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Section 1.1
1.1.1. We can form n digit numbers by choosing the leftmost digit AND choosing the next digit
AND · · · AND choosing the rightmost digit. The first choice can be made in 9 ways since a leading
zero is not allowed. The remaining n − 1 choices can each be made in 10 ways. By the Rule of
Product we have 9× 10n−1.

To count numbers with at most n digits, we could sum up 9× 10k−1 for 1 ≤ k ≤ n. The sum
can be evaluated since it is a geometric series. This does not include the number 0. Whether we
add 1 to include it depends on our interpretation of the problem’s requirement that there be no
leading zeroes. There is an easier way. We can pad out a number with less than n digits by adding
leading zeroes. The original number can be recovered from any such n digit number by stripping off
the leading zeroes. Thus we see by the Rule of Product that there are 10n numbers with at most n
digits. If we wish to rule out 0 (which pads out to a string of n zeroes), we must subtract 1.

1.1.3. List the elements of the set in any order: a1, a2, . . . , a|S|. We can construct a subset by
including a1 or not AND
including a2 or not AND

. . .
including a|S| or not.

Since there are 2 choices in each case, the Rule of Product gives 2× 2× · · · × 2 = 2|S|.

1.1.5. The answers are SISITS and SISLAL. We’ll come back to this type of problem when we study
decision trees.

Section 1.2
1.2.1. If we want all assignments of birthdays to people, then repeats are allowed in the list men-
tioned in the hint. This gives 36530. If we want all birthdays distinct, no repeats are allowed in the
list. This gives 365× 364× · · ·× (365− 29). The ratio is 0.29. How can this be computed? There are
a lot of possibilities. Here are some.
• Use a symbolic math package.
• Write a computer program.
• Use a calculator. Overflow may be a problem, so you might write the ratio as

(365/365)× (364/365)× · · · × (336/365).
• Use (1.2). You are asked to do this in the next problem. Unfortunately, there is no guarantee

how large the error will be.
• Use Stirling’s formula after writing the numerator as 365!/335!. Since Stirling’s formula has an

error guarantee, we know we are close enough. Computing the values directly from Stirling’s
formula may cause overflow. This can be avoided in various ways. One is to rearrange the
various factors by using some algebra:

√
2π365(365/e)365√

2π335(335/e)335(365)30
=

√
365/335 (365/335)335/e30.

Another way is to compute the logarithm of Stirling’s formula and use that to estimate the
logarithm of the answer.

1.2.3. Each of the 7 letters ABMNRST appears once and each of the letters CIO appears twice.
Thus we must form an ordered list from the 10 distinct letters. The solutions are

k = 2: 10× 9 = 90
k = 3: 10× 9× 8 = 720
k = 4: 10× 9× 8× 7 = 5040
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1.2.5 (a) Since there are 5 distinct letters, the answer is 5× 4× 3 = 60.

(b) Since there are 5 distinct letters, the answer is 53 = 125.

(c) Either the letters are distinct OR one letter appears twice OR one letter appears three times.
We have seen that the first can be done in 60 ways. To do the second, choose one of L and T
to repeat, choose one of the remaining 4 different letters and choose where that letter is to go,
giving 2× 4× 3 = 24. To do the third, use T. Thus, the answer is 60 + 24 + 1 = 85.

1.2.7 (a) push, push, pop, pop, push, push, pop, push, pop, pop. Remembering to start with

something, say a on the stack: (a(bc))((de)f).

(b) This is almost the same as (a). The sequence is 112211212122 and the last “pop” in (a) is

replaced by “push, pop, pop.”

(c) a((b((cd)e))(fg)); push, push, push, pop, push, pop, pop, push, push, pop, pop, pop;
111010011000.

1.2.9. Stripping off the initial R and terminal F, we are left with a list of at most 4 letters, at least
one of which is an L. There is just 1 such list of length 1. There are 32 − 22 = 5 lists of length 2,
namely all those made from E, I and L minus those made from just E and I. Similarly, there are
33 − 23 = 19 of length 3 and 34 − 24 = 65. This gives us a total of 90.

The letters used are E, F, I, L and R in alphabetical order. To get the word before RELIEF,
note that we cannot change just the F and/or the E to produce an earlier word. Thus we must
change the I to get the preceding word. The first candidate in alphabetical order is F, giving us
RELF. Working backwards in this manner, we come to RELELF, RELEIF, RELEF and, finally,
RELEEF.

1.2.11. There are n!/(n − k)! lists of length k. The total number of lists (not counting the empty
list) is

n!
(n− 1)!

+
n!

(n− 2)!
+ · · ·+ n!

1!
+

n!
0!

= n!
(

1
0!

+
1
1!

+ · · ·+ 1
(n− 1)!

)
= n!

n−1∑

i=0

1i

i!
.

Since e = e1 =
∑∞

i=0 1i/i!, it follows that the above sum is close to e.

1.2.13. We can only do parts (a) and (d) at present.

(a) A person can run for one of k offices or for nothing, giving k + 1 choices per person. By the
Rule of Product we get (k + 1)p.

(d) We can treat each office separately. There are 2p − 1 possible slates for an office: any subset of
the set of candidates except the empty one. By the Rule of Product we have (2p − 1)k.
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Section 1.3

1.3.1. After recognizing that k = nλ and n− k = n(1− λ), it’s simply a matter of algebra.

1.3.3. Choose values for pairs AND choose suits for the lowest value pair AND choose suits for the
middle value pair AND choose suits for the highest value pair. This gives

(
13
3

)(
4
2

)3
= 61, 776.

1.3.5. Choose the lowest value in the straight (A to 10) AND choose a suit for each of the 5 values
in the straight. This gives 10× 45 = 10240.

Although the previous answer is acceptable, a poker player may object since a “straight flush”
is better than a straight—and we included straight flushes in our count. Since a straight flush is a
straight all in the same suit, we only have 4 choices of suits for the cards instead of 45. Thus, there
are 10 × 4 = 40 straight flushes. Hence, the number of straights which are not straight flushes is
10240− 40 = 10200.

1.3.7. This is like Exercise 1.2.3, but we’ll do it a bit differently. Note that EXERCISES contains
3 E’s, 2 S’s and 1 each of C, I, R and X. By the end of Example 1.18, we can use (1.4) with N = 9,
m1 = 3, m2 = 2 and m3 = m4 = m5 = m6 = 1. This gives 9!/3! 2! = 30240.

It can also be done without the use of a multinomial coefficient as follows. Choose 3 of the
9 possible positions to use for the three E’s AND choose 2 of the 6 remaining positions to use for
the two S’s AND put a permutation of the remaining 4 letters in the remaining 4 places. This gives
us

(
9
3

)× (
6
2

)× 4!.

The number of eight letter arrangements is the same. To see this, consider a 9-list with the
ninth position labeled “unused.”

1.3.9. Think of the teams as labeled and suppose Teams 1 and 2 each contain 3 men. We can divide
the men up in

(
11

3,3,2,2,1

)
ways and the women in

(
11

2,2,3,3,1

)
ways.

We must now count the number of ways to form the ordered situation from the unordered one.
Be careful—it’s not 4!× 2 as it was in the example! Thinking as in the early card example, we start
out two types of teams, say M or F depending on which sex predominates in the team. We also have
two types of referees. Thus we have two M teams, two F teams, and one each of an F referee and
an M referee. We can order the two M teams (2 ways) and the two F teams (2 ways), so there are
only 2× 2 ways to order and so the answer is

(
11

3,3,2,2,1

)2 1
4 .

1.3.11. The theorem is true when k = 2 by the binomial theorem with x = y1 and y = y2. Suppose
that k > 2 and that the theorem is true for k − 1. Using the hint and the binomial theorem with
x = yk and y = y1 + y2 + · · ·+ yk−1, we have that

(y1 + y2 + · · ·+ yk)n =
n∑

j=0

(
n

j

)
(y1 + y2 + · · ·+ yk−1)n−jyj

k.

Thus the coefficient of ym1
1 · · · ymk

k in this is
(

n
mk

)
= n!/(n − mk)!mk! times the coefficient of

ym1
1 · · · ymk−1

k−1 in (y1 + y2 + · · ·+ yk−1)n−mk . When n−mk = m1 + m2 + · · ·+ mk−1 the coefficient
is (n−mk)!/m1!m2! · · ·mk−1! and otherwise it is zero by the induction assumption. Multiplying by(

n
mk

)
, we obtain the theorem for k.
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Section 1.4
1.4.1. The rows are 1,7,21,35,35,7,1 and 1,8,28,56,70,56,28,8,1.

1.4.3. Let L(n, k) be the number of ordered k-lists without repeats that can be made from an n-set
S. Form such a list by choosing the first element AND then forming a k − 1 long list using the
remaining n− 1 elements. This gives L(n, k) = nL(n− 1, k − 1).

Single out one item x ∈ S. There are L(n− 1, k) lists not containing x. If x is in the list, it can
be in any of k positions AND the rest of the list can be constructed in L(n− 1, k − 1) ways. Thus

L(n, k) = L(n− 1, k) + kL(n− 1, k − 1).

1.4.5. The only way to partition an n element set into n blocks is to put each element in a block
by itself, so S(n, n) = 1. The only way to partition an n element set into one block is to put all the
elements in the block, so S(n, 1) = 1.

The only way to partition an n element set into n− 1 blocks is to choose two elements to be in
a block together an put the remaining n− 2 elements in n− 2 blocks by themselves. Thus it suffices
to choose the 2 elements that appear in a block together and so S(n, n− 1) =

(
n
2

)
.

The formula for S(n, n−1) can also be proved using (1.9) and induction. The formula is correct
for n = 1 since there is no way to partition a 1-set and have no blocks. Assume true for n− 1. Use
the recursion, the formula for S(n − 1, n − 1) and the induction assumption for S(n − 1, n − 2) to
obtain

S(n, n− 1) = S(n− 1, n− 2) + (n− 1)S(n− 1, n− 1) =
(

n− 1
2

)
+ (n− 1)1 =

(
n

2

)
,

which completes the proof.
Now for S(n, 2). Note that S(n, k) is the number of unordered lists of length k where the list

entries are nonempty subsets of a given n-set and each element of the set appears in exactly one
list entry. We will count ordered lists, which is k! times the number of unordered ones. We choose a
subset for the first block (first list entry) and use the remaining set elements for the second block.
Since an n-set has 2n, this would seem to give 2n/2; however, we must avoid empty blocks. In the
ordered case, there are two ways this could happen since either the first or second list entry could
be the empty set. Thus, we must have 2n − 2 instead of 2n.

Here is another way to compute S(n, 2). Look at the block containing n. Once it is determined,
the entire two block partition is determined. The block one of the 2n−1 subsets of n− 1 with n
adjoined. Since something must be left to form the second block, the subset cannot be all of n− 1.
Thus there are 2n−1 − 1 ways to form the block containing n.

The formula for S(n, 2) can also be proved by induction using the recursion for S(n, k) and
the fact that S(n, 1) = 1, much as was done for S(n, n− 1).

1.4.7. There are
(
n
k

)
ways to choose the subset AND k ways to choose an element in it to mark.

This gives the left side of the recursion times k. On the other hand, there are n ways to choose
an element to mark from {1, 2, . . . , n} AND

(
n−1
k−1

)
ways to choose the remaining elements of the

k-element subset.

1.4.9 (b) Each office is associated with a nonempty subset of the people and each person must be
in exactly one subset. This is a partition of the set of candidates with each block corresponding
to an office. Thus we have an ordered partition of a n element set into k blocks. The answer is
k!S(n, k).

(c) This is like the previous part, except that some people may be missing. We use two methods.
First, let i people run for no offices. The remaining n− i can be partitioned in S(n− i, k) ways
and the blocks ordered in k! ways. Thus we get

∑
i≥0

(
n
i

)
k!S(n− i, k). For the second method,
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either everyone runs for an office, giving k!S(n, k) or some people do not run. In the latter
case, we can think of a partition with k + 1 labeled blocks where the labels are the k offices
and “not running.” This give (k + 1)!S(n, k + 1). Thus we have k!S(n, k) + (k + 1)!S(n, k + 1).
The last formula is preferable since it is easier to calculate from tables of Stirling numbers.

(e) Let T (p, k) be the number of solutions. Look at all the people running for the first k−1 offices.
Let t be the number of these people. If t < p, then at least p − t people must be running
for the kth office since everyone must run for some office. In addition, any of these t people
could run for the kth office. By the Rule of Product, the number of ways we can have this
particular set of t people running for the first k−1 offices and some people running for the kth
office is T (t, k − 1)2t. The set of t people can be chosen in

(
p
t

)
ways. Finally, look at the case

t = p. In this case everyone is running for one of the first k− 1 offices. The only restriction we
must impose is that a nonempty set of candidates must run for the kth office. Putting all this
together, we obtain

T (p, k) =
p−1∑
t=1

(
p

t

)
T (t, k − 1)2t + T (p, k − 1)(2p − 1).

This recursion is valid for p ≥ 2 and k ≥ 2. The initial conditions are T (p, 1) = 1 for p > 0 and
T (1, k) = 1 for k > 0.

Notice that if “people” and “offices” are interchanged, the problem is not changed. Thus
T (p, k) = T (k, p) and a recursion could have been obtained by looking at offices that the first
p− 1 people run for. This would give us

T (p, k) =
k−1∑
t=1

(
k

t

)
T (p− 1, t)2t + T (p− 1, k)(2k − 1).

Section 1.5

1.5.1. For each element, there are j +1 choices for the number of repetitions, namely anything from
0 to j, inclusive. By the Rule of Product, we obtain (j + 1)|S|.

1.5.3. To form an unordered list of length k with repeats from {1, 2, . . . , n}, either form a list with-
out n OR form a list with n. The first can be done in M(n − 1, k) ways. The second can be done
by forming a k − 1 element list AND then adjoining n to it. This can be done in M(n, k − 1) × 1
ways. Initial conditions: M(n, 0) = 1 for n ≥ 0 and M(0, k) = 0 for k > 0.

1.5.5. Interpret the points between the ith and the (i+1)st vertical bars as the balls in box i. Since
there are n + 1 bars, there are n boxes. Since there are (n + k − 1) − (n− 1) = k points, there are
k balls.

1.5.7. This exercise and the previous one are simply two different ways of looking at the same thing
since an unordered list with repetitions allowed is the same as a multiset. The nth item must appear
zero, one OR two times. The remaining n − 1 items must be used to form a list of length k, k − 1
or k − 2 respectively. This gives the three terms on the left. We generalize to the case where each
item is used at most j times: T (n, k) =

∑j
i=0 T (n− 1, k − i).

1.5.9 (a) We give two solutions. Both use the idea of inserting a ball into a tube in an arbitrary
position. To physically do this may require some manipulation of balls already in the tube.
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1. Insert b − 1 balls into the tubes AND then insert the bth ball. There are i + 1 possible
places to insert this ball in a tube containing i balls. Summing this over all t tubes gives
us (b− 1) + t possible places to insert the bth ball. We have proved that

f(b, t) = f(b− 1, t)(b + t− 1).

Since f(1, t) = t, we can establish the formula by induction.
2. Alternatively, we can insert the first ball AND insert the remaining b− 1 balls. The first

ball has the effect of dividing the tube in which it is placed into two tubes: the part above
it and the part below. Thus

f(b, t) = tf(b− 1, t + 1),

and we can again use induction.

(b) We give two solutions:
Construct a list of length t + b− 1 containing each ball exactly once and containing t− 1

copies of “between tubes.” This can be done in
(
t+b−1

t−1

)
b! ways—choose the “between tubes”

and then permute the balls to place them in the remaining b positions in the list.
Alternatively, imagine an ordered b+ t−1 long list. Choose t−1 positions to be divisions

between tubes AND choose how to place the b balls in the remaining b positions. This gives(
b+t−1

t−1

)× b!.

Section 2.2
2.2.3. The interchanges can be written as (1,3), (1,4) and (2,3). Thus the entire set gives 1 → 3 → 2,
2 → 3, 3 → 1 → 4 and 4 → 1. In cycle form this is (1,2,3,4). Thus five applications takes 1 to 2.

2.2.5 (a) This was done in Exercise 2.2.2, but we’ll redo it. If f(k) = k, then the elements of n−{k}
can be permuted in any fashion. This can be done in (n− 1)!. Since there are n! permutations,
the probability that f(k) = k is (n − 1)!/n! = 1/n. Hence the probability that f(k) 6= k is
1− 1/n.

(b) By the independence assumption, the probability that there are no fixed points is (1− 1/n)n.
One of the standard results in calculus is that this approaches 1/e as n →∞. (You can prove
it by writing (1−1/n)n = exp(ln(1−1/n)/(1/n)), setting 1/n = x and using l’Hôpital’s Rule.)

(c) Choose the k fixed points AND construct a derangement of the remaining n− k. This gives us(
n
k

)
Dn−k. Now use Dn−k ≈ (n− k)!/e.

2.2.7. For 1 ≤ k ≤ n− 1, E(|ak − ak+1|) = E(|i− j|), where the latter expectation is taken over all
i 6= j in n. Thus the answer is (n− 1) times the average of the n(n− 1) values of |i− j| and so

answer =
n− 1

n(n− 1)

∑

i 6=j

|j − i| =
n− 1

n(n− 1)

∑

i,j

|j − i| =
2
n

∑

1≤i≤j≤n

(j − i), proving (a)

=
2
n

n∑

j=1

j∑

i=1

(j − i) =
2
n

n∑

j=1

(
j2 − j(j + 1)

2

)
=

1
n

n∑

j=1

(j2 − j)

=
1
n

(
n(n + 1)(2n + 1)

6
− n(n + 1)

2

)
=

n2 − 1
2

.
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Section 2.3

2.3.3. We can form the permutations of the desired type by first constructing a partition of n
counted by B(n,~b) AND then forming a cycle from each block of the partition. The argument used
in Exercise 2.2.2 proves that there are (k − 1)! cycles of length k that can be made from a k-set.

2.3.5 (a) In the order given, they are 2, 1, 3 and 4

(b) If f is associated with a B partition of n, then B is the coimage of f and so f determines B.

(c) See (b).

(d) The first is not since f(1) = 2 6= 1.
The second is: just check the conditions.
The third is not since f(4)− 1 = 2 > max(f(1), f(2), f(3)) = 1.
The fourth is: just check the conditions.

(e) In a way, this is obvious, but it is tedious to write out a proof. By definition f(1) = 1. Choose
k > 1 such that f(x) = k for some x. Let y be the least element of n for which f(y) = k. By
the way f is constructed, y is not in the same block with any t < y. Thus y is the smallest
element in its block and so f(y) will be the smallest number exceeding all the values that have
been assigned for f(t) with t < y. Thus the maximum of f(t) over t < y is k − 1 and so f is a
restricted growth function.

(f) The functions are given in one-line form and the partition below them

1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 2 1 1 2 3
{1, 2, 3, 4} {1, 2, 3} {5} {1, 2, 4} {3} {1, 2} {3, 4} {1, 2} {3} {4}

1 2 1 1 1 2 1 2 1 2 1 3 1 2 2 1 1 2 2 2
{1, 3, 4} {2} {1, 3} {2, 4} {1, 3} {2} {4} {1, 4} {2, 3} {1} {2, 3, 4}

1 2 2 3 1 2 3 1 1 2 3 2 1 2 3 3 1 2 3 4
{1} {2, 3} {4} {1, 4} {2} {3} {1} {2, 4} {3} {1} {2} {3, 4} {1} {2} {3} {4}

2.3.7. The coimage is a partition of A into at most |B| blocks, so our bound is 1 + (|A| − 1)/|B|.

2.3.9. If s < t and f(s) = f(t), that tells us that we cannot put as at the start of the longest
decreasing subsequence starting with at to obtain a decreasing subsequence. (If we could, we’d have
f(s) ≥ f(t) + 1.) Thus, as > at. Hence the subsequence ai, aj , . . . constructed in the problem is
increasing.

Now we’re ready to start the proof. If there is a decreasing subsequence of length n + 1 we are
done. If there is no such subsequence, f : ` → n. By the generalized Pigeonhole Principle, there is
sum k such that f(t) = k for at least `/n values of t. Thus it suffices to have `/n > m. In other
words ` > mn.

2.3.11. Let the elements be s1, . . . , sn, let t0 = 0 and let ti = s1 + . . . + si for 1 ≤ i ≤ n. By the
Pigeonhole Principle, two of the t’s have the same remainder on division by n, say tj and tk with
j < k. It follows that tk − tj = sj+1 + . . . + sk is a multiple of n.
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Section 2.4

2.4.1. x(x + y) = xx + xy = x + xy = x.

2.4.3. We state the laws and whether they are true or false. If false we give a counterexample.

(a) x + (yz) = (x + y)(x + z) is true. (Proved in text.)

(b) x(y ⊕ z) = (xy)⊕ (xz) is true.

(c) x + (y ⊕ z) = (x + y)⊕ (x + z) is false with x = y = z = 1.

(d) x⊕ (yz) = (x⊕ y)(x⊕ z) is false with x = y = 1, z = 0.

2.4.5. We use algebraic manipulation. Each step involves a simple formula, which we will not bother
to mention. You could also write down the truth table, read off a disjunctive normal form and try
to reduce the number of terms.

(a) (x⊕ y)(x + y) = (xy′ + x′y)(x + y) = xy′ + x′yx + xy′y + x′y = xy′ + x′y. Note that this
is x⊕ y.

(b) (x + y)⊕ z = (x + y)z′ + (x + y)′z = xz′ + yz′ + x′y′z.

(c) (x + y + z)⊕ z = (x + y + z)z′ + (x + y + z)′z = xz′ + yz′ + x′y′z′z = xz′ + yz′.

(d) (xy)⊕ z = xyz′ + (xy)′z = xyz′ + x′z + y′z.

2.4.7. There are many possible answers. A complicated one comes directly from the truth table
and contains 8 terms. The simplest form is xw + yw + zw + xyz. This can be obtained as follows.
(x+y+z)w will give the correct answer except when x = y = z = 1 and w = 0. Thus we could simply
add the term xyzw′. By noting that it is okay to add xyz when w = 1, we obtain (x+y +z)w+xyz.

Section 3.1

3.1.1. From the figures in the text, we see that they are 123, 132 and 321.

3.1.3. We will not draw the tree. The root is 1, the vertices on the next level are 21 and 12 (left to
right). On the next level, 321, 231, 213, 312, 132, and 123. Finally, the leaves are 4321, 3421, 3241,
3214, 4231, 2431, 2341, 2314, 4213, 2413, 2143, 2134, and so on.

(a) 7 and 16.

(b) 2,4,3,1 and 3,1,2,4.

3.1.5. We will not draw the tree. There are nine sequences: ABABAB, ABABBA, ABBABA,
ABBABB, BABABA, BABABB, BABBAB, BBABAB and BBABBA.

3.1.7. We will not draw the tree.

(a) 5 and 18.

(b) 111 and 433.

(c) 4,4,4 has rank 19.

(e) The decision tree for the strictly decreasing functions is interspersed. To find it, discard the
leftmost branch leading out of each vertex except the root and then discard those decisions
that no longer lead to a leaf of the original tree.
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3.1.9. We assume that you are looking at decision trees in the following discussion.

(a) The permutation of rank 0 is the leftmost one in the tree and so each element is inserted as
far to the left as possible. Thus the answer is n, (n− 1), . . . , 2, 1.

The permutation of rank n! − 1 is the rightmost one in the tree and so each element is
inserted as far to the right as possible. Thus the answer is 1, 2, 3, . . . , n.

We now look at n!/2. Note that the decision about where to insert 2 splits the tree into
two equal pieces. We are interested in the leftmost leaf of the righthand piece. The righthand
piece means we take the branch 1, 2. To stay to the left after that, 3 through n are inserted in
the leftmost position. Thus the permutation is n, (n− 1), . . . , 4, 3, 1, 2.

(b) The permutation of rank 0 is the leftmost one in the tree and so each element is inserted as
far to the left as possible. It begins 2,1. Then 3 “bumps” 2 to the end: 3,1,2. Next 4 “bumps”
3 to the end: 4,1,2,3. In general, we have n, 1, 2, 3, . . . , (n− 1).

The permutation of rank n! − 1 is the rightmost one in the tree and so each element is
inserted as far to the right as possible. Thus the answer is 1, 2, 3, . . . , n.

We now look at n!/2. Note that the decision about where to insert 2 splits the tree into
two equal pieces. We are interested in the leftmost leaf of the righthand piece. The righthand
piece means we take the branch 1, 2. To stay to the left after that, 3 through n are inserted in
the leftmost position. This leads to “bumping” as it did for rank 0. Thus the permutation is
n, 2, 1, 3, 4, 5, . . . , (n− 1).

(c) You should be able to see that the permutation (1, 2, 3, . . . , n) has rank 0 in both cases and
that the permutation (n, . . . , 3, 2, 1) has rank n!− 1 in both cases.

First suppose that n = 2m, an even number. It is easy to see how to split the tree in half
based on the first decision as we did for insertion order: Choose m + 1 and then stay as left as
possible. This means everything is in order except for m + 1. Thus the permutation is m + 1
followed by the elements of n− {m + 1} in ascending order.

Now suppose that n = 2m − 1. In this case, we must make the middle choice, m and
split the remaining tree in half, going to the leftmost leaf of the right part. If you look at some
trees, you should see that this leads to the permutation m,m + 1 followed by the elements of
n− {m,m + 1} in ascending order.

3.1.11 (a) We’ll make a decision based on whether or not the pair in the full house has the same
face value as a pair in the second hand. If it does not, there are

(
11
2

)(
4
2

)2

(52− 8− 5) = 77,220

possible second hands. If it does, there are

11
(

4
2

)
(52− 8− 3) = 2,706

possible second hands. Adding these up and multiplying by the number of possible full houses
(79,926) gives us about 3× 108 hands.

(b) There are various ways to do this. The decision trees are all more complicated than in the
previous part.

(c) The order in which things are done can be very important.

3.1.13. You can simply modify the decision tree in Figure 3.5 as follows: Decrease the “number of
singles” values by 1 (since the desired word is one letter shorter). Throw away those that become
negative; i.e., erase leaves C and H. Add a new path that has no triples, one pair and five singles.
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Call the new leaf X. It is then necessary to recompute the numbers. Here are the results, which total
to 113,540:

X :
(

2
0

)(
5
1

)(
5
5

)(
8

2, 1, 1, 1, 1, 1

)
= 12,600

A :
(

2
0

)(
5
2

)(
4
3

)(
8

2, 2, 1, 1, 1

)
= 50,400

B :
(

2
0

)(
5
3

)(
3
1

)(
8

2, 2, 2, 1

)
= 18,900

D :
(

2
1

)(
4
0

)(
5
4

)(
8

3, 1, 1, 1, 1

)
= 8,400

E :
(

2
1

)(
4
1

)(
4
2

)(
8

3, 2, 1, 1

)
= 20,160

F :
(

2
1

)(
4
2

)(
3
0

)(
8

3, 2, 2

)
= 2,520

G :
(

2
2

)(
3
0

)(
4
1

)(
8

3, 3, 1

)
= 560.

Section 3.2
3.2.1. We use the rank formula in the text and, for unranking, a greedy algorithm.

(a)
(
10
3

)
+

(
5
2

)
+

(
3
1

)
= 133.

(
8
4

)
+

(
5
3

)
+

(
2
2

)
+

(
0
1

)
= 81.

(b) We have 35 =
(
7
4

)
so the first answer is 8,3,2,1. The second answer is 12,9,6,5 because

(
11
4

) ≤ 400 <
(
12
4

)
400− (

11
4

)
= 70

(
8
3

) ≤ 70 <
(
9
3

)
70− (

8
3

)
= 14

(
5
2

) ≤ 14 <
(
6
2

)
14− (

5
2

)
= 4

(
4
1

) ≤ 4 <
(
5
1

)
.

(c) 9,6,4,2,1 and 9,7,2,1.

(d) 9,5,4,3,2 and 9,6,5,3.

3.2.3. One can compute the ranks by looking at the decision tree or by using the formula in Theo-
rem 3.3. We choose the latter approach. In case (j), we have f(i) = k + j − i. (This is easily checked
since this f clearly decreases by 1 as i increases by 1 and it gives f(1) = k, k +1 and k +2 for j = 1,
2 and 3, respectively.) By the theorem,

RANK(f) =
k∑

i=1

(
f(i)− 1
k + 1− i

)
=

k∑

i=1

(
k + j − i− 1

k + 1− i

)

When j = 1, all the binomial coefficients are 0 and so the answer for the first function is 0.
When j = 2, all the binomial coefficients are 1 and so the answer for the second function is k.
When j = 3, we have

RANK(f) =
k∑

i=1

(
k + 2− i

k + 1− i

)
=

k∑

i=1

(k + 2− i) = (k + 1) + (k) + (k − 1) + · · ·+ (2).

Since the sum of the first n positive integers is n(n+1)
2 , the rank is (k+1)(k+2)

2 − 1 = k(k+3)
2 .
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•

31

1 1

4

4 4

13 3

1 14 4

1 12 2 2 2 4

2 2 21

choice for (2,2) entry

choice for (2,3) entry

choice for (2,4) entry

choice for (3,2) entry

choice for (3,3) entry

choice for (3,4) entry

Figure S.3.1 The decision tree for 4× 4 standard Latin Squares in Exercise 3.3.1.

3.2.5 (a) D1 × (n− 1)! + D2 × (n− 2)! + · · ·+ Dn−1 × 1! =
∑n−1

k=1 Dk(n− k)!.

(b) Denote the permutation by f . Let L = n. For i = 1, 2, . . . , n− 1 in order: let Di is the number
of elements in L which are less than f(i) and replace L with L− {f(i)}.

(c) The decision sequences are 4,4,0,1,1 and 5,1,2,0,0 and so the ranks are 579 and 636.

(d) By a greedy algorithm we get the decision sequences 1,1,1,0,1 and 2,2,2,0,0. The permutations
are 2,3,4,1,6,5 and 3,4,5,1,2,6.

3.2.9. 00000000000000000000 = 020; 11000000000000000000 = 12018; 0100; 10101100.

Section 3.3

3.3.1. When building and n × n Latin Square, if the first n − 1 rows have been filled in, then the
last row is determined. Thus we’ll omit it from the decision tree. The tree is shown in Figure S.3.1.

3.3.3. You should find 14 solutions.

Section 4.1

4.1.1. The Venn diagrams each consist of two intersecting circles.

(a) V2 ∩ V3 contains words of the form CV V C. We are interested in V2 ∪ V3, the union of the
circles. Thus

|V2 ∪ V3| = |V2|+ |V3| − |V2 ∩ V3|
= 212 × 5× 26 + 212 × 5× 26− 212 × 52

= 212 × 5× 47

(b) We want all 4 letter words beginning and ending with consonants that are not in C2 ∩ C3,
which is 212 × 262 − 214.
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4.1.3 (a) If everyone who lost an eye also lost an arm, a leg and an ear, then there would be 70
people who lost all four.

(b) Let A be the set of people who lost an arm and L the set who lost a leg. How small can A∩L
be? We have

|A ∩ L| = |A|+ |L| − |A ∪ L| = 165− |A ∪ L| ≥ 165− 100 = 65.

We can now look at the set D = A ∩ L of double amputees and ask now many must have lost
an eye. As above, we have

|D ∩ I| = |D|+ |I| − |D ∪ I| ≥ 65 + 70− 100 = 35,

where I is the set of people who have lost an eye. Finally, we combine these people with the
75 who have lost an ear to conclude that at least 35 + 75− 100 = 10 must have lost all four.
Thus p ≥ 10. We can achieve this by insisting that everyone lost at least three things. If the
people are numbered 1–100, we can do it as follows:

lost arm: 1–80
lost leg: 1–65 and 81–100
lost eye: 1–35 and 66–100
lost ear: 1–10 and 36–100

4.1.5 (a) A number x has a factor in common with N if and only if it is divisible by one of the
primes that divide N . Thus an element of N has no factor in common with N if and only if it
is in none of the sets Sk.

(b) The intersection on the left side is the set of x ∈ N that are multiples of b = pi1 · · · pir . These
are b, 2b, 3b . . ., (N/b)b. Thus the set has N/b elements, as was to be proved.

(c) By (4.3) and the previous result, we have

ϕ(N) =
∑

I⊆n

(−1)|I|
N∏
i∈I pi

= N
∑

I⊆n

∏

i∈I

(−1
pi

)
.

Replacing xi by −1/pi in Example 1.14, we obtain the desired result.

4.1.7. Let Si be those lists in which ci is adjacent to ci. Consider a list in Si1 ∩ · · · ∩ Sir . Using the
hint, this can be thought of as a list made from 2m− r symbols, where for the present we regard the
two occurrences of the symbol ci as different Since the list is a rearrangement of the symbols, there
are (2m− r)! such lists. However, m− r pairs of the symbols are identical and we have treated them
as different. There are 2m−r ways to treat such symbols as different. Thus Nr =

(
m
r

)
(2m−r)!/2m−r.

4.1.9. The proof is practically the same as that given for Theorem 4.1. Instead of asking how much
s ∈ S contributes to the sums, ask how much Pr(s) contributes.

4.1.11 (a) The products are 1 or 0 according as s belongs to precisely the sets Si, i ∈ K or not.
Thus the inner sum is 1 or 0 according as s belongs to precisely k sets or not.

(b) Simply expand using the distributive law as in the previous exercise.

(c) The first part is just a rearrangement: Instead of choosing K and then J , first choose L

(corresponding to J ∪K) and then choose K. The second part arises because there are
(|L|

k

)
ways to choose K.

(d) Move the sum over s ∈ S inside the other sums and collect terms according to |L|.



Solutions to Odd Exercises 405

4.1.13 (a) Let the notation be as in the proof of the Principle of Inclusion and Exclusion. The proof
given in the text is easily adjusted to prove s contributes exactly ct−1(X) to

∑t−1
i=0(−1)iSi.

Thus the sum will be a lower bound when t is even and an upper bound when t is odd. Including
the term (−1)tSt in the sum changes upper bounds to lower bounds and vice versa since we
are now considering ct(X). By considering the cases of t even and t odd separately, it is easy
to see that the inequalities follow.

(b) This can be proved by induction on t using
(|X|

t

)
=

(|X|−1
t

)
+

(|X|−1
t−1

)
.

4.1.15 (a) Let m = 2. Initially the N array contains

2 : N2 1 : N1 0 : N0.

With j = 0, we do i = 1 and then i = 0. The N array now contains

2 : N2 1 : N1 −N2 0 : N0 − (N1 −N2).

With j = 1, we obtain

2 : N2 1 : (N1 −N2)−N2 0 : N0 − (N1 −N2).

Equation (4.16) gives

E2 = N2 E1 = N1 − 2N2 E0 = N0 −N1 + N2,

which agrees with the values computed by the algorithm. You can carry out similar calculations
for m = 3.

(b) This can be done by carefully carrying out the steps in the algorithm.

(c) After no iterations (that is, at the start of the algorithm), Nr contains s as many times as there
is set of r indices for which (4.17) is true. If s appears in exactly p of the Si, this number is

(
p
r

)
.

We now use induction on t, having done the case t = 0. After t − 1 iterations, formula (4.18)
is true when t is replaced by anything smaller in it. In particular, it holds with t replaced by
t− 1.

We must now focus on the inner loop of the algorithm. What does it do? Since Nm never
changes, neither does N∗

m. Formula (4.18) gives 0 or 1 for all t according as p < m or p = m
(p > m is impossible). This is the correct answer for both Nm and Em.

Back to the action of the inner loop. Again we can prove it by induction, but now we are
going from N∗

m down to N∗
0 . We dealt with N∗

m in the previous paragraph. If the inner loop
has done the correct thing with N∗

r+1, then the number of times s appears in the new version
of N∗

r is µ(p, r, t−1)−µ(p, r +1, t). There are various cases to consider. We’ll just look at one,
namely

(
p−(t−1)
r−(t−1)

)− (
p−t

(r+1)−t

)
. Using

(
n+1

k

)
=

(
n
k

)
+

(
n

k−1

)
, we have

(
p− (t− 1)
r − (t− 1)

)
−

(
p− t

(r + 1)− t

)
=

(
p− t + 1
r − t + 1

)
−

(
p− t

r − t + 1

)
=

(
p− t

r − t

)
,

which is what we needed to prove. We leave the other cases in (4.18) to you. The last sentence
in the exercise follows from the fact that all the numbers we calculate are nonnegative. (This
takes care of the problem of how we should interpret the multiset difference A−B if s appears
more often in B than it does in A.)

When t ≥ m, the only time the binomial coefficient is used in (4.18) is when t = p = m
and it then has the value

(
0

r−m

)
, which is zero unless r = m, when it is 1. Thus, for t ≥ m,

µ(p, r, t) equals 1 if r = p and 0 otherwise. Hence N∗
r is a set containing precisely those elements

that are in exactly r of the Si.

(d) This is implicit in the proof for (c).
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4.1.17. Let Si be the subset of n divisible by ai. Then, Nt is the sum over all t-subsets T of A of
bn/lcm(T )c, where lcm(T ) is the least common multiple of the elements of T and the floor bxc is
the largest integer not exceeding x. For the various parts of the exercise you need the following.
• If all elements of A divide n, then bn/lcm(T )c = n/lcm(T ).
• If no two elements of A have a common factor, then lcm(T ) =

∏
i∈T i.

(a) Using the previous comments in the special case k = 0, we obtain after some algebra

m∑

i=0

(−1)iNi = n
∏

a∈A

(
1− 1

a

)
,

which is the Euler phi function when A is the set of prime divisors of n.

(b) The comment for (a) applies in this case as well.

(c) There is no simple formula even when k = 0 because the floor function cannot be eliminated.

(d) Now we cannot even eliminate the lcm function.

4.1.19. In all cases, what we must do is prove that (P-1), (P-2) and (P-3) hold. We omit most of
them.

(d) Since x/x = 1, (P-1) is true. Suppose that xρy and yρx. Then x/y and y/x are both integers.
Since (x/y)(y/x) = 1, the only possible integer values for x/y and y/x are ±1. Since x and
y are positive, it follows that x/y = 1 and so (P-2) is true. Suppose that x/y and y/z are
integers. Then so is x/z and so (P-3) is true.

4.1.21. Since every set is the union of itself, xρx. Suppose xρy and yρx. Let by be a block of y.
Since xρy, bx ⊆ by for some block bx of x. Since yρx, b′y ⊆ bx for some block b′y of y. Since blocks of
a partition are either equal or disjoint and since b′y ⊆ bx ⊆ by, we have b′y = by and so bx = by. This
proves that every block of y is a block of x. Hence x = y and so (P-2) is true. It is easy to prove
(P-3).

4.1.23 (a) With each element s ∈ S, associate a set g(s) such that s ∈ Si if and only if i ∈ g(s).
Then Ek counts those s ∈ S for which |g(s)| = k. Since the number of s ∈ S with g(s) = y is
e(y), the sum of e(y) over |y| = k also counts those s.

(b) An element s is counted in (4.14) if and only if it belongs to all Si for which i ∈ x. This is the
same as the definition of the set intersection.

(c) The sum of e(x) over all x of since k is Ek. Putting this together with (4.15), we have

Ek =
∑

|x|=k

∑

y⊇x

(−1)|y|−kf(y) =
∑

|y|≥k

∑

x⊆y
|x|=k

(−1)|y|−kf(y) =
∑

|y|≥k

(|y|
k

)
(−1)|y|−kf(y).

The sum of f(y) in (b) over all y of size t is Nt. Collecting terms according to |y|, we have

Ek =
m∑

t=k

(
t

k

)
(−1)t−kNt =

m−k∑

i=0

(
i + k

k

)
(−1)iNk+i,

where we set t = i + k. Now use
(
i+k
k

)
=

(
k+i

i

)
.
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Section 4.2

4.2.1. The number of 6-long sequences made with B, R and W is 36 = 729, which is much too
long. The number of 6-long sequences in which adjacent beads differ in color is 3× 25 = 96, which
is more manageable, but still quite long. We won’t list them. We could “cheat” by being a bit less
mechanical: If the necklace contains a B, we could start with it. There are 25 = 32 such necklaces,
a manageable number. The only necklace without B must alternate R and W, so there is only one
of them. Here are the 32 other necklaces, where a number preceding a necklace is the first place it
appears in the list when considered circularly or flipped over. A zero means it was rejected because
the first and last beads are the same.

1: BRBRBR 2: BRBRBW 0: BRBRWB 3: BRBRWR 2: BRBWBR 4: BRBWBW
0: BRBWRB 5: BRBWRW 0: BRWBRB 6: BRWBRW 0: BRWBWB 7: BRWBWR
3: BRWRBR 8: BRWRBW 0: BRWRWB 9: BRWRWR 2: BWBRBR 4: BWBRBW
0: BWBRWB 8: BWBRWR 4: BWBWBR 10: BWBWBW 0: BWBWRB 11: BWBWRW
0: BWRBRB 7: BWRBRW 0: BWRBWB 7: BWRBWR 5: BWRWBR 11: BWRWBW
0: BWRWRB 12: BWRWRW

4.2.3 (a) Since 4 beads are used, at most 4 different kinds of beads are used. We can construct
an arrangement of beads by choosing the number of types that must appear (1, 2, 3 OR 4),
choosing that many types of beads from the r types AND then choosing an arrangement using
all of the types of beads that we chose.

(b) Trivially, f(1) = 1. For f(2), our decision will be the number of beads of the first type that
appear. After that, it is easy. This gives us 1 + 2 + 1 = 4. For f(3), our decision will be which
bead appears twice. This gives us 3 × 2 = 6 For f(4), each bead appears once and there are
3 possibilities. Thus

F (r) =
(

r

1

)
+

(
r

2

)
4 +

(
r

3

)
6 +

(
r

4

)
3,

which can be rewritten as r(r + 1)(r2 + r2)/8, if desired.

4.2.5. The problem can be solved by either decision tree method. It is useful to note that all
solutions must begin with h because any board that starts with v can be flipped about a NW-SE
(135◦) diagonal to give one that starts with h. Also note that a lexically least sequence that starts
with hv determines the entire sequence. (To see this, note that it starts hvv and look at rotations
of the board.)

We will use the second method. Our first decision will be the number of entire rows and/or
columns that are covered by two whole dominoes. For example, two dominoes in the top row or
two dominoes in the third column. Note that we cannot simultaneously cover a row and a column
because they overlap. Let the number be L. The possible values of L are 0, 1, 2 and 4. (You should
find it easy to see why L = 3 is impossible.) Note that we can always use the symmetries to make
the first domino horizontal. For L = 4, there is obviously only one solution and its lex minimal form
is hhhhhhhh. For L = 0, we use Method 1 to obtain hvvhvvhh as the the only solution. (Beware:
reading the sequence in reverse does not correspond to a symmetry of the board.) For L = 1, we note
that the entire row or column must be at the edge of the board. Suppose it is the first row. Refer
back to Figure 3.15 to see that the only way to complete the board without increasing L is hvvvvh.
This is already lex minimal: hhhvvvvh. Suppose L = 2. By rotation, we can assume we have two
full rows and, because they cannot be in the middle, one of them is the first row. Again, refer to
Figure 3.15 to find how many ways we can complete the board with one more horizontal row. This
leads to six solutions: hhhhhvvh, hhhvvhhh, hhhhvhvh, hhvhvhhh, hhhhvvvv and hhvvvvhh. This
gives a total of nine solutions.
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4.2.7. When we write out our answers, they will be in the form suggested in the problem, without
the surrounding boxes. To obtain the lex least solutions, we must linearly order the faces. Our order
will be the line of four side faces from left to right, then the top and, finally, the bottom. We use B,
R and W to denote the colors. and b, r and w to denote the number of faces of each color.

(a) Our first decision will be the number of black faces. By interchanging black and white, a
solution with b black faces can be converted to one with 6− b, so we only need look at b = 0 1,
2 and 3. For b = 0 and b = 1, there are obviously only one solution. For b = 2, we must decide
whether to put the second black face adjacent or opposite the first one. Here are the 4 solutions
for b < 3.

W W W W
WWWW BWWW B B WW BWBW

W W W W

For b = 3, our second decision is whether or not all three black faces share a common vertex.
This leads to just 2 solutions:

B W
B B WW B B BW

W W

Doubling the answers for b < 3 to get those for b > 3 gives us 10 solutions.

(b) In the previous solution, we can limit ourselves to b ≤ 3. When b = 3, we need to check whether
or not one solution is converted to the other when black and white are interchanged. They are
not, so b = 3 still gives 2 solutions for a total of 6.

(c) The mirror image of each of the 10 solutions is equivalent to itself, so there are still 10 solutions.

(d) Our first decision will be the list b, r, w. By interchanging colors, we need only consider the
situations where b ≤ r ≤ w. This gives us 1,1,4, 1,2,3 and 2,2,2. Interchanging colors in all
possible ways gives rise to 3, 6 and 1 solutions, respectively, for each solution found. For 1,1,4,
our decision will be whether B and R are on adjacent or opposite faces. Each leads to one
coloring. For 1,2,3 our first decision will be the number of R’s that are adjacent to the B.
One adjacency gives 1 solution and two give 2 solutions, depending on whether the R’s are
adjacent or opposite each other. For 2,2,2, our first decision will be whether or not the B’s
are adjacent or opposite. Our second decision will be whether or not the R’s are adjacent or
opposite. Each choice leads to 1 solution except when the B’s are adjacent and the R’s are
adjacent. In this case there are more solutions. One possibility is to have the 4 sides be BBRR.
Another possibility is to have the 4 sides be BBRW and then place the additional R on either
the top or the bottom. These last two possibilities are mirror images of each other, but we
cannot transform one to the other with just rotations. The solutions are given in Figure S.4.1.
This gives us 2× 3 + 3× 6 + 6 = 30 solutions.

(e) If all 3 colors appear, there are 30 solutions. If only 1 color appears, there are obviously
3 solutions. What if exactly 2 colors appear, we can first choose the 2 colors AND then use
them. By the first part of this exercise, there are 10−2 = 8 ways to use the colors so that both
appear. Thus we have 30 + 3 +

(
3
2

)
8 = 57 solutions.

(f) Note that no color can appear more than 3 times on any given cube. Also note that at most
6 colors appear on any given cube. By looking over our previous work, we find, in the notation
of Exercise 4.2.4, that f(0) = f(1) = 0, f(2) = 1 and f(3) = 8. By looking at decision trees for
the color counts 1,1,1,3 and 1,1,2,2, we find that f(4) =

(
4
1

)
2+

(
4
2

)
5 = 32. Consider f(5) which

has just the one color count list 1,1,1,1,2. There is one way to place the repeated colors. The
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W W
1,1,4 B R WW BW R W

W W

W R W
1,2,3 B R R W B R WW B R W R

W W W

R R W
B B WW B R B W B R B R

R W W
2,2,2

W R W
B B R R B B R W B B R W

W W R

Figure S.4.1 The distinct painted cubes with various numbers of faces painted Black, Red and White.

partially colored cube can be transformed into itself be leaving it fixed or by rotating it so that
the two colored faces are interchanged. This means that whenever we color the remaining 4 faces
with 4 distinct colors, there will be exactly one other coloring that is equivalent to it. Thus
f(5) =

(
5
1

)
(4!/2) = 60. If you experiment a bit, you will discover that there are 24 symmetries

of the cube. If all the faces are colored differently, each of the symmetries leads to an equivalent
coloring that looks different. Thus f(6) = 6!/24 = 30. Putting all this together, we have

F (r) =
(

r

2

)
+

(
r

3

)
8 +

(
r

4

)
32 +

(
r

5

)
60 +

(
r

6

)
30.

Section 4.3

4.3.1. The image of F is all k element subsets of n. F−1(x) consists of all possible ways to arrange the
elements of x in a list. Since we are able to count lists, we know that there are k! such arrangements.
We also know that |A| = n!/(n− k)!. Thus the coimage of F consists of C(n, k) blocks all of size k!
and the union of these blocks has n!/(n− k)! elements. Thus C(n, k) = n!

k!(n−k)! .

4.3.3. Note that N(γ) = 0 unless γ ∈ P8 or γ ∈ P5. In the former case, N(γ) =
(
8
3

)
= 56 and in the

latter case, N(γ) =
(
2
1

)(
3
1

)
= 6. Thus there are (56 + 4× 6)/16 = 5 necklaces.

4.3.5 (a) The second line consists of the first line circularly shifted by c, an integer between 0 and
n− 1; i.e., the second line is s1, s2, . . . , sn, where st = c + t if this is at most n and c + t− n,
otherwise.

(b) In addition to the elements of the cyclic group, we have permutations whose second lines are
cyclic shifts of n, . . . , 2, 1.

(c) There are 0, 1 or 2 cycles of length 1 and the remaining cycles are all of length 2. If n is
odd, there is always exactly one cycle of length 1. If n is even, there is never exactly one cycle
of length 1. You can write down the cycles as follows. All numbers that are mentioned are
understood to have an appropriate multiple of n added to (or subtracted from) them so that
they lie between 1 and n inclusive. If n is odd, choose a cycle (k). The remaining cycles are
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(k − t, k + t) where 1 ≤ t < n/2. If n is even, choose k ≤ n/2. There are two ways to proceed.
First, we could have all cycles of the form (k − t + 1, k + t) where 1 ≤ t ≤ n/2. Second, we
could have (k), (k + n/2) and all cycles of the form (k − t, k + t) where 1 ≤ t < n/2.

4.3.7. The proof in the text shows that the right side of the given equality is |G|∑g∈G N(g). By
(4.20), the left side is ∑

y∈S

|Ix| = |G|
∑

y∈S

1
|By| .

The rest of the proof follows easily by adapting what was done in the text. This seems to be a
shorter proof than the one in the text. Why didn’t we use it? First, it’s not particularly shorter;
however, it is a bit cleaner. Unfortunately, it requires starting with the completely unmotivated
double summation in which we have interchanged the order of the sums.

Section 5.1
5.1.1. The sum is the number of ends of edges since, if x and y are the ends of an edge, the edge
contributes 1 to the value of d(x) and 1 to the value of d(y). Since each edge has two ends, the sum
is twice the number of edges.

5.1.3. The graph with

ϕ =




a b c d e f g h i j k
C C F A H E E A D A A
C G G H H H F H G D F


 .

is isomorphic to Q. The correspondence between vertices is given by
(

A B C D E F G H
H A C E F D G B

)

where the top row corresponds to the vertices of Q. The graph with

E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and ϕ =




1 2 3 4 5 6 7 8 9 10 11
A E E E F G H B C D E
G H E F G H B C D D H


 .

is not isomorphic to Q. One edge needs to be deleted from P ′(Q) and one added.

5.1.5 (a) There is no graph Q with degree sequence (1, 1, 2, 3, 3, 5) since the sum of the degrees is
odd.

(b) There are such a graph. You should draw an example.

(c) Up to labeling, the graph is unique. Take V = {1, . . . , 6} and

E =
{{1, 6}, {2, 6}, {2, 4}, {3, 6}, {3, 5}, {4, 6}, {4, 5}, {5, 6}}

(d) A graph with degree sequence (3, 3, 3, 3) has (3 + 3 + 3 + 3)/2 = 6 edges and, of course 4
vertices. That is the maximum

(
4
2

)
of edges that a graph with 4 vertices can have. It is easy to

construct such a graph. This graph is called the complete graph on 4 vertices.

(f) There is no simple graph (or graph without loops or parallel edges) with degree sequence
(3, 3, 3, 5).

(g) Similar arguments to the (3, 3, 3, 3) case apply to the complete graph with degree sequence
(4, 4, 4, 4, 4).
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A B all injections surjections

L L ba b(b− 1) · · · (b− a + 1) b!S(a, b)

L U
∑

k≤b S(a, k) 1 S(a, b)

U L

(
a + b− 1

a

) (
b

a

) (
a− 1

a− b

)

U U
∑

k≤b p(a, k) 1 p(a, b)

Figure S.5.1 Some basic enumeration problems.

Section 5.2
5.2.1. Let ν and ε be the bijections.

(a) This follows from the fact that ν and ε are bijections.

(b) This can be seen intuitively from the drawing of the unlabeled graph. If you want a more formal
proof, first note that the degree of a vertex v is the number of edges e such that v ∈ ϕ(e). Now
use the fact that v ∈ ϕ(e) is equivalent to ν(v) ∈ ϕ′(ε(e)).

5.2.3 (a) This is exactly like the next problem with the transpose, t, replaced by inverse, −1,
everywhere.

(b) Let I be the n × n identity matrix. Since A = IAIt, A ' A. Suppose that A ' B. Then
B = PAP t for some nonsingular P . Multiplying on the left by P−1 and on the right by
(P−1)t = (P t)−1, we have

(P−1)B(P−1)t = (P−1P )A(P t(P−1)t) = (P−1P )A(P t(P t)−1) = A.

Thus B ' A. Suppose that A ' B ' C. Then we have nonsingular P and Q such that
B = PAP t and C = QBQt. Thus C = Q(PAP t)Qt = (QP )A(P tQt) = (QP )A(QP )t. This
proves transitivity.

5.2.5. Let E ∈ P2(V ) and E′ ∈ P2(V ′). Write G = (V,E) ' (V ′, E′) = G′ if and only if there is a
bijection ν: V → V ′ such that {u, v} ∈ E if and only if {ν(u), ν(v)} ∈ V ′.

We could show that this is an equivalence relation by adapting the proof in Example 5.5.
An alternative is to show how this definition leads to the equivalence relation for G and G′ in-
terpreted as graphs. We’ll take this approach. In this case ϕ and ϕ′ are identity maps. Define
ε({u, v}) = {ν(u), ν(v)}. By our definition in the previous paragraph, ε:E → E′ is a bijection.
Since ϕ and ϕ′ are the identity, the requirement that ϕ′(ε(e)) = ν(ϕ(e)) in the definition of graph
isomorphism is satisfied.

5.2.7. The table is shown in Figure S.5.1. The entries which are 1 follow when you realize what is
being counted. The LL row corresponds to ordered samples and the UL row to unordered samples,
which have been considered in Chapter 1. The UL-surjection entry comes from the realization that
our sample allows repetition but must include every element in b so that we are only free to choose
a − b additional elements. In the LU row, the fact that the range is unlabeled means that we can
only distinguish functions that have different coimages. The UU row is associated with partitions of
numbers. We use p(n, k) to denote the number of partitions of n having exactly k parts.
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Section 5.3

5.3.1. Since E ⊆ P2(V ), we have a simple graph. Regardless of whether you are in set C or S,
following an edge takes you into the other set. Thus, following a path with an odd number of edges
takes you to the opposite set from where you started while a path with an even number of edges
takes you back to your starting set. Since a cycle returns to its starting vertex, it obviously returns
to its starting set.

5.3.3 (a) Let e = {u, v} and let f = {v, w} be the other edge. Since G is simple, u 6= w. Since e is
a cut edge, u and v are in separate components of (V, E−{e}). Thus so are u and w. Since the
graph induced by V − {v} is a subgraph of (V,E − {e}), u and w are in separate components
of it as well.

(b) Take two triangles and identify their tops. The merged top is a cut vertex but the graph has
no isthmus.

(c) We will prove that e is a cut edge if and only if its ends u and v, say, lie in different components
of G′ = (V, E − {e}). The result will then follow because, first, if C is a cycle containing e,
removal of e does not leave its ends in different components, and, second, if u and v are in the
same components of G′, then there is a path P connecting them in G′ and P and e form a
cycle in G.

Now back to the original claim. If u and v are in different components of G′, then e is a
cut edge. Suppose e is a cut edge of G. Since G is connected and every path in G that is not
a path in G′ contains e, it follows that if x and y are in different components of G′ any path
connecting them in G contains e. Let P be such a path and let u be the end of e first reached
on P when starting from x. It follows that x and u are in one component of G′ and that y and
v (the other end of e) are one component, too. Since x and y are in different components, so
are u and v.

(d) We claim that v ∈ V is a cut vertex of G if and only if there are two edges e and e′ both
containing v such that no cycle of G contains both e and e′.

Proof. Suppose that v is a cut vertex. Let x and y belong to different components of the
graph G′′ induced by V − {v}. Any path from x to y in G must include v. Let P be such a
path and let e and e′ be the two edges in P that contain v. If e and e′ were on a cycle C in
G, then we could remove e and e′ from P and add on C − {e, e′} to obtain a route from x
to y that does not go through v. Since this contradicts the fact that x and y are in different
components of G”, it follows that e and e′ do not lie in a cycle.

The steps can be reversed to prove that if e and e′ are edges incident with v that do not
lie on a cycle, then v is a cut vertex: Let x and y be the other vertices on e and e′. Since e and
e′ do not lie on a cycle, every path from x to y must include either e or e′ (or both), and hence
includes v. Since there is no path from x to y not including v, they are in different components
of G”.

5.3.5 (a) The graph is not Eulerian. The longest trail has 5 edges, the longest circuit has 4 edges.

(b) The longest trail has 9 edges, the longest circuit has 8 edges.

(c) The longest trail has 13 edges (an Eulerian trail starting at C and ending at D). The longest
circuit has 12 edges.

(d) This graph has an Eulerian circuit (12 edges).
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Section 5.4
5.4.1. We first prove that (b) and (c) are equivalent. We do this by showing that the negation of
(b) and the negation of (c) are equivalent. Suppose u 6= v are on a cycle of G. By Theorem 5.3,
there are two paths from u to v. Conversely, suppose there are two paths from u to v. Call them
u = x0, x1, . . . , xk = v and u = y0, y1, . . . , ym = v. Let i be the smallest index such that xi 6= yi. We
may assume that i = 1 for, if not, redefine u = xi−1. On the new paths, let xa = yb be the smallest
a > 0 for which some xj is on the y path. The walk

u = x0, x1, . . . , xa = yb, yb−1, . . . , y0 = u

has no repeated vertices except the first and last and so is a cycle. (A picture may help you visualize
what is going on. Draw the x path intersecting the y path several times.)

We now prove that (d) implies (b). Suppose that G has a cycle, v0, v1, . . . , vk, v0. Remove the
edge {v0, vk}. In any walk that uses that edge, replace it with the path v0, v1, . . . , vk or its reverse,
as appropriate. Thus the graph is still connected and so the edge {v0, vk} contradicts (d).

5.4.3 (a) By Exercise 5.1.1, we have
∑

v∈V d(v) = 2|E|. By 5.4(e), |E| = |V | − 1. Since

2|V | =
∑

v∈V

2, we have 2 = 2|V | − 2|E| =
∑

v∈V

(2− d(v)).

(b) We give three solutions. The first uses the previous result. The second uses the fact that each
tree except the single vertex has at least two leaves. The third uses the fact that trees have no
cycles.

Suppose that T is more than just a single vertex. Since T is connected, d(v) 6= 0 for all v.
Let nk be the number of vertices of T of degree k. By the previous result,

∑
k≥1(2− k)nk = 2.

Rearranging gives n1 = 2 +
∑

k≥2(k − 2)nk. If nm ≥ 1, the sum is at least m− 2.
For the second solution, remove the vertex of degree m to obtain m separate trees. Each

tree is either a single vertex, which is a leaf of the original tree, or has at least two leaves, one
of which must be a leaf of the original tree.

For the third solution, let v be the vertex of degree m and let {v, xi} be the edges
containing v. Each path starting v, xi must eventually reach a leaf since there are no cycles.
Call the leaf yi. These leaves are distinct since, if yi = yj , the walk v, xi, . . . , yi = yj , . . . , xj , v
would lead to a cycle.

(c) Let the vertices be u and vi for 1 ≤ i ≤ m. Let the edges be {u, vi} for 1 ≤ i ≤ m.

(d) Let N = n3 + n4 + · · ·, the number of vertices of degree 3 or greater. Note that k − 2 ≥ 1
for k ≥ 3. By our earlier formula, n1 ≥ 2 + N . If n2 = 0, N = |V | − n1 and so we have
n1 ≥ 2 + |V | − n1. Thus n1 ≥ 1 + |V |/2. Similarly, if n2 = 1, N = |V | − n1 − 1 and, with a bit
of algebra, n1 ≥ (1 + |V |)/2.

(e) A careful analysis of the previous argument shows that the number of leaves will be closest to
|V |/2 if we avoid vertices with high degrees. Thus we will try to make our vertices of degree
three or less. We will construct some RP-trees, Tk with k leaves. Let T1 the isolated vertex. For
k > 1, let Tk have two children, one a single vertex and the other the root of Tk−1. Clearly Tk

has one more leaf and one more nonleaf than Tk−1. Thus the difference between the number
of leaves and nonleaves is the same for all Tk. For T1 it is one.

5.4.5. Since the tree has at least 3 vertices, it has at least 3 − 1 = 2 edges. Let e = {u, v} be an
edge. Since there is another edge and a tree is connected, at least one of u and v must lie on another
edge besides e. Suppose that u does. It is fairly easy to see that u is a cut vertex and that e is a cut
edge.
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5.4.7 (a) The idea is that for a rooted planar tree of height h, having at most 2 children for each
non-leaf, the tree with the most leaves occurs when each non-leaf vertex has exactly 2 children.
You should sketch some cases and make sure you understand this point. For this case l = 2h

and so log2(l) = h. Any other rooted planar tree of height h, having most 2 children for each
non-leaf, is a subtree (with the same root) of this maximal-leaf binary tree and thus has fewer
leaves.

(b) The height h can be arbitrarily large.

(c) h = l − 1.

(d) dlog2(l)e is a lower bound for the height of any binary tree with l leaves. It is easy to see that
you can construct a full binary tree with l leaves and height dlog2(l)e.

(e) dlog2(l)e is the minimal height of a binary tree.

5.4.9 (a) A binary tree with 35 leaves and height 100 is possible.

(b) A full binary tree with 21 leaves can have height at most 20. So such a tree of height 21 is
impossible.

(c) A binary tree of height 5 can have at most 32 leaves. So one with 33 leaves is impossible.

(d) A full binary tree with 65 leaves has minimal height dlog2(65)e = 7. Thus a full binary tree
with 65 leaves and height 6 is impossible.

5.4.11 (a) Breadth-first: MIAJKCEHLBFGD,
Depth-first: MICIEIHFHGHDHIMAMJMKLKBKM ,
Pre-order: MICEHFGDAJKLB,
Post-order: CEFGDHIAJLBKM .

(b) The tree is the same as in part (a), reflected about the vertical axis, with vertices A and J
removed.

(c) It is not possible to reconstruct a rooted plane tree given just its pre-order vertex list. A
counterexample can be found using just three vertices.

(d) It is possible to reconstruct a rooted plane tree given its pre-order and post-order vertex list.
If the root is X and the first child of the root is Y , it is possible to reconstruct the pre-order
and post-order vertex lists of the subtree rooted at Y from the pre-order and post-order vertex
lists of the tree. In the same manner, you can reconstruct the pre-order and post-order vertex
lists of the subtrees rooted at the other children of the root X. Now do the same trick on these
subtrees. Try this approach on an example.
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Section 5.5
5.5.1. Let D be the domain suggested in the hint and define f :D → P2(V ) by f((x, y)) = {x, y}.
Let G(D) = (V, ψ) where ψ(e) = f(ϕ(e)).

5.5.3. Let V = {u, v} and E = {(u, v), (v, u)}.
5.5.5. You can use the notation and proof of Example 5.5 provided you change all references to
two element sets to references to ordered pairs. This means replacing {x, y} with (x, y), {ν(x), ν(y)}
with (ν(x), ν(y)) and P2(Vi) with Vi × Vi.

5.5.7. “The statements are all equivalent” means that, given any two statements v and w, we
have a proof that v implies w. Suppose D is strongly connected. Then there is a directed path
v = v1, v2, . . . , vk = w. That means we have proved v1 implies v2, that v2 implies v3 and so on.
Hence v1 implies vk.

5.5.9. Let e = (u1, u2). For i = 2, 3, . . ., as long as ui 6= u1 choose an edge (ui, ui+1) that has not
be used so far. It is not hard to see that din(ui) = dout(ui) implies this can be done. In this way we
obtain a directed trail starting and ending at u1. This may not be a cycle, but a cycle containing e
can be extracted from it by deleting some edges.

5.5.11 (a) It’s easy to see this pictorially: Suppose there were an isthmus e = {u, v}. Then G
consists of the edge e, a graph G1 containing u, and another graph G2 containing v. Suppose e
is directed as (u, v). Clearly one can get from G1 to G2 but one cannot get back along directed
edges, contradicting strongly connectedness.

Here is a more formal proof. Suppose there were such a path, say v = v1, v2, . . . , vk = u
It does not contain the directed edge e (since e goes in the wrong direction). Now look at the
original undirected graph. We claim removal of {u, v} does not disconnect it. The only problem
would be a path that used {u, v} to get from, say x to y, say x, . . . , x′, u, v, y′, . . . , y. The walk
x, . . . , x′, vk, . . . , v2, v1, y

′, . . . , y connects u and v without using the edge {u, v}.
(b) See Exercise 6.3.14 (p. 170).

5.5.13 (a) For all x ∈ S, x|x. For all x, y ∈ S, if x|y and x 6= y, then y does not divide x. For all
x, y, z ∈ S, x|y, y|z implies that x|z.

(b) The covering relation

H = {(2, 4), (2, 6), (2, 10), (2, 14), (3, 6), (3, 9), (3, 15), (4, 8), (4, 12), (5, 10), (5, 15), (6, 12), (7, 14)}.

5.5.15 (a) There are nn−2 trees. Since a tree with n vertices has n− 1 edges, the answer is zero if

q 6= n−1. If q = n−1, there are
( (n

2)
n−1

)
graphs. Thus the answer is nn−2

( (n
2)

n−1

)−1

when q = n−1.

(b) We have

( (
n
2

)

n− 1

)
<

(
n
2

)n−1

(n− 1)!
=

nn−1(n− 1)n−1

2n−1 (n− 1)!
<

nn−1

2n−1/en−1
=

(ne

2

)n−1

.

Using this in the answer to (a) gives the result we want. It turns out that

nn−2

( (
n
2

)

n− 1

)−1

∼
√

π/2n (2/e)n,

which differs from our estimate by a constant times n1/2.
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Section 5.6

5.6.1. Let A and B be the partition of the vertices guaranteed by the definition of a bipartite graph.
Let k = |A|, number the vertices in A with 1 to k and those is B with k + 1 to n. Since no edges
connect vertices in A to each other, A(G) has a k×k block of zeroes in its upper left corner. Similarly
B gives a block in the lower right corner.

5.6.3 (a) a
(k)
i,j is the sum over all t1, . . . , tk−1 of ai,t1at1,t2 · · · atk−1,j . Each of these products is 0 or

1, so the sum is nonzero if and only if some product is nonzero. This happens if and only if
each factor in the product is nonzero. This happens if and only if the vertices i, t1, . . . , tk−1, j
form a walk.

(b) We can construct a path from a walk by jumping over pieces that form cycles. Thus the shortest
walk from i to j is a path. Here’s a more formal argument. Suppose that W = (i, t, . . . , v, j) is
the shortest walk from i to j. If it is not a path, then there must be repeated vertices in the
list. Let u be such a vertex. Remove all vertices from the sequence after the first occurrence of
u up to and including the last occurrence of u. The result is a shorter walk, contradicting the
minimality of W .

(c) The obvious idea is to repeat the previous statement with i = j: “The shortest walk from i to
i is a cycle.” This is not true. If {i, j} is an edge, then i, j, i is the shortest walk from i to j but
it is not a cycle. The result would be true if we were looking at oriented simple graphs because
an edge can be traversed in only one direction. All we can claim is that any odd length walk
from i to i contains a cycle.

We can modify the situation a bit by looking at an edge {i, j} of the graph. Let H be
the graph obtained by removing it; i.e., by setting ai,j = aj,i = 0. The shortest walk from j to
i in H together with the edge {i, j} is a cycle of G. This follows from the previous result and
the definitions of path and cycle.

(d) Following the hint, Bk =
∑k

t=0

(
k
t

)
Bt by the binomial theorem. Since

(
k
t

)
> 0, b

(k)
i,j is nonzero

if and only if a
(t)
i,j 6= 0 for some t with 0 ≤ t ≤ k. t = 0 gives the identity matrix, so b

(k)
i,i 6= 0 for

all k. For i 6= j, b
(k)
i,j 6= 0 if and only if there is a walk from i to j for some t ≤ k, and thus if

and only if there is a path for some t ≤ k. Since paths of length t contain t+1 distinct vertices,
no path is longer than n− 1. Thus there is a path from i to j 6= i if and only if b

(k)
i,j 6= 0 for all

k ≥ n− 1.

5.6.5. We claim that A(D) is nilpotent if and only if there is no vertex i such that there is a walk
from i to i (except the trivial walk consisting of just i).

First suppose that there is a nontrivial walk from i to i containing k edges. Let C = A(D)k. It
follows that all entries of C are nonnegative and ci,i 6= 0. Thus c

(m)
i,i 6= 0 for all m > 0. Hence A(D)

is not nilpotent.
Conversely, suppose that A(D) is not nilpotent. Let n be the number of vertices in D and

suppose that i and j are such that a
(n)
i,j 6= 0, which we can do since A(D) is not nilpotent. There

must be a walk i = v0, v1, v2, . . . , vn = j. Since this sequence contains n + 1 vertices, there must be
a repeated vertex. Suppose that k < l and vk = vl. The sequence vk, vk+1, . . . , vl is a nontrivial walk
from vk to itself.
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Section 6.1

6.1.1 (a) One description of a tree is: a connected graph such that removal of any edge disconnects
the tree. Since an edge connects only two vertices, we will obtain only two components by
removing it.

(b) Note that T with e removed and f added is a spanning tree. Since T has minimum weight, the
result follows.

(c) The graph must have a cycle containing e. Since one end of e is in T1 and the other in T2, the
cycle must contain another connector besides e.

(d) Since T ∗ with e removed and f added is a spanning tree, the algorithm would have removed f
instead of e if λ(f) > λ(e).

(e) By (b) and (d), λ(f) = λ(e). Since adding f connects T1 and T2, the result is a spanning tree.

(f) Suppose T ∗ is not a minimum weight spanning tree. Let T be a minimum weight spanning tree
so that the event in (a) occurs as late as possible. It was proven in (e) that we can replace T
with another minimum weight spanning tree such that the disagreement between T and T ∗, if
any, occurs later in the algorithm. This contradicts the definition of T .

6.1.3 (b) Let Q1 and Q2 be two bicomponents of G, let v1 be a vertex of Q1, and let v2 be a vertex
of Q2. Since G is connected, there is a path in G from v1 to v2, say x1, . . . , xp. You should
convince yourself that the following pseudocode constructs a walk w1, w2, . . . in B(G) from Q1

to Q2.

Set w1 = Q1, j=2, and k = 0.
While there is an xi ∈ P (G) with i > k.

Let i > k be the least i for which xi ∈ P (G).
If i = p

Set Q = Q2.

Else

Let Q be the bicomponent containing {xi, xi+1}.
End if

Set wj = xi, wj+1 = Q, k = i, and j = j + 2.
End while

(c) Suppose there is a cycle in B(G), say v1, Q1, . . . , vk, Qk, v1, where the Qi are distinct bicompo-
nents and the vi are distinct vertices. Set vk+1 = v1. By the definitions, there is a path in Qi

from vi to vi+1. Replace each Qi in the previous cycle with these paths after removing the end-
points vi and vi+1 from the paths. The result is a cycle in G. Since this is a cycle, all vertices
on it lie in the same bicomponent, which is a contradiction since the original cycle contained
more than one Qi.

(d) Let v be an articulation point of the simple graph G. By definition, there are vertices x and
y such that every path from x to y contains v. From this one can prove that there are edges
e = {v, x′} and f = {v, y′} such that every path from x′ to y′ contains v. It follows that e and
f are in different bicomponents. Thus v lies in more than one bicomponent.

Suppose that v lies in two bicomponents. There are edges e = {v, w} and f = {v, z} such
that e 6∼ f . It follows that every path from w to z contains v and so v is an articulation point.
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6.1.5 (a) Since there are no cycles, each component must be a tree. If a component has ni vertices,
then it has ni − 1 edges since it is a tree. Since

∑
ni over all components is n and

∑
(ni − 1)

over all components is k, n− k is the number of components.

(b) By the previous part, Hk+1 has one less component than Gk does. Thus at least one component
C of Hk+1 has vertices from two or more components of Gk. By the connectivity of C, there
must be an edge e of C that joins vertices from different components of Gk. If this edge is
added to Gk, no cycles arise.

(c) By the definition of the algorithm, it is clear that λ(g1) ≤ λ(e1). Suppose that λ(gi) ≤ λ(ei)
for 1 ≤ i ≤ k. By the previous part, there is some ej with 1 ≤ j ≤ k + 1 such that Gk together
with ej has no cycles. By the definition of the algorithm, it follows that λ(gk+1) ≤ λ(ej). Since
λ(ej) ≤ λ(ek+1) by the definition of the ei’s, we are done.

6.1.7 (a) Hint: For (1) there are four spanning trees. For (2) there are 8 spanning trees. For (3)
there are 16 spanning trees.

(b) Hint: For (1) there is one. For (2) there are two. For (3) there are two.

(c) Hint: For (1) there are two. For (2) there are four. For (3) there are 6.

(d) Hint: For (1) there are two. For (2) there are three. For (3) there are 6.

6.1.9 (a) Hint: There are 21 vertices, so the minimal spanning tree has 20 edges. Its weight is 30.

(b) Hint: Its weight is 30..

(c) Hint: Its weight is 30.

(d) Hint: Note that K is a the only vertex in common to the two bicomponents of this graph.
Whenever this happens (two bicomponents, common vertex), the depth-first spanning tree
rooted at that common vertex has exactly two “principal subtrees” at the root. In other words,
the root of the depth-first spanning tree has degree two. Finding depth first spanning trees of
minimal weight is, in general, difficult. You might try it on this example.

Section 6.2
6.2.1. This is just a matter of a little algebra.

6.2.3 (a) To color G, first color the vertices of H AND then color the vertices of K. By the Rule
of Product, PG(x) = PH(x)PK(x).

(b) Let v be the common vertex. There is an obvious bijection between pairs of colorings (λH , λK)
of H and K with λH(v) = λK(v) and colorings of G. We claim the number of such pairs is
PH(x)

(
PK(x)/x

)
. To see this, note that, in the colorings of K counted by PK(x), each of the

x ways to color v occurs equally often and so 1/x of the colorings will have λK(v) equal to the
color given by λH(v).

(c) The answer is PH(x)PK(x)(x− 1)/x. We can prove this directly, but we can also use (b) and
(6.4) as follows. Let e = {v, w}. By the construction of G, PG−e(x) = PH(x)PK(x). By (b),
PGe(x) = PH(x)PK(x)/x. Now apply (6.4).

6.2.5. Let the solution be Pn(x). Clearly P1(x) = x(x − 1), so we may suppose that n ≥ 2. Apply
deletion and contraction to the edge {(1, 1), (1, 2)}. Deletion gives a ladder with two ends sticking out
and so its chromatic polynomial is (x− 1)2Pn−1(x). Contraction gives a ladder with the contracted
vertex joined to two adjacent vertices. Once the ladder is colored, there are x− 2 ways to color the
contracted vertex. Thus we have

Pn(x) = (x− 1)2Pn−1(x)− (x− 2)Pn−1(x) = (x2 − 3x + 3)Pn−1(x).

The value for Pn(x) now follows easily.
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6.2.7. The answer is

x8 − 12x7 + 66x6 − 214x5 + 441x4 − 572x3 + 423x2 − 133x.

There seems to be no really easy way to derive this. Here’s one approach which makes use of
Exercise 6.2.3 and PZn(x) for n = 3, 4, 5. Label the vertices reading around one face with a, b, c, d
and around the opposite face with A, B,C, D so that {a,A} is an edge, etc. If the edge {a,A} is
contracted, call the new vertex α. Introduce β, γ and δ similarly.

Let e1 = {a,A} and e2 = {b, B}. Note that G − e1 − e2 consists of three squares joined by
common edges and that H = Ge1 − e2 is equivalent to (G− e1)e2 . We do H in the next paragraph.
In K = Ge1e2 , let f = {α, β}. K − f is two triangles and a square joined by common edges and Kf

is a square an a vertex v joined to the vertices of the square. By first coloring v and then the square,
we see that PKf

(x) = xPZ4(x− 1).
Let f1 = {c, C}, f2 = {d,D} and f3 = {β, γ}. Then

• H − f1 − f2 is two Z5’s sharing β;
• (H−f1)f2 is easy to do if you consider two cases depending on whether β and δ have the same

or different colors, giving x(x− 1)(x− 2)4 + x(x− 1)4;
• Hf1 − f3 is a Z5 and a triangle with a common edge and
• Hf1f3 are three triangles joined by common edges.

6.2.9. This can be done by induction on the number of edges. The starting situation involves some
number n of vertices with no edges. Since the chromatic polynomial is xn, the result is proved for
the starting condition.

Now for the induction. Deletion does not change the number of vertices, but reduces the number
of edges. By induction, it gives a polynomial for which the coefficient of xk is a nonnegative multiple
of (−1)n−k. Contraction decreases both the number of vertices and the number of edges by 1 and so
gives a polynomial for which the coefficient of xk is a nonnegative multiple of (−1)n−1−k. Subtracting
the two polynomials gives one where the coefficient of xk is an nonnegative multiple of (−1)n−k.

Section 6.3
6.3.1. Every face must contain at least four edges and each side of an edge contributes to a face.
Thus 4f ≥ (edge sides) = 2e. From Euler’s relation,

2 = v − e + f ≥ v − e + e/2 = (2v − e)/2

and so e ≥ 2v − 4.

6.3.3 (a) We have 2e = fdf and 2e = vdv. Use this to eliminate v and f in Euler’s relation.

(b) They are cycles.

(c) If df ≥ 4 and dv ≥ 4, we would have 0 < 2/df + 2/dv − 1 ≤ 0, a contradiction. Thus at least
one of dv and df is 3. Since dv ≥ 3, we have 2/dv ≤ 2/3. Thus

0 <
2
df

+
2
dv
− 1 ≤ 2

df
− 1

3

and so df < 2/(1/3) = 6. Since df is an integer, df ≤ 5. Since df ≥ 3 for a simple graph,
interchanging f and v in the above gives us dv ≤ 5.

(d) Altogether there are 5 possibilities for the pair (dv, df ) by the previous part of the exercise.
Given df and dv, we can solve (6.9) for e. Then vdv = 2e and fdf = 2e give v and f . The five
graphs turn out to be the Platonic solids with the interiors removed. (They are the tetrahedron,
cube, octahedron, dodecahedron and icosahedron.)
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6.3.5. The value of c is zero. Suppose when we cut as directed we cut through k edges. Each of
these edges now becomes two, giving us k new edges. The same happens with the k faces. On each
of the circles that we fill in with, we also get k edges and k vertices. The two circles give us 2 new
faces. In summary, if we originally had |V | vertices, |E| edges and f faces on the torus, we now have
a graph embedded on the sphere with V |+2k vertices, |E|+k +2k edges, and f +k +2 faces. From
Euler’s relation on the sphere,

2 = (|V |+ 2k)− (|E|+ 3k) + (f + k + 2) = |V | − |E|+ f.

Thus |V | − |E|+ f = 0.
There’s a subtle issue here: We described the cut as if each edge and face it encountered was

different. This may not be the case, an edge (and face) can twist around the torus so that the cut
meets it more than once; however, the counts are still correct. One way to see this is to imagine
what happens if we cut around the face and stretch it flat. Stretching will distort our “bracelet cut”
into some sort of curve that may cut through the face several times. Every time it passes through
the face it creates another face, two edges and two vertices.

6.3.7. One method is to list all the simple planar graphs with V = 5 and find the least colorings
for them. We use a theoretical argument instead.

The lex least proper coloring of k ⊆ V uses at most the first k colors. If it uses all k colors,
then vertex k must be connected to each of the other vertices and the first k − 1 vertices must use
all of the first k − 1 colors.

Let’s apply these observations with k = 5, 4, 3 and 2 to a graph whose lex least coloring takes
5 colors. With k = 5, we see that vertex 5 is connected to each of the first 4 vertices and they use
4 different colors. Now, with k = 4, we see that vertex 4 is connected to each of the first 3 vertices
and they use 3 different colors. Doing the same thing with k = 3 and k = 2, we finally see that every
vertex is connected to every other; i.e., the graph is K5, which is not planar.

6.3.9. The argument for degree 4 is correct. For degree 5, we can assume, perhaps after rotating
and or flipping the graph, that y1, . . . , y5 are assigned colors c1, c2, c3, c4 and c2, respectively.
Suppose we look at y1 and y3 as in the text. The argument given there is okay if we get y1 and y3

in separate components. If they are in the same component, we end up switching colors c2 and c4

in the component of the subgraph colored by c2 and c4 that contains v4. The colors of y1, . . . , y4

are now c1, c2, c3 and c2. If y5 was not in the same component with y4, it is colored c2 and we are
done. Unfortunately, if y4 and y5 are in the same component, its color is switched to c4. You should
convince yourself that there is no way to arrange things to avoid this possibility.

6.3.11 (a) We start with λ =
(

1 2 3 4 5 6 7
1 7

)
. A cycle is (1, 2, 3, 4, 7), so we now have λ =(

1 2 3 4 5 6 7
1 2 3 4 7

)
. Another cycle is (1, 2, 5, 6, 7), so we look at the path 2, 5, 6, 7 and choose

λ =
(

1 2 3 4 5 6 7
1 2 3 4 a b 7

)
where 2 < a < b < 7 and λ is an injection. Depending on the choice of

a and b compared to 3 and 4, we have get five different 1, 7-labelings. There could be others.

(b) Any 1, 7-labeling can be converted to a 7, 1-labeling simply by defining λ7,1(x) = 8− λ1,7(x).

6.3.13. We’ll find all s, t-labelings. Suppose K3,3 consists of all possible edges between 1, 2, 3 and
a, b, c. By symmetry, we may assume that λ(1) = 1 and either λ(2) = 6 or λ(a) = 6. In the former
case, condition (c) requires that λ(3) be less than 5 and more than 2. Up to symmetry, this gives us
two answers:

λ =
(

1 2 3 a b c
1 6 3 2 4 5

)
λ =

(
1 2 3 a b c
1 6 4 2 3 5

)
.

Now suppose λ(a) = 6. In this case, one of λ(2) and λ(3) must be greater than λ(b) and λ(c). Thus,
up to symmetry, we have λ(2) = 5. Similarly λ(b) = 2. This leads to two more answers:

λ =
(

1 2 3 a b c
1 5 3 6 2 5

)
λ =

(
1 2 3 a b c
1 5 4 6 2 5

)
.
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6.3.15. We know from the text that a biconnected graph has an st-labeling. If |V | = 2, the result
is trivial. Suppose that we have an st-labeling and that {x, y} is an edge different from {s, t}. We
may assume that λ(x) < λ(y). By (iii) in the definition of st-labeling, we can find a sequence
y = w1, w2, . . . = t such that λ(wi) is strictly increasing and such that {wi, wi+1} ∈ E. Similarly, we
can find x = u1, u2, . . . = s. These two paths with {s, t} and {x, y} form a cycle of G and so {x, y}
and {s, t} are in the same bicomponent.

Section 6.4

6.4.1 (a) The value of a maximum flow is 45. Every maximum flow f will have f(q, f) = 10. Some
other values of f are also determined uniquely, but many are not; for example, the flow into
r can have any value from 15 to 20. Of course, the flows on the minimum cut set are unique.
There are four minimum cut sets. The one found using A(f) is

{{r, h}, {f, a}, {k, e}, {y, u}, {z, u}}.

The others are obtained

(i) by deleting {r, h} and adding {h, a} and {h, c},
(ii) by deleting {y, u} and {z, u} and adding {u, n}, or

(iii) by doing both (i) and (ii).

(b) See the previous solution.

(c) The value of a maximum flow is 25. Every maximum flow f will have f(v, q) = 10. Some other
values of f are also determined uniquely, but many are not. There is just one minimum cut
set:

{{c, d}, {k, e}, {r, x}, {w, x}}.

(d) See the previous solution. Since we do not have tools for finding all minimum cut sets, you
may not have been able to prove that the minimum cut set was unique.

6.4.3. Since no complete augmentable path exists, Din ⊆ A ⊆ V −Dout. Since b(v) = 0 for v 6∈ D, it
follows that

∑
v∈A b(v) =

∑
v∈Din

b(v), which is the definition of the value of a flow. Recall that b(v)
is the sum of all flows out of v minus the sum of all flows into v. It follows that for e = (x, y) ∈ E,
b(x) has a contribution of f(x, y) and b(y) has a contribution of −f(e). We distinguish four cases
according as x and y are in A or B and ask what f(e) contributes to

∑
v∈A b(v).

(i) x ∈ B, y ∈ B: Then f(e) contributes nothing to the sum.

(ii) x ∈ A, y ∈ A: Then f(e) contributes both f(e) and −f(e), which gives a net contribution
of zero.

(iii) x ∈ A, y ∈ B; i.e., (e) ∈ FROM(A,B): Then f(e) contributes f(e) to the sum.

(iv) x ∈ B, y ∈ A; i.e., (e) ∈ FROM(B,A): Then f(e) contributes −f(e) to the sum.

6.4.5 (a) Without examining the network in detail, we would need to let c′1 and c′2 (resp. c′3 and c′4)
be the sum of the capacities of edges leaving (resp. entering) the corresponding P ′i . That way
we can guarantee the capability of supplying (resp. removing) as much fluid as the pump could
possibly send out to (resp. get in from) other other sources. If we know all the maximum flows
for the original network, we may be able to improve on this: We need to set c′i to the largest
net flow out of (resp. into) Di for all maximum flows in the original network. This leads to no
improvement in this case.
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(b) Yes. Let f ′ be a flow in the new network shown for the exercise. With the c′i edges removed
and the P ′i pumps converted back to depots. If we eliminate these edges from f ′ we obtain a
flow f in the network of Figure 6.6. We’ll have value(f) = value(f ′) because the sum of the net
flows out of D1 and D2 for f equals the net flow out of D0 for f ′ because b(P ′1) = b(P ′2) = 0
for f ′.

6.4.7. Let f and g be two maximum flows and let A = A(f). By the proof of the Augmentable
Path Theorem, we see that value(g) = value(f) if and only if g(e) = c(e) for all e ∈ FROM(A,B)
and g(e) = 0 for all e ∈ FROM(B,A). It is tempting to conclude that therefore A = A(g), but this
does not follow immediately.

Here is a correct proof. As above, let A = A(f). If A 6= A(g), we can assume that there is some
v ∈ A(g) with v 6∈ A. (If not, interchange the names of f and g.) Let u1, u2, . . . be an augmentable
path for g that ends at v. Let δ be its increment. Since v 6∈ A, and u1 ∈ Din ⊆ A, there is an i
with ui ∈ A and ui+1 ∈ B. If e = (ui, ui+1) is the directed edge of G, then g(e) ≤ c(e) − δ and
e ∈ FROM(A,B). If e = (ui+1, ui) is the directed edge of G, then g(e) ≥ δ and e ∈ FROM(B,A).
In either case, the idea in the previous paragraph proves that value(g) < value(f), contradicting the
assumption that g is a maximum flow.

6.4.9 (a) This is trivial.

(b) Consider the sets when a is removed from them and the set An is removed. We have reduced
n by 1 and (6.12) still holds (but may the inequalities may not be strict). By induction, we are
done.

(c) By induction, there is an SDR for the Ai, i ∈ I. If the claimed inequality is true, then there
is also an SDR for the Bi, i ∈ n − X. Taken together, these give us our representatives. It
remains to prove the inequality. We have

⋃

i∈I∪R

Ai =
(⋃

i∈R

Bi

)
∪X,

where the last union is disjoint. Thus

∣∣∣∣
⋃

i∈R

Bi

∣∣∣∣ =
∣∣∣∣

⋃

i∈R∪I

Ai

∣∣∣∣− |X| ≥ |R ∪ I| − |I| = |R|.

6.4.11. The result in the previous exercise is valid when all edges are taken to be undirected. To
see this, construct a directed graph by replacing each edge {x, y} of G with the two edges (x, y) and
(y, x). The first part of the previous proof goes through. If a directed path e1, e2, . . . is constructed
from a flow, replace each edge (x, y) in the directed path with {x, y}. This gives what we will call
a pseudo-path. The same edge may appear twice in the pseudo-path because there may be two
directed edges ei = (x, y) and ej = (y, x) which give the same undirected edge. We may assume that
i < j. Replace the pseudo-path with the pseudo-path obtained from e1, . . . , ei−1, ej+1, . . .. Iterating
this process eventually leads to a path from u to v. (You may want to fill in some details about
that.)
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Section 6.5
6.5.1 (a) The probability that a vertex v has degree d is

(
n−1

d

)
pd(1−p)n−1−d since we must choose

d of the remaining n− 1 vertices to connect to v, then multiply by the probability of an edge
being present (p) or absent (1−p). Probabilities multiply since edges are independent in Gp(n).
Using linearity of expectation and summing over all n vertices, we get n

(
n−1

d

)
pd(1− p)n−1−d.

(b) If C is a potential 4-cycle of 4 vertices, let XC = 1 if the cycle is present and XC = 0 if it is not.
Then E(XC) = p4. We must multiply this by the number of choices for C; that is, the number
of potential 4-cycles. This number is

(
n
4

)× 3 = n(n−1)(n−2)(n−3)
4×2 , which can be derived in at

least two ways:
• Note that there are 3 ways to make a 4-cycle out of a set of 4 vertices.
• Choose an ordered list of 4 vertices that represent walking around a cycle. There are 4

vertices that could have been chosen as the starting vertex and 2 ways we could have
gone around the cycle.

(c) This is the same as the previous situation, except that now we must make sure the two edges
that cut across the 4-cycle are not present. Hence the answer is 3

(
n
4

)
p4(1− p)2.

6.5.3 (a) The probability of a cycle is the probability of the union of the sets GC . The probability
of the union of sets, is less than or equal to the sum of their separate probabilities; that is,
Pr(A ∪B ∪ · · ·) ≤ Pr(A) + Pr(B) + · · ·.

(b) The denominator is |G(n, k)|. The numerator counts graphs as follows. There are (c − 1)!
directed cycles. Since each cycle can be made directed in two ways, there are (c− 1)!/2 cycles.
Since we have used up c edges making the cycle, we must choose k−c edges from the remaining
N − c unused edges.

(c) Collect terms in (a) according to c = |C| and use (b). There are
(
n
c

)
c-subsets of n.

(d) The left side comes from writing
(

x
m

)
= x(x−1)···(x−m+1)

m! and doing some algebra. The inequality
comes from k!

(k−c)! < kc and x−j
y−j < x

y when y > x ≥ j.

6.5.5 (a) Let T contain a close to half the vertices as possible. If |V | = 2n, |T | = n and |V −T | = n.
Since G contains all edges, this choice of T gives us a bipartite subgraph with n2 edges. When
|V | = 2n+1, we take |T | = n and |V −T | = n+1, obtaining a bipartite subgraph with n(n+1)
edges.

(b) The example bound is |E|/2 and |E| = |P2(V )| = |V |(|V | − 1)/2. For |V | = 2n, we have
|E|/2 = n(2n− 1)/2 = n2 − n/2. Hence the bound is off by n/2. This may sound large, but
the relative error is small: Since (n2−n/2)/n2 = 1− 1/2n, the relative error is 1/|V |. We omit
similar calculations for |V | = 2n + 1.

(c) The idea is to construct the largest possible complete graph and then add edges in any manner
whatsoever. Let m be the largest integer such that k ≥ (

m
2

)
, choose S ⊆ V with |S| = m,

construct a complete graph on m vertices using
(
m
2

)
edges, and insert the remaining k − (

m
2

)
edges in any manner to form a simple graph G(V, E). By (a), the number of edges in a bipartite
subgraph of the complete graph on T has at least (m/2)2−m edges for some constant C Since m

is as large as possible, k <
(
m+1

2

)
< (m+1)2

2 . Thus m+1 >
√

2k. Also, since k ≥ (
m
2

)
> (m−1)2

2 ,
m− 1 <

√
2k. Hence the number of edges in bipartite subgraph is at least

(m/2)2 −m >

(√
2k − 1

)2

4
−
√

2k − 1,

Which equals k minus terms involving k1/2 and constants.
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σ • E δ comments on state

b s1 sd z 1a starting

s1 z sd z 1a part 1 sign seen

1a z 2 e 1a part 1 digits seen; accepting

sd z z z 1b decimal seen, no digits yet

1b z z e 1b part 1 after decimal; accepting

e s2 z z 2 E seen

s2 z z z 2 part 2 sign seen

2 z z z 2 part 2 digits seen; accepting

z z z z z error seen

Figure S.6.1 The transition table for a finite automaton that recognizes floating point numbers, the
possible inputs are sign (σ), decimal point (•), digit (δ) and exponent symbol (E). The comments explain
the states.

(d) Call the colors 1,2,3. Let Vi be the set of vertices colored with color i and let Ei,j be the set
of edges in G that connect vertices in Vi to vertices in Vj . Since |E| = |E0,1|+ |E0,2|+ |E1,2|,
at least one of |Ei,j | is at most |E|/3. Suppose it is E1,2. The bipartite subgraph whose edges
connect vertices in V0 to vertices in V1 ∪ V2 contains E − |E1,2| ≥ 2|E|/3 edges.

Section 6.6
6.6.1. The left column gives the input and the top row the states.

0 1 2 3 4
0 0 2 4 1 3
1 1 3 0 2 4

6.6.3. The states are 0, O1, E1 and R. In state 0, a zero has just been seen; in O1, an odd number
of ones; in E1, an even number. The start state is 0 and the accepting states are 0 and O1. The state
R is entered when we are in E1 and see a 0. Thereafter, R always steps to R regardless of input.
You should be able to finish the machine.

6.6.5. In our input, we let δ stand for any digit, since the transition is independent of which digit
it is. Similarly, σ stands for any sign. There is a bit of ambiguity as to whether the integer after
the E must have a sign. We assume not. The automaton contains three states that can transit to
themselves: recognizing digits before a decimal, recognizing digits after a decimal and recognizing
digits after the E. We call them 1a, 1b and 2. There is a bit of complication because of the need to
assure digits in the first part and, if it is present, in the second part. The transition table is given in
Figure S.6.1.

6.6.7 (a) We need states that keep track of how much money is held by the machine. This leads
us to states named 0, 5, . . . , 30. The output of the machine will be indicated by An, Bn, Cn
and n, where n indicates the amount of money returned and A, B and C indicate the item
delivered. There may be no output. The start state is 0.

(b) See Figure S.6.2.
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5 10 25 A B C R

0 5 10 25 0 0 0 0

5 10 15 30 5 5 5 0, R5

10 15 20 10, R25 10 10 10 0, R10

15 20 25 15, R25 0, A0 15 15 0, R15

20 25 30 20, R25 0, A5 0, B0 20 0, R20

25 30 25, R10 25, R25 0, A10 0, B5 0, C0 0, R25

30 30, R5 30, R10 30, R25 0, A15 0, B10 0, C5 0, R30

Figure S.6.2 The transitions and outputs for an automaton that behaves like a vending machine. The
state is the amount of money held and the input is either money, a purchase choice (A, B, C) or a refund
request (R).

Section 7.1

7.1.1. A(m) (note m, not n) is the statement of the rank formula. The inductive step and use of
the inductive hypothesis are clearly indicated in the proof.

7.1.3. Let A(k) be the assertion that the coefficient of ym1
1 · · · ymk

k in (y1+· · ·+yk)n is n!/m1! · · ·mk!
if n = m1 + · · ·+ mk and 0 otherwise. A(1) is trivial. We follow the hint for the induction step. Let
x = y1 + · · ·+ yk−1. By the binomial theorem, the coefficient of xmymk

k in (x + yk)n is n!/m!mk! if
n = m + mk and 0 otherwise. By the induction hypothesis, the coefficient of ym1

1 · · · ymk−1
k−1 in xm is

m!/m1! · · ·mk−1! if m = m1 + · · ·+ mk−1 and zero otherwise. Combining these results we see that
the coefficient of ym1

1 · · · ymk

k in (y1 + · · ·+ yk)n is

n!
m! mk!

m!
m1! · · ·mk−1!

if n = m1 + · · ·+ mk and 0 otherwise.

7.1.5 (a) x′1x
′
2 + x′1x2 = x′1.

(b) x′1x2 + x1x
′
2.

(c) x′1x
′
2x3 + x′1x2x3 + x1x

′
2x
′
3 + x1x2x

′
3 = x′1x3 + x1x

′
3.

(d) x′1x
′
2x3 + x′1x2x

′
3 + x′1x2x3 + x1x

′
2x
′
3 = x′1x2 + x′1x3 + x1x

′
2x
′
3.

7.1.7. If you are familiar with de Morgan’s laws for complementation, you can ignore the hint and
give a simple proof as follows. By Example 7.3, one can express f ′ in disjunctive form: f ′ = M1 +
M2+· · ·. Now f = (f ′)′ = M ′

1M
′
2 · · · by de Morgan’s law and, if Mi = y1y2 · · ·, then M ′

i = y′1+y′2+· · ·
by de Morgan’s law.

To follow the hint, replace (7.5) with

f(x1, . . . , xn) = (g1(x1, . . . , xn−1) + x′n) (g0(x1, . . . , xn−1) + xn)

and practically copy the proof in Example 7.3.

7.1.9. We can induct on either k or n. It doesn’t matter which we choose since the formula we have
to prove is symmetric in n and k. We’ll induct on n. The given formula is A(n). For n = 0, the
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formula becomes Fk+1 = Fk+1, which is true.

Fn+k+1 = F(n−1)+(k+1)+1 using the hint
= FnFk+2 + Fn−1Fk+1 by A(n− 1)
= Fn(Fk+1 + Fk) + Fn−1Fk+1 by definition of Fk+2

= (Fn + Fn−1)Fk+1 + FnFk by rearranging
= Fn+1Fk+1 + FnFk by definition of Fn+1.

Section 7.2

7.2.1. Given that p and q are positive integers, it does not follow that p′ and q′ are positive integers.
(For example, let p = 1.) Thus A(n− 1) may not apply.

7.2.3. You may object that the induction has not been clearly phrased, but this can be overcome:
Let I be the set of interesting positive integers and let A(n) be the assertion n ∈ I. If A(1) is false,
then even 1 is not interesting, which is interesting. The inductive step is as given in the problem: If
A(n) is false, then since A(k) is true for all k < n, n is the smallest uninteresting number, which is
interesting.

Then what is wrong? It is unclear what “interesting” means, so the set of interesting positive
integers is not a well defined concept. Proofs based on foggy concepts are always suspect.

7.2.5. To show the equivalence, we must show that an object is included in one definition if and
only if it is included in the other. We do this by induction on the number of vertices. Before doing
this, however, we observe that the objects constructed in Example 7.9 are trees:

• They are connected since T1, . . . , Tk are connected by induction.

• They have no cycles since T1, . . . , Tk have no cycles by induction and have no vertices in
common by assumption.

We now turn to the inductive proof of equivalence.

(i) You should be able to see that both definitions include the single vertex.

(ii) Now for the inductive step in one direction: Suppose T has n > 1 vertices and is included in
the definition in Example 7.9. By the induction hypothesis, T1, . . . , Tk are included in Defi-
nition 5.12 (p. 139). By the construction in Example 7.9, the roots of T1, . . . , Tk are ordered
and are the children of the root of the new tree. Furthermore, joining T1, . . . , Tk to a new
root preserves the orderings and parent-child relationships in the Ti. Hence this tree satisfies
Definition 5.12.

(iii) Now for the other direction. Let r1, . . . , rk be the ordered children of the root r of the tree
T in Definition 5.12. Following on down through the children of ri, we obtain an RP-tree Ti

which is included in Example 7.9 since it has fewer than n vertices. By the argument in (ii),
the construction forms an RP-tree from T1, . . . , Tk which can be seen to be the same as T .
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Section 7.3
7.3.1 (a) We must compare as long as both lists have items left in them. After all items have been

removed from one list, what remains can simply be appended to what has been sorted. All
items will be removed from one list the quickest if each comparison results in removing an item
from the shorter list. Thus we need at least min(k1, k2) comparisons.

On the other hand, suppose we have k1+k2 items and the smallest ones are in the shorter
list. In this case, all the items are removed from the shorter list and none from the longer in
the first min(k1, k2) comparisons, so we have achieved the minimum.

(b) Here’s the code. Note that the two lists have lengths m and n−m and that min(m,n−m) = m
because m ≤ n/2.

Procedure c(n)
c = 0
If (n = 1), then Return c
Let m be n/2 with remainder discarded
c = c + c(m)
c = c + c(n−m)
c = c + m
Return c

End

(c) We have c(20) = 0 and c(2k+1) = 2c(2k) + 2k for k ≥ 0. The first few values are

c(20) = 0, c(21) = 20, c(22) = 2× 21, c(23) = 3× 22, c(24) = 4× 23.

This may be enough to suggest the pattern c(2k) = k × 2k−1; if not, you can compute more
values until the pattern becomes clear.

We prove it by induction. The conjecture c(2k) = k× 2k−1 is the induction assumption.
For k = 0, we have c(20) = 0, and this is what the formula gives. For k > 0, we use the
recursion to reduce k and then use the induction assumption:

c(2k) = 2c(2k−1) + 2k−1 = 2× (k − 1)× 2k−2 + 2k−1 = k × 2k−1,

which completes the proof.
When k is large,

c(2k)
C(2k)

=
k × 2k−1

(k − 1)2k + 1
=

k/2
k − 1 + 2−k

∼ 1/2.

This shows that the best case and worst case differ by about a factor of 2, which is not very
large.

7.3.3. Here is code for computing the number of moves.

Procedure M(n)
M = 0
If (n = 1), then Return M
Let m be n/2 with remainder discarded
M = M + M(m)
M = M + M(n−m)
M = M + n
Return M

End
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This gives us the recursion M(2k) = 2M(2k−1) + 2k for k > 0 and M(20) = 0. The first few
values are

M(20) = 0, M(21) = 21, M(22) = 2× 22, M(23) = 3× 23, M(24) = 4× 24.

Thus we guess M(2k) = k2k, which can be proved by induction.

7.3.5 (a) Here’s one possible procedure. Note that the remainder must be printed out after the
recursive call to get the digits in the proper order. Also note that one must be careful about
zero: A string of zeroes should be avoided, but a number which is zero should be printed.

OUT(m)
If m < 0, then

Print ‘‘−’’
Set m = −m

End if
Let q and 0 ≤ r ≤ 9 be determined by m = 10q + r

If q > 0, then OUT(q)
Print r

End

(b) Single digits

(c) When OUT calls itself, it passes an argument that is smaller in magnitude than the one it
received, thus OUT(m) must terminate after at most |m| calls.

7.3.7. The description for k = 1 is on the left and that for k > 1 is on the right:

n1

1 · · · n

nk

k, k − 1k−1 · · · n, n− 1k−1

7.3.9 (a) Let A(n) be the assertion “H(n, S,E, G) takes the least number of moves.” Clearly A(1)
is true since only one move is required. We now prove A(n). Note that to do S

n−→G we must
first move all the other washers to pole E. They can be stacked only one way on pole E, so
moving the washers from S to E requires using a solution to the Tower of Hanoi problem for
n − 1 washers. By A(n − 1), this is done in the least number of moves by H(n − 1, S,G, E).
Similarly, H(n− 1, E, S,G) moves these washers to G in the least number of moves.

(b) Simply replace H(m, . . .) with S(m) and replace a move with a 1 and adjust the code a bit to
get

Procedure S(n)
If (n = 1) Return 1.
M = 0
M = M + S(n− 1)
M = M + 1
M = M + S(n− 1)
Return M

End
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The recursion is S(1) = 1 and S(n) = 2S(n− 1) + 1 when n > 1.

(c) The values are 1, 3, 7, 15, 31, 63, 127.

(d) Let A(n) be “S(n) = 2n − 1.” A(1) asserts that S(1) = 1, which is true. By the recursion and
then the induction hypothesis we have

S(n) = 2S(n− 1) + 1 = 2(2n−1 − 1) + 1 = 2n − 1.

(e) By studying the binary form of k and the washer moved for small n (such as n = 4) you could
discover the following rule.

If k = · · · b3b2b1 is the binary representation of k, bj = 1,
and bi = 0 for all i < j, then washer j is moved.

(This simply says that bj is the lowest nonzero binary digit.) No proof was requested, but here’s
one. Let A(n) be the claim for H(n, . . .). A(1) is trivial. We now prove A(n). If k < 2n−1, it
follows from S(m) that H(n− 1, . . .) is being called and A(n− 1) applies. If k = 2n−1, then we
are executing S

n−→G and so this case is verified. Finally, if 2n−1 < k < 2n, then H(n− 1, . . .)
is being executed at step k − 2n−1, which differs from k only in the loss of its leftmost binary
bit.

(f) Suppose that we are looking at move k = · · · b3b2b1 and that washer j is being moved. (That
means bj is the rightmost nonzero bit.) You should be able to see that this is move number
· · · bj+2bj+1 = (k − 2j−1)/2j for the washer. Call this number k′. To determine source and
destination, we must study move patterns.

The pattern of moves for a washer is either

P0: S → G → E → S → G → E → · · · repeating or
P1: S → E → G → S → E → G → · · · repeating.

Which washer uses which pattern? Consider washer j it is easily verified that it is moved a
total of 2n−j times, after which time it must be at G. A washer following Pi is at G only after
move numbers of the form 3t + i + 1 for some t. Thus i + i is the remainder when 2n−j is
divided by 3. The remainder is 1 if n−j is even and 0 otherwise. Thus washer j follows pattern
Pi where i and n− j have the same parity. If we look at the remainder after dividing k′ by 3,
we can see what the source and destination are by looking at the start of Pi. For those of you
familiar with congruences, the remainder is congruent to (−1)jk + 1 modulo 3.

7.3.11 (a) We have

S
n−→E E

n−→G

H∗(n, S,E, G)

H∗(n− 1, S, E,G) H∗(n− 1, G, E, S) H∗(n− 1, S, E, G)

(b) The initial condition is h∗1 = 2. For n > 1 we have h∗n = 3h∗n−1 + 2.
Alternatively, h∗0 = 0 and, for n > 0, h∗n = 3h∗n−1 + 2.

(c) The general solution is h∗n = 3n − 1. To prove it, use induction. First, it is correct for n = 0.
Then, for n > 0,

h∗n = 3h∗n−1 + 2 = 3(3n−1 − 1) + 2 = 3n − 1.

7.3.13 (a) We omit the picture.
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(b) Induct on n. It is true for n = 1. If n > 1, a2, . . . , an ∈ G(k2, . . . , kn) by the induction
hypothesis. Thus a1, a2, . . . , an is in a1,H and a1, R(H).

(c) Induct on n. It is true for n = 1. Suppose n > 1 and let the adjacent leaves be b1, . . . , bn and
c1, . . . , cn, with c following b. If b1 = c1, then apply the induction hypothesis to G(k2, . . . , kn)
and the sequences b2, . . . , bn and c2, . . . , cn. If b1 6= c1, it follows from the local description
that c1 = b1 + 1, that b2, . . . , bn is the rightmost leaf in H (or R(H)) and that c2, . . . , cn is the
leftmost leaf in R(H) (or H, respectively). In either case, b2, . . . , bn and c2, . . . , cn are equal
because they are the same leaf of H.

(d) Let Rn(α) be the rank of α1, . . . , αn. Clearly R1(α) = α1 − 1. If n > 1 and α1 = 1, then
Rn(α) = Rn−1(α2, . . . , αn). If n > 1 and α1 = 2, then Rn(α) = 2n − 1 − Rn−1(α2, . . . , αn).
Letting xi = αi − 1, we have Rn(α) = (2n − 1)x1 + (−1)x1Rn−1(α2, . . . , αn) and so

Rn(α) = (2n−1)x1+(−1)x1(2n−1−1)x2+(−1)x1+x2(2n−2−1)x3+· · ·+(−1)x1+x2+···+xn−1xn.

(e) If you got this, congratulations. Let j be as large as possible so that α1, . . . , αj contains an
even number of 2’s. Change αj . (Note: If j = 0, α = 2, 1, . . . , 1, the sequence of highest rank,
and it has no successor.)

Section 7.4
7.4.1. Let M(n) be the minimum number of multiplications needed to compute xn. We leave it to
you to verify the following table for n ≤ 9

n 2 3 4 5 6 7 8 9 15 21 47 49
M(n) 1 2 2 3 3 4 3 4 5 6 8 7

Since 15 = 3× 5, it follows that M(15) ≤ M(3) + M(5) = 5. Likewise, M(21) ≤ M(3) + M(7) = 6.
Since the binary form of 49 is 1100012, M(49) ≤ 7. Since 47 = 1011112, we have M(47) ≤ 9, but
we can do better. Using 47 = 2× 23 + 1, gives M(47) ≤ M(23) + 2, which we leave for you to work
out. A better approach is given by 47 = 5 × 9 + 2. Since x2 is computed on the way to finding x5,
it is already available and so M(49) ≤ M(5) + M(9) + 1 = 8. It turns out that these are minimal,
but we will not prove that.

7.4.3. Let ~vn be the transpose of (an, . . . , an+k−1). Then ~vn = M~vn−1 where

M =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
ak ak−1 ak−2 · · · a1




.

7.4.5. Finding a maximum of n items can be done in Θ(n), so it’s the computation of all the
different F (v) values is the problem. Thus we could compute the values of F separately from finding
the maximum. However, since it’s convenient to compute the maximum while we’re computing the
values of F , we’ll do it.

The root r of T has two sons, say sL and sR. Observe that the answer for the tree rooted at r
must be either the answer for the tree rooted at sL or the answer for the tree rooted at sR or F (r).
Also

F (r) = f(r) + F (sL) + F (sR).

Here’s an algorithm that carries out this idea.
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/* r is the root of the tree in what follows. */

Procedure BestSum(r)

Call Recur(r, Fvalue, best)

Return best

End

Procedure Recur(r, F, best)

If r is a leaf then

F = f(r)

best = f(r)

Else

Let sL and sR be the sons of r.

Recur(sL, FL, bL)

Recur(sR, FR, bR)

F = f(r) + FL + FR

best = max(F, bL, bR)

End if

Return

End

Since f(r) is only used once, the running time of this algorithm is Θ(n) for n vertices, an improvement
over Θ(n ln n).

7.4.7 (a) We can use induction: It is easily verified for n = 1 and n = 2. For n > 2 we have

an = an−1 + an−2 = (a0Fn−2 + a1Fn−3) + (a0Fn−3 + a1Fn−4)
= a0(Fn−2 + Fn−3) + a1(Fn−3 + Fn−4) = a0Fn−1 + a1Fn−2.

(b) Since the ai satisfy the same recursion as the Fibonacci numbers, it is easily seen that the a
sequence is just the F sequence shifted by k.
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Section 8.1
8.1.1. This is exactly the situation in the text, except that there is now one additional question
when one reaches a leaf.

8.1.3 (a) If T is not a full binary tree, there is some vertex v that has only one child, say s. Shrink
the edge (v, s) so that v and s become one vertex and call the new tree T ′. If there are k leaves
in the subtree whose root is v, then TC(T ′) = TC(T )− k.

(b) We follow the hint. Let k be the number of leaves in the subtree rooted at v. Since T is a binary
tree and v is not a root, k ≥ 2 Let d = h(v)− h(l2) and note that d = (h(l1)− 1)− h(l2) ≥ 1.
The distance to the root of every vertex in the subtree rooted at v is decreased by d and the
distance of l2 to the root is increased by d. Thus TC is decreased by kd− d > 0.

(c) By the discussion in the proof of the theorem, we know that the height of T must be at least m
because a binary tree of height m−1 or less has at most 2m−1. Suppose T had height M > m.
By the previous part of this exercise, the leaves of T have heights M and, perhaps, M − 1.
Thus, every vertex of v with h(v) < M−1 has two children. It follows that T has 2M−1 vertices
w with h(w) = M − 1. If these were all leaves, T would have 2M−1 ≥ 2m leaves; however, at
least one vertex u with d(u) = M − 1 is not a leaf. Since it has two children, T has at least
2m + 1 leaves, a contradiction.

(d) By the previous two parts, all leaves of T have height at most m. If T ′ is principal subtree of
T , its leaves have height at most m− 1 in T ′. Hence T ′ has at most 2m−1 leaves.

The argument hints at how to construct the desired tree: Construct T ′, a principal subtree
of T , having all its leaves at height m− 1 in T ′. Construct a binary tree T ′′ having n− 2m−1

such that TC(T ′′) is as small as possible. The principal subtrees of T will be T ′ and T ′′.

8.1.5 (a) Suppose the answer is Sn. Clearly S0 = 1 since the root is the only vertex. We need a re-
cursion for Sn. One approach is to look at the two principal subtrees. Another is to look at what
happens when we add a new “layer” by replacing each leaf with ••• .

For the first approach, Sn = 1 + 2Sn−1, where each Sn−1 is due to a principal sub-
tree and the 1 is due to the root. The result follows by induction:

Sn = 1 + 2Sn−1 = 1 + 2(2n − 1) = 2n+1 − 1.

For the second approach, Sn = Sn−1 + 2n and so Sn = (2n − 1) + 2n = 2n+1 − 1. By the way,
if we have both recursions, we can avoid induction since we can solve the two equations

Sn = 1 + 2Sn−1 and Sn = Sn−1 + 2n

to obtain the formula for Sn. Thus, by counting in two ways (the two recursions), we don’t
need to be given the formula ahead of time since we can solve for it.

(b) Let the value be TC∗(n). Again, we use induction and there are two approaches to obtaining
a recursion. Clearly TC∗(1) = 0, which agrees with the formula.

The first approach to a recursion: Since the principal subtrees of T each store Sn−1 keys
and since the path lengths all increase by 1 when we adjoin the principal subtrees to a new
root, TC∗(n) = 2(Sn−1 + TC∗(n− 1)). Thus

TC∗(n) = 2(2n − 1 + (n− 2)2n + 2) = 2((n− 1)2n + 1) = (n− 1)2n+1 + 2.

For the second approach, TC∗(n) = TC∗(n − 1) + n2n. Again, we can prove the formula for
TC∗(n) by induction or, as in (a), we can solve the two recursions directly.
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2:1

21 12

2:1

3:1

321 3:2

312 213

3:1

231 3:2

132 123

Figure S.8.1 The decision trees for binary insertion sorts. Go to the left at vertex i : j if ui < sj and to
the right otherwise. (You may have done the reverse and gotten the mirror images. That’s fine.)

Section 8.2
8.2.1. Here are the first few and the last.

1. Start the sorted list with 9.
2. Compare 15 with 9 and decide to place it to the right giving 9, 15.
3. Compare 6 with 9 to get 6, 9, 15.
4. Compare 12 with 9 and then with 15 to get 6, 9, 12, 15.
5. Compare 3 with 9 and then with 6 to get 3, 6, 9, 12, 15.

. . . . . .

16. We now have the sorted list 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16. Compare
8 with 7, with 12 with 10 and then with 9 to decide where it belongs.

8.2.3. See Figure S.8.1. To illustrate, suppose the original list is 3,1,2. Thus u1 = 3, u2 = 1 and
u3 = 2.
• We start by putting u1 in the sorted list, so we have s1 = 3.
• Now u2 must be inserted into the list s1. We compare u2 with s1, the 2:1 entry. Since

s1 = 3 > 1 = u2, we go to the left and our sorted list is 1, 3 so now s1 = 1 and s2 = 3.
• Now u3 must be inserted into the list s1, s2. Since we are at 3:1, we compare u3 = 2 with

s1 = 1 and go to the right. At this point we know that u3 must be inserted into the list s2. We
compare u3 = 2 with s2 = 3 at 3:2 and go to the left.

8.2.5 (a) Suppose that the alphabet has L letters and let the ith letter (in order) be ai. Let uj be
a word with exactly k letters. The following algorithm sorts u1, . . . , un and returns the result
as x1, . . . , xn.

BUCKET(u1, . . . , un)
Copy u1, . . . , un to x1, . . . , xn.
/* t is the position in the word. */
For t = k to 1
/* Make the buckets. */

Create L empty ordered lists.
For j = 1 to n

If the tth letter of xj is ai,
then place xj at the end of the ith list.

End for
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Copy the ordered lists to x1, . . . , xn, starting with

the first item in the first list and ending with the

last item in the Lth list.

End for

End

(b) Extend all words to k letters by introducing a new letter called “blank” which precedes all
other letters alphabetically. Apply the algorithm in (a).

8.2.7. First divide the list into two equally long tapes, say

A: 9, 15, 6, 12, 3, 7, 11 5 B: 14, 1, 10, 4, 2, 13, 16, 8.

Think of each tape as containing a series of 1 long (sorted) lists. (The commas don’t appear on the
tapes, they’re just there to help you see where the lists end.) Merge the first half of each tape, list
by list, to tape C and the last halves to D. This gives us the following tapes containing a series of 2
long sorted lists:

C: 9 14, 1 15, 6 10, 4 12 D: 2 3, 7 13, 11 16, 5 8.

Now we merge these 2 long lists to get 4 long lists, writing the results on A and B:

A: 2 3 9 14, 1 7 13 15 B: 6 10 11 16, 4 5 8 12.

Merging back to C and D gives

C: 2 3 6 9 10 11 14 16 D: 1 4 5 7 8 12 13 15.

These are merged to produce one 16 long list on A and nothing on B.

8.2.9. A split requires n− 1 comparisons since the chosen item must be compared with every other
item in the list In the worst case, we may split an n long list into one of length 1 and another of
length n− 1. We then apply Quicksort to the list of length n− 1. If W (n) comparisons are needed,
then W (1) = 0 and W (n) = n− 1 + w(n− 1) for n > 1. Thus W (n) =

∑n−1
k=1 k = n(n− 1)/2.

Suppose that n = 2k and the lists are split evenly. Let E(k) be the number of comparisons.
Since Quicksort is applied to two lists of length n/2 after splitting, E(k) = n − 1 + 2E(k − 1) for
k > 0 and E(0) = 0. A little computation gives us E(1) = 1, E(2) = 5, E(3) = 17, E(4) = 49 and
E(5) = 129. From the statement of the problem we expect E(k) to be near k2k, which has the values
0, 2, 8, 24 and 64. Comparing these sequences we discover that E(k) = 2(k − 1)2k−1 + 1 for k < 6.
This is easily proved by induction
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Section 8.3

8.3.1. Since there are only 3 things, you cannot compare more than one pair of things at any time.
By the Theorem 8.1, we need at least log2(3!) comparisons; i.e., at least three. A network with three
comparisons that sorts is given in Figure 8.2.

8.3.3. As argued in the previous two solutions, we will need at least seven comparisons and we can
do at least two per time. This means it will take at least four time units. It has been shown (but
not in this text!) that at least five time units are required. A brick wall sort works.

8.3.5. One possibility is the type of network shown in Figure 8.3. For n inputs, this has

1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2

comparators. It was noted in the text that a brick wall for n items must have length n. If n is even
there are (n/2)(n− 1) comparators and if n is odd there are n((n− 1)/2) comparators. Thus this is
the same as Figure 8.3. We don’t know if it can be done with less.

8.3.7. By the Adjacent Comparisons Theorem, we need only check the sequence n, . . . , 2, 1. Using
the argument that proves the Zero-One Principle, it follows that this sequence is sorted if and only
if all sequences that consist of a string of ones followed by a string of zeroes are sorted.

8.3.9. It is evident that the idea in the solution to (a) of the previous exercise works for any n. This
can be used as the basis of an inductive proof.

An alternative proof can be given using sequences that consist of ones followed by zeroes. (See
Exercise 8.3.7.) Note that when the lowest 1 starts moving down through the comparators, it moves
down one line each time unit until it reaches the bottom. The 1 immediately above it starts the same
process one time unit later. The 1 immediately above this one starts one more time unit later, and
so forth. If there are j ones and the lowest 1 reaches the bottom after an exchange at time t, then
the next 1 reaches proper position after an exchange at time t + 1. Continuing in this way, all ones
are in proper position after the exchanges at time t + j − 1. Suppose the jth 1 (i.e., lowest 1) starts
moving by an exchange at time i. Since it reaches position after n− j exchanges, t = i+(n− j)−1.
Thus all ones are in position after the exchanges at time (i + (n − j) − 1) + j − 1 = n + i − 2.
The jth 1 starts moving when it is compared with the line below it. This happens at time 1 or 2.
Thus n + i− 2 ≤ n.

8.3.11. Use induction on n. For n = 21, it works. Suppose that it works for all powers of 2 less than
2t. We use the variation of the Zero-One Principle mentioned in the text. Suppose that the first
half of the xi’s contains α zeroes and the second half contains β zeroes. BMERGE calls BMERGE2 with
k = j = 2t−1 By the induction assumption, BMERGE2 rearranges the “odd” sequence x1, x3, . . . , x2t−1

in order and the “even” sequence x2, x4, . . . , x2t in order. The number of zeroes in the odd sequence
minus the number of zeroes in the even sequence in 0, 1 or 2; depending on how many of α and β
are odd. When the difference is 0 or 1, the result of BMERGE2 is sorted. Otherwise, the last zero in
the odd sequence, xα+β+1, is after the first one in the even sequence, xα+β , and all other xi’s are in
order. The comparator in BMERGE with i = (α + β)/2 fixes this.

8.3.13 (a) Since a one long list is sorted, nothing is done and so S(0) = 0. The two recursive calls
of BSORT can be implemented by a network in which they run during the same time interval.
This can then be followed by the BMERGE and so S(N) ≤ S(N − 1) + M(N).

(b) As for S(0) = 0, M(0) = 0 is trivial. Since all the comparators mentioned in BMERGE and be
run in parallel at the same time, M(N) ≤ M(N − 1) + 1.

(c) From the previous part, it easily follows by induction on N that M(N) ≤ N . Thus
S(N) ≤ S(N − 1) + N and the desired result follows by induction on N .
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(d) If 2N−1 < n ≤ 2N , then the above ideas show that S(n) ≤ N(N + 1)/2. Thus

S(n) <
1
2

(1 + log2 n)(2 + log2 n).

Section 9.1
9.1.1. We do PREV(T ).

PREV(T)
Let r be the root of T
Let T1, . . . , Tk be the principal subtrees of T
Output r
For i = 1, . . . , k Prev(Ti)

End

9.1.3. We give pseudocode for vertex visitation.

BFV(T)
Initialize queue
INQUEUE(T)
While queue not empty

S = OUTQUEUE( )
Let r be the root of S
Let S1, . . . , Sk be the principal subtrees of S
Output r
For i = 1, . . . , k INQUEUE(Si)

End while
End

9.1.5. The proof can be done by induction on the size of the tree by showing that the comments in
the algorithm are correct. To do this, we need to notice a couple of things.

• By removing r from G before constructing S, we guarantee that S will not contain r.
Thus it will contain precisely the vertices that are reachable on a path from r, starting
with the edge {r, s}.

• Because we remove the root vertex of the tree from G and do this recursively, whenever
a tree is ready to return, all its vertices have been removed from G. As a result, none of
the vertices in S are left in G when we construct R.

9.1.9 (a) D(T ) is +1, D(T1),−1, +1, D(T2),−1, . . . , +1, D(Tm),−1.

(b) Each edge is traversed twice, proving the sum. The rest can be proved by induction on the
number of vertices using the formula in (a). Actually, one can show more: The sum up to k is
the length of the path from the root to the vertex that is reached after k steps.

(c) The “if” part follows from (b). The “only if” part can be done by showing that there is a
unique way to construct a tree associated with such a sequence. This can be done recursively
if we use the observation that the sum up to k is 0 if and only if we have returned to the root
after k steps: Let k be the first index for which the sum is 0. We must have s1 = +1, sk = −1
and the subsequences s2, . . . , sk−1 and sk+1, . . . , sn are associated with unique RP-trees. There
is just one way to piece these trees together.
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Section 9.2
9.2.1.

(a) +

+ 5

+ 4

+ 3

1 2

(b) +

+ 5

+ +

1 2 3 4

(c) +

+1

+2

+3

54

(d) /

+ −
X YX ∗

5 Y

(e) +

− ∗
X +

X 1

∗ 3

X Y

9.2.3. We use value(· · ·) to indicate the value of a variable or constant.
(a) The first method:

EVALUATE(exp)
If (exp has no op) Return value(exp).
If (exp = −exp1) Return −value(exp1).
Let exp = (exp1 op ; exp2).
Return EVALUATE(exp1) op EVALUATE(exp2).

End

(b) The second method:

EVALUATE(T)
Let r be the root of T.
Let k be the number of principal subtrees of T

and let Ti be the ith of them.
If (k = 0), Return value(r).
For i = 1, . . . , k Let vi = EVALUATE(Ti).
/* If k = 1, r should be unary minus. */
If k = 1, Return r v1.
If k = 2, Return v1 r v2.

End

9.2.5. We will indicate what needs to be added. Other solutions are possible.

(a) exp → − term

(b) term → power and power → factor | factor ∗∗ power

(c) Let subst be the start symbol now and add subst → exp | id := exp

(d) This is a bit trickier because the := must reach as far to the right as possible. In particular,
you cannot replace the last three items in the following list with just factor → subst. Let
start be the start symbol.

start → exp | subst
subst → id := exp | id := subst
exp → exp+subst | exp−subst

term → term∗subst | term/subst
factor → ( subst )
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Section 9.3
9.3.1. The construction starts with •. The first iteration gives • and all trees that have children
produced in the starting step. Thus we get

• •• ••• • • ••
In the next iteration, we obtain the following new trees with at most 4 vertices.

•••
••••

••••
••••

In the next step, the only new tree is a 4-vertex tree consisting of a path from the root to a single
leaf. After this, no new trees with less than 5 vertices are obtained.

9.3.3. For k ≤ 7, the values are in the text. b8 = 429, b9 = 1430 and b10 = 4862.

9.3.5. We’ll use n: r to mean a tree with n leaves and rank r and (n1: r1, n2: r2) to mean a tree with
left son n1: r1 and right son n2: r2. We use formula (9.5) and the greedy approach: First make |T1| as
large as possible, then make RANK(T1) as large as possible. Here are the calculations. You should
be able to construct the trees easily from the results as long as you remember (a) that n: 0 describes
a tree in which all the left sons are leaves (since that is the leftmost tree in the list of trees) and
(b) that since there is only one tree with 1 leaf and only one with 2 leaves, they each have rank 0.

8: 100 = (1: 0, 7: 100) since b1b7 = 132 > 100, we have |T1| = 1 and 100 = 0b7 + 100
7: 100 = (6: 10, 1: 0) since b1b6 + · · ·+ b5b2 = 90 and 10 = 10b1 + 0
6: 10 = (1: 0, 5: 10) since b1b5 = 14 > 10 and 10 = 0b5 + 10
5: 10 = (4: 1, 1: 0) since b1b4 + · · ·+ b3b2 = 9 and 1 = 1b1 + 0
4: 1 = (1: 0, 3: 1)
3: 1 = (2: 0, 1: 0)

8: 200 = (3: 1, 5: 12) since b1b7 + b2b6 = 174 and 26 = 1b5 + 12
5: 12 = (4: 3, 1: 0) since b1b4 + b2b3 + b3b2 = 9
4: 3 = (3: 0, 1: 0) since b1b3 + b2b2 = 3

8: 300 = (7: 3, 1: 0)
n: 3 = (1: 0, n− 1: 3) for n ≥ 5 since b1bn−1 > 3
4: 3 = (3: 0, 1: 0)

8: 400 = (7: 103, 1: 0) 7: 103 = (6: 13, 1: 0) 6: 13 = (1: 0, 5: 13)

5: 13 = (4: 4, 1: 0) 4: 4 = (3: 1, 1: 0)

9.3.7 (a) We omit the pictures.

(b) In the notation introduced in Exercise 9.3.5, with n = 2m + 1 and k = bn/2, we claim
that Mn = n: k = (m + 1: 0, m: 0). To prove this, note that the rank of this tree is
b1b2m + · · ·+ bmbm+1 and that

bn = b1b2m + · · ·+ b2mb1 = 2(b1b2m + · · ·+ bmbm+1).

(c) If n = 2m, then bn = 2(b1b2m−1 + · · · + bm−1bm+1) + b2
m, which is divisible by 2 if and only

if bm is. Thus there is no such tree unless bm is even. In this case you should be able to show
that M2m = (m: bm/2, m: 0).
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9.3.9. Here is one way to define an equivalence relation ≡ by induction on the number of vertices.
Let Tn be the set of labeled n-vertex RP-trees. Define all the trees in T1 to be equivalent. If n > 1,
suppose T, T ′ ∈ Tn. Let T be built from T1, . . . , Tk and T ′ from T ′l , . . . , T

′
` according to the recursive

construction in Example 7.9 (p. 206). We define T ≡ T ′ if and only k = ` and Ti ≡ T ′i for 1 ≤ i ≤ k.

9.3.11 (a) An xi belongs in a parenthesis pair that has nothing inside it. Number the empty pairs
from left to right and insert xi into the ith pair.

(b) This is just a translation of what has been said. If you are confused, remember that B(n) should
is to be thought of as all possible parentheses patterns for x1, . . . , xn.

(c) This simply involves the replacement described in (b): Make • correspond to ( ) and make
the tree with sons T1 and T2 correspond to (P1P2), where Pi is the parentheses pattern corre-
sponding to Ti.

9.3.13 (a) The leaves in an RP-tree are distinguishable because the tree is ordered. Thus, each
marking of the n leaves leads to a different situation. The same comments applies to vertices
and there are 2n− 1 vertices by Exercise 9.3.6.

(b) Mark the single vertex that arises in this way to obtain an element of Vn Interchanging x and
the tree rooted at b gives a different element of Ln+1 that gives rise to the same element of
Vn.

Conversely, given any element of Vn, the marked vertex should be split into two, f and
b with b a son of f . Introduce another son x of f which is a marked leaf. There are two
possibilities–make f a left son or a right son.

(c) By (a), |Ln| = nbn and |Vn| = (2n− 1)bn. By (b), |Ln+1| = 2|Vn|.
(d) By the recursion,

bn =
2(2n− 3)

n
bn−1 =

2(2n− 3)
n

2(2n− 5)
n− 1

bn−2 = · · · =
2n−1(2n− 3)(2n− 5) · · · 1

n(n− 1) · · · 2 b1.

Using b1 = 1, we have a simple formula; however, it can be written more compactly:

bn =
2n−1(2n− 3)(2n− 5) · · · 1

n!
=

2n−1(n− 1)! (2n− 3)(2n− 5) · · · 1
(n− 1)! n!

=
(2n− 2)!
(n− 1)! n!

=
1
n

(
2n− 2
n− 1

)
.

Section 10.1
10.1.1. The p and q calculations can be done by multiplication. If so, and we are asked for the
coefficient of x3, say, then we can ignore any power of x greater than x3 that appear in intermediate
steps.

(a) Letting ≡ mean equality of coefficients of xn for n ≤ 3, we have

p2 = (1 + x + x2 + x3)2 ≡ 1 + 2x + 3x2 + 4x3

p3 ≡ (1 + x + x2 + x3)(1 + 2x + 3x2 + 4x3) ≡ 1 + 3x + 6x2 + 10x3

p4 ≡ (1 + x + x2 + x3)(1 + 3x + 6x2 + 10x3) ≡ 1 + 4x2 + 10x3 + 20x4.

(b) By the opening remarks in the solution, this will be the same as (a).
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(c) We can do this by writing r ≡ 1 + x + x2 + x3 or we can write, for example, f(x) = (1− x)−2

and use Taylor’s Theorem to compute the coefficients.

(d) Note that r = 1 + x + x2 + x3 + · · ·. Whenever you add, subtract or multiply power series and
look for the coefficient of some power of x, say xn, only those powers of x that do not exceed
n in the original series matter. Each of p, q and r begin 1 + x + x2 + x3.

10.1.3. We have

(x2 + x3 + x4 + x5 + x6)8 = x16(1 + x + x2 + x3 + x4)8 = x16

(
1− x5

1− x

)8

.

The coefficient of x21 in this is the coefficient of x5 in the eighth power on the right hand side. Since
(1−x5)8 = 1−8x5 + · · ·, this is simply the coefficient of x5 in (1−x)−8 minus 8 times the coefficient
of x0 (the constant term) in (1− x)−8. Thus our answer is

(−1)5
(−8

5

)
− 8 =

(
12
5

)
− 8 = 784.

10.1.5. We’ll do just the general k.

(a) We have xkA(x) =
∑

m≥0 amxm+k =
∑

n≥k an−kxn. Thus the coefficient of xn is 0 for n < k
and an−k for n ≥ k.

(b) We have
(

d

dx

)k

A(x) =
∞∑

m=0

am

(
d

dx

)k

xm =
∞∑

m=k

am(m)(m− 1) · · · (m− k + 1)xm−k.

Set n = m− k to obtain the answer: an+k(n + k)(n + k − 1) · · · (n + 1) = an+k
(n+k)!

n! .

(c) Since
(
x d

dx

)
A(x) =

∑∞
m=0 mamxm, repeating the operation k times leads to

∑∞
m=0 mkamxm.

Thus the answer is nkan.

10.1.7. This is simply the derivation of (10.4) with r used instead of 1/3. The generating function
for the sum is S(x) = 1/(1− r(1 + x)) and the coefficient of xk is

(
r/(1− r)

)k

1− r
=

(
r/(1− r)

)k+1

r
=

rk

(1− r)k+1
.

To verify convergence, let an =
(
n
k

)
rn and note that

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)|r|
n− k + 1

= |r| < 1.

10.1.9. This is very similar to the Exercise 10.1.8 With aj = (−1)j
(
m
j

)
and bj =

(
m
j

)
, we can apply

the convolution formula. The result is C(x) = (1 − x)m(1 + x)m = (1 − x2)m. By the binomial
theorem, (1 − x2)m =

∑
(−1)j

(
m
j

)
x2j . Thus, the sum we are to simplify is zero if k is odd and

(−1)j
(
m
j

)
if k = 2j.

10.1.11. The essential fact is that
∑k−1

s=0 ωrs is k if r is multiple of k and 0 otherwise.

10.1.13. This is multisection with k = 3 and j = 0, 2, 1, respectively. The basic facts that are needed
are eiθ = cos θ + i sin θ and the sine and cosine of various angles in the 30◦-60◦-90◦ right triangle.
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Section 10.2
10.2.1 (a) Let an = 5an−1 − 6an−2 + bn where b1 = 1 and bn = 0 for n 6= 1. Then

A(x) =
∞∑

k=0

(5xak−1x
k−1 − 6x2ak−2x

k−2) + x = 5xA(x)− 6x2A(x) + x.

Thus
A(x) =

x

1− 5x + 6x2
=

1
1− 3x

− 1
1− 2x

and an = 3n − 2n.

(b) To correct the recursion, add cn+1 to the right side, where c0 = 1 and cn = 0 for n 6= 0.
Multiply both sides by xn+1 and sum to obtain A(x) = xA(x) + 6x2A(x) + 1. With some
algebra,

A(x) =
1

1− x− 6x2
=

3/5
1− 3x

+
2/5

1 + 2x

and so an = (3n+1 − (−2)n+1)/5.

(c) To correct the recursion, add bn where b1 = 1 and bn = 0 otherwise. Thus
A(x) = xA(x) + x2A(x) + 2x3A(x) + x and so

A(x) =
x

1− x− x2 − 2x3
=

x

(1− 2x)(1 + x + x2)
.

By the quadratic formula, we can factor 1 + x + x2 as (1 − ωx)(1 − ωx), where
ω = (−1 +

√−3)/2 and ω is the complex conjugate of ω. Using partial fractions,

A(x) =
2/7

1− 2x
− (3− 2

√−3)/21
1− ωx

− (3 + 2
√−3)/21

1− ωx

and so

an =
2n+1

7
− (3− 2

√−3)ωn

21
− (3 + 2

√−3)ωn

21
.

The last two terms are messy, but they can be simplified considerably by noting that ω3 = 1
and so they are periodic with period 3. Thus

an =
2n+1

7
+





(−2/7) if n/3 has remainder 0;
3/7 if n/3 has remainder 1;
(−1/7) if n/3 has remainder 2.

(d) The recursion holds for n = 0 as well. From the recursion, A(x) = 2xA(x) +
∑

nxn. By
Exercise 10.1.5, the sum is x d

dx

∑
xn, which is x/(1− x)2. Thus

A(x) =
x

(1− x)2(1− 2x)
=

2
1− 2x

− 1
1− x

− 1
(1− x)2

.

After some algebra with these, we obtain an = 2n+1 − n− 2.

10.2.3. Start with a string of n − i zeroes. Choose without repetition i of the n + 1 − i positions
(before all the zeroes or after any zero) and insert a one in each position chosen. The result is an
n long string with i ones, none of them adjacent. The process is reversible: The position of a one is
the number of zeroes preceding it. The formula for Fn follows immediately.
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10.2.5 (a) Replacing A, B and C with their definitions and rearranging leads to

L1L2 + L1H2x
m + L2H1x

m + H1H2x
2m = (L1 + H1x

m)(L2 + H2x
m).

(b) The number of multiplications required by any procedure is an upper bound on M(2m). There
are three products of polynomials of degree m or less in our “less direct” procedure. If they
are done as efficiently as possible, we will have M(2m) ≤ 3M(m).

(c) Let sk = M(2k). We have s0 = 1 and sk ≤ 3sk−1 for k > 0. If we set t0 = 1 and tk = 3tk−1

for k > 0, then sk ≤ tk. The recursion gives T (x) = 3xT (x) + 1 and so tk = 3k. Thus, with
n = 2k, M(n) ≤ 3k = (2log2 3)k = nlog2 3. From tables or a calculator, log2 3 = 1.58 · · ·.

(d) To begin with, L1(x) = 1 + 2x, H1(x) = −1 + 3x, L2(x) = 5 + 2x and H2(x) = −x. The
product L1L2 = (1 + 2x)(5 + 2x) is computed using the algorithm. The values are

m = 1, A = (2)(2) = 4, B = (1)(5) = 5 and C = (1 + 2)(5 + 2) = 21.

Thus L1L2 = 5 + 12x + 4x2. In a similar way, the products (−1 + 3x)(−x) = x − 3x2 and
(5x)(5 + x) = 25x + 5x2 are computed these are combined to give the final result:

(5 + 12x + 4x2) + (x− 3x2)x4 + ((25x + 5x2)− (5 + 12x + 4x2)− (x− 3x2))x2,

which is 5 + 12x− x2 + 12x3 + 4x4 + x5 − 3x6.

(e) We’ll just look at the case in which n = 2m = 2k. Let ak be the number of additions and
subtractions needed. We have a0 = 0 and, for k > 0, ak equals 3ak−1 plus the number of ad-
ditions and subtractions needed to prepare for and use the three multiplications. Preparation
requires two additions of polynomials of degree m − 1. The results are three polynomials of
degree 2m − 2. We must perform two subtractions of such polynomials. Finally, the multipli-
cation by xm and x2m arranges things so that there is some overlap among the coefficients.
In fact, there will be 2m − 2 additions required because of these overlaps (unless some coeffi-
cients happen to turn out zero). Since a polynomial of degree d has d+1 coefficients, there are
a total of

2(m− 1 + 1) + 2(2m− 2 + 1) + (2m− 2) = 4n− 4.

Thus ak = 3ak−1+4×2k−4 and so A(x) = 3xA(x)+4
∑

k>0(2x)k−4
∑

k>0 xk. Consequently,
A(x) = 4x/(1 − x)(1 − 2x)(1 − 3x) and ak = 2 × 3k+1 − 2k+3 + 2. Comparing this with
the multiplication result, we see that we need about three times as many additions and/or
subtractions as we do multiplications, which is still much smaller than n2 for large n.

10.2.7. When we use the initial conditions and solve for A(x) we get A(x) = R(x) + N(x)
D(x) where

R(x) is some polynomial, D(x) = 1− c1x− · · · − ckxk and N(x) is a polynomial of degree less than
k. By the Fundamental Theorem of Algebra, we can factor D(x) as given in the exercise. By the
theory of partial fractions, there are constants bi,j such that

N(x)
D(x)

=
m∑

i=1

di∑

j=1

bi,j(1− rix)−j .

Equating coefficients an assuming n is larger than the degree of R(x), we have

an =
m∑

i=1

di∑

j=1

bi,j

(−j

n

)
(−ri)n =

m∑

i=1

di∑

j=1

bi,j

(
n + j − 1

j − 1

)
rn
i .
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Since
(
nj−1
j−1

)
is a polynomial in n of degree j − 1, it follows that

∑di

j=1 bi,j

(
n+j−1

j−1

)
is a polynomial

in n of degree at most di − 1.

Let d be the degree of R(x), where the degree of 0 is −∞. If ` is the largest value of n for which
an initial value of n must be specified, then d ≤ ` − k. To find the coefficients of the polynomials
Pi(n), it suffices to know the values of at, . . . , atk

for any t larger than the degree of R(x).

Section 10.3

10.3.1 (a) (1− x)D′ −D = −e−x = −(1− x)D and so (1− x)D′ − xD = 0.

(b) The coefficient of xn on the left of our equation in (a) is

Dn+1

n!
− Dn

(n− 1)!
− Dn−1

(n− 1)!
.

The initial conditions are D0 = 1 and D1 = 0.

10.3.3 (a) We are asked to solve Q′(x)− 2(1−x)−1Q(x) = 2x(1−x)−3. The integrating factor is

exp
(∫

−2(1− x)−1dx

)
= exp

(
2 ln(1− x)

)
= (1− x)2.

Thus

Q(x)(1− x)2 =
∫

2x

1− x
dx =

∫ (
−2 +

2
1− x

)
dx = −2x− 2 ln(1− x) + C.

(b) We have −2 ln(1− x)− 2x =
∑

k≥2 2xk/k and

(1− x)−2 =
∑

k≥0

(−2
k

)
(−x)k =

∑

k≥0

(k + 1)xk.

By the formula for the coefficients in a product of generating functions,

qn =
n∑

k=2

2(n− k + 1)
k

= 2(n + 1)
n∑

k=2

1
k
−

n∑

k=2

2

= 2(n + 1)
n∑

k=1

1
k
− 2(n + 1)− 2(n− 1) = 2(n + 1)

n∑

k=1

1
k
− 4n.
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Section 10.4
10.4.1 (a) This is nothing more than a special case of the Rule of Product—at each time we can

choose anything from T .

(b) Simply sum the previous result on k.

(c) The hint tells how to do it. All that is left is algebra.

(d) The solution is like that in the previous part, except that we start with

∏

T∈T

( ∞∑

i=0

(
xw(T )

)i
)

=
∏

T∈T
(1− xw(T ))−1.

10.4.3 (a) This is simply 2∗ {0, 12∗}∗. Thus the generating function is

A(x) =
1

1− x

1

1−
(

x + x
1

1− x

) =
1

1− 3x + x2
.

Multiply both sides by 1− 3x + x2 and equate coefficients of xn to obtain the recursion

an = 3an−1 − an−2 for n > 1

with initial conditions a0 = 1 and a1 = 3.

(b) You should be able to see that this is described by 0∗(11∗0k0∗)∗. Since

G11∗0k0∗ = x
1

1− x
xk 1

1− x
=

xk+1

(1− x)2
,

the generating function we want is

A(x) =
1

1− x

1
1− xk+1/(1− x)2

=
1− x

1− 2x + x2 − xk+1
.

Clearing of fractions and equating coefficients, we obtain the recursion

an = 2an−1 − an−2 + an−k−1 for n > 1,

with the understanding that aj = 0 for j < 0. The initial conditions are a0 = a1 = 1.

(c) A possible formulation is
0∗ (1(11)∗00∗)∗ {λ, 1(11)∗}.

This says, start with any number of zeroes, then append any number of copies of the patterns
of type Z (described soon) and then follow by either nothing or an odd number of ones. A
pattern of type Z is an odd number of ones followed by one or more zeroes. The translation
to a generating function gives

1
1− x

1
GZ(x)

(
1 + x

1
1− x2

)
where GZ(x) = x

1
1− x2

x
1

1− x
.

After some algebra, the generating function reduces to

A(x) =
1 + x− x2

1− x− 2x2 + x3
,

which gives an = an−1 + 2an−2 − an−3 for n > 2, with initial conditions a0 = 1, a1 = 2 and
a2 = 3.
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10.4.5. Here’s a way to construct a pile of height h. Look at the number of blocks in each column.
The numbers increase to h, possibly stay at h for some time, and then fall off. The numbers up to
but not including the first h form a partition of a number with largest part at most h − 1 and the
numbers after the first h form a partition of a number with largest part at most h. The structures
are these partitions. By the Rule of Product and Exercise 10.4.4

∑

n≥0

sn,h(x) =
(h−1∏

i=1

1
1− xi

)
xh

( h∏

i=1

1
1− xi

)
=

xh

(1− xh)
h−1∏

i=1

(1− xi)2
.

Summing this over all h > 0 and adding 1 gives
∑

snxn. No simple formula is known for the sum.

10.4.7 (a) We can build the trees by taking a root and joining to it zero, one or two binary RP-trees.
This gives us T (x) = x(1 + T (x) + T (x)2).

(b) There is no simple expansion for the square root; however, various things can be done. One
possibility is to use

√
1− 2x− 3x2 =

√
1− 3x

√
1 + x. You can then expand each square root

and multiply the generating functions together. This leads to a summation of about n terms
for pn. The terms alternate in sign. A better approach is to write

√
1− 2x− 3x2 =

∑

k

(
1/2
k

)
(−1)k(2x + 3x2)k =

∑

k,j

(−1)k

(
1/2
k

)(
k

j

)
2k−j3jxk+j .

This leads to a summation of about n/2 positive terms for pn. It’s also possible to get a recursion
by constructing a first order, linear differential equation with polynomial coefficients for T (x)
as done in Exercise 10.2.6. Since the recursion contains only two terms, it’s the best approach
if we want to compute a table of values. It’s also the easiest to program on a computer.

10.4.9. The key to working this problem is to never allow the root to have exactly one son.

(a) Let the number be rn. The generating function for those trees whose root has degree k is R(x)k.
Since

∑
k≥0 R(x)k = 1/(1 − R(x)), we have R(x) = x 1

1−R(x) − xR(x). Clearing of fractions
and solving the quadratic,

R(x) =
1 + x−√1− 2x− 3x2

2(1 + x)
.

(The minus sign is the correct choice for the square root because R(0) = r0 = 0.) These
numbers are closely related to pn in Exercise 10.4.7. By comparing the equations for the
generating functions,

(1 + x)R(x) = x(P (x) + 1)

and so rn + rn−1 = pn−1 when n > 1.

(b) We modify the previous idea to count by leaves:

R(x) = x +
∑

k≥2

R(x)k = x +
R(x)2

1−R(x)
.

Solving the quadratic:

R(x) =
1 + x−√1− 6x + x2

4
.
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(c) From (a) we have 2(1 + x)R− 1− x = −√1− 2x− 3x2 and so

2xR′ + 2R− 1 =
1− 3x√

1− 2x− 3x2
.

Thus (1− 2x− 3x2)(2xR′ + R− 1) = −2(1 + x)R + 1 + x. Equating coefficients of xn gives us

(2n + 1)rn − (4n− 2)rn−1 − (6n− 9)rn−2 = −2rn − 2rn−1 for n ≥ 3.

Rearranging and checking initial conditions we have

rn+1 =
4nrn + 3(2n− 1)rn−1

2n + 5
for n ≥ 2,

with r0 = r2 = 0 and r1 = 1. You should be able to treat (b) in a similar manner. The result
is r0 = 0, r1 = r2 = 1 and, for n ≥ 2,

rn+1 =
3(2n− 1)rn − (n− 2)rn−1

n + 1
.

10.4.11 (a) A tree of outdegree D, consists of a root and some number d ∈ D of trees of outdegree
D joined to the root. Use the Rules of Sum and Product.

(b) Let f0(x) = 1. Define fn+1(x) = x
∑

d∈D fn(x)d. We leave it to you to prove by induction
that fn(x) agrees with TD(x) through terms of degree n.

(c) Except for the 1 ∈ D question, this is handled as we did TD(x). Why must we have 1 /∈ D? You
should be able to see that there are an infinite number of trees with exactly one leaf—construct
a tree that is just a path of length n from the root to the leaf.

10.4.13. We can build these trees up the way we built the full binary RP-trees: join two trees at a
root. If we distinguish right and left sons, every case will be counted twice, except when the two sons
are the same. Thus B(x) = x + 1

2 (B(x)2 − E(x)) + E(x), where E(x) counts the situation where
both sons are the same and nonempty. We get this by choosing a son and then duplicating it. Thus
each leaf in the son is replaced by two leaves and so E(x) = B(x2).

10.4.15 (a) Either the list consists of repeats of just one item OR it consists of a list of the proper
form AND a list of repeats of one item. In the first case we can choose the item in s ways and
use it any number of times from 1 to k. In the second case, we can choose the final repeating
item in only s− 1 ways since it must differ from the item preceding it.

(b) After a bit of algebra,

Ak(x) =
s/(s− 1)

1− (s− 1)(x + x2 + · · ·+ xk)
− s

s− 1
=

s(1− x)/(s− 1)
1− sx + (s− 1)xk+1

− s

s− 1
.

(c) Multiplying both sides of the formula just obtained for Ak(x) by 1− sx+(s−1)xk+1 gives the
desired result.

(d) Call a sequence of the desired sort acceptable. Add anything to the end of an n-long acceptable
sequence. This gives san,k sequences. Each of these is either an acceptable sequence of length
n + 1 or an (n − k)-long acceptable sequence followed by k + 1 copies of something different
from the last entry in the (n− k)-long sequence.
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10.4.17. We have 1− 3x + x2 = (1− ax)(1− bx) where a = 3+
√

5
2 and b = 3−√5

2 . Thus

x

1− 3x + x2
=

1/(a− b)
1− ax

− 1/(a− b)
1− bx

and so, since a− b =
√

5,

rn =
an − bn

√
5

.

10.4.19 (a) The accepting states are unchanged except that if the old start state was accepting,
both the old and new start states are accepting. If there was an edge from the old start state
to state t labeled with input i, then add an edge from the new start state to t labeled with i.
(The old edge is not removed.) We can express this in terms of the map f : S × I → 2S for
the nondeterministic automaton. Let so ∈ S be the old start state and introduce a new start
state sn. Let T = S ∪ {sn} and define f∗ : T × I → 2T by

f ∗ (t, i) =
{

f(t, i), if t ∈ S,
f(so, i), if t = sn.

(b) Label the states of A and B so that they have no labels in common. Call their start states sA

and sB . Add a new start state sn that has edges to all of the states that sA and sB did. In other
words, f ∗ (sn, i) is the union of fA(sA, i) and fB(sB , i), where fA and fB are the functions for
A and B. If either sA or sB was an accepting state, so is sn; otherwise the accepting states are
unchanged.

(c) Add the start state of S(A) to the accepting states. (This allows the machine to accept the
empty string, which is needed since ∗ means “zero or more times.”) Run edges from the ac-
cepting states of S(A) to those states that the start state of S(A) goes to. In other words, if s
is the start state,

f∗(t, i) =
{

f(t, i), if t is not an accepting state,
f(t, i) ∪ f(s, i), if t is an accepting state.

(d) From each accepting state of A, run an edge to each state to which the start state of B has
an edge. The accepting states of B are accepting states. If the start state of B is an accepting
state, then the accepting states of A are also accepting states, otherwise they are not. The
start state is the start state of A.
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C
C
C

N
N
N

N
N
C

C
C
N

C
N
N

N
C
C

Figure S.11.1 The state transition digraph for covering a 3 by n board with dominoes. Each vertex is
labeled with a triple that indicates whether commitment has been made in that row (C) or not made (N).
The start and end states are those with no commitments.

Section 11.1
11.1.1. The problem is to eliminate all but the c’s from the recursion. One can develop a systematic
method for doing this, but we will not since we have generating functions at our disposal. In this
particular case, let pn = fn + sn and note that pn − pn−1 = 2cn−1 by (11.5). Thus, by the first of
(11.4), this result and the last of (11.5),

cn+1 − cn = (2cn + pn + cn−1)− (2cn−1 + pn−1 + cn−2)
= 2cn − cn−1 − cn−2 + (pn − pn−1)
= 2cn + cn−1 − cn−2.

11.1.3 (a) Figure S.11.1 gives a state transition digraph.
Let an,s be the number of ways to take n steps from the state with no commitments and end in

a state s. Let As(x) =
∑

n an,sx
n. As in the text, the graph lets us write down the linked equations

for the generating functions. From the graph it can be seen that As depends only on the number k
of commitments in s. Therefore we can write As = Bk. The linked equations are then

B0(x) = x(B3(x) + 2B1(x)) + 1
B1(x) = x(B0(x) + B2(x))
B2(x) = xB1(x)
B3(x) = xB0(x),

which can be solved fairly easily for B0(x).

(b) Equate coefficients of xn on both sides of (1− 4x2 + x4)A(x) = 1− x2.

(c) By looking at the dominoes in the last two columns of a board, we see that it can end in five
mutually exclusive ways:

This shows that an equals 3an−2 plus whatever is counted by the last two of the five cases. A
board of length n − 2 ends with either (i) one vertical domino and one horizontal dominoes
or (ii) three horizontal dominoes. If the vertical dominoes mentioned in (i) are changed to the
left ends of horizontal dominoes, they fit with the last two cases shown above. If the three
horizontal mentioned in (ii) are removed, we obtain all boards of length n− 4. Thus the sum
of the last two cases in the picture plus an−4 equals an−2.
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11.1.5. Call the start state α and let Li,j be the number of different single letter inputs that allow
the machine to move from state i to state j. Let an,i be the number of ways to begin in state α,
recognize n letters and end in state i and let Ai = G1(an,i). The desired generating function is the
sum of Ai over all accepting states. A linked set of recursions can be obtained from the automaton
that leads to the generating function equations

Ai(x) =
∑

j

Li,jxAj(x) +
{ 1 if i = α;

0 otherwise.

11.1.7 (a) We will use induction. It is true for n = 1 by the definition of mx,y = m
(1)
x,y. (Its

also true for n = 0 because the zeroth power of a matrix is the identity and so m
(0)
x,y = 1 if

x = y and 0 otherwise.) Now suppose that n > 1. By the definition of matrix multiplication,
m

(n)
x,y =

∑
z m

(n−1)
x,z mz,y. By the induction hypothesis and the definition of mz,y each term in

the sum is the number of ways to get from x to z in n− 1 steps times the number of ways to
get from z to y in one step. By the Rules of Sum and Product, the proof is complete.

(b) If α is the initial state, iMnat =
∑

m
(n)
α,y, the sum ranging over all accepting states y.

(c) By the previous part, the desired generating function is

∞∑
n=0

iMnat xn = i
∞∑

n=0

xnMnat = i
∞∑

n=0

(xM)nat = i(I − xM)−1at.

(d) The matrix M is replaced by the table given in the solution to the previous exercise.

Section 11.2

11.2.1. Theorem. Suppose each structure in a set T of structures can be constructed from an
ordered partition (K1,K2) of the labels, two nonnegative integers `1 and `2, and some ordered pair
(T1, T2) of structures using the labels K1 in T1 and K2 in T2 such that:

(i) The number of ways to choose a Ti with labels Ki and `i unlabeled parts depends only
on i, |Ki| and `i.

(ii) Each structure T ∈ T arises in exactly one way in this process.

(We allow the possibility of Ki = ∅ if T i contains structures with no labels and likewise for `i = 0.)
It then follows that

T (x, y) = T1(x, y)T2(x, y),

where Ti(x, y) =
∑∞

n=0 ti,n,m(xn/n!)ym and ti,n,m is the number of ways to choose Ti with labels
n and k unlabeled parts. Define T (x, y) similarly.

The proof is the same as that for the original Rule of Product except that there is a double
sum:

tn,m =
∑

K1⊆n

m∑

`1=0

t1,|K1|,`1 t2,n−|K1|,m−`1 =
n∑

k=0

m∑

`1=0

(
n

k

)
t1,k,`1 t2,n−k,m−`1

11.2.3 (a) By the text, ∑

k

z(n, k)yk = y(y + 1) · · · (y + n− 1).
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Replacing all but the last factor on the right hand side gives us

∑

k

z(n, k)yk =
(∑

k

z(n− 1, k)yk

)
(y + n− 1).

Equate coefficients of yk.

(b) For each permutation counted by z(n, k), look at the location of n. There are z(n − 1, k − 1)
ways to construct permutations with n in a cycle by itself. To construct a permutation with
n not in a cycle by itself, first construct one of the permutations counted by z(n− 1, k) AND
then insert n into a cycle. Since there are j ways to insert a number into a j-cycle, the number
of ways to insert n is the sum of the cycle lengths, which is n− 1.

11.2.5 (a) For any particular letter appearing an odd number of times, the generating function is

∑

n odd

xn

n!
=

ex − e−1

2
with Taylor’s theorem and some work.

We must add 1 to this to allow for the letter not being used. The Rule of Product is then used
to combine the results for A, B and C.

(b) Multiplying out the previous result:

(
1 +

ex − e−x

2

)3

= 1 + 3(ex − e−x)/2 + 3(ex − e−x)2/4 + (ex − e−x)3/8

= 1 +
(
3ex/2− 3e−x/2

)
+

(
3e2x/4− 3/2 + 3e−2x/4

)
+

(
e3x/8− 3ex/8 + 3e−x/8− e−3x/8

)

= −1/2 +
(
e3x/8− e−3x/8

)
+

(
3e2x/4 + e−2x/4

)
+

(
9ex/8− 9e−x/8

)
.

Now compute the coefficients.

11.2.7. We saw in this section that B(x) = exp(ex − 1). Differentiating:

B′(x) = exp(ex − 1) (ex − 1)′ = B(x)ex.

Equating coefficients of xn:
Bn+1

n!
=

n∑

k=0

Bk

k!
1

(n− k)!
,

which gives the result.

11.2.9 (a) Let gn,k be the number of graphs with n vertices and k components. We have∑
n,k gn,k(xn/n!)yk = exp(yC(x)), by the Exponential Formula. Differentiating with respect

to y and setting y = 1 gives us

∑
n

(∑
k kgn,k

)
xn/n! =

∂ exp(yC(x))
∂y

∣∣∣∣
y=1

= H(x).

(b)
∑

k gn,k is the number of ways to choose an n-vertex graph and mark a component of it. We
can construct a graph with a marked component by selecting a component (giving C(x)) AND
selecting a graph (giving G(x)).



Solutions to Odd Exercises 451

(c) For permutations, there are (n− 1)! connected components of size n and so

C(x) =
∑ (n− 1)!xn

n!
=

∑
xn/n = − ln(1− x).

Since there are n! permutations of n, G(x) = 1
1−x and the average number of cycles in a

permutation is
hn

n!
= n! [xn]

∞∑

k=1

xn

n

1
1− x

n∑

k=1

1
k

.

(d) Since C(x) = ex − 1, we have H(x) = (ex − 1) exp(ex − 1) and so

hn =
n∑

k=1

(
n

k

)
Bn−k =

n∑

k=0

(
n

k

)
Bn−k −Bn,

which is B(n + 1)−Bn by the previous exercise.

(e) Since C(x) = x + x2/2, we have H(x) = (x + x2/2)I(X), where I(x) is the EGF for in, the
number of involutions of n. Thus the average number of cycles in an involution of n is

(
n
1

)
in−1 +

(
n
2

)
in−2

in
=

n

2

(
1 +

in−1

in

)
,

where the right side comes from the recursion in = in−1 + (n− 1)in−2.

11.2.11. Suppose n > 1. Since f is alternating,

• k is even;
• f(1), . . . , f(k − 1) is an alternating permutation of {f(1), . . . , f(k − 1)};
• f(k + 1), . . . , f(n) is an alternating permutation of {f(k + 1), . . . , f(n)}.

Thus, an alternating permutation of n for n > 1 is built from an alternating permutation of
odd length AND an alternating permutation, such that the sum of the lengths is n − 1. We
have shown that ∑

n>1

anxn−1

(n− 1)!
= B(x)A(x)

and so A′(x) = B(x)A(x) + 1. Similarly, B′(x) = B(x)B(x) + 1.
Separate variables in B′ = B2 + 1 and use B(0) = 0 to obtain B(x) = tan x. Use the

integrating factor cos x for
A′(x) = (tan x)A(x) + 1

and the initial condition A(0) = 1 to obtain A(x) = tan x + sec x.

11.2.13 (a) The square of a k-cycle is

• another cycle of length k if k is odd;
• two cycles of length k/2 if k is even.

Using this, we see that the condition is necessary. With further study, you should be able to
see how to take a square root of such a permutation.

(b) This is simply putting together cycles of various lengths using (a) and recalling that there are
(k − 1)! k-cycles.

(c) By bisection
∞∑

k=1
k odd

xk

k
= 1

2

(
{− ln(1− x)} − {− ln(1− (−x))}

)
.

(d) We don’t know of an easier method.
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11.2.15 (a) We’ll give two methods. First, we use the Exponential Formula approach in Exam-
ple 11.14. When we add a root, the number of leaves does not change—except when we started
with nothing and ended up with a single vertex tree. Correcting for this exception gives us the
formula.

Without the use of the Exponential Formula, we could partition the trees according to
the degree k of the root, treating k = 0 specially because in this case the root is a leaf:

L(x, y) = xy +
∞∑

k=1

L(x, y)k/k!.

(b) This type of problem was discussed in Section 10.3. Recall that there are nn−1 n-vertex rooted
labeled trees.

(c) Differentiate the equation in (a) with respect to y and set y = 1 to obtain

U(x) = xeT (x)U(x) + x = T (x)U(x) + x,

where we have used the fact that L(x, 1) = T (x) = xeT (x). Solving for U : U = x
1−T . Differenti-

ating T (x) = xeT (x) and solving for T ′(x) gives us T ′ = T
x(1−T ) . Thus x2T ′ + x = x

1−T , which
gives the equation for U(x).

We know that tn = nn−1. It follows from the equation for U(x) that

un

n!
=

(n− 1)n−2

(n− 2)!
.

Thus un/tn = n/(1 + x)1/x, where x = 1
n−1 . As n →∞, x → 0 and, by l’Hôpital’s Rule

(1 + x)1/x = exp
(

ln(1 + x)
x

)
→ exp(1) = e.

11.2.17 (a) There are several steps

• Since g is a function, each vertex of ϕ(g) has outdegree 1. Thus the image of nn lies in
Fn.

• ϕ is an injection: if ϕ(g) = ϕ(h), then (x, g(x)) = (x, h(x)) for all x ∈ n and so g = h.

• Finally ϕ is onto Fn: If (V, E) ∈ Fn, for each x ∈ n there is an edge (x, y) ∈ E. Define
g(x) = y.

(b) Let’s think in terms of a function g corresponding to the digraph. Let k ∈ n. If the equation
gt(k) has a solution, then k is on a cycle and will be the root of a tree. The other vertices of
the tree are those j ∈ n for which gs(j) = k for some s.

(c) This is simply an application of Exercise 11.2.2.

(d) In the notation of Theorem 11.6, T (x) is T (x), f(t) = eT and g(u) = − ln(1−u). Thus n(fn/n!)
is the coefficient of un in enu(1 − u)−1. Using the convolution formula for the coefficient of a
product of power series, we obtain the result.
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Section 11.3
11.3.1 (a) AB = CD follows from ai + bi = min(ai, bi) + max(ai, bi). C divides A if and only if

ci ≤ ai for all i. Thus C divides both A and B if and only if ci ≤ min(ai, bi) for all i. Thus
C = gcd(A,B). The claim that D = lcm(A,B) follows similarly.

(b) It follows from the definition of gcd that gcd(n, i) must divide both n and i. This completes
the first part. From (a), we have gcd(ab, ac) = a gcd(b, c). Apply this with ab = n and a = k:
gcd(n, i) = k gcd(n, i/k).

(c) By letting j = n/k, we can see that the two forms of the sum are equivalent, so we need only
prove one. Let g generate Cn, that is g(i) = i + 1 modulo n. Let h = gt so that h(i) = i + t
modulo n. Thus hk(i) = i + kt. The smallest k > 0 such that hk is the identity is thus the
smallest k such that kt is a multiple of n. Also, the cycle form of h consists of k-cycles. Since
there are n elements, there must be n/k k-cycles. Thus h contributes z

n/k
k to the sum. We need

to know how many values of t give a particular value of k. By looking at prime factorization,
you should be able to see that k gcd(n, t) = n and so gcd(n, t) = n/k. We can now use (b) with
k replaced by n/k to conclude that the number of such t is ϕ(n/(n/k)) = ϕ(k).

11.3.3 (a) A regular octahedron can be surrounded by a cube so that each vertex of the octahedron
is the center of a face of the cube. The center of the octahedron is the center of the cube. A line
segment from the center of the cube to a vertex of the cube passes through the center of the
corresponding face of the octahedron. A line segment from the center of the cube to the center
of an edge of the cube passes through the center of the corresponding edge of the octahedron.

(b) By the above correspondence, the answer will be the same as the symmetries of the cube acting
on the faces of the cube. See (11.31).

(c) By the above correspondence it is the same as the answer for the edges of the cube. See the
previous exercise.

11.3.5. The group is usually called S4. Here are its 4! = 24 elements:

• The identity, which gives x4
1.

• (4− 1)! = 6 elements which are 4-cycles, which give 6x4.
• (

4
2

)
= 6 elements which consist of two 1-cycles and a 2-cycle, giving 6x2

1x2.

• (
(4

1)×(3−1)!=8

)
elements which consist of a 1-cycle and a 3-cycle, giving 8x1x3.

• 1
2

(
4
2

)
= 3 elements which consist of two 2-cycles, giving 3x2

2.

Thus

ZSn =
x4

1 + 6x4 + 6x2
1x2 + 8x1x3 + 2x2

2

24
.

Now apply Theorem 11.9:
x4

1 =⇒ x16
1

x4 =⇒ x4
4

x2
1x2 =⇒ x4

1x
2+2+2
2 = x4

1x
6
2

x1x3 =⇒ x1x
1+1+3
3 = x1x

5
3

x2
2 =⇒ x8

2

11.3.7. If the vertices belong to different cycles of length i and j > i we get x
gcd(i,j)
lcm(i,j) as in the

digraph case and so we get ∏

i<j

(
xlcm(i,j)

)νiνj gcd(i,j)
.
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If the two cycles have the same length, we must be careful not to overcount because the edge is not
directed. When the two vertices are in different cycles of length i we get xi

i and there are
(
νi

2

)
such

pairs of cycles. When the two vertices belong to the same cycle of length i, we must be extra careful:
If the separation between the vertices on the cycle is i/2, the edge {u, v} comes back after i/2 steps
around the cycle as {v, u}, so to speak. Otherwise, it must go i steps around the cycle. Thus we get
a contribution of either

x
(i−1)νi/2
i for odd i, x

(i−2)νi/2
i xνi

i/2 for even i.

Putting this all together,
∏

xνi
i becomes

(∏

i<j

(
xlcm(i,j)

)νiνj gcd(i,j)
)(∏

i

x
iνi(νi−1)/2
i

)( ∏

i odd

x
(i−1)νi/2
i

)( ∏

i even

x
(i−2)νi/2
i xνi

i/2

)
.

Section 11.4

11.4.1 (a) We have r2 = 2r + 1 and so r = 1 +
√

2 and m = 1. By the principle, we expect there
is some constant A such that an ∼ A(1 +

√
2)n.

(b) Since A(x) = 1+x
1−2x−x2 , we have p(x) = 1 + x, q(x) = 1 − 2x − x2, r =

√
2 − 1 = 1/(1 +

√
2 )

and q′(r) = −2
√

2. Thus k = 1 and we have

an ∼ (−1)1
√

2 n1−1

−2
√

2 rn+1
= 1

2

(
1 +

√
2

)n+1
.

(c) We have 1 − 2x − x2 = (1 − ax)(1 − bx) where a = 1 +
√

2 and b = 1 − √2. Expanding by
partial fractions:

1 + x

1− 2x− x2
=

1
1− 2x− x2

+
x

1− 2x− x2

=
a

a−b

1− ax
−

b
a−b

1− bx

+
1

a−b

1− ax
−

1
a−b

1− bx

=
(2 +

√
2 )/(2

√
2 )

1− ax
− (2−√2 )/(2

√
2 )

1− bx
.

Thus an = 1
2 (1 +

√
2 )n+1 + 1

2 (1−√2 )n+1.

11.4.3. From the discussion in the example, you can see that merging two lists of lengths i and
j > i takes at least i comparison. Thus the example shows that the number of comparisons for
merge sorting satisfies Tn = f(n) + T (m) + T (n−m) where m = bn/2c and m ≤ f(n) < n. Apply
Principle 11.3.

11.4.5. We’ll use Principle 11.4 (p. 345) so tn,k will denote the kth term of the sum we’re given.

(a) Since
tn,k+1

tn,k
=

n− k

n
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is less than 1 and is close to 1 when k/n is small, we’ll use Principle 11.5 (p. 346). Since

1− rk

k
=

1− (n− k)/n

k
=

1
n

,

(11.38) gives the estimate √
πn

2
n!nn+1

n!
.

(b) This is a bit more complicated than (a) since

tn,k+1

tn,k
=

k + 1
k

n− k

n

is greater than 1 for small k and less than 1 for k near n. Thus tn,k achieves its maximum
somewhere between 1 and n, namely, when the above ratio equals 1. This leads to a quadratic
equation for k which has the solution

k =
−1 +

√
1 + 4n

2
.

Since this differs from
√

n by at most a constant, we’ll split the sum into two pieces at k =
√

n
and use Principle 11.5 (p. 346) for each half. Since each half has the same estimate, we simply
double one result. Ignoring the fact that

√
n is not an integer, we set k =

√
n+ j and use j ≥ 0

as the new index of summation. Call the new terms t′n,j . We have

rj =
t′n,j+1

t′n,j

=
tn,k+1

tn,k
=

k + 1
k

n− k

n

=
√

n + j + 1√
n + j

n−√n− j

n

=
(

1 +
1√

n + j

)(
1−

√
n + j

n

)

= 1 +
n− (√

n + j
)2 − (√

n + j
)

n
(√

n + j
)

= 1− 2j
√

n + j2 +
√

n + j

n
(√

n + j
)

≈ 1− 2j
√

n

n
√

n
= 1− 2j/n.

Thus (1− rj)/j ≈ 2/n and so we obtain the following approximation (the factor of 2 is due to
the presence of two sums)

2
√

πn/4 t′n,0 =
√

π n!
n
√

n(n−√n )!
,

where (n−√n )! should be approximated using Stirling’s formula (Theorem 1.5 (p. 12)) since
we have no formula for x! when x is not a positive integer.

11.4.7. Use Principle 11.6 (p. 349) with r = 1, b = 0 and c = −1 to obtain

an ∼ n! exp
(
−

∑

k∈S

1/k

)
.
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11.4.9 (a) The function has radius of convergence r = 1 and has a singularity at −1 = −r. Another
reason we can’t use it for Ae(x) is that ae,n = 0 whenever n is odd.

(b) For both cases, r = 1, b = 0 and c = −1/2. We obtain L =
√

2 for Ao(x) and L = 1/
√

2 for
Ae(x).

(c) By power series, ae,2n = (−1)n
(−1/2

n

)
(2n)!, which can be rearranged to give the answer. By

Stirling’s formula, ae,2n ∼ (2n)!/
√

πn ∼ 2(2n/e)2n.

(d) Since Ao(x) = (1+x)Ae(x), we have ao,2n = ae,2n and ao,2n+1 = (2n+1)ae,2n. By the previous
part, ao,2n =

(
2n
n

)
(2n)! 4−n and ao,2n+1 =

(
2n
n

)
(2n + 1)! 4−n.

11.4.11. We use Principle 11.6 (p. 349) with

A(x) = (1− 2x− 3x2)−1/2, b = 0 and c = −1/2.

Since 1− 2x− 3x2 = (1− 3x)(1 + x), r = 1/3 and

L = lim
x→1/3

(1− 2x− 3x2)−1/2

(1− 3x)−1/2
= lim

x→1/3

1√
1 + x

=
√

3
2

.

Thus

an ∼
√

3 3nn−1/2

2Γ(1/2)
=

3n+1/2

2
√

πn
.

11.4.13. We use Principle 11.6 (p. 349). Since (1 + x2)2 − 4x vanishes at x = r = 0.295597742 . . .
and is positive whenever −r ≤ x < r, we have found r. Thus we take

f(x) = (1− x/r)1/2, g(x) =
−1
2

√
(1 + x2)2 − 4x

1− x/r
and h(x) =

1 + x2

2
.

We have

L = lim
x→r

−
√

(1 + x2)2 − 4x

2
√

1− x/r
= −1

2

√
lim
x→r

(1− x2)2 − 4x

1− x/r
.

By using l’Hôpital’s Rule, we obtain

L = −1
2

√
−4r(1− r2)− 4

−1/r
= −

√
r + r2(1− r2) = −0.61265067.

11.4.15. By techniques we have used before,

H(x) = x
∑

k≥2

H(x)k + x.

Sum the geometric series and use algebra to obtain the desired quadratic equation for H(x).
This quadratic could be treated as an implicit equation for H(x) and we could apply Prin-

ciple 11.7 (p. 353). Alternatively, we could solve the quadratic for H(x) and use Principle 11.6
(p. 349). For Principle 11.7, let F (x, y) = y2 − y + x

1+x . Then Fy(x, y) = 2y − 1 and so s = 1/2 and
r

1+r = 1/2− (1/2)2, which yields r = 1/3. For Principle 11.6,

H(x) =
1−

√
1− 4x/(1 + x)

2
=

1−
√

(1− 3x)/(1 + x)
2

.
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Thus r = 1/3, f(x) = (1− x/r)1/2, g(x) = −1/2(1 + x)1/2 and h(x) = 1/2. In any case, the answer
is

an ∼
√

3 3n

4
√

πn3
.

11.4.17. We will use Principle 11.6 (p. 349). We want to solve
∑

k∈D

rk/k! = 1

for r because then we have a singularity due to division by zero. This can always be done:
• The radius of convergence of the sum is ∞.
• The sum vanishes at r = 0.
• The sum is increasing and unbounded as r → +∞.

Having found r, we let f(x) = (1 − x/r)−1. Then g(x) = (1 − x/r)A(x) and, by l’Hôpital’s
Rule,

L = lim
x→r

1− x/r

1−∑
k∈D xk/k!

=
1∑

k∈D rk/(k − 1)!

Let d = gcd(D). You should be able to see that an = 0 when n is not a multiple of d. Hence
we’ll need to assume that d = 1. (Actually you can get around this by setting xd = z, a new variable.)
The answer for general d is

an ∼ d n! r−n

∑

k∈D

rk/(k − 1)!
when d divides n

and an = 0, otherwise.

11.4.19 (a) We have

B(x) =
k∑

t=0

(
k

t

)
f(x)tg(x)th(x)k−t.

Apply the principle to each term in the sum. Since c < 0, the largest contribution comes from
the t = k term. Thus bn ∼ g(r)kn−ck−1/Γ(−ck).

(b) Proceed as in the previous part. Since c > 0, the largest contribution is now from t = 1 and so
bn kanh(r)k−1.

(c) The formula for B(x) is just a bit of algebra. The only singularity on [−r, r] is due to f(x) =
(1− x/r)1/2.

(d) Since A(x) is a sum of nonnegative terms, it is an increasing function of x and so A(x) = 1 has
at most one positive solution. We take b = 0, c = −1 and f(x) = (1−x/s)−1 in Principle 11.6.
Then

lim
x→s

(1−A(x))−1

(1− x/s)−1
= lim

x→s

1− x/s

1−A(x)
=

1
sA′(s)

by l’Hôpital’s Rule.
Suppose that c < 0. Note that A(0) = 0 and that A(x) is unbounded as x → r because

A(x)/(1 − x/r)c approaches a nonzero limit. Thus A(x) = 1 has a solution in (0, r) by the
Mean Value Theorem for continuous functions.

(e) If we could deal with eA(x) using Principle 11.6, we could multiply g(x) and h(x) in the
principle by es(x), where s(x) is either of the sums given in this exercise. Then we can apply
Principle 11.6.
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11.4.21 (b) Let U(x) = T (x)/x. The equation for U is U =
∑

xdUd/d!. Replacing xk with z, we
see that this leads to a power series for U in powers of z = xk. Thus the coefficients of xm in
U(x) will be 0 when m is not a multiple of k.

(c) We apply Principle 11.7 (p. 353) with

F (x, y) = y − x
∑

d∈D

yd/d! and Fy(x, y) = 1− x
∑

d∈D
d 6=0

yd−1/(d− 1)!.

Using F (r, s) = 0 = Fy(r, s) and some algebra, we obtain

∑

d∈D
d6=0

(d− 1)sd/d! = 1 and r =
( ∑

d∈D
d 6=0

sd−1/(d− 1)!
)−1

.

Once the first of these has been solved numerically for s, the rest of the calculations are
straightforward.

Appendix A
A.1. A(n) is the formula 1 + 3 + · · ·+ (2n− 1) = n2 and n0 = n1 = 1. A(1) is just 1 = 12. To prove
A(n + 1) in the inductive step, use A(n):

(1 + 3 + · · ·+ (2n− 1)) + (2n + 1) = n2 + (2n + 1) = (n + 1)2.

A.3. Let A(n) be
∑n−1

k=1(−1)kk2 = (−1)n−1
∑n

k=1 k. By (A.1), we can replace the right hand side
of A(n) by (−1)n−1n(n + 1)/2, which we will do. It is easy to verify A(1). As usual, the induction
step uses A(n− 1) to evaluate

∑n−1
k=1(−1)k−1k2 and some algebra to prove A(n) from this.

What would have happened if we hadn’t thought to use (A.1)? The proof would have gotten
more complicated. To prove A(n) we would have needed to prove that

(−1)(n−1)−1
n−1∑

k=1

k + (−1)n−1n2 = (−1)n−1
n∑

k=1

k.

At this point, we would have to prove this result separately by induction or prove in using (A.1).

A.5. The claim is true for n = 1. For n + 1, we have

(xn+1)′ = (xnx)′ = (xn)′x + (xn)x′ = (nxn−1)x + xn,

where the last used the induction hypothesis. Since the right side is (n + 1)xn, we are done.

A.7. The inductive step only holds for n ≥ 3 because the claim that Pn−1 belongs to both groups
requires n − 1 ≥ 2; however, A(2) was never proved. (Indeed, if A(2) is true, then A(n) is true for
all n.)

A.9. This is obviously true for n = 1. Suppose we have a numbering when n − 1 lines have been
drawn. The nth line divides the plane into two parts, say A and B. Assign all regions in A the same
number they had with n− 1 lines and reverse the numbering in B.
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Section B.1

B.1.1. We’ll omit most cases where the functions must be nonnegative. Also, the proofs for O
properties are omitted because they are like those for Θ without the “A” part of the inequalities.
All inequalities are understood to hold for some A’s and B’s and all sufficiently large n.
(a) Note that g(n) is Θ(f(n)) if and only if there are positive constants B and C such that

|g(n)| ≤ B|f(n)| and |f(n)| ≤ C|g(n)|. Let A = 1/C. Conversely, if A|f(n)| ≤ |g(n)| ≤ B|f(n)|,
let C = 1/A and reverse the previous steps.

(b) These follow easily from the definition.
(c) These follow easily from the definition.
(d) We do Θ using A. Let A′ = A|C/D| and B′ = B|C/D|. Then A′|Df(n)| ≤ |Cg(n)| ≤

B′|Df(n)|.
(e) Use (a): We have (1/B)|g(n)| ≤ |f(n)| ≤ (1/A)|g(n)|.
(f) See proof in the text.
(g) We do Θ( ) and use (a). We have Ai|fi(n)| ≤ |gi(n)| ≤ Bi|fi(n)|. Multiplying and using (a)

with A = A1A2 and B = B1B2 gives the first result. To get the second part, divide the
i = 1 inequalities by the i = 2 inequalities (remember to reverse direction!) and use (a) with
A = A1/B2 and B = B1/A2.

(h) See proof in the text.
(i) This follows immediately from (h) if we drop the subscripts.

B.1.3. This is not true. For example, n is O(n2), but n2 is not O(n).

B.1.5 (a) Hint: There is an explicit formula for the sum of the squares of integers.

(b) Hint: There is an explicit formula for the sum of the cubes of integers.

(c) Hint: If you know calculus, upper and lower Riemann sum approximations to the integral of
f(x) = x1/2 can be used here.

B.1.7 (a) Here’s a chart of values.

5 10 30 100 300

n2 25 102 9× 102 104 9× 104

100n 5× 102 103 3× 103 104 3× 104

100(2n/10 − 1) 41 102 7× 102 105 108

fastest A A, C C A, B B
slowest B B B C C

(b) When n is very large, B is fastest and C is slowest. This is because, (i) of two polynomials
the one with the lower degree is eventually faster and (ii) an exponential function grows faster
than any polynomial.

B.1.9. Let p(n) =
∑k

i=0 bin
i with bk > 0.

(a) Let s =
∑k−1

i=0 |bi| and assume that n ≥ 2s/bk. We have

|p(n)− bknk| ≤
∣∣∣∣

k−1∑

i=0

bin
i

∣∣∣∣ ≤
k−1∑

i=0

|bi|ni ≤
k−1∑

i=0

|bi|nk−1 = snk−1 ≤ bknk/2.

Thus |p(n)| ≥ bknk − bknk/2 ≥ (bk/2)nk and also |p(n)| ≤ bknk + bknk/2 ≤ (3bk/2)nk.
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(b) This follows form (a) of the theorem.

(c) By applying l’Hospital’s Rule k times, we see that the limit of p(n)/an is lim
n→∞

(k!/(loga)k)/an,
which is 0.

(d) By the proof of the first part, p(n) ≤ (3bk/2)nk for all sufficiently large n. Thus we can take
C ≥ 3bk/2.

(e) For p(n) to be Θ(aCnk

), we must have positive constants A and B such that A ≤ ap(n)/aCnk ≤
B. Taking logarithms gives us loga A ≤ p(n)−Cnk ≤ loga B. The center of this expression is a
polynomial which is not constant unless p(n) = Cnk + D for some constant D, the case which
is ruled out. Thus p(n)− Cnk is a nonconstant polynomial and so is unbounded.

B.1.11 (a) The worst time possibility would be to run through the entire loop because the “If”
always fails. In this case the running time is Θ(n). This actually happens for the permutation
ai = i for all i.

(b) Let Nk be the number of permutations which have ai−1 < ai for 2 ≤ i ≤ k and ak > ak+1.
(There is an ambiguity about what to do for the permutation ai = i for all i, but it contributes
a negligible amount to the average running time.) The “If” statement is executed k times for
such permutations. Thus the average number of times the “If” is executed is

∑
kNk/n!. If the

ai’s were chosen independently one at a time from all the integers so that no adjacent ones are
equal, the chances that all the k inequalities a1 < a2 < · · · < ak > ak+1 hold would be (1/2)k.
This would give Nk/n! = (1/2)k and then

∑∞
k=0 kNk/n! would converge by the “ratio test.”

This says that the average running time is bounded for all n. Unfortunately the ai’s cannot be
chosen as described to produce a permutation of n.

We need to determine Nk. With each arbitrary permutation a1, a2, . . . we can associate a
set of permutations b1, b2, . . . counted by Nk. We’ll call this the set for a1, a2, . . .. For i > k+1,
bi = ai, and b1, . . . , bk+1 is a rearrangement of a1, . . . , ak+1 to give a permutation counted by
Nk. How many such rearrangements are there? bk+1 can be any but the largest of the ai’s
and the remaining bi’s must be the remaining ai’s arranged in increasing order. Thus there
are k possibilities and so the set for a1, a2, . . . has k elements. Hence the set associated with
a1, a2, . . . contains k permutations counted by Nk. Since there are n! permutations, we have
a total of n!k things counted by Nk; however, each permutation b1, b2, . . . counted by Nk ap-
pears in many sets. In fact it appears (k + 1)! since any rearrangement of the first k + 1 bi’s
gives a permutation that has b1, b2, . . . in its set. Thus the number of things in all the sets is
Nk(k + 1)!. Consequently, Nk = n!k/(k + 1)!.

By the previous paragraphs, the average number of times the “If” is executed is∑
k2/(k + 1)!, which approaches some constant. Thus the average running time is Θ(1).

(c) The minimum running time occurs when an > an+1 and this time is Θ(n). By previous results
the maximum running time is also Θ(n). Thus the average running time is Θ(n).

Section B.3
B.3.1 (a) If we have know χ(G), then we can determine if c colors are enough by checking if

c ≥ χ(G).

(b) We know that 0 ≤ χ(G) ≤ n for a graph with n vertices. Ask if c colors suffice for c = 0, 1, 2, . . ..
The least c for which the answer is “yes” is χ(G). Thus the worst case time for finding χ(G)
is at most n times the worst case time for the NP-complete problem. Hence one time is O of
a polynomial in n if and only if the other is.


