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Gaussian Measures on Hilbert spaces

Goal: Given a Hilbert space [, we would ideally like to define a probability measure p
on B(H) such that

fi(h) = / e O dy(z) = e BV for all A € H (1)
H
so that, informally,
]. —l‘$‘2
du (z) = 7€ " 1Dy, (2)

The next proposition shows that this is impossible when dim(H ) = oc.

Proposition 1. Suppose that H is an infinite dimensional Hilbert space. Then there is no
probability measure 1. on the Borel o — algebra, B = B(H ), such that Eq. (1) holds.

Proof: Suppose such a Gaussian measure were to exist. If {¢;}>°, is an ON basis for H,
then {{e;, ) }.—, would be i.i.d. normal random variables. By SSLN,

N—00

N
1 Z 2
lim N - <€i, > =] M —a.s.
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which would imply

©9)

00 > ||z||* = Z (e;, z)° = 00 a.s.

i=1
Q.E.D.

Moral: The measure p must be defined on a larger space. This is somewhat analogous
to trying to define Lebesgue measure on the rational numbers. In each case the measure
can only be defined on a certain completion of the naive initial space.
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A Non-Technicality

Theorem 2. Let Q be the rational numbers.

1. There is no translation invariant measure (m) on (Q which is finite on bounded sets.

2. Similarly there is no measure (m) on (Q such that
m{reQ:a<x<b})=b—a.

Proof: In either case one shows that m ({r}) = 0 and then by countable additivity

m(Q) =) m({r}) =0

reQ

For example if m existed as in item 2., then m ({r}) < b — a for any choice of a < 7 < b
which can only be if m ({r}) = 0. Q.E.D.

MORAL.: To construct desirable countably additive measures the underlying set must be
sufficiently “big.”
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Measures on Hilbert Spaces

Theorem 3. Suppose that H and K are separable Hilbert spaces, H is a dense
subspace of K, and the inclusion map, © : H — K is continuous. Then there exists a

Gaussian measure, v, on K such that

1
/ M dy (2) = exp (5 (X, )\)H*) forall \ € K* C H* (3)
K

iffv . H — K is Hilbert Schmidt. Recalling the Hilbert Schmidt norm of © and its adjoint,
v*, are the same, the following conditions are equivalent;

1.1 : H — K is Hilbert Schmidt,
2. 1" : K — H is Hilbert Schmidt,
3. tr(i1*) < o0

4. tr (1*1) < o0.

Proof: We only prove here;if 1 : H — K is Hilbert Schmidt, then there exists a measure
v on K such that Eq. (3) holds. For the converse direction, see
[Bogachev, 1998, Da Prato & Zabczyk, 1992, Kuo, 1975].
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e A:=1": H— H, is a self-adjoint trace class operator.

e By the spectral theorem, there exists an orthonormal basis, {ej};.il for H such that
Ae; = aje; with a; > 0 and Zjozl a; < Q.

° (e, er), = (iej,ter), = (i"ej, ex) y = (Aej, er) y = adju.

o Let {N;} - bei.id. standard normal random variables and set

S = i Njej-
J=1

e Notice that

HSHK ZH@]HK Zaj<oo

j=1

e Now take v = Law (.5) .

Q.E.D.
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Wiener Measure Example
Example 1 (Wiener measure). Let
1
H:{hﬁmﬂ—memyﬂmm<mmH=/ﬂM@W@<m§}
0

and take K = L? ([0, 7], R?) . On then shows;

1. f) (1) = [, min(t,7) f (r)dr

2. tr(i4") :d-fOTmin(t,t)dt:d-T2/2 < 00.



Euclidean Free Field

Definition 4. For f € C™ (TY) | let

s/2 2

f

1712 = (=0 +m?) " £ ) = || (=2 + m?)

L2

and set H, be the closure inside of [C’OO (Td)]’ . [We normalize Lebesgue measure to
have volume 1 on T

Theorem 5. The measure,
1
dpi(p) = e~ o [BIVee) 4 @),

d

exists on H, iff s <1 — 3

Proof: Forn € Z9, let x,, (0) := ™% for § € T Then

<Xm Xm>5 — <(_A + mQ)SXm Xm> — [|7’L‘2 + m2]85mn°

Therefore,
( )

An > is an ON basis for H;.
\/|n|2 + m?
\ J neZd
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The result now follows since

Z \/n|2n+ i - Z

neZd neZs (‘n|2 + m2) o

S

which is finite iff 2 (1 — 5) > d < s<1-4%. Q.E.D.
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Stochastic Quantization (Skipped)

Let V' be a nice potential,

1
H:——A+V,
Ao = me(H) and 2 >0 > HQ = A\

By making sense of

dp(w) = Ee Sz @ ) V() s py,

We learn knowledge of () and H = QY H — X)) via:

/ Flw(0))dpw) = / (2 f(2)de
W

/ Fw)g(w®)du(w) = (" 0f,Qg) 15 .

W
_( tH
(6 1.9 ) L2(02dx)



Quantized Non-Linear Klein-Gordon Equation
(Skipped)

Vit T (—A + m2)90 + 903 =0
where ¢ : R x R? — R. Equivalently,

it = —VV(90>

1 s m* 4, 1,
— - — O+ 2ot d.
V(p) /Rd(Q\VsO\+290+4¢> x

Quantization leads to the equation

where

Oult, p) = %AHU(tv p) — V(pu(t, o)

where H := L?(IR?) with formal path integral quantization:
1 Tr1y -
T2V £(0)) = Z—/ e~ Jo IOl veOdt ¢,y D,
L J o(0)=w0
See Glimm and Jaffe's Book, 1987.
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The appearance of infinities

For “interacting” quantum field theories one would like to make sense of

dpi, (p) = L e Sy Ve @ 2 @) rofo@)dr

A
where v (s) is a polynomial in s like v (s) = s*. The obvious way to do this is to write,
duv (@) — o~ de v(go(x))dx%e de[%|V¢($)‘2+m2¢2(x)]dxpgp
L I
Ly
where djig () is given in Theorem . However, i is only supported on H1—g—g —-a
space of distributions and therefore v (¢ (z)) is not well defined!
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Path Integral
Quantized Yang-Mills Fields (Skipped)

e A $1,000,000 question, http://www.claymath.org/millennium-problems
e “. .. Quantum Yang-Mills theory is now the foundation of most of elementary particle
theory, and its predictions have been tested at many experimental laboratories, but its

mathematical foundation is still unclear. ...”

e Roughly speaking one needs to make sense out of the path integral expressions
above when [0, T is replaced by R* = R x R? :

1 1
du(A)="—exp | —= ‘FA’2 dt dx | DA, (5)
Z 2 RXRS

e New problem: gauge invariance.

e We are going to discuss quantized Yang-Mills from the “Canonical quantization” point
of view.
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Gauge Theory Notation

e K = SU(2) or S* or a compact Lie Group

SU((2) = {g = [Z _ab] a,be C > |a|2+\b\2:1}
o t =Lie(K), eg. Lie(SU(2)) = su(2)
su(2) = {A;: [Zg _—f&] ;aéRandﬁeC}

su( )

//
//'r




e Lie bracket: [A, B] = AB — BA =: adsB

o (A, B) = —tr(AB) = tr(A*B)
(a fixed Ad — K — invariant inner product)
o M =Rlor 7= (5"
o A = L*( M, —the space of connection 1-forms.

efForAe Aand1 <1k <d, let

Vi =0+ ad 4, (covariant differential)
and
F,;f% = O A; — 0; A + Ay, A;] (Curvature of A)
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Newton Form of the Y. M. Equations

Define the potential energy functional, V' (A

/R . (7)|*d.

1<]</€<d

Then the dynamics equation may be written in Newton form as
A(t) = — (grad V) (A).
The conserved energy is thus
. 1. .02

Energy (A,A) =3 HAHA +V(A).

The weak form of the constraint equation,
d
0=V E=) ViEis

k=1
0= (E,V"h)  VheC(M,FE).
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Formal Quantization of the Y. M. — Equations

When d = 3, “Quantize” the Yang — Mills equations and show the resulting quantum —
mechanical Hamiltonian has a mass gap. See www.claymath.org. Formally we have,

e Raw quantum Hilbert Space: H = L? (A, “DA”).

e Energy operator: E = —lAA + My, where

/R |[F7 ()| dee.

1<j<k<d

e This must all be restricted to the physical Hilbert space coming from the constraints.
e Some possible references of interest are; [Driver & Hall, 2000, Driver & Hall, 1999,

Driver et al., 2013|, Hall, 2003, Hall, 2002, Hall, 2001, Hall, 1999] and the references
therein.
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Wilson Loop Variables

Let L = L (M) loops on M based at o € M.

Definition 6. Let //“ (o) € K be parallel translation along o € £, that is

//4 (o) = //4 (o), where
%//t +Z"z t)//i (o) = 0with / /3 (o) = id.

[Very ill defined unless d = 1!!]

e Physical quantum Hilbert Space
Honysical = {F € L*(A,DA): F = F ({//*(0) : 0 € L}) }
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Restrictionto ¢=1

St =10,1]/ (0 ~ 1) > 6 and write 9y = %

)
{bﬂ'[e)z e ©

B

0::3'

In this case,
o A= L3S ¥),
¢ Go={ge€ H'(S' = K):9(0) = g(1) =id € K},

o A= Ad, A+ g g
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o H =“L2(A, DA)"

o Honysica = {F € H: F,(A) = ¢(//1(A)), ¢ : K = C}, where //9(A) € K is the
solution to

d%//e(z‘l) + A(0)//9(A) = 0with //o(A) =id € K.
//1(A) € K is the holonomy of A.

e H=—1A, (Quantum Hamiltonian)

Remark 7. ' = 0 when d = 1 and therefore, V (A) = 0.
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A Physics Idea

Theorem 8 (Heuristic: c.f. Witten 1991, CMP 141.). Suppose K is simply connected and
forp let F, (A) == ¢(//1(A)), then

QY € L2 (K, dHaar) — ng - thysical (7)
is a “Unitary” map which intertwines A\ 4 and A, i.e.

Aalpo /1] =AaF, = Fagp=(Axp)o//1. (8)

Proof:

e Use (-, -) on £ to construct a bi-invariant metric on T'K.
e Let H (K) be the space of finite energy paths on K starting ate € K.

e Equip H (K) with the right invariant metric induced from the metric on
H (¢) := Lie (H (K)).

e The “Cartan Rolling Map, ¢ : A — H (K) defined by

W (A) = //.(A)
is an isometric isomorphism of Riemannian manifolds.

Bruce Driver 21



e Consequently we may “conclude” that v intertwines the Laplacian, A 4 on A with the
Laplacian, Ay gy on H (K), i.e.

As(fot)) = (Apw)f) ot (9)
When f (g) = ¢ (g (1)), one can show

AH(K)JC (9) = (Ake) (g (1))
and therefore Eq. (9) implies,

Aalpo /1) = (Akp)o /]

e Other geometric arguments show formally,

/F(A)DA:/Kdlcfl(k)F(A) ) (A),

where dk is Haar measure on K, \; is the formal Riemannian volume measure on
it (k),and Ay, (47" (k)) is constant independent of k.

Q.E.D.
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A more precise Version of Theorem

oFors>%>OIet

~ 1 1

. 1 1 1
My (A+iB) = — -exp (—m Al — - \B@) DADB.

e As we have seen one has to intpret these as Gaussian measures living on fattened
up spaces, A and Ac = A+i.A respectively.

o “lim, .o dP, (A)=c-DA”
Theorem 9 (Segal- Bargmann). There exists an isometry

Sp: L*(A, P,) — L*(W(¥c), M.,)
such that

(S.f)(c) = / fele + a)dPya) = (524 f)u(c).

For all polynomial cylinder functions f. Moreover Ran(.S;) = closure of Holomorphic
cylinder functions.
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Main Theorem

Theorem 10 (Main Theorem, [Driver & Hall, 1999]). Let

d :
@//eJrA(@)//@:OW/th//o:Id

and
115 +(A0) +iB(0) /5 = 0 with /5 = Id

as “Stratonovich SDE’s” relative to Ps and M ; respectively. Then for all | L*(K,dx),

Si[f(//0)] = F(//T)

where F' is the unique Holomorphic function on K¢ such that

Flg = ek f.
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Moral Interpretation

o (24f(//1)a = (2 f)al//T)
e So “restricting” to .A and differentiating in t gives A 4 [f(//1)] = (Axf) (//1)-

e Moreover,

irm /,4 F (/)1 (A) B, (A) = /K F (k) di

S—00

showing Haar measure on K is the correct choice.



Corollary: Extended Hall’s Transform

Let p,(dz) = Law(//1) and m(dg) = Law(//}) so that
ps(x) = (eSAK/2(5€) (x)forz e K &
msi(g) = (6A8¢/256) (g) for g € K.
Corollary 11 (A One Parameter family of Hall’s Transforms). The map

f e LK, p) = (e f) € HL*(Kc,my)

is unitary. Note that m,; is the convolution heat kernel for e*s1/2.

This theorem interpolates between the two previous versions of Hall’'s transform
corresponding to s = oo and s =

DO |+
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Key Ingredients of the Proof 9

e Compute the action of the Segal-Bargmann transform on multiple Wiener integrals.

e Use the [Veretennikov & Krylov, 1976] formula twice to develop f(//1) and F(//%)
into an infinite sum of multiple Wiener integrals (the 1t6 chaos expansion).

e Use these two items together to show S, [f(//1)] = F(//%).

Remark 12. See Dimock 1996, and Landsman and Wren ( = 1998) for other approaches
to “canonical quantization” of Y M.
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Non - Closability of A;; when d =~

o |a|l} = [ a(t)*dt where a (0) = 0,
e Let 11 be standard Wiener measure — so “informally”

1 1
du(a) = - eXP (—5 Ha||fq> Da.

o Let f(a) =2 fol apdag = aj — 1 (It integral).
e On one hand,

Apfla) = Z 2hi = 2.

heSy
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e On the other hand, we have f(a) = limp|_, fp(a) where fp(a) is the cylinder

function
fp(@) =2 Z a’Sz’(a’Si+1 - aSi)

s;€P
which are all Harmonic, i.e.
Ap frla) = 0!
(Compare with the harmonic function

(21 + @9 + -+ Tp)Tpyy on R

Therefore limp|_, fp = | while

0= lim A A = 2.
‘¢$EO e fr(a) # Ape f
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The Segal-Bargmann Transform

o A :=R?and Ac := C? with coordinate, z € Aand z = x + iy € Ac.

. d 5;2 . d 82
oletA, =), 5.2 and Ay =2 0,2

o Ay = (s—1t/2)0; +50]

o Letr =2(s—t/2), 22 = |z|°, v* = |y|°,

S —$2 S
ps(a) = (e%6y) (2) = %) "
and
1 d
ms,t(z) _ <€As,t/250) (Z) _ (W Tt) e % Jr—y /t.
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Theorem 13 (Segal - Bargmann). Foralls > t/2, z € C and f € L*(A, ps(x)dx) let
S, f := (Analytic Continuation) o e"*/%

more explicitly,

(Sf) (2) = /,4 Pz — gy = (¢2F) ().

Then
Syt L*(A, ps(x)dx) — HL*(Ac, ms4(2)dz)

IS a unitary map.

Sketch of the isometry proof

1({ 0
oLe’[a7 5(6—% Za )and@ (aa:]J”ayj)

e Let f () be a polynomial inz € A,
e Let f (2) be its analytic continuation to z € Ag,

e Define Fy(z) := (e_tA$/2f) (2) so that f = e 28F, = ¢ 20" F},
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e SO

e Next observe that

(07 +0%) =

e Therefore,

e Conclusion,
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Abstract Ito Chaos Expansion

For completeness, let me state (a bit informally) an abstract form of the 1t6 Chaos
expansion.

Theorem 14 (Abstract 1t6-Chaos Expansion). If i is a Gaussian measure on a Banach
space W, informally given by

1 1
(o) = o =3 el ) Do

where H C W, then every f € L? (W, i) has an orthogonal direct sum decomposition
as

f=> L(f) (10)

where
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Proof Ideas

1. f = e_%AHe%AHf,

2. e384 f is smooth and so

) =38 () 0

n=0

3. Combing items 1. and 2. explains Eq. (10).

4. By more elementary Taylor theorem arguments, on may show
fH fldp =0ifm # n.

5. This is based on the identity,

B[ () - (420)] = 32 (0% 0). (") 0) g

n=0

which is valid for any polynomials p and q.

End
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