
PART III

Recursion

Recursive thinking plays a fundamental role in combinatorics, theoretical computer science and
programming. The next chapter introduces the recursive approach and the following two chapters
discuss important applications.

Definition Recursive approach A recursive approach to a problem consists of two parts:

• The problem is reduced to one or more problems of the same sort which are simpler in some

sense.

• There is a collection of simplest problems to which all others are reduced after one or more

steps. A solution to these simplest problems is given.

As you might expect, a recursive algorithm is one that refers to itself. This seemingly simple
notion is extremely important. Recursive algorithms and their translation into recursive procedures
and recursive data structures are fundamental in computer science. For example, here’s a recursive
algorithm for sorting a list. (Sorting a list means putting the items in increasing order.)

• divide the list roughly in half,

• sort each half, and

• “merge” the two sorted halves.

Proof by induction and recursive algorithms are closely related. We’ll begin Chapter 7 by exam-
ining inductive proofs and recursive equations. Then we’ll look briefly at thinking and programming
recursively.

Suppose that we have some items that have a “natural” order; e.g., the natural order for student
records might be

• alphabetic by name (last name first),

• first by class and, within a class, alphabetic by name, or

• by grade point average with highest first.

We may allow ties. The problem of sorting is as follows: Given a list of items in no particular order,
rearrange it so that it is in its natural order. In the event of a tie, the relative order of the tied items
is arbitrary. In Chapter 8, we’ll study some of the recursive aspects of software and hardware sorting
algorithms. Many of these use the “divide and conquer” technique, which often appears in recursive
algorithms. We end the chapter with a discussion of this important technique.

One of the most important conceptual tools in computer science is the idea of a rooted plane
tree, which we introduced in Section 5.4. This leads naturally to methods for ranking and unranking
various classes of unlabeled RP-trees. Many combinatorial algorithms involve “traversing” RP-trees.
Grammars can often be thought of in terms of RP-trees, and generating machine code from a higher
level language is related to the traversal of such trees. These topics are discussed in Chapter 9.

195


