Section 7.4 An Easier Method for Finding Some Partial Fractions

We'll explore a different way to get the parts of the partial fraction expansion whose denominators are powers of a linear factor. This method often involves less work since there are no equations to solve.

Suppose we want to expand $p(x) / q(x)$ where the degree of $p(x)$ is less than the degree of $q(x)$ and that $p(x)$ and $q(x)$ have no common factor. Suppose also that $q(x)=x^{n} r(x)$ where $r(x)$ is not divisible by x. Imagine putting all the partial fractions that have a power of x in the denominator over a common denominator. Imagine doing the same for all the remaining partial fractions. When this is done, we will have the equation

$$
\begin{equation*}
\frac{p(x)}{x^{n} r(x)}=\frac{A(x)}{x^{n}}+\frac{B(x)}{r(x)}, \tag{1}
\end{equation*}
$$

where the degree of $A(x)$ is less than n. (We're just asserting that this is true, not proving it.)

If we know the coefficients in $A(x)=a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}$, we can easily divide by x^{n} to obtain the part of partial fraction for powers of x :

$$
\frac{A(x)}{x^{n}}=\frac{a_{1}}{x}+\frac{a_{2}}{x^{2}}+\cdots+\frac{a_{n-1}}{x^{n-1}}+\frac{a_{n}}{x^{n}} .
$$

How do we find $A(x)$?
We can find $A(x)$ rather easily. From (1) we have

$$
\frac{p(x)}{x^{n} r(x)}=\frac{r(x) A(x)+x^{n} B(x)}{x^{n} r(x)}
$$

and so

$$
\begin{equation*}
p(x)=r(x) A(x)+x^{n} B(x) \tag{2}
\end{equation*}
$$

where the coefficients of $A(x)$ and $B(x)$ are unknown. Equate the coefficients of x^{k} in (2) for $0 \leq k<n$. Notice that the coefficients of $B(x)$ don't appear since $B(x)$ is multiplied by x^{n}. Thus we have

$$
\begin{array}{clll}
\text { coef. of } x^{0}: & p_{0}=r_{0} a_{0} & \text { whence } & a_{0}=p_{0} / r_{0} \\
\text { coef. of } x^{1}: & p_{1}=r_{0} a_{1}+r_{1} a_{0} & \text { whence } & a_{1}=\left(p_{1}-r_{1} a_{0}\right) / r_{0} \\
\text { coef. of } x^{2}: & p_{2}=r_{0} a_{2}+r_{1} a_{1}+r_{2} a_{0} & \text { whence } & a_{2}=\left(p_{2}-r_{1} a_{1}-r_{2} a_{0}\right) / r_{0} \\
\ldots & & & \\
\text { coef. of } x^{k}: & p_{k}=r_{0} a_{k}+\cdots+r_{k} a_{0} & \text { whence } & r_{k}=\left(p_{k}-r_{1} a_{k-1}-\cdots-r_{k} a_{0}\right) / r_{0}
\end{array}
$$

Use the first equation to get a_{0}, then use the second to get a_{1} and so forth.
This sounds more complicated than it is, so let's work an example.

Section 7.4 An Easier Method for Finding Some Partial Fractions

Example Consider

$$
\begin{equation*}
\frac{x^{2}+5 x-2}{x^{4}(x+1)^{3}} \tag{3}
\end{equation*}
$$

We write this as

$$
\frac{x^{2}+5 x-2}{x^{4}(x+1)^{3}}=\frac{A(x)}{x^{4}}+\frac{B(x)}{(x+1)^{3}}
$$

Since $r(x)=(x+1)^{3}=x^{3}+3 x^{2}+3 x+1$, we have

$$
x^{2}+5 x-2=\left(x^{3}+3 x^{2}+3 x+1\right) A(x)+x^{4} B(x) .
$$

Thus

$$
\begin{array}{rlrl}
\text { coef. of } x^{0}: & -2 & =1 a_{0} & \\
\text { coef. of } x^{1}: & 5 & =1 a_{1}+3 a_{0} & \\
\text { coef. of so } a_{0}=-2 \\
\text { coef. of } x^{2}: & 1 & =1 a_{2}+3 a_{1}+3 a_{0} & \\
\text { cond so } a_{1}=11 \\
& 0 & \text { and so } a_{2}=-26 \\
3 a_{3}+3 a_{2}+3 a_{1}+1 a_{0} & & \text { and so } a_{3}=47
\end{array}
$$

We have part of the partial fraction expansion: $-2 / x^{4}+11 / x^{3}-26 / x^{2}+47 / x$.
If this only worked for powers of x in the denominator, it wouldn't be much use. With a change of variable, we can make it work for any linear factor: Suppose we want partial fractions for $p(x) / q(x)$ and we have $q(x)=(c x+d)^{m} s(x)$.

- Change variables by setting $y=c x+d$; that is, $x=(y-d) / c$.
- Apply the preceding method to obtain $a_{1} / y+\cdots+a_{m} / y^{m}$.
- Now replace y with $c x+d$ to get the partial fraction we want!
- Repeat this process with all the distinct linear factors.

Example We continue with (3) of the previous example to get the complete partial fraction expansion. Set $y=x+1$ so $x=y-1$. Then

$$
x^{2}+5 x-2=(y-1)^{2}+5(y-1)-2=y^{2}+3 y-6 .
$$

Since

$$
x^{4}=(y-1)^{4}=y^{4}-4 y^{3}+6 y^{2}-4 y+1
$$

the equations and there solutions are

$$
\begin{aligned}
& \text { coef. of } y^{0}: \quad-6=1 a_{0} \quad \text { and so } a_{0}=-6 \\
& \text { coef. of } y^{1} \text { : } \quad 3=1 a_{1}-4 a_{0} \quad \text { and so } a_{1}=-21 \\
& \text { coef. of } y^{2}: \quad 1=1 a_{2}-4 a_{1}+6 a_{0} \quad \text { and so } a_{2}=-47
\end{aligned}
$$

Thus

$$
\frac{x^{2}+5 x-2}{x^{4}(x+1)^{3}}=-\frac{2}{x^{4}}+\frac{11}{x^{3}}-\frac{26}{x^{2}}+\frac{47}{x}-\frac{6}{(x+1)^{3}}-\frac{21}{(x+1)^{2}}-\frac{47}{x+1}
$$

