as is a bounded predictable process, as is zero if s > s, and s — ag 1S
continuous off the partition set, {s1,...,sn}. Moreover as may be expressed as

(7.52) a, = Q7 'E lz o<, Qs /)5 erad, f (Seys -, Bs, )|

i=1

Proof. The proof will be by induction on n. For n = 1 suppose F (X) = f (%)
for some t € (0, 1]. Integrating Eq. (5.38]) from [0,¢] with g = f implies

(7.53)  F(Z)=f(S) =e®2f(0) + /0 (/)7  grad =872 (5,), dby).

Since e'®/2f (0) = EF, Eq. (7.53) shows Eq. (7.51)) holds with
as = loss<t//s  grad el =IB2f (5,).
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By Lemma Q.//7 grad et=9A/2F (%) is a martingale, and hence
Qs//5 " grad eI F(S,) = E[Qi//; grad [ (S0)] F]

from which it follows that
as = locse//3 grad eT982f (5,) = 192, Q7 'E [Q/ /1 P erad £ (S0)| ]

This shows that Eq. (7.52) is valid for n = 1.
To carry out the inductive step, suppose the result holds for level n and now
suppose that

with 0 < 81 < s2--- < sp41 < 1. Let
(Antrf)(@1, 22, o, Tnt1) = (Ag)(Tnt1)
where g(z) := f(x1,2,..., %y, x). Similarly, let grad,,, ; denote the gradient acting
on the (n+ 1)"™ — variable of a function f € C°°(M™*+1). Set
H(s,%) 1= (elont1 =1 /2f)(0, 5, %)

for s, <s < s,41. By Ito’s Lemma, (see Corollary and also Eq. (5.38)),

d [H(s, ZS)] = <gradn+le(sn+l_S)Anﬂ/zf)(zﬁ7 ey By Mgy //sdb5>
for s, < s < sp41. Integrating this last expression from s,, to s,41 yields:

F(Z) = (ertimsm)Bnn/2py (w9, %, )

Sn+1 _
(7.54) + / (/] grad,, eCnii 812 ) (8,8, 8)  dby)

n

_ Sn+1
(755) — (6(3n+1_5n)An+1/2f)(2517 e an’ Esn) + / <a57 db5>7

n

where o, = //;'(grad,, 4 eGnir=)Bni/2f) (53 % %), By the induction
hypothesis, the smooth cylinder function,

(elonrmom /2 ) (8, 8y, B,
may be written as a constant plus fol (as,dbs), where @, is bounded and piecewise

continuous and a, = 0 if s > s,. Thus if we let a, := a5 + 1,5, <s<s,,., s, We have
shown

Sn+41
F(%) :C+/O (s, dbs)

for some constant C. Taking expectations of both sides of this equation then shows
C =E[F(X)] and the proof of Eq. is complete. So to finish the proof it only
remains to verify Eq. ([7.52]).

Again by Lemma[6.1]

s — M, = Q,//; (grad, , , eCrii=28nn1/2py (x5 v %))
is a martingale for s € [s,, sp,+1] and therefore,
M, = Qu/ /7 (grad, yy elonri=IBmn 2 f) (8 L8 8
(7.56)
—E[ Mo | F) =E Qo //2], (radua ) (Bers s Ty D)

7,
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i.e.
/)5 (grad,, q eGnrimD A2 py S R
(757) = QB[ Qe ik (@1 f) (Sers s T D)

Using this identity, Eq. (7.54) may be written as
F(X) =92, -, 25s,)

7.

(7.58)
AR 1
+ / <Qs ]E |:an+1 //Sn,+1 (gradn+1f) (281’ et Esn,’ Esn+1) ‘7:S:| vdb8> .
where
g(x1,...,x,) = (e(S”“_s”)A"*l/Qf) (T1y. ey Ty X)) -
By the induction hypothesis,
985,y s,)
1 n
(7.59) =C+ / <Q;1E [Z Li<s,Qs,/ /5 grad,g (Ss,, ..., 5s,) ]—'S] ,db5>
0 i=1

where C' = E [F(X)] as we have already seen or alternatively, by the Markov prop-
erty,

C = E(eCrrimsn)Bnn/2py(5 %
(7.60) SEOTTO NS SRS »

Sn Esn)
=E[F(2)].

o)
By Lemma [7.46] for s < s, and i <n
E[Qs//5 eradig (Ss,, -, s, )| Fi]
—E[QuE |/ grad (el T A ) (5,8 X))
(7.61) =E[Qs//3 grad,f (Say,--. . Be,. D)) Fa -

While for s < s,, and i = n, we have:

grad, g (Ss,,..., 5, ) = grad, (eSnt1—sn)8nt1/2 ) (m B S )

)y HSn

+ grad,, . (e T A2 ) (88 8

E[Qu,//5 grad, (el 8 20) (5, L%, L8|
= E[QuE[//7 erad, (e b2y (5,8, 8| £ || £
=E[Qu. /) eradnf (Borse s Do Bo) | 7]
by Lemma [7.46] and
E [ Qs /5 grad, (G2 ) (5, 5, %) o || 5

_E [QSW /158 (rad, ey f) (Sarse s Sans Do)

7|
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from Eq. (7.57) with s = s,,. Combining the previous three displayed equations
shows,
E [an//s_"lgradng (Bsys--- ,Esn)’ .7:8]
=E[Qs,.//: erad, f (Ssys-- 0 Bes Eenir )| Fo

(7.62) FE Qi //o ks (€12, 41F) (B, T )| 7]
Assembling Eqgs. (7.59)), (7.60), (7.61) and (7.62) implies
9By 3 8s,)

1 n
=R [F(2)] +/0 Z (Q7'E [1y<s,Qs,/ /5 grad, f (Se,s -, B Bspyy )| Fs] 5 dbs)
=1

1
+ / <Q;1E |:]‘S§3ann+1//;n1+1 (gradn—i-lf) (2813 ctty Esn7zsn+1) fs} 7db$>
0

which combined with Eq. (7.58]) shows

F(X) =E[F(X)]

1
-1
+/O <Qs E fs] ,dbs>.

This completes the induction argument and hence the proof. [

]-"s] ,dbs> .

n+1
Z 1SSSiQSi//;lgradif (2817 sy Esnv Esn+1)
=1

Proposition 7.48. Fquation may also be written as

(7.63) F(X)=E[F (X)) +/01 <]E [58 - ;/:Qler Ric,,, &dr

where
d
s:=//7'—(DF)..
&= //;' 2 (DF),
Proof. Let v; := //; grad; f (2s,,...,%s,), so that
d n
& = //;1% (DF)S = ; ls<sﬂ]i7
and let
Oés = Z IGS%Q;lQS;//Z,lgradzf (Esl )t ESW) = Z 1S§S,,Q;1QS¢IUZ"
i=1 i=1

Then the Lebesgue-Stieljtes measure associate to & is

dée ==Y 6, (ds)v;

i=1

and therefore

%Z—%f[QM&=i[Q?®%W
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So by integration by parts we have, for s ¢ {0,s1,...,8,,1},
1 1 g
- / Q7'Qrdér = — [Q71Q:E ] 12, / Q! [err} &

I ,
—6 -5 [ QR 6
where we have used & = 0. This completes the proof since from Eqs. (7.51) and
(7.52),
1
FE)=E[F(X)]+ / (E[as| Fs), dbs) .
0
|

Corollary 7.49. Let F be a smooth cylinder function, then there is a predictable,
piecewise continuously differentiable Cameron-Martin vector field X such that F =
E[F]+ D*X.

Proof. Just follow the proof of Lemma [7.42] using Theorem [7.47] in place of
Corollary [

7.7.1. The equivalence of integration by parts and the representation formula.

Corollary 7.50. The representation formula in Theorem[7.47 may be used to prove
the integration by parts Theorem[7.39 in the case F is a cylinder function.

Proof. Let F be a cylinder function, as be as in Eq. (7.52), h be an adapted
Cameron-Martin process and kg := (Qgr)_1 hs. Then, by the product rule and Eq.

a
Rl + 1Ric// hs = <d + 1Ric// ) Q%ks = QUK.
S 2 s S ds 2 s S s S S

Hence,

! 1
E |:F/O <h; + iRiC//s hs,dbs>]

—E _(]EFJF /01 (as,dbs>> /01<Q';rk;,dbs>]

1
=FE /(Qgrk;,as)ds]

=E / QUK. le<q Q.'Qs,/ /5 grad, f (S sl,...,E,;ﬂ))ds]
=E /(k:;z1S<SiQSi//;1gradif(Zsl,...,Zs”)>ds]
/0 i=1

=E ZUCSI,QS //s grad; f( S19 0 Esn»
=1

=E Z<//Sih’smgradif (Zsla e Esn»

i=1
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Conversely we may give a proof of Theorem[7.47|which is based on the integration
by parts Theorem [7.32

Theorem 7.51 (Representation Formula) Suppose I is a cylinder function on

W (M) as in Eq. (./(mclfs.://S 4 (DF),, then
1
(7.64) F= IEF+/O <IE {gs - 5/ Q. 'Q, Ric,/, &dr ]-'s] ,dbs>.
Proof. Let h € X, be a predictable adapted Cameron-Martin valued process

where Qs is the solution to Eq. .
such that E fol |h, \2 ds < oco. By the martingale representation property in Corollary

(7.65) F=EF + / 1<a, db)
0

for some predictable process a such that E fol |as|2 ds < oo. Then from Corollary
and the It6 isometry property,

E [XQ"hF} —E [F (XQ“h)* 1] —E [F : /%Q“h’,db)}
0

(7.66) =E Uol@;fh;, as>ds] =E [/01<h;, Qsas>ds} .

On the other hand we may compute E [X Q"hF} as:
B [x9r] = [(DF, /@ nu] =E [ (6 & (@) s

1
(7.67) ~E /O <gs, QUh, — 3 L Rie n Qgrhs> ds

where we have used Eq. (7.39) in the last equality. We will now rewrite the right
side of Eq. (7.67) so that it has the same form as Eq. (7.66) To do this let
ps := 3 Ric,,, and notice that

/ {60 Qs — / 1 (@t ([ mar) ) as
/dT‘d810<r<s<1<QsPS§S7 —/ </ Qrpr&dr, I >

wherein the last equality we have interchanged the role of r and s. Using this result
back in Eq. (7.67) implies

(7.68) E[X?"F] = / <Q & - / Qrpradrh>

and comparing this with Eq. shows

(7.69) / <Qsa5—c2§s / Qupiedr, h’> s=0

for all h € X,.
Up to now we have only used F' € D (D) and not the fact that F is a cylinder
function. We will use this hypothesis now. From the easy part of Theorem [7.47]
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we know that as satisfies the additional properties of being 1) bounded, 2) zero
if s > s, and most importantly 3) s — as is continuous off the partition set,

{81,---,8n}
Fix 7€ (0,1)\ {s1,...,8n}, v € T,M and let G be a bounded F, — measurable
function. For n € N let

ln(s) := /0 nlicpcrqrdr

Replacing h in Eq. (7.69) by h,, (s) := G - [,, (s) v and then passing to the limit as
n — oo, implies

1 1
0= lim ]E/(; <Qsas - ngs + / Q'fp:f?”drv hfn (S)> ds

n—oo

1
=E |:G <QTa’T - Qr& + / Q,,,p:.g',-d’l”, U>:|

and since G and v were arbitrary we conclude from this equation that

1
E |:QT€T _/ Qrprgrdr

Thus for all but finitely many s € [0, 1],

-7:7':| = Q'rar'

1
as = Qs_lE |:Qs£s _/ Qrprfrd'r

)

1
) {gs - %/ Q. 'Q, Ric,/, &dr ]—‘S} )

Combining this with Eq. (7.65)) proves Eq. (7.64]). ]

7.8. Logarithmic-Sobolev Inequality for W (M). The next theorem is the
“curved” generalization of Theorem

Theorem 7.52 (Hsu’s Logarithmic Sobolev Inequality). Let M be a compact Rie-
mannian manifold, then for all F € D (D)

E [F?log F?] <EF? - log EF?

! , 1 L
(7.70) +2IE/O /)3t (DF)S—i/ Q.'Q, Ricy), /[ (DF), dr| ds,

where (DF)’, := % (DF), . Moreover, there is a constant C = C (Ric) such that
(7.71) E [F?log F?] < CE [(DF, DF)y(z,um)| + EF? - logEF?.

Proof. The proof we give here follows the paper of Capitaine, Hsu and
Ledoux [29]. We begin in the same way as the proof of Theorem Let
FeFC'(W(M)),e>0,H.:=F?+¢ceD(D) and

1t
as = E {58 — 5/ Qs_lQT Ric,,, &-dr

7]

where p p
— _17 — . _17
55_//5 dS(DHE)s_QF //s d (DF)S

s
Then by Theorem [7.47]
1
H. — EH. +/ (a, db).
0
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The same proof used to derive Eq. (7.23)) shows, with ¢ (z) = xInz,

Bl ()] = Efo (1) = 0 (€3) + 55 | [ - lo.as]

_ 1 ! 1 9
=¢(EH,) + §IE [/0 AT 7] las] ds] .

By the Cauchy-Schwarz inequality and the contractive properties of conditional
expectations,

2

o = [e[or {1 0y - [ @ aemicy, /17 oFy )| 2]

2

1
<4E [F?|F,]-E ’//S1 (DF), — %/ Q.'Q,Ric,,, [/ (DF), dr

|

Combining the last two equations along with Eq. (7.24)) implies
E¢ (H:) <¢ (EH.)

1

ok | E
+28
:¢(EHE)
! , 1t . _ ,
+2E/0 //;1(DF)575/S Q. 'Q-Ricy,, //;1 (DF). dr

We may now let € | 0 in this inequality to learn Eq. (7.70) holds for all F' €
FC (W) . By compactness of M, Ric,, is bounded on M and so by simple Gronwall
type estimates on @ and Q !, there is a non-random constant K < oo such that

Q71 Q Ricy,,

2

1
/171 FY, - 5 [ @i QeRicy, 1/ (DR,

.7:5] ds

2
ds.

» < K for all r;s.

,

Therefore,
e ?
I3 Y~ 5 [ Qs Ry, /7 DY,
51 ) )
< D(DF);| +§K/ |(DF);|ds}
0
112 1 2 ! / ?
<2|(DF),|"+ 3K |(DF)| ds
0
712 1 2 1 712
<2|(DF)["+ 5K [ [(DF)["ds
0
and hence

2

1 1
(DF);—i/ Q. ' Q. Ric),, (DF), dr| ds

1
2 [
0

< (4+K?) /01 |(DF),

}st.
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Combining this estimate with Eq. implies Eq. holds with C' =
(4+K2). Again, since FC! (W) is a core for D, standard limiting arguments
show that E and Eq. are valid for all F' € D (D) . [

Theorem was first proved by Hsu [98] with an independent proof given
shortly thereafter by Aida and Elworthy [4]. Hsu’s original proof relied on a Markov
dependence version of a standard additivity property for logarithmic Sobolev in-
equalities and makes key use of Corollary [7.37] On the other hand Aida and Elwor-
thy show, using the projection construction of Brownian motion, the logarithmic
Sobolev inequality on W (M) is a consequence of Gross’ [92] original logarithmic
Sobolev inequality on the classical Wiener space W(RY), see Theorem In
Aida’s and Elworthy’s proof, Theorem plays an important role.

7.9. More References. Many people have now proved some version of integration
by parts for path and loop spaces in one context or another, see for example [2T], 28],
32} 126], 28] 127, [47, 48|, [49, (76, [75], (78, I85], 122 [128) (146}, (161}, (159, 160} 163, 102]. We
have followed Bismut in these notes who proved integration by parts formulas for
cylinder functions depending on one time. However, as is pointed out by Leandre
and Malliavin and Fang, Bismut’s technique works with out any essential change
for arbitrary cylinder functions. In [47, [48], the flow associated to a general class of
vector fields on paths and loop spaces of a manifold were constructed. The reader

is also referred to the texts [71l 100, I71] and the related articles [RTL 80 [35] [77]
82, 183 184, 1341 137, [33, 138, (36, 39, [125].

Many of the results in this section extend to pinned Wiener measure on loop
spaces, see [48] for example. Loop spaces are more interesting than path spaces
since they have nontrivial topology, The issue of the spectral gap and logarithmic
Sobolev inequalities for general loop spaces is still an open problem. In [93], Gross
has prove a logarithmic Sobolev inequality on Loop groups with an added “potential
term” for a special geometry on loop groups. Here Gross uses pinned Wiener
measure as the reference measure. In Driver and Lohrenz [54], it is shown that a
logarithmic Sobolev inequality without a potential term does hold on the Loop
group provided one replace pinned Wiener measure by a “heat kernel” measure.
The quasi-invarariance properties of the heat kernel measure on loop groups was
first established in [50, [5I]. For more results on heat kernel measures on the loop
groups see for example, [57, [3, 30, 311, 82, [83] 106].

The question as to when or if the potential is needed in Gross’s setting for
logarithmic Sobolev inequalities is still an open question, but see Gong, Rdckner
and Wu [89] for a positive result in this direction. Eberle [59), 60, [61, [62] has
provided examples of Riemannian manifolds where the spectral gap inequality fails
in the loop space setting. The reader is referred to [52 B3] and the references
therein for some more perspective on the stochastic analysis on loop spaces.
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8. MALLIAVIN’S METHODS FOR HYPOELLIPTIC OPERATORS

In this section we will be concerned with determining smoothness properties
of the Law (X;) where ¥; denotes the solution to Eq. with ¥y = o and
B8 = B being an R"™ — valued Brownian motion. Unlike the previous sections
in these notes, the map X (m) : R® — T,,M is not assumed to be surjective.
Equivalently put, the diffusion generator L := 1 3" | X2+ X is no longer assumed
to be elliptic. However we will always be assuming that the vector fields {Xi},?zo
satisfy Hormander’s restricted bracket condition at o € M as in Definition Let
K1 :={Xi1,...,Xn} and K; be defined inductively by

Kiy1={[X;,K]: K e K} UK.
For example
Ko ={X1,.... X} U{[X;, X;]:4,5=1,...,n} and
Ks={X1,.... Xn}U{[X;, X;]:4,j=1,...,n}
U{[ Xk, [X;, Xi]] 4,5,k =1,...,n} etc.
Definition 8.1. The collection of vector fields, {X;}" , C TI'(TM), satisfies
Hormander’s restricted bracket condition at m € M if there exist [ € N

such that
span({K(m) : K € K;}) =T, M.

Under this condition it follows from a classical theorem of Hormander that so-
lutions to the heat equation d;u = Lu are necessarily smooth. Since the funda-
mental solution to this equation at o € M is the law of the process ¥;, it fol-
lows that the Law (X;) is absolutely continuous relative to the volume measure
A on M and its Radon-Nikodym derivative is a smooth function on M. Malli-
avin, in his 1976 pioneering paper [I30], gave a probabilistic proof of this fact.
Malliavin’s original paper was followed by an avalanche of papers carrying out
and extending Malliavin’s program including the fundamental works of Stroock
[169] 170, 168], Kusuoka and Stroock [121], 119 [120], and Bismut [2I]. See also
[13, M2, 23| b5, 104, 132), 152, 136l 147, 148, 157, 158, 179 (and the references
therein) along with Bell’s article in this volume. The purpose of this section is to
briefly explain (omitting some details) Malliavin methods.

8.1. Malliavin’s Ideas in Finite Dimensions. To understand Malliavin’s meth-
ods it is best to begin with a finite dimensional analogue.

Theorem 8.2 (Malliavin’s Ideas in Finite Dimensions). Let W=R" u be the
Gaussian measure on W defined by

dp (z) == (2m) " M2 e 212 g ().
Further suppose F : W — R? (think F = %) is a function satisfying:
(1) F is smooth and all of its partial derivatives are in
L=7 (p) := Mi<pcoc LP (W, ).
(2) F is a submersion or equivalently assume the “Malliavin” matrix
C(w) == DF(w)DF(w)*

is invertible for all w € W.
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(3) Let
A(w) :=det C(w) = det(DF(w)DF(w)*¥)
and assume A™! € L™~ (p).

Then the law (urp = Fopu = po F~1) of F is absolutely continuous relative to
Lebesgue measure, A, on R? and the Radon-Nikodym derivative, p := dur/d\, is
smooth.

Proof. For each vector field Y € T' (T]Rd) , define

(8.1) Y(w) = DF(w)*C(w)"'Y (F (w))

— a smooth vector field on W such that DF(w)Y(w) = Y (F (w)) or in more
geometric notation,

(8.2) F.Y(w) =Y (F(w)).

For the purposes of this proof, it is sufficient to restrict our attention to the case
where Y is a constant vector field.

Explicit computations using the chain rule and Cramer’s rule for computing
C(w)~! shows that DFY may be expressed as a polynomial in A~! and D*F for
¢ =0,1,2...,k. In particular D*Y is in L>~ (). Suppose f,g : W — R are C*
functions such that f, g, and their first order derivatives are in L~ (u) . Then by
a standard truncation argument and integration by parts, one shows that

/ (Yf)gdp =/ f(Y*g)dp,
w w
where
Y* =-Y+46(Y) and §(Y)(w) := —div(Y)(w) + Y(w) - w.
Suppose that ¢ € C*(R?) and ¥; € R ¢ T (Rd), then from Eq. and
induction,
(Y1Ys -+ Yig)(F(w)) = (Y12 Yi(¢o F))(w)
and therefore,

/(YlYQ---Yk.qu)duFZ/ MYs - Vi) (F(w)) du(w)
Rd

w
— [ ¥ Voo P dulo)
w
(5.3) = [ 6P (i Vi) duo).

By the remarks in the previous paragraph, (Y;Y; ,---Yjl) € L~ (u) which
along with Eq. (8.3)) shows

/ (WYa- - Yid)dur
Rd

< 116l e oy

where C = HYZYZ_I . ~Y{1HL1(M) < o0. It now follows from Sobolev imbedding
theorems or simple Fourier analysis that up < A and that p := dug/dX is a smooth
function. [ ]

The remainder of Section [§] will be devoted to an infinite dimensional analogue
of Theorem (see Theorem [8.9) where R is replaced by a manifold M9,

W :={we C([0,00),R") : w(0) =0},
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i is taken to be Wiener measure on W, B, : W — R”™ be defined by B; (w) = wy
and F :=%; : W (R") — M is a solution to Eq. with ¥p =0€ M and § = B.
Recall that y is the unique measure on F := o (B; : t € [0,00)) such that {B},-,
is a Brownian motion. I am now using t as the dominant parameter rather than s
to be in better agreement with the literature on this subject.

8.2. Smoothness of Densities for Hérmander Type Diffusions . For sim-
plicity of the exposition, it will be assumed that M? is a compact Riemannian
manifold of dimension d. However this can and should be relaxed. For example
most everything we are going to say would work if M is an imbedded submanifold
in RY and the vector fields {X;}!", are the restrictions of smooth vector fields on
RY whose partial derivatives to any order greater than 0 are all bounded.

Remark 8.3. The choice of Riemannian metric here is somewhat arbitrary and is
an artifact of the method to be described below. It is the author’s belief that this
issue has still not been adequately addressed in the literature.

To abbreviate the notation, let
SSI 2
H= {h eW: (h,h)g ::/ ’h(t)) dt < oo}
0

and DY : H — Ts, M be defined by (DY) h := 0, TP (0) as defined Theorem
Recall from Theorem [7.26] that

(8.4) (D) h = Zt/o Z;1X(27)h7d7://tzt/0 27V ) 7IX(2,) hedr,

where h, = d%hﬂ Zy = (TtB)*o :ToM — Ts, M, //: is stochastic parallel transla-
tion along ¥ and z; := //;th. In the sequel, adjoints will be denote by either « *

” w tr »

or with the former being used if an infinite dimensional space is involved
and the latter if all spaces involved are finite dimensional.

Definition 8.4 (Reduced Malliavin Covariance). The End (T, M) — valued random
variable,

T

(8.5) Cy = /Ot ZX (2 X (2" (27 dr

t

(86) = [ R EIX ) ()
0

will be called the reduced Malliavin covariance matrix.

Theorem 8.5. The adjoint, (DX;)" : Ts,, M — H, of the map DY is determined
by

(87) DR ], = LexX (2" /- (227"

for all v € T,M. The Malliavin covariance matriz Cy := DYy (D))" : T, M —
Ts, M is given by Cy = Z,Cy Z* or equivalently

(8.8) Cy = D%y (D) = //12:Coz" ] 7
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Proof. Using Eq. (8.4)),

(DSeh, /[10) 1y, 0 = <Zt /Ot Z71X (%) ileT,//tU>

Te, M

- <//tzt /Ot 2V TIX(,) ileT,//tU>

Te, M

:/O <ztz;1//;1X (=) hT,v> dr

T, M

(8.9) = /Ot <hT,X (ET)“ //+ (ztz;l)tr 'U> dr

R'VL
which implies Eq. . Combining Egs. (8.4) and (88.7), using
2 = (/o) = 2 =
shows

DY, (D) /v = Zt/o ZX(Z) X (5" //r (227 h) " vdr

T

t
=Zt/ Z7X(2) X (2" (220 28 [ wdsr.
0

Therefore,
Ct = ZtétZ;r = //tztétzgr//;l
from which Eq. follows. [
The next crucial theorem is at the heart of Malliavin’s method and constitutes
the deepest part of the theory. The proof of this theorem will be postponed until
Section [B.4] below.

Theorem 8.6 (Non-degeneracy of Cy). Let A; := det (C’t) . If Hormander’s re-
stricted bracket condition at o € M holds then Ay > 0 a.e. (i.e. C, is invertible
a.e.) and moreover A7t € L®™ (u).

Following the general strategy outlined in Theorem [8.2] given a vector field
Y € I'(TM) we wish to lift it via the map ¥; : W — M to a vector field Y* on
W := W (R"). According to the prescription used in Eq. (8.1]) in Theorem
(8.10) Y! = (D) (DL, (D)) 7' Y (%) = (DX,)" C7'Y (%) € H.

From Eq. (8.8)
_ =l A1 1, -
Gy ! =//¢ (Zz ) ¢ lzt 1//15 !
and combining this with Eq. (8.10), using Eq. (8.7)), implies
d d =141 —1,,—
YL = Lo (D) /e (37 O 7Y (2]
r — r n—1 -1 — _
= Lo X (Z0)" /5 (22 )" ()7 Gt Y (B
= L X (S)" /7 (571" G 2y (B)
= Lo X ()" (27167 27 Y ().
Hence, the formula for Y! in Eq. (8.10) may be explicitly written as

(8.11) Y = UOSM (Z7'X(2,)) " dr| G127 Y (%)
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The reader should observe that the process s — Y% is non-adapted since C; * Z; 'Y (Z)
depends on the entire path of ¥ up to time t.

Theorem 8.7. Let Y € T (T'M) and Y be the non-adpated Cameron-Martin pro-
cess defined in Eq. (8.11]). Then Y' is “Malliavin smooth,” i.e. Y' is H — differ-
entiable (in the sense of Theorem to all orders with all differentials being in
L~ (n), see Nualart [148] for more precise definitions. Moreover if f € C* (M),
then f (%) is Malliavin smooth and

(8.12) (DIf(Z)], Y ) m =Y f ()
where D is the closure of the gradient operator defined in Corollary .

Proof. We only sketch the proof here and refer the reader to [147, (12, 148] with

regard to some of the technical details which are omitted below. Let {61'}?:1 be an
orthonormal basis for T, M, then

d

s d
(8.13) Yi=> (e, Ci'Z Y (zt)>/ (271X (%) esdr = ahd
0 i=1

i=1

where
B ) sAL &
a; = <ei,C’t_1Zt_1Y (Zt)> and h}, ::/ (Z:lx (ZT)) " e,dr.
0

It is well known that solutions to stochastic differential equations with smooth
coefficients are Malliavin smooth from which it follows that h?, Z; 'Y (%;), and C,
are Malliavin smooth. It also follows from the general theory, under the conclusion
of Theorem that C; ' is Malliavin smooth and hence so are each the functions

a; for i = 1,...d. Therefore, Y* = Zle a;h? is Malliavin smooth as well and in
particular Y € D (D*). It now only remains to verify Eq. (8.12).

Let h be a non-random element of H. Then from Theorems [7.14] and
the chain rule for Wiener calculus,

E[f(3:) - D*h] = E[0n [f (X0)]] = E[df (DX:h)]

=E :df (Zt /Ot Z_,__1X(Z.r)il7—d7')]

) <§f(2t),Zt/OtZTIX(ZT)thT> ]
Ts, M

=E /O t <X ()" (271" ZEVF (S) V(5 hr>w dﬂ

from which we conclude that f (3;) € D (D**) =D (D) and

(D [f (Et)])s = /Os X (27_)tr (ZT—l)tr Zttrﬁf (Et) dr.
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From this formula and the definition of Y? it follows that
(DIf (=), Y

- /Ot <X ()" (2 28V (2, X (2" (271 ¢tz Y (zt)> dr
= <§f (e), Ze (/t 271X (3 (271X (2))" dT) C*tlz;1Y(zt)>
0

(V520,207 27'Y (B) = (V (20),Y (30))
= (V) (Z).

Notation 8.8. Let Y? act on Malliavin smooth functions by the formula, Y*F :=
(DF,Y"),, and let (Y')" denote the L* (1) — adjoint of Y".

With this notation, Theorem [B.7] asserts that
(8.14) Y [f (B0)] = (Y F) (Z) -

Now suppose F,G : W — R are Malliavin smooth functions, then
E [YtF -G+ F- YtG] =E [Yt [FG]] =E [<D [FG] ,Yt>H]

=E[F-GD*Y']
from which it follows that G € D ((Y*)") and
(8.15) (YY) G = -Y'G+GD*Y".

From the general theory (see [I48] for example), D*U is Malliavin smooth if U
is Malliavin smooth. In particular (Y*)* G is Malliavin smooth if G is Malliavin
smooth.

Theorem 8.9 (Smoothness of Densities). Assume the restricted Hormander con-
dition holds at o € M (see Definition and suppose [ € C*° (M) and

(Y}, cT(TM). Then
E[(Y1...Yif) (Z)] = E [YL... Y} [f (Z0)]]
(8.16) —E [[f (2] (Y4)" ... (Y 1} .
Moreover, the law of ¥t is smooth.
Proof. By an induction argument using Eq. ,

Y? ~~Y§c [f ()] =(Y1...Yif) (Z)

from which Eq. (8.16]) is a simple consequence. As has already been observed,
(Y4)"... (YY) 1 is Malliavin smooth and in particular (Y)"...(Y4)"1 € L' (u).
Therefore it follows from Eq. (8.16]) that

(8.17) BV Vi) (Sl < || (¥8)" (v8) 1

o e

Since the argument used in the proof of Theorem after Eq. (8.16) is local in
nature, it follows from Eq. (8.17) that the Law(X;) has a smooth density relative
to any smooth measure on M and in particular the Riemannian volume measure.
]
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8.3. The Invertibility of C, in the Elliptic Case. As a warm-up to the proof
of the full version of Theorem let us first consider the special case where X (m) :
R™ — T,, M is surjective for all m € M. Since M is compact this will imply there
exists and € > 0 such that

X (m)X™(m) > elr,,as for all m € M.
Notation 8.10. We will write f (¢) = O (¢*°7) if, for all p < oo,
£ ()l

lim ——~ = 0.
el0 ¢gP

Proposition 8.11 (Elliptic Case). Suppose there is an € > 0 such that
X(m)X™(m) > elr, ar
Jor all m € M, then [det (Cy)] e ().
Proof. Let 6 € (0,1) and
(8.18) Ts :=1inf {t > 0: |z — I, pm| > 6}

where, as usual,

wi= /2= 1/ (TP),,
Since for all a € T, M,

1

(Z71X(8,)X"(S,) (22) " a,a)

we have
Z7IX(5,)XY(S,) (27

> e (20) " = et 0 (/)T ) T = e ()
Hence

t
Cy:/ Z7X(2) X (S,) (25) dr
0

t . tATs .
>e / 71 (2%) Vdr > e / () ar
0 0

and therefore,

_ B tATs 1

As = det (Gy) > e det / 2 () ar ).

0

By choosing § > 0 sufficiently small we may arrange that

T

A ()T -1 <172
for all 7 <t ATy in which case

tATs 1 1
/ 2 (X)) dr > it NTs - 1d
0
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and hence A; = det (C‘t) > ed (%t A Tg)d. From this it follows, with ¢ = p - d, that

_ 1 4
TPl <« 9474
]E[At ]_25 ]E<(t/\T5> )
Now,

1 q e} d 0
E =E(- —77%r | =E 1 B !
(@) ) =2 (L ar) == (o) mer )

o0
= q/ Ty (EATs < 1) dT
0

which will be finite for all ¢ > 1iff u (¢t ATs < 7) = p(Ts < 7) = O(7%) as 7 | 0 for
all k£ > 0.
By Chebyschev’s inequalities and Eq. (9.10) of Proposition below,

(819) u(Ts<1)=wup (sup |zs — I| > (5> <6 E [sup |zs — I|q] = 0(r9/?).
s<T s<T

Since ¢ > 2 was arbitrary it follows that u(Ts < 7) = O (7°°7) which completes
the proof. [

8.4. Proof of Theorem [8.6l
Notation 8.12. Let S := {v € T,M : (v,v) = 1}, i.e. S is the unit sphere in T, M.
Proof. (Proof of Theorem ) To show C; ' € L~ (u) it suffices to shows
/J(iIelg<C't’U,’U> <e)=0(>").
To verify this claim, notice that \g := inf,c5(C;v, v) is the smallest eigenvalue of C,.

Since det Cy is the product of the eigenvalues of C; it follows that A, := det Cy > A§
and so {det C; < e?} C {\o < &} and hence

p(det Cp < e?) < p(Xg <€) = 0(e>7).

By replacing € by £'/¢ above this implies j (At < E) = O(e®7). From this estimate
it then follows that

oo

oo
E [A77)] :IE/A qr 4 ldr = qE/O 1a,<, 7% Ndr

= q/ WA < 7) 77 dr = q/ O(rP) 7= tdr
0 0

which is seen to be finite by taking p > ¢+ 1. - -
More generally if T' is any stopping time with 7' < ¢, since (Crv,v) < (Cyv,v)
for all v € S it suffices to prove

(8.20) i (ig%(C’Tv,v) < s> = 0(e™7).
According to Lemma and Proposition below, Eq. (8.20) holds with
(8.21) T =Ts:=inf {t > 0: max {|z — I, p]|,dist(Z¢, Xo)} > 5}

provided § > 0 is chosen sufficiently small. [
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The rest of this section is now devoted to the proof of Lemma [8:13] and Propo-
sition below. In what follows we will make repeated use of the identity,

(8.22) (Cro,v) :Z;/O (Z71Xi(2,),0)" dr.

To prove this, let {e;};_, be the standard basis for R". Then

Z7X(S)X(,) (280) o =D Z7K(B e (e, XU (S,) (2) 7 v)

I

&
Il
-

(Z71X(8,),v) Z71 X(5,)

T

&
Il
_

Il

so that
<ZT_1X(ZT)X”(ZT) (zir)~ v,v> =3 (Z7'Xi(5),0)°

i=1

which upon integrating on 7 gives Eq. (8.22]).
In the proofs below, there will always be an implied sum on repeated indices.

Lemma 8.13 (Compactness Argument). Let T5 be as in Eq. and suppose
for all v € S there exists i € {1,...,n} and an open neighborhood N C, S of v
such that

Ts )
(8.23) sup f </0 (Z7'X;(3;),u)" dr < 5) =0 (™),

uEN
then Eq. holds provided § > 0 is sufficiently small.
Proof. By compactness of S, it follows from Eq. (8.23)) that

uesS

Ts
(8.24) sup 4 (/ <Z;1Xi(ET),u>2 dr < 5) =0 (e*7).
0

For w € T,M, let 0,, denote the directional derivative acting on functions f (v) with
v € T, M. Because for all v,w € R with |v| <1 and |w| <1 (using Eq. (8.22)),

n_ LT
‘&U <C_’T6v,v>’ §2Z/ ' ‘<ZT—1Xi(ET),v> <Z;1Xi(27),w>|d7
i=1"0
n Ts . )
322/0 |z Xi(ET)|Hom(]R",ToM) dr
i=1

n Ts
=2> /O |27/ 17 X480 o v O
i=1

by choosing § > 0 in Eq. (8.21]) sufficiently small we may assume there is a non-
random constant 6 < oo such that

sup |8w <C’T5v,v>| <6 < oo.
[v],|w[<1

With this choice of ¢, if v,w € S satisfy |[v — w| < §/e then
(8.25) |<C’T5v,v> — <C'T5w,w>‘ <e.
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There exists D < oo satisfying: for any € > 0, there is an open cover of S with at
most D - (6/¢)" balls of the form B(vj,e/0). From Eq. (8.25), for any v € S there
exists j such that v € B(vj,¢/0) NS and

|<CT6U,U> — <CT5Uj,Uj>’ < E.

So if inf,cg <C_’T6v, v> < ¢ then min; <C_‘Tévj,vj> < 2g, i.e.
{52@ (Cryv,v) < 5} C {mjin (Cryvj,v5) < 25} C U {{Cryvj,v;) < 2e}.
J
Therefore,

" (322<C’T50,v> < g> <3k (Crivgvg) < 22)
J

<D-(9/e)" -supp ((Cr,v,v) < 2€)
vES

<D-(0/e)"O(>")=0(>).

]

The following important proposition is the Stochastic version of Theorem [4.9

It gives the first hint that Hormander’s condition in Definition [8.1] is relevant to
showing A; ! € L~ (u) or equivalently that C;! € L% (u).

Proposition 8.14 (The appearance of commutators). Let W € I' (T M), then
n

(8.26) §[Z7TW ()] = 257 [Xo, WI(Se)ds + 251> [Xi, W](5)0BL.
i=1

This may also be written in Ité form as

d[Z7'W(S,)] = 271X, W](S,)dBL.
~1 Q™ o1 2
(8.27) + {ZS [Xo, W|(Zs) + 3 Z Z;H (L, W) (ZS)} ds,

i=1
where LxW := [X,W] as in Theorem[{.9

Proof. Write W (X,) = Z,ws, ie. let wy := Z;'W(Z;). By Proposition [5.36]
and Theorem [5.41

Vs, W =6 [W(Z,)] = 8Y [Zyws] = (6 Zs) ws + Zsow,
= (V2.0.X) 6B + (Vz.0.X0) ds + Z 0ws.
Therefore, using the fact that V has zero torsion (see Proposition ,
Sws = Z; Vg W — (V2.00.X) 0By + (V 2.0, Xo) ds]
=77 [Vxss.4X0s0asW — (Vs X) 0B + (Vivs.) Xo) ds]
=7 [(VxueoW = Vire) Xi) 0B + (V20 W = Viw(z.,)Xo) ds]
=zt ([Xi, W1 (2,) 6B + [Xo, W](Zs)ds)

which proves Eq. (8.26)).
Applying Eq. (8.26) with W replaced by [X;, W] implies

d[ZTMX, WI(Bs)] = Z7MXG, [Xa, WIN(E6)dBI + d[BV],
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where BV denotes process of bounded variation. Hence
. 1 .
2 X0 WI(S0)0B, = 21 [Xi, WI(Be)dB; + 5d {2, [Xi, W(Ss) } dB;
1 o
= 2 Xi, WI(B0)dB; + 5 2.1 (X5, [, W) (3 )dBld By

|
= Z7 X, W](2,)dB: + §Z;1[Xi, (X, W]|(Zs)ds

which combined with Eq. (8.26]) proves Eq. (8.27]). ]

Proposition 8.15. Let T be as in Eq. . If Hormander’s restricted bracket
condition holds at o € M and v € S is given, there exists i € {1,2,...,n} and an
open neighborhood U C, S of v such that

Ts
sup (/ <Z;1X¢(ET),u>2 dr < E) =0 (e*7).
uelU 0

Proof. The proof given here will follow Norris [147]. Hoérmander’s condition
implies there exist [ € N and 3 > 0 such that

LS K(o)K(o)" > 381
|]Cl| KekK,

or equivalently put for all v € S,

1 2 2
3ﬁ < ﬂKgq <K(O>7U> < Ir(nealé <K(0)71}> .

By choosing § > 0 in Eq. (8.21) sufficiently small we may assume that

max inf <ZT_1K(ZT),U>2 > 20 for all v € S.
Kek, r<Ts

Fix a v € § and K € K; such that
. —1 2
>
Tlél]f;é (Z7K(3:),v)” > 28
and choose an open neighborhood U C S of v such that
inf (Z7'K(S,),u)” > B for all u € U.
T>1s
Then, using Eq. (8.19),

Ts
supp (/ <Z7__1K(2-,—),u>2 dr < E)
0
5

uelU

T.
(8.28) S,u( ; ﬁdtg;) =p(Ts <e/B)=0(e>7).

Write K = Ly, .. .LijXi1 with r < [. If it happens that » = 1 then Eq. (8.28)
becomes

— Ts
sup fi (<C’T5u, u> < 5) < sup i </ <Z;1X11(ET),’LL>2 dt < s) =0 (6007)
uelU uelU 0
and we are done. So now suppose r > 1 and set
Kj = inj "'LX'iinl fOI‘j = 1,2,...,7‘
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so that K, = K. We will now show by (decreasing) induction on j that

Ts
(8.29) sup (/0 <Z;1Kj(§]7),u>2 dt < 5) =0 (e*7).

uelU
From Proposition we have
A2, K1 (30)] = 2, [ X, K] (30)d B (t)

+ {Z{l[Xo,Kj_let) + %Z{l (L%, K1) (20} dt

which upon integrating on ¢ gives

(272 (S0), ) = (1 (S0), u) + / (27X, K1 )(S,), u) dBE

119

t 1
+/ <Z;1[X0,Kj1](27)+2Zt1 (L%, Kj-1) (27),u> dr.
0

Applying Proposition of the appendix with 7' = Ty,
}/1-5 = <Z;1Kjfl(zt)7u> , Y= <Kj71(20)7u> )

t
M, = / <Z7'_1[XZ‘7Kj71](ET);U> dB! and
0

t 1
A= / <ZTl[Xo,Kj_11<ET> 52 (L3 Kj) (ET>,u> dt

implies

(8.30) sugu (Q1 ()N Q2 (u) =0 (e>7),
ue

where

Q (u) := {/OTS <Z;1Kj,1(zt),u>2dt < gQ},

_ {/Téi X K1) (S,), u>2d7>6}
0 =1

and ¢ > 4. Since

uelU uelU

Ts n )
sup p ([Q2 (u) supu(/ X, Kioa)(3,),u) d’/"<€>
§228M</0 (Z7'K;(%, ),u>2d7<€>

we may applying the induction hypothesis to learn,

(8.31) iggu([% (w)]) =0 (7).
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It now follows from Egs. (8.30) and (8.31]) that
sup p(Q (u)) < sup p(Q1 (u) N Q2 (w)) + sup p(Q (u) N [Q2 (w)])
uclU uclU uclU

< sup (21 (u) N Qs (u)) + sup 1([Q2 (w)]%)
=0(e*7)+0 (") =0 (=),
which is to say

Sup </OT6 <Z;1Kj71(2t),u>2 dt < 5q> =0 (™).

uelU

Replacing € by €!/¢ in the previous equation, using O ((51/’1)00_) = 0 (™),
completes the induction argument and hence the proof. [
8.5. More References. The literature on the “Malliavin calculus” is very exten-
sive and I will not make any attempt at summarizing it here. Let me just add to
references already mentioned the articles in [I76] [105] [153] which carry out Malli-

avin’s method in the geometric context of these notes. Also see [150] for another
method which works if Hormander’s bracket condition holds at level 2, namely when

span({K(m) : K € Ko}) = T, M for all m € M,
see Definition|8.1} The reader should also be aware of the deep results of Ben Arous
and Leandre in [I'7, [18] [16] (15 124].
9. APPENDIX: MARTINGALE AND SDE ESTIMATES

In this appendix {By:t¢> 0} will denote and R™ — valued Brownian motion,
{B: : t > 0} will be a one dimensional Brownian motion and, unlike in the text,
we will use the more standard letter P rather than p to denote the underlying
probability measure.

Notation 9.1. When M, is a martingale and A; is a process of bounded variation
let (M) be the quadratic variation of M and |A|, be the total variation of A up to
time t.

9.1. Estimates of Wiener Functionals Associated to SDE’s.

Proposition 9.2. Suppose p € [2,00), ar and A, are predictable R? and
Hom (R", Rd) — valued processes respectively and

t t
(9.1) Y; ::/ A,dB, —|—/ a,dr.
0 0

Then, letting Y;* = sup, <, |Yz|, there exists C) < oo such that

02 E( <G, {E (/Ot |A,|2d7)p/2 Tk (/Ot aT|d7)p}

where

AP =tr (AA") = (AA"), = AjjA;; = tr (A" A).

i=1 i.j
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Proof. We may assume the right side of Eq. is finite for otherwise there
is nothing to prove. For the moment further assume a = 0. By a standard limiting
argument involving stopping times we may further assume there is a non-random
constant C' < oo such that

T
Vi +/ |A,)? dr < C.
0

Let f(y) = |y|” and ¢ := y/ |y| for y € R%. Then, for a,b € RY,

Ouf(y) =plyl" i a=plyf?y-a
and
w0uf () =pp—2) "  (y-a)(y-b) +plyf*b-a
=plylPl(p—2) (@ a)(§-b)+b-d].
So by It6’s formula
d|Y|” = d[f(Y2)]
=p IVl a4 DI [0 - 2) (V- dve) (V- dYi) +aYi-avi)

Taking expectations of this formula (using Y is a martingale) then gives

9.3)  EYf = ;’/Ot E(VP? [(p-2) (V-av) (V-av) +ay-av]).
Using dY = AdB, we have
dY -dY = Ae; - AejdB'dBI = e; - A* Ae;dt = tr(A* A)dt = |A|* dt
and
(v dy)2 = (V- 4e;) (V- Ae; ) aB'aB? = (A'Y ;) (AY - e;) dt
- (A*Y : A*Yf) dt = (AA*Y : Y) dt < |A? dt.
Putting these results back into Eq. implies

t
BV < 5p-1) [ B(v A ) dr
0

P
By Doob’s inequality there is a constant C), (for example C), = {%} will work)
such that

E|Y; P < CEYP.

Combining the last two displayed equations implies

t t
94) E|Y]P < C/ E (\YT|P*2 |AT\2) dr < CE (|Yt*|p2/ |A-,—|2d7'> .
0 0

-1

Now applying Hélder’s inequality to the result, with exponents ¢ = p(p — 2)” " and

conjugate exponent ¢’ = p/2 gives

p—2 t p/2 2/p
EIYP < CEYP)F [E(/ AL ar) ]
0
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or equivalently, using 1 — (p — 2) /p = 2/p,

s([wra)]

Taking the 2/p roots of this equation then shows

t p/2
(9.5) E|Y;|" < CE (/ |A72d7> .
0

The general case now follows, since when Y is given as in Eq. (9.1) we have

. * t
¥y < (/ ATdBT) +/ | dr
0 t 0

E|YF PP <C |E

so that
* t
v, < H(/ AdB ) " \ / s dr
P 0 P
1/p t p l/p
</ 1A, dT) IE</ |ozT|d7')]
0

and taking the p'" — power of this equation proves Eq. (9.2). ]

Remark 9.3. A slightly different application of Holder’s inequality to the right side

of Eq. (9.4) gives

ser <o [Bfwr2ia]a) <o ([ Err T )

— EYP)T 0/ [E | A, P17 dr

which leads to the estimate

t p/2
E|Y P <C (/ [E|A,[P)*/P d7> .
0

Here are some applications of Proposition

Proposition 9.4. Let {X;}1, be a collection of smooth vector fields on RN for
which D*X; is bounded for all k > 1 and suppose ¥, denotes the solution to Eq.
with Yo =z € M :=RY and 8 = B. Then for all T < oo and p € [2,0),

(9.6) E(Z5)? :=E {sup |Et|p} < 00.
t<T

Proof. Since
) . 1 )
X;(X)dB'(t) = X;(X,)dB*(t) + §d [Xi(Xy)] - dB*(¢)
, 1
= X;(2,)dB"(t) + 3 (0x,(2) Xi) (Ze)dt,
the It6 form of Eq. (5.1) is

1 .
5215 = Xo(zt) + 5 (aXL(Et)Xl) (Zt) dt+ XZ(Et)dBZ(t) with Eo =,
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or equivalently,
K 1
Et = +/ X dBZ / |:X0(E7-) + 5 (aXi(ET)Xi) (ET):| dr.

By Proposition

p/2

E|S” < E(S3) < Cplal” +C’E</ X(2,)] d7>
P
(9.7) + C,E (/ Xo(37) + 5 (8Xi(ET)Xi) (2,) dr) .
0

Using the bounds on the derivatives of X we learn

X(E) <0 (14 ]3) and

1
Xo(27) + 3 (Ox, (2 Xi) (Zr)

which combined with Eq. (9.7)) gives the estimate
EZ " <E(Z7)"

t p/ t P
< CplzlP + CE (/ c(1+|2,|2)dT) + C,E (/ C(1+ETI)dT> .
0 0

Now assuming ¢t < T < oo, we have by Jensen’s (or Holder’s) inequality that
E[Zf” <E (3)”

t
<C|zf? +Ctp/2E/ (1 + |27\2)
0

S C(1+]5-)

2

p/2 dr
t

t
- CtPE/ (1+|2.])P dr
0

t /2
g0|x\P+CT<p/2*1>1E/ <1+|ET|2)p dr
0

t
+ CT(P—U]E/ (14 [Z,)P dr
0

from which it follows
t

(9.8) E|S,P <E(SH)P < Claf’ + C(T )/ (1+E[S, ) dr
0

An application of Gronwall’s 1nequahty now shows sup, < E |Et| < ooforallp < oo
and feeding this back into Eq. (9.8) with ¢ = T" proves Eq. ]

Proposition 9 5. Suppose {X; }" o 5 a collection of smooth vector fields on M,
3¢ solves Eq. with g =0 € M and 3 = B, z; is the solution to Eq. (-)
(i.e. z = //t t*o) and further assum(ﬂ there is a constant K < oo such that
[A(m)]l,, < K < oo for allm € M, where A(m) € End(T,,,M) is defined by

Vy (Z Vx, Xi+ Xo) - ZRV (v, Xi (m)) Xi (m)
i=1 i=1

9This will always be true when M is compact.
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and
n

D Vo Xi| < K |v| for allv € TM.
i=1
Then for all p < 0o and T < oo,

(9.9) E [sup |zt|p} < 00
t<T
and
(9.10) E[(z -] =0 (tW) ast | 0.

Proof. In what follows C will denote a constant depending on K, T and p. From
Theorem we know that the integrated It6 form of Eq. (5.59) is

i
1
(9.11) 2 = I, +/ 17 (V 0200 X) dBr + 5 Ay zrvdr
0

where A,,, = //;"A(%¢)//+. By Proposition and the assumed bounds on A
and V.X,

: n p/2
E(2;)” <C|I|” + CE (/0 e (V//Tm-)Xi)!?dT)
=1

t p
+CE (/ }A//TZT‘CZT)
0
t p/2 t P
<C+CE </ |272dr> + CE </ |szT)
0 0

t
SC—!—C’/ E|z.|P dr
0

E|[(z —I);"] <CE (/Ot |22 dT)p/2 + CE (/Ot |2 | d7>p

(9.12) <C Bl (tP/Q + t”)

and

where we have made use of Holder’s (or Jensen’s) inequality. Since
t

(9.13) Bl <E(:) <C+C [ Elsl'dr,
0

Gronwall’s inequality implies

supE [|2]7] < Ce®T < 0.
t<T

Feeding the last inequality back into Eq. (9.13]) shows Eq. . Eq. (9.10) now
follows from Eq. (9.9). and Eq. (9.12). ]

Exercise 9.6. Show under the same hypothesis of Proposition that
E [sup ‘ztlﬂ < 0
t<T

for all p,T" < co. Hint: Show z, ! satisfies an equation similar to Eq. (9.11)) with
coeflicients satisfying the same type of bounds.
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9.2. Martingale Estimates. This section follows the presentation in Norris [147].

Lemma 9.7 (Reflection Principle). Let 8; be a 1 - dimensional Brownian motion
starting at 0, a > 0 and T, = inf {t > 0: B, = a} — be first time (B hits height a,
see Figure[15 Then

2 o0
P(T, <t)=2P(B >a)= \/%/ e 2y

FiGURE 15. The first hitting time 7, of level a by 3;.

Proof. Since P(8; =a) =0,
PT,<t)=PT,<t& pi>a)+P(T, <t & B <a)
=PB >a)+ P(T, <t & f: <a),

it suffices to prove
P(T, <t & By <a)=P(B > a).
To do this define a new process Bt by

B_ 0B for t<T,
T 2a—p¢ for t>T,

(see Figure and notice that 3, may also be expressed as
t
(9.14) Bt = Bint, — Li>T, (Bt — Bint,) = / (Lr<r, — Lr>7,) dB;-
0

So Bt = 0; for t < T, and /S’t is G Eeﬁected across the line y = a for t > Tj,.
From Eq. {j it follows that (; is a martingale and

(dﬁt)z = (lr<1, — 172Ta)2 dt =dt

and hence that Bt is another Brownian motion. Since Bt hits level a for the first
time exactly when f3; hits level a,

T, =T, ;:inf{t>0:5t:a}
and {Ta < t} = {T, < t}. Furthermore (see Figure ,

{Ta<t&ﬁt<a}:{Ta<t&ét>a}={5t>a}.
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FIGURE 16. The Brownian motion 3, and its reflection 3, about
the line y = a. Note that after time Ty, the labellings of the 8; and
the /3, could be interchanged and the picture would still be possible.
This should help alleviate the readers fears that Brownian motion
has some funny asymmetry after the first hitting of level a.

Therefore, }
P(Ty <t & By <a)=P(B >a) =P(B > a)
which completes the proof. [

Remark 9.8. An alternate way to get a handle on the stopping time 7, is to compute
its Laplace transform. This can be done by considering the martingale

M = M3,

Since M, is bounded by e*® for t € [0,T,] the optional sampling theorem may be
applied to show

e)\aE [e_%)‘QT"} - FE |:e>\a—%)\2Ta:| — EMTQ =FEM, =1,
i.e. this implies that £ [e_%vn} = ¢~*@, This is equivalent to
E [ef)‘T“} = emaV2X,

From this point of view one would now have to invert the Laplace transform to get
the density of the law of T,.

Corollary 9.9. Suppose now that T = inf{t > 0: |8;| = a}, i.e. the first time [;
leaves the strip (—a,a). Then

4 [
P(T<t)§4P(ﬂt>a):\/27t/ o—2/2 g

t
(9.15) < min ( 8—26*“2/%, 1) .
T

a

Notice that P(T < t) = P(B; > a) where 8 = max{|G;]|: 7 <t}. So Eq.

may be rewritten as

t -
(9.16) P(Bf > a) <4P(B; > a) < min ( /87267&/21:7 1) < 9p—03/2t
Ta
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Proof. By definition T'= T, AT_, so that {T <t} = {T, <t} U{T_, < t} and
therefore

PT<t)<P(T,<t)+P(T_,<t)

4 >
=2P(T, <t)=4P(B; > a) = \/ﬁ/ e T /Ay

< 4 /00 fe*m?/%d;p _ 4 (t6I2/2t> o] _
T 27t J, a 27t a

a

This proves everything but the very last inequality in Eq. (9.16)). To prove this
inequality first observe the elementary calculus inequality:

(9.17) min < e V2, 1) <27V /2,
2y

Indeed Eq. 1) holds /L < 2 ie. ify > yo := 2/v/27. The fact that Eq. 1p

2y —

holds for y < yq follows from the following trivial inequality

8t
- efa2/2t.
Ta

1< 1455222 7 = %/2,
Finally letting y = a/+/f in Eq. (9.17) gives the last inequality in Eq. (9.16). m

Theorem 9.10. Let N be a continuous martingale such that Ng = 0 and T be a
stopping time. Then for all e,6 > 0,

P({N)r <& & Nj > 6) < P(5! > 6) < 27/,

Proof. By the Dambis, Dubins & Schwarz’s theorem (see p.174 of [109]) we
may write N; = (), where 3 is a Brownian motion (on a possibly “augmented”
probability space). Therefore

{(N)r <e& Np 26} C {3 26}
and hence from Eq. ,
P((N)p <e & Nj > 6) < P(B* > 6) <29 /%,
]

Theorem 9.11. Suppose that Y; = M; + Ay where M, is a martingale and A; is a
process of bounded variation which satisfy: My = Ag =0, |A|, < ct and (M), < ct
for some constant ¢ < co. If Ty, :=1inf{t > 0: |Y;| = a} and t < a/2¢, then

4 a®
PY>a)=P(T,<t) < — -
07 2 0) = P(T. <0 < o (-
Proof. Since
Y < MP+ A < M+ |A], < M] +ct
it follows that
(Y7 > a} C {M; > a/2} U{et > a/2} = {M} > a/2}
when ¢t < a/2c. Again by the Dambis, Dubins and Schwarz’s theorem (see p.174
of [109]), we may write M; = [(psy, where 3 is a Brownian motion on a possibly
augmented probability space. Since

My = max 87| < max|B:] = 5z,
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we learn
F>a) < P (M >a/2) < P( 2a/2
——e —(a/2)? /2ct _ ——e —(a/2)2/2ct
a/2 a/2
8¢ ( G/QC)e (a/2)?/2ct _ exp < >
(a/2) VTa 8ct
wherein the last inequality we have used the restriction ¢ < a/2c. |

Lemma 9.12. If f : [0,00) — R is a locally absolutely continuous function such
that f (0) =0, then

)] < 2HH v t>0.
=2 ] gy Py ¥ 2

Proof. By the fundamental theorem of calculus,

—2/ i@ <2il Wl

Le=([0,t])

]

We are now ready for a key result needed in the probabilistic proof of

Hormander’s theorem. Loosely speaking it states that if Y is a Brownian semi-

martinagale, then it can happen only with small probability that the L? — norm
of Y is small while the quadratic variation of Y is relatively large.

Proposition 9.13 (A key martingale inequality). Let T be a stopping time bounded
by ty < 00, Y = y+ M-+ A where M is a continuous martingale and A is a process of
bounded variation such that My = Ag = 0. Further assume, on the set {t < T}, that
(M): and |Al|, are absolutely continuous functions and there exists finite positive
constants, ¢y and co, such that

M) _
at =

d|A
and%ﬁ@

Then for allv > 0 and q > v +4 there exists constants ¢ = ¢(tg, q,v,c1,c2) > 0 and
g0 = eo(to, q, v, c1,c2) > 0 such that

(9.18) (/ Yidt < e, (Y >T:<M>TZ€>§2exp<_2cig,})20(€Oo)

for all € € (0,¢eq].

Proof. Let go = 5% (so that gy € (2,¢/2)), N := [, YdM and
(9.19) C. :={(N)p <c1e%, Np>el}.

We will show shortly that for ¢ sufficiently small,

T
(9.20) B. = {/ Y2dt < €9, (Y)p > 5} cC..
0

By an application of Theorem [9.10}
P(C.) <2 Sl I !
< _ — _
(Ce) < Zexp ( 2c1<€q) xp ( 2015”>
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and so assuming the validity of Eq. (9.20]),

2816”

(9.21) P (/T Y2dt < &%, (V) > a> < P(C.) < 2exp <_ ! )
0

which proves Eq. (9.18)). So to finish the proof it only remains to verify Eq. (9.20)
which will be done by showing B. N C¢ = (.
For the rest of the proof, it will be assumed that we are on the set B, NC¥. Since

(N)r = fOT |Y;|* d(M), we have
(9.22)

T T
B.NC¢ = {/ Yidt < e, (Y)r >, / Vi) d(M), > c1e%, Ni < qu} .
0 0

From Lemma with f(t) = (Y); and the assumption that d(Y):/dt < ¢y,

T
9.23 Yy < 2H H . <i/2 / Y),dt.
02) 00 < 2], e <42 [ 00

By Itd’s formula, the quadratic variation, (Y);, of Y satisfies

t
/ YdY‘
0
and on the set {t < T} N B.NCE,

t t t t
/YdY‘: / YdM+/ YdA’§|Nt|+/ Y|dA
0 0 0 0

T T
< Nj + C2/ Y| dr < e® 4 ¢ TY/? / Y2dr
0 0

t
9.24 Y),=Y2—9y?—2 [ YdY <Y?2+2
t 0 t

(9.25) <e® + CQté/ZEq.

Combining Egs. and shows, on the set {t < T} N B. N C¢ that
(V) < V242 e + ety <]

and using this in Eq. implies

Y)pr < \/201 /OT (Yt2 +2 [gqo + czt(l)/%qD dt

(9.26) < (2o [sr 42 w4 el Per] 0] =0 (%) =o0(@).

Hence we may choose ey = &¢ (¢1, €2, to, ¢, ) > 0 such that, if £ < gy then

\/261 <€q + 2e0ty + 262t3/25‘1/2> <e

and hence on B, NC¢ we learn ¢ < (Y)r < € which is absurd. So we must conclude
that B. N C< = (). [
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