
0{1 Laws for Maps

Edward A. Bender
1
, Kevin J. Compton

2
, L. Bruce Richmond

3

ABSTRACT

A class of �nite structures has a 0{1 law with respect to a logic if every property ex-

pressible in the logic has a probability approaching a limit of 0 or 1 as the structure size

grows. To formulate 0{1 laws for maps (i.e., embeddings of graphs in a surface), it is
necessary to represent maps as logical structures. Three such representations are given,

the most general being the full cross representation based on Tutte's theory of combina-

torial maps. The main result says that if a class of maps has two properties, richness
and large representativity, then the corresponding class of full cross representations has

a 0{1 law with respect to �rst-order logic. As a corollary the following classes of maps

on a surface of �xed type have a �rst-order 0{1 law: all maps, smooth maps, 2-connected
maps, 3-connected maps, triangular maps, 2-connected triangular maps, and 3-connected

triangular maps. c
 ??? John Wiley & Sons, Inc.
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1. INTRODUCTION.

In probability theory a 0{1 law is a result that says all events of a certain kind
have probability 0 or 1. For example, the Kolmogorov 0{1 law says all tail events
have probability 0 or 1 [28]. In the study of random structures there are analogous
0{1 laws which say that in certain classes of structures, all properties expressible
in some logic have an asymptotic probability of 0 or 1. The �rst signi�cant result
of this kind was due to Glebski�� et al. [23] and Fagin [18]. They showed that the
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probability that a sentence of �rst-order logic holds in a random �nite structure
over a relational vocabulary approaches either 0 or 1 as the size of the structure
increases. For example, structures over a vocabulary with just a binary relation
symbol E are directed graphs (possibly with loops). In �rst-order logic we can
express the property that for any two distinct vertices there is a vertex with directed
edges to both. This property must hold in almost all large directed graphs or almost
none; an easy computation shows that it holds in almost all.

For some classes of structures, the 0{1 law may not hold for �rst-order logic. It
is not di�cult to �nd restricted classes where probabilities even fail to converge.
Nonetheless, in many cases a 0{1 law does hold. 0{1 laws, and the techniques
used to prove them have applications in areas such as expressiveness of logics in
�nite structures [9], expected time analyses of database query optimization [1], and
approximation of NP-optimization and NP-counting problems [2, 13]. See Compton
[12], Winkler [35], and Spencer [30] for surveys on 0{1 laws.

In some recent papers on 0{1 laws the combinatorial estimates have been con-
siderably more di�cult than the ones in the proof of the original 0{1 law. In this
paper we will use recent work on some very di�cult combinatorial problems, viz.
the asymptotic enumeration of planar maps and, more generally, of maps on a sur-
face. One of the di�culties we will face is simply formulating the notion of a 0{1
law for maps. A map is not a structure in the logical sense; it is a topological ob-
ject. More precisely, a map is a connected graph (possibly with loops and multiple
edges) embedded in a surface (or closed 2-manifold) such that all components of its
complement are simply connected regions (or faces). Two maps are isomorphic if
there is a homeomorphism between their surfaces taking vertices to vertices, edges
to edges, and faces to faces. We enumerate maps by the number of edges where
isomorphic maps are identi�ed.

In formulating a 0{1 law for maps, it would be tempting to use the graph repre-
sentation | a set together with an edge relation | as a representation of a map.
However, this would pose problems in representing multiple edges. A more fun-
damental di�culty is that a graph contains no information about the embedding
into the surface. We will require that the structures we use to represent maps must
contain at least this much information. Fortunately, Tutte [32], extending earlier
work of Edmonds [16], gave an elegant representation of maps as structures which
meets this requirement. We will describe this representation in Section 3. These
will be the structures used for our results.

We will make use of a well known logical tool, the Ehrenfeucht-Fra��ss�e game,
to obtain our results. The proofs of our 0{1 laws are similar in some respects to
the proofs of two well known theorems proved by means of Ehrenfeucht-Fra��ss�e
games: Hanf's Theorem and Gaifman's Theorem (see Ebbinghaus and Flum [15]).
Both of these theorems say that if two structures have the same kinds of \local"
substructures, then they satisfy the same �rst-order sentences of a given quanti�er
rank. (We will not need the precise statements of these theorems here; the interested
reader is referred to [15].) In Section 4, we describe two properties of classes of maps,
richness and large representativity. Richness says that for a given planar map M

in the class, almost all maps in the class have many submaps isomorphic to M .
Large representativity, as we will see, implies that the \local" maps in the class
are almost surely planar. The combination of these results implies that almost all
maps in these classes have the same local submaps. It would seem that the 0{1 law
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should follow from from Hanf's Theorem or Gaifman's Theorem. Unfortunately,
the precise de�nition of \local" is not the same. Therefore, we must develop the
machinery in Section 4 to apply Ehrenfeucht-Fra��ss�e games to classes of maps.

Our main result, Theorem 5.2, says that a rich class of maps with large rep-
resentativity has a �rst-order 0{1 law. We cite results in the literature showing
that the following classes of maps on a surface of �xed type are rich and have large
representativity, therefore have a �rst-order 0{1 law:

� all maps;

� smooth maps;

� 2-connected maps;

� 3-connected maps;

� triangular maps;

� 2-connected triangular maps;

� 3-connected triangular maps.

De�nitions of the terms used here are given in Section 3.

2. EHRENFEUCHT-FRA�ISS�E GAMES

The method of Ehrenfeucht-Fra��ss�e games is one of the few techniques from model
theory that works well for �nite models. In this section we will give a brief de-
scription of these games. We will assume the reader is familiar with the basics of
�rst-order logic and model theory as found, e.g., in [11].

De�nition. Let A and B be structures over a common vocabulary. We write

A �m B if A and B satisfy precisely the same �rst-order sentences of quanti�er

rank m.

The following result is straightforward.

Proposition 2.1. For structures over a �nite vocabulary with just relation and

constant symbols, �m is an equivalence relation of �nite index.

The Ehrenfeucht-Fra��ss�e game is an m-round game between two players, called
Spoiler and Duplicator (this terminology is due to Joel Spencer). The game is
played on a pair of structures A and B whose vocabulary � contains just relation
and constant symbols; let c1; : : : ; ck be the constant symbols. In each of the rounds,
numbered 1; 2; : : : ;m, Spoiler chooses one of the two structures and picks an element
from it. He is not constrained to pick an element from the same structure he
picked from in the previous round. Duplicator responds by picking a element from
the other structure. Let dAi be the element chosen from A (either by Spoiler or
Duplicator), and dBi be the element chosen from B, in round i. As the notation
suggests, we may view this as adding a new constant symbol di to the vocabulary in
round i, and having the players pick an interpretation for it in the two structures.
Duplicator wins if hA; dA1 ; : : : ; d

A
mi and hB; dB1 ; : : : ; d

B
mi satisfy precisely the same

atomic formulas over the vocabulary � [ fd1; : : : ; dmg; otherwise, Spoiler wins.
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Another way of saying this is that Duplicator wins if f(cAi ; c
B
i ) j 1 � i � kg [

f(dAi ; d
B
i ) j 1 � i � mg is an isomorphism between substructures of A and B.

The basic result concerning Ehrenfeucht-Fra��ss�e games (due to Fra��ss�e [19] and
Ehrenfeucht [17]) is the following.

Theorem 2.2. Let A and B be structures over a vocabulary containing only re-

lation and constant symbols. Duplicator has a winning strategy in the m-round

Ehrenfeucht-Fra��ss�e game played on A and B if and only A �m B.

Our discussion so far has concentrated on structures where there is just one sort.
Many structures in mathematics contain more than one kind of object. Vector
spaces contain scalars and vectors, for example. There is a standard way to model
structures with several sorts of objects.

De�nition. Let S be a set of primitive elements called sorts. A vocabulary �
consists of collection of constant and relation symbols, a mapping from the set of

constant symbols to S (assigning the sort of each constant symbol), and a mapping

from the set of relation symbols to sequences from S (giving the arity of each relation

symbol). Usually � is allowed to contain function symbols as well, but in discussions

of Ehrenfeucht-Fra��ss�e games they are excluded.

A multi-sorted structure A over � consists of the following.

(i) A collection of disjoint sets, or universes, As, where s ranges over S.

(ii) An element cA2 As for each constant symbol c of sort s.

(iii) A relations RA � As1 � � � � � Ask for each relation symbol R of arity

(s1; : : : ; sk).

The �rst-order logic of multi-sorted structures is similar to classical �rst-order
logic of one-sorted structures. Each sort has a designated set of variables. If R
is a relation symbol of arity (s1; : : : ; sk), and x1; : : : ; xk are variables or constant
symbols whose sorts are s1; : : : ; sk, respectively, then R(x1; : : : ; xk) is an atomic
formula. If x1 and x2 are variables or constant symbols of the same sort, then
x1 = x2 is an atomic formula. We build more complex formulas from atomic
formulas as in classical �rst-order logic, using Boolean operations and universal
and existential quanti�cation. Sentences are formulas without free variables. Truth
values of formulas and sentences are de�ned in the usual way.

The rules for Ehrenfeucht-Fra��ss�e games on multi-sorted structures require only
the added condition that Duplicator must respond to Spoiler's choice of an element
in one structure with an element of the same sort in the other structure. It is easy
to verify that Theorem 2.2 holds for multi-sorted structures.

We will conclude this section with an illustration of how Ehrenfeucht-Fra��ss�e
games can be used to prove a 0{1 law. This example is due to Lynch [27], but our
proof will di�er in some places. This proof will serve as a model for the proof of
the 0{1 law for maps in Theorem 5.2.

Let C be a class of (one-sorted) structures over the vocabulary consisting of a
binary relation symbolE and a unary relation symbol U , where E always interprets
a cycle. We may assume that a structure A of cardinality n has a �xed universe
n = f0; 1; : : : ; n�1g, and that EA is the set of pairs (i; i+1), for 0 � i < n�1, and
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(n � 1; 0). We can identify these structures with circular words over the alphabet
f0; 1g. Figure 1 shows a circular word of size 8. The edges of EA are indicated by
arrows, and the elements of UA are indicated by �lled circles.

Let Cn be the class of structures in C with universe n. There are two natural
probability measures on Cn. The �rst is the uniform measure on the space of
structures A = hn;EA; UAi. There are 2n structures in the space, one for each
subset of n. This is the so-called labeled probability measure. The second is the
uniform measure on the space of isomorphism types in Cn. (An isomorphism type
is the class of all structures isomorphic to a given structure.) This is the unlabeled
probability measure on C. These measures are clearly di�erent. The unlabeled
measure is closer in spirit to the measure we will use for maps; there we identify
isomorphic maps rather than isomorphic structures. However, with regard to 0{1
laws on circular words, it will make no di�erence which of these two probability
measures we take as the total variation distance between them is exponentially
small and thus they behave the same way with respect to limit probabilities. Let
�n denote one of the two measures on Cn.

De�nition. For any sentence ', let

�n(') = �n(fA 2 Cn j A j= 'g):

De�ne �(') = limn!1 �n('), whenever this limit exists. �(') is the asymptotic
probability of '. The �rst-order 0{1 law says that all �rst-order sentences have an

asymptotic probability of 0 or 1. A property with asymptotic probability 1 is said to

be almost certain.

Theorem 2.3. The class of circular words over f0; 1g has a �rst-order 0{1 law.

1

2

3

4

5

6

7

0

Fig. 1. A circular word of size 8.
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Proof. Let A 2 Cn. De�ne a distance function on the universe of A: d(a; b) =
min(ja � bj; n � ja � bj). That is, d(a; b) is the minimal number of edges in EA

between a and b. For any nonnegative integer r and element a, BA(a; r), the ball
with center a and radius r, is the substructure whose universe is fx j d(a; x) � rg.

For all structures B = hk;EB; UBi, where k = f0; 1; : : : ; k � 1g and EB is the
usual successor relation on k (not the circular successor relation), there is a constant
c > 0 such that the asymptotic probability that a structure in Cn has at least cn
substructures isomorphic to B is 1. In other words, on circular words over the
alphabet f0; 1g, the likelihood of having many occurrences of a �xed (non-circular)
subword is almost certain. This is easy to show for the labeled probability measure,
and not di�cult to show for the unlabeled probability measure.

As a consequence, for a �xed nonnegative integer j and a �xed structure B as
above, it is almost certain that for each sequence of elements a1; a2; : : : ; aj there is
a substructure isomorphic to B not containing any of the elements a1; a2; : : : ; aj.
The reason is that there can be only a bounded number of copies of B containing
some element a1; a2; : : : ; aj, while the total number of copies of B grows with n.

We will prove a 0{1 law for C by showing that for each m, there is an �m-class
E with asymptotic probability 1. Thus, if ' is a sentence of quanti�er rank m, the
set of �nite models of ' either contains E , in which case �(') = 1, or is disjoint
from E , in which case �(') = 0.

Let E 0 be the class of structures such that for each B = hk;EB; UBi as above,
where k � 2m + 1, and each sequence of elements a1; a2; : : : ; am�1, there is a
substructure isomorphic to B not containing a1; a2; : : : ; am�1. Since m is �xed, by
the remarks above, E 0 has asymptotic probability 1. We will show that Duplicator
has a winning strategy in the m-round Ehrenfeucht-Fra��ss�e game played on each
pair of structures from E 0. It follows that all of the structures in E 0 are equivalent
with respect to �m and, hence, there is a �m-class E containing E 0 with asymptotic
probability 1.

Take A;B 2 E 0. We present a winning strategy for Duplicator. Suppose that at
the beginning of the k-th round of the game, the previously picked elements from A
are a1; a2; : : : ; ak�1, and the previously picked elements fromB are b1; b2; : : : ; bk�1.
Suppose that Spoiler now picks an element from one of the structures, say ak from
A (if he picks bk from B, the strategy is symmetrical).

There are two cases.

If for all i < k, d(ai; ak) > 2m�k, Duplicator chooses bk in B so that
BB(bk; 2

m�k) is isomorphic to BA(ak; 2
m�k) and does not contain b1; b2; : : : ; bk�1.

Notice that the size of this substructure is at most 2m + 1 (the maximum being
attained when k = 1) so it is always possible to �nd such a substructure in B.

If, on the other hand, for some i < k, d(ai; ak) � 2m�k, Duplicator responds by
choosing bk from B so that d(ai; ak) = d(bi; bk) and the shortest path from ai to
ak is in the same direction as the shortest path from bi to bk.

We must �rst show that this strategy is well de�ned. That is, if d(ai; ak) � 2m�k

and d(aj; ak) � 2m�k for i < j < k, it should be possible to �nd a bk in B so that
d(ai; ak) = d(bi; bk), d(aj ; ak) = d(bj; bk), and ak has the same orientation to ai
and aj as bk has to bj and bk.

Let us assume that Duplicator has been able to follow the strategy in rounds 1
through k � 1. Construct a digraph D on the vertex set f1; 2; : : :;mg as the game
progresses. Whenever i < j and Spoiler chooses aj so that d(ai; aj) � 2m�j or bj so
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that d(bi; bj) � 2m�j , directed edge (j; i) is added to D. Several such edges may be
added in a given round. We will see shortly that Duplicator's strategy will ensure
that d(ai; aj) � 2m�j if and only if d(bi; bj) � 2m�j .

If there is a path from j to i in D and i has out-degree 0, we say that i is an
anchor for j. It is easy to see by induction that every element has a unique anchor.
For example, if k has edges to i and j, where i < j, we know that i and j have
unique anchors. Also,

d(ai; aj) � d(ai; ak) + d(ak; aj) � 2 � 2m�k � 2m�j

so (j; i) is an edge of D and hence i and j have the same anchor.
We can now reformulate Duplicator's strategy as follows. When Spoiler picks ak,

�nd the anchor i for k. If i = k then choose bk so that BB(bk; 2
m�k) is isomorphic

to BA(ak; 2
m�k) and does not contain b1; b2; : : : ; bk�1. If i 6= k, then elements ai

and bi were chosen so that BA(ai; 2
m�i) is isomorphic to BB(bi; 2

m�i). Since there
is a path from k to i in D, we have,

d(ai; ak) � 2m�k + 2m�k�1 + : : :+ 2m�i�1 < 2m�i:

We conclude that ak is in BA(ai; 2
m�i). In fact, for every j < k with i as an

anchor, aj is in BA(ai; 2
m�i), bj is in BB(bi; 2

m�i), and the isomorphism between
BA(ai; 2

m�i) and BB(bi; 2
m�i) maps aj to bj. Duplicator simply continues this in

round k: the isomorphism between BA(ai; 2
m�i) and BB(bi; 2

m�i) should map ak
to bk. Notice that aj may be played in BA(ai; 2

m�i) in a way that does not make
i an anchor for j. In this case Duplicator does not necessarily play the isomorphic
image in BB(ai; 2

m�i).
Clearly this strategy is well de�ned. Why is it a winning strategy for Duplica-

tor? Elements related by EA or EB are distance 1 apart. The strategy ensures
if d(ai; aj) � 1, then there is an isomorphic embedding of some ball containing ai
and aj to B so that ai is mapped to bi and aj is mapped to bj. The analogous
statement holds when d(bi; bj) � 1. That is, ai; aj must satisfy the same relations
as bi; bj. This is a winning position for Duplicator.

3. MAPS AND THEIR REPRESENTATIONS

In this section we review basic notions concerning maps and discuss representations
of maps as structures.

De�nition. A map M is a connected graph G embedded in a surface (or closed

2-manifold) S such that all components of S � G are simply connected regions (or

discs) called faces. This embedding must specify the images of both vertices and

edges of the graph. Edges of M are mapped to homeomorphic copies of the open

unit interval (0; 1). Edges together with their two end points are mapped to homeo-

morphic copies of the closed unit interval [0; 1]. Images of distinct edges and vertices

are disjoint.

Two maps are isomorphic if there is a homeomorphism from the surface of one

to the surface of the other taking vertices to vertices, edges to edges, and faces to

faces.
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De�nition. The type t of a map is given by the formula 2 � 2t = v � e + f ,

where v, e, and f are the numbers of vertices, edges, and faces in the map. When

the surface is orientable (i.e., has two sides), t is an integer giving the number of

\holes" in the surface. (The converse is not true: there are non-orientable surfaces

where t is an integer.) If t = 0 the surface is a sphere and the map is planar. When

t is not an integer, it is of the form s=2, where s is a positive odd integer. A surface

with s cross-caps has type s=2.

De�nition. The dual D(M ) of a map M is a map on the same surface as M ,

with vertex set V and edge set E de�ned as follows. If x is a face of M , pick a

point d(x) in x; if y is an edge of M incident with faces x1 and x2 of M , let d(y) be
an edge of D(M ) connecting d(x1) and d(x2). Thus, V = fd(x) j x is a face of Mg

E = fd(y) j y is an edge of Mg. D(D(M )) is isomorphic to M . By the degree of

a face x in M , we mean the degree of d(x) in D(M ).

Submaps will play an important role in our proofs.

De�nition. Let C be a cycle formed from some edges and their endpoints in a

map. Suppose that cutting along C divides S into two pieces. Duplicate C so that

each piece has a hole bounded by a copy of C and then �ll each of these holes with

discs. This gives two surfaces S1 and S2 containing maps M1 and M2 which are

submaps of M . Notice that the type of M is the sum of the types of M1 and M2.

Whenever we speak of a submap, we will assume that the face formed by the added

disc is distinguished, and, therefore, so too are the edges of the cycle C.

There are several de�nitions of k-connectivity in the literature. We will use
a variant of Tutte's de�nition [33]. The de�nition used here is from Graver and
Watkins [24] and on graphs with at least three edges is equivalent to Tutte's de�-
nition.

De�nition. A graph G is k-connected if its girth (or shortest cycle size) is at

least k and at least k vertices must be removed to separate the graph. Thus, 1-

connectivity is the same as connectivity, 2-connectivity implies the absence of loops,

and 3-connectivity implies the absence of multiple edges. A map is k-connected if

the graph associated with it is k-connected.

De�nition. A map is smooth if all its vertices have degree at least 2. A map is

triangular if all its faces have degree 3. It is easy to see that faces of 2-connected

triangular maps are true triangles (i.e., bounded by three distinct edges and three

distinct vertices).

To formulate 0{1 laws, we must �nd a way to represent a topological object,
a map, as a logical structure. We cannot use just a set of vertices with an edge
relation because this gives no information about how the map embeds in a surface,
and, worse, does not allow multiple edges.

There are several possible ways to represent maps as multi-sorted structures,
depending on how much information about the map we want to incorporate.

De�nition. In the graph representation of a map M there are three sorts v, e

and f in �, corresponding to vertices, edges, and faces. That is, in the multi-sorted
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structure A representing the map M , Av is the set of vertices, Ae is the set of edges,

and Af is the set of faces. � contains two incidence relation symbols I and J whose

arities are (v; e) and (f; e), respectively. IA(x; z) holds when vertex x and edge z

are incident in M , and JA(y; z) holds when face y and edge z are incident in M .

This representation allows multiple edges, but still does not give complete in-
formation about the embedding of M in the surface S. For example, in Figure 2,
there is no isomorphism from the �rst map to the second, but their graph repre-
sentations are isomorphic. Each isomorphism of the graph representations maps
vi to wi. (There is more than one isomorphism because the isomorphism is not
uniquely determined on edges.) The maps are not isomorphic because the circular
edge order about v3 di�ers from the corresponding edge order about its isomorphic
image w3.

We would like to incorporate information about edge order in our structures.
However, on an orientable surface there are two possible orientations and, thus, two
ways to choose an edge order at vertices of degree 3 or more. On a non-orientable
surface there is no consistent way to choose edge orders at each vertex. We might
try to specify adjacent edges in the edge order at each vertex, but the maps in
Figure 2 show that again nonisomorphic maps may have the same representation.

To address these problems, Edmonds [16], proposed a method of representing
maps which was later used for a theory of combinatorial maps by Cori [14], Jacques
[25], Walsh and Lehman [34], and Tutte [32]. In this representation a dart is an
edge with an assigned direction. Thus, each edge is associated with two darts which
we will say are anti-darts of one another. Notice that a dart is not quite the same
as a directed edge (given as an ordered pair) since loops give rise to two darts.
Observing the direction of a dart, we may speak of a dart being out of a vertex or
to a vertex.

v

v

v

v

v

 3

 2

 5

w w

w

w w 5 4

 2

 4

 1  1

 3

Fig. 2. Nonisomorphic maps with the same graph representation
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The representation of Edmonds uses two permutations on the dart set Ad. The
�rst permutation 
 is an involution that maps each dart to its anti-dart. The second
permutation � is determined by �xing an orientation of the surface and taking the
permutation that maps each dart out of a vertex to the next dart in clockwise order
out of the same vertex.

Represent a map on an orientable surface by the structure hAd; 
; �i. Why does
this uniquely determine the map? Consider the permutation � = �
 (i.e., the
permutation formed by applying 
 then �). Consider the dart sequences around
each face in the map. Each dart occurs in two such face sequences, one clockwise
and one counterclockwise. The permutation � maps each dart to the next dart
in its counterclockwise face sequence. Note that the cycles of 
 correspond to the
edges of the map, the cycles of � correspond to the vertices, and the cycles of �
correspond to faces. Incidence between a vertex and edge (or a face and an edge)
occurs precisely when their corresponding cycles have an element in common. Thus,
the graph structure of a map can be recovered from 
 and �. The cycles of � tell
us how to \glue" discs onto face cycles to complete the map. This representation
gives a nice interpretation of map duality: if hAd; 
; �i represents a map, hAd; 
; �i

represents its dual.
For our purposes, this representation is inadequate on two counts. First, it does

not work for maps on a non-orientable surface. Second, on an orientable surface
it does not give a unique representation: hAd; 
; �i and hAd; 
; �

�1i represent the
same map.

Tutte [31, 33] extended Edmond's representation to overcome some of these
di�culties. He used crosses rather than darts. A cross is an edge with a direction
and designated side. A cross is determined by a dart in the map and a crossing dart
the dual map. The dart in the dual map points to the designated side of the rooted
edge. (The term rooted edge is often used in the literature rather than cross.)

We will say that two crosses on the same edge are anti-crosses of one another
if they have the same designated side but opposite directions. We will say that
two crosses on the same edge are co-crosses of one another if they have the same
direction but opposite designated sides. For a �xed mapM , let 
 be the involution
that maps each cross to its anti-cross and � be the involution that maps each cross
to its co-cross. Notice that 
 and � generate a group of order 4.

Figure 3 illustrates the de�nition of cross permutation �. There are three vertices
v1; v2; v3 from a map M and three vertices f1; f2; f3 from D(M ) pictured. Edges

1

v

D

C

3

2
v

1f

v

2
3 f

f

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

Fig. 3. Drawing used to de�ne permutation �.
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fromM between vertices v1 and v2 and between vertices v1 and v3 have been given
the directions indicated. The dual edges (from D(M )) between f1 and f2 and
between f2 and f3 have been given the directions indicated. Thus, two crosses C
and D are pictured. When a situation like this occurs we will de�ne �(C) = D.
To be precise, if a cross C is given by a directed edge e from v1 to v2 and directed
dual edge from f1 to f2, then there exists a cross D given by a directed edge from
v1 to some v3 and directed dual edge from f2 to some f3. Moreover, if we stipulate
that C and D are not co-crosses unless v1 has degree 1, this de�nes D uniquely.
Therefore, � is well de�ned.

The subgroup generated by � and 
� has precisely two orbits when the surface
is orientable. If the surface is non-orientable, this subgroup has just one orbit (i.e.,
it acts transitively on the set of crosses).

Let Ac be the set of all crosses in a mapM . The structure hAc; 
; �; �i represents
M . The orbits of the subgroup generated by 
 and � correspond to edges of the
map. As we have seen, each of these orbits consists of four crosses. The orbits of
the subgroup generated by � and � correspond to the vertices of M . Each of these
orbits consists of cycles of � \paired" by �. That is, if �(x) = y then �(�(y)) = �(x).
Notice that � is an isomorphism from hAc; 
; �; �i to hAc; 
; �; �

�1i.
Crosses y and �(y) = �
�(y) are always successive crosses in a cycle around some

face x. Also, the designated sides of y and �(y) are toward face x. hAc; 
; �; �i

represents the dual map of M . The cycles of � are also paired by � and determine
how discs should be glued to edges to form the surface of M .

Let us modify this representation in three ways. First, so that we may use
Ehrenfeucht-Fra��ss�e game techniques, we represent permutations as binary relations
rather than unary functions. Second, so that we can quantify over faces and vertices,
we use multi-sorted structures. Third, we add an equivalence relation that holds
between crosses along the same edge. This last relation is not necessary, since it
can be de�ned from the other relations, but it is convenient to have.

De�nition. In the cross representation of a map M there are three sorts v, c

and f , corresponding to vertices, crosses, and faces of M . � contains two incidence
relation symbols I and J whose arities are (v; c) and (f; c), respectively. IA(x; z)
holds when cross z is a cross out of vertex x. JA(y; z) holds when y is the face on

the designated side of cross z. Also, � contains binary relation symbols G, D, R,

and E, each of arity (c; c). GA(x; y) holds if 
(x) = y. DA and RA are de�ned

similarly for � and �. EA(x; y) holds if x and y are crosses along the same edge.

We will prove 0{1 laws both for graph representations and cross representations.
The size of a structure is the number of edges its map contains (or a quarter the
number of crosses).

There is one other representation we will use. It extends the cross representation
in a nontrivial way, but the proof of the 0{1 law goes through with only minor
modi�cations.

De�nition. The full cross representation vocabulary contains, in addition to

the symbols in the cross representation vocabulary, a symbol T of arity (c; c; c; c).
TA(z1; z2; z3; z4) holds if for some i, �i(z1) = z2 and �i(z3) = z4, and for some j,

�j(z1) = z3. In other words, z1; z2; z3; z4 are crosses out of the same vertex, have
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the same orientation, and the \angle" between z1 and z2 is the same as the one

between z3 and z4.

The crucial fact about the full cross representation that enables us to prove a
0{1 law is that this added relation is local. There are many others we could have
added.

Notice that the graph representation of a map is �rst-order interpretable in the
cross representation, in the following sense. Let us write (with a slight abuse of
notation) A=EA to denote the graph representation formed from the cross represen-
tation by taking the quotient of Ac by E

A and interpreting I and J in the obvious
way. There is a straightforward mapping taking each sentence ' over the graph
representation vocabulary to a sentence '0 over the cross representation vocabulary
so that A=EA j= ' if and only if A j= '0. Simply replace each occurrence of a sub-
formula of the form I(x; z) with a formula 9z0(I(x; z0) ^E(z0; z)), each occurrence
of a subformula of the form J(x; z) with a formula 9z0(J(x; z0)^E(z0; z)), and each
occurrence of a subformula of the form z = z0 where z and z0 have sort e with a
formulaE(z; z0). This shows that if we prove a 0{1 law for cross representations (or
full cross representations) we prove one for graph representations as well (assuming
that the distribution is given by the uniform distribution on maps, not on graph
representations).

4. DISTANCES ON MAPS

A proof of a 0{1 law for maps along the lines of the proof of the 0{1 law for circular
words requires a notion of distance in maps. The distance function on circular words
has a crucial property not shared by the usual distance function on the vertex set
of a map: for large circular words A and B, if a ball of radius r in A is embedded
in B, its image is also a ball of radius r in B. This was needed for Duplicator's
strategy based on isomorphisms between balls. We must de�ne a di�erent notion
of distance on maps. Also, this de�nition should make sense in our representations.
We will con�ne most of our remarks to full cross representations, which are the
most general, but everything we do in this section works for graph representations
and cross representations as well.

We �rst present the notion of a quadrangulation of a map. Note that this is not
the usual de�nition of quadrangulation �rst given by Brown [10].

De�nition. The quadrangulation of a map M , denoted Q(M ), can be viewed

as the map formed by superimposing the dual D(M ) over M . More speci�cally,

Q(M ) is a map on the same surface as M , with vertex set V and edge set E

de�ned as follows. Let Av, Ae, Af be the sets of vertices, edges, and faces of

M . If x is in Ae or Af , pick a point q(x) in x; if x is in Av, let q(x) = x.

V = fq(x) j x 2 Av [ Ae [ Afg. E contains two kinds of edges. If vertex x and

edge z are incident in M , then E contains an edge between q(x) and q(z). If face

y and edge z are incident in M , then E contains an edge between q(y) and q(z).

There is a subtle issue in this de�nition that will not matter for our applications,
but may have troubled the observant reader. If vertex x is at both ends of edge y,
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then there should be two edges between q(x) and q(y). If face y is incident with
both sides of edge z, then there should be two edges between q(y) and q(z).

Figure 4 illustrates the reason Q(M ) is called a quadrangulation. We view Q(M )
as being formed �rst by putting a vertex on each edge of M , thereby dividing each
edge into two edges, then by adding a new vertex in the middle of each face and
connecting it to the added vertices on the edges around the face. Faces of Q(M )
are quadrangles or degenerate quadrangles. Q(M ) is a bipartite graph: all edges
connect a vertex q(x) where x 2 Av [Af to a vertex q(y) where y 2 Ae.

We are now ready to give a de�nition of distance in graph representations and
full cross representations.

De�nition. Let M be a map and A be its graph representation. The universes of

A are Av, Ae, and Af , the vertex, edge, and face sets of M . For x; y 2 Av[Ae[Af ,

de�ne dA(x; y) to be the length of the shortest path from q(x) to q(y) in Q(M ). That
is, we transfer the usual graph distance function on Q(M ) to A. We will write

d(x; y) rather than dA(x; y) when A is clear from context. Clearly, d is a metric.

If A is the cross or full cross representation of M , the universes are Av, Ac

and Af . If z1; z2; z3; z4 are the crosses on edge z, de�ne q(zi) = q(z) for i =
1; 2; 3; 4. Now de�ne the distance function d on A in the same way as for the graph

representations. Here d is not a metric, since the distance between a cross and

its anti-cross or co-cross is 0, but d is a pseudo-metric; i.e., d(x; y) = d(y; x) and
d(x; z) � d(x; y) + d(y; z).

This distance function is important because of its relation to Ehrenfeucht-Fra��ss�e
games played on map representations.

Fig. 4. A map M and its quadrangulation Q(M)
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Proposition 4.1. Let A and B be full cross representations of maps. Augment

the full cross representation vocabulary with with additional constant symbols c and

c0 interpreted by a; a0 in A and b; b0 in B. Suppose hA; a; a0i �m hB; b; b0i, where

m � 1. If dA(a; a0) � 2m�1, then dA(a; a0) = dB(b; b0).

Proof. For each l � 2m�1 and each pair of sorts s; t 2 fv; c; fg, there is a formula
'
s;t
l (x; y) of quanti�er rank at most m that holds precisely when d(x; y) � l. Here

the sorts of x and y are s and t. We prove this by induction on m.
Consider �rst the base case m = 1. When s = t = v or s = t = f , 's;t

0 (x; y) is
the formula x = y; when s = t = c, it is the formula E(x; y). In all other cases,
'
s;t
0 (x; y) is an invalid formula. It is easy to write a formula 's;t

1 (x; y) of quanti�er
rank 1 for the various cases of s and t. For example, if s = v and t = c, then
'
s;t
1 (x; y) is 9z0(I(x; z0) ^E(z0; z)).
When m > 1 we must specify formulas 's;t

l (x; y) where 2m�2 < l � 2m�1;
formulas for smaller l are given by the induction hypothesis. Since l � 2m�1, dl=2e
and bl=2c are at most 2m�2, so there are formulas 's;u

dl=2e
(x; z) and '

u;t

bl=2c
(z; y) of

quanti�er rank at most m � 1 for each sort u. Let 's;t
l (x; y) be the disjunction of

the formulas

9z('s;u

dl=2e
(x; z)^ '

u;t

bl=2c
(z; y))

where u ranges over the possible intermediate sorts. This formula is of quanti�er
rank at most m.

Now '
s;t
l (a; a0) holds in the �rst structure if and only if 's;t

l (b; b0) holds in the
second. Thus, if dA(a; a0) � 2m�1, then dA(a; a0) = dB(b; b0).

The following de�nitions will be needed later.

De�nition. The edge-width of a map M is the length (i.e., number of edges) of

the smallest noncontractible curve in the graph of M . The representativity of a

map M on a surface S is the smallest number of intersections a noncontractible

curve in S has with the graph of M .

The results below show that the representativity of M is closely related to the
edge-width of Q(M ).

Lemma 4.2. Let M be a map on a surface S and R be a closed subset of S

composed of some of the vertices, edges and faces from M . Suppose that C is a

closed curve in R and that C intersects the graph of M in precisely s points. Then

C can be smoothly deformed into a curve C0 in R made of vertices and edges in

Q(M ) such that the number of vertices of Q(M ) on C0 is at most 4s.

Proof. List the elements of Av [Ae [Af on C in the (cyclic) order they occur on
C. Every second element in this list is in Af , so the length of the list is 2s. We
may write it x1; x2; : : : ; x2s. Now expand the list in the following way. If one of
the elements xi or xi+1 is in Av and the other is in Af , there must be a y 2 Ae

incident with both xi and xi+1. Since R is closed y is in R. Insert y between xi
and xi+1 in the list. Do this also between x2s and x1 if one is in Av and the other
is in Af . This gives a new list y1; y2; : : : ; yt where t � 4s; q(y1); q(y2); : : : ; q(yt) are
consecutive vertices on a curve C0 in Q(M ). Clearly, C can be smoothly deformed
into C0 and C0 is contained in R.
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Proposition 4.3. If M has representativity s and Q(M ) has edge-width t, then

t=4 � s � t.

Proof. The inequality t=4 � s follows from Lemma 4.2. For the other direction let
Av, Ae, andAf be the sets of vertices, edges, and faces ofM . Take a noncontractible
curve C of length t in Q(M ). Recall that the vertices of Q(M ) are points of the
form q(x), where x 2 Av [ Ae [ Af . Enumerate the points of this form on C in
cyclic order: q(x1); q(x2); : : : ; q(xt). Whenever xi 2 Av [Ae, q(xi) is on M . C may
intersect M in other points, but by deforming C we form another noncontractible
curve C0 that intersects the graph ofM only in the points q(xi) where xi 2 Av[Ae.
C0 intersects the graph of M in at most t points, so s � t.

Next we give the de�nition of a ball of radius r in one of our map representations.
We have to work out some technical problems to get properties needed for the proof
of a 0{1 law.

De�nition. Let A be the graph representation, cross representation, or full cross

representation of a map M . Suppose that a 2 Ae (or Ac in the case of the cross

representations) and r is an even positive integer, or that a 2 Av [Af and r is an

odd integer greater than 1. BA(a; r) is the substructure of A whose universes are

as follows.

(i) The set of elements x 2 Af such that d(a; x) < r.

(ii) The set of elements x 2 Ae incident with an element in (i).

(iii) The set of elements x 2 Av incident with an element in (ii).

We will refer to this as the ball of center a and radius r. The region covered by

faces, edges, and vertices in (i)-(iii) above is closed. It is easy to see that the points

in (ii) and (iii) added to the points in (i) form the closure of points in (i).

Let SA(a; r) be the substructure of A whose universes are as follows.

(i 0) No elements of Af .

(ii 0) The set of elements x 2 Ae incident with some y1 2 BA(a; r) and some

y2 62 BA(a; r), where y1 and y2 are faces.

(iii 0) The set of elements x 2 Av incident with an element in (ii 0).

The following results are immediate.

Proposition 4.4. SA(a; r) � BA(a; r).

Proposition 4.5. Every element of Ae in SA(a; r) is distance r from a and is

incident with some y1; y2 2 Af such that d(a; y1) = r � 1 and d(a; y2) = r + 1.

Remark. Elements in Av on SA(a; r) may be distance r � 1 or r + 1 from a.
There may be elements of Ae which are distance r from a but not in BA(a; r). The
union of edges and vertices in SA(a; r) may not be a simple closed curve.

The next two propositions show that despite these shortcomings, BA(a; r) be-
haves well enough to be of use in the proof of a 0{1 law.
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Proposition 4.6. Let M be a map on S and BA(a; r) be a ball of radius r in

A, the full cross representation of M . Let M 0 be a map on S0 with full cross

representation A0. Suppose that h is a homeomorphism from the region R covered

by BA(a; r) in S to a region R0 in S0 such that the images of the vertices, edges,

and faces of M in R are, respectively, vertices, edges, and faces of M 0. Then R0

is precisely the region covered by BA
0

(h(a); r), and for all b in BA(a; r), dA(a; b) =
dA

0

(h(a); h(b)).

Proof. Every face y inR0 is of the form h(x), where x is a face in R with dA(a; x) <
r. Therefore, dA

0

(h(a); y) < r and y is in BA
0

(h(a); r). Every edge y1 in R0 is of
the form h(x1) for some edge x1 in R. But x1 must be incident with some face x2
in R, so y1 is incident with a face y2 = h(x2) in BA

0

(h(a); r). Since BA
0

(h(a); r) is
closed, it contains y1. Similarly, every vertex y1 in R0 is incident with an edge y2
in BA

0

(h(a); r), so y1 is in BA
0

(h(a); r). Thus, R0 � BA
0

(h(a); r).
We will derive a contradiction from the assumption that there is an element in

BA
0

(h(a); r)�R0. Among such elements choose y0 with minimal distance to h(a).
Thus, y0 is incident with some y 2 R0 where dA

0

(h(a); y0) = dA
0

(h(a); y) + 1.
Now y0 is not a vertex, for then y would be an edge in R0, and since R0 is closed

it would contain y0. By the same argument, it is not the case that y0 is an edge
and y is a face.

Suppose that y0 is an edge and y is a vertex. Then y = h(x) for some x

in R. Let y0; y1; : : : ; yk be a shortest path from h(a) = y0 to y = yk (i.e.,
q(y0); q(y1); : : : ; q(yk) are vertices along a shortest path from q(h(a)) to q(y) in
Q(M 0)). We may assume each yi is in R0, since they their distances to h(a) are
all less than that of y0 and y0 was chosen to have minimal distance to h(a) among
elements of BA

0

(h(a); r)�R0. For each yi there is an xi 2 R such that xi = h(yi).
Furthermore, xk is in SA(a; r), for otherwise xk would be in the interior of R,
y = yk = h(xk) would be in the interior of R0, and y0 would be in R0. But
x0; x1; : : : ; xk is a shortest path from a = x0 to xk so k is either r � 1 or r + 1.
It cannot be r + 1 because then dA

0

(h(a); y0) = r + 2, which contradicts y0 be-
ing an element of BA

0

(h(a); r). Thus, k is r � 1 and dA
0

(h(a); y0) = r. Now y0

is incident with a face z in BA
0

(h(a); r). The maximum distance of any face in
BA

0

(h(a); r) to h(a) is r� 1, so again since y0 has minimal distance to h(a) among
elements of BA

0

(h(a); r) �R0, z is in R0. Since R0 is closed, it contains y0, which
is a contradiction.

Finally, suppose that y0 is a face and y is an edge. The argument here is similar
to the one in the previous paragraph. We let y0; y1; : : : ; yk be a shortest path from
h(a) = y0 to y = yk (i.e., q(y0); q(y1); : : : ; q(yk) are vertices along a shortest path
from q(h(a)) to q(y) in Q(M 0)) with each yi in R0). For each yi there is an xi 2 R

such that xi = h(yi) and xk is in SA(a; r). Now k is r, so dA
0

(h(a); y0) = r + 1,
which contradicts y0 being an element of BA

0

(h(a); r).
The rest of the proposition follows easily. If b is in BA(a; r), there is a shortest

path from a to b in BA(a; r), and, thus, its image under h is in BA
0

(h(a); r).
Conversely, a shortest path from h(a) to h(b) is in BA

0

(h(a); r), and, thus, its
pre-image under h is in BA(a; r). Therefore, dA(a; b) = dA

0

(h(a); h(b)).
In the following proposition, when we say that BA(a; r) is planar, we mean that

region covered by BA(a; r) is planar.
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Proposition 4.7. Suppose that a map M has representativity at least 2r + 4.
Then BA(a; r) is planar.

Proof. We show that any closed curve C in BA(a; r) is contractible in the surface of
M (although not necessarily in BA(a; r) since it may not be simply connected). By
Lemma 4.2 C can be smoothly deformed into another curve C0 in BA(a; r), where
C0 is contained in Q(M ). List the vertices of C0 in cyclic order: x1; x2; : : : ; xs.
Since these vertices are all in BA(a; r), for each i there is a path pi of length at
most r+ 1 from xi to a. Let p

�
i be the reversal of pi. C can be smoothly deformed

into a curve consisting of p1; p
�
1, followed by (x1; x2), followed by p2; p

�
2, and so on,

to ps; p
�
s, followed by (xs; x1). (See Figure 5.) This curve is a union of curves of

the form p�i , followed by (xi; xi+1), followed by pi+1, and p�s, followed by (xs; x1),
followed by p1. Each of these curves has length at most 2r+3. By Proposition 4.3,
Q(M ) has edge-width at least 2r + 4, so each of the curves can be contracted to
the point a. Therefore, C can be contracted to a. We conclude that BA(a; r) is
planar.

5. 0{1 LAWS FOR VARIOUS CLASSES OF MAPS

The main theorem of the paper, Theorem 5.2, gives 0{1 laws for various classes
of maps. Throughout this section, we work with a �xed class of maps and �n
will denote the uniform probability measure on the subclass of n-edge maps, where
isomorphic maps are identi�ed. We will assume that all maps in the class are
on a surface of type t, where t is a �xed number of the form s=2 for some non-
negative integer s. Let C be the class of full cross representations of maps in the
class. Since the full cross representation of a map is unique, we may regard �n
as the uniform probability measure on the class Cn of isomorphism types of full
cross representations of n-edge maps in the class. (The same remark applies to
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Fig. 5. Diagram used in the proof of Proposition 4.7.
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cross representations, but not to graph representations. The probability of a graph
representation is weighted proportionally to the number of embeddings it has in
the surface.)

For any sentence ', let

�n(') = �n(fA 2 Cn j A j= 'g):

De�ne �(') = limn!1 �n('), whenever this limit exists. �(') is the asymptotic

probability of '.
Two properties of classes of maps will be needed to formulate our main result.

De�nition. The class C is rich if for every planar map P (with a distinguished

face) that occurs as a submap of some map in C and for every k > 0,

lim
n!1

�n(there are at least k submaps isomorphic to P ) = 1:

De�nition. A class of maps has large representativity if for every k > 0,

lim
n!1

�n(the representativity is at least k) = 1:

When both of these properties hold, we have a result similar to the result for
random circular words used in the proof of Theorem 2.3.

Proposition 5.1. Let C be a rich class of maps with large representativity, P be a

�xed planar map occurring as a submap of some map in C, and k be a non-negative

integer. Then

�(8a1; : : : ; ak 9 a submap isomorphic to P not containing a1; : : : ; ak) = 1:

Here a1; : : : ; ak range over vertices, edges, and faces.

Proof. We must overcome a di�culty not present for circular words: there is no a

priori upper bound on the number of submaps that contain a and are isomorphic
to P .

Find a planar map P 0 with a distinguished face so that P is a submap of P 0; all
vertices, edges, and faces of P are internal in P 0 (i.e., none of them are adjacent to
the distinguished face of P 0); and P 0 appears as a submap in the class. That such a
P 0 exists is easy to see. In maps of C consider neighborhoods of submaps isomorphic
to P . When the maps have su�ciently large representativity, these neighborhoods
will be planar.

We claim that if a1; : : : ; ak are vertices, edges, and faces of M , the number
of submaps of M isomorphic to P 0 containing at least one of a1; : : : ; ak as an
internal vertex, edge, or face is bounded while, by richness, the number of submaps
isomorphic to P 0 is unbounded. Suppose, for example, that a1 is a vertex with
degree d. If an isomorphic copy of P 0 contains a1 as an internal vertex, the vertex
in P 0 that maps onto a1 must also have degree d. (This is not the case if the vertex
is not internal.) Let r be the number of internal vertices of P 0 with degree d. Now
map one of these vertices v to a1, choose an orientation for P 0, and then map the
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faces adjacent v to the faces adjacent to a1 in the same cyclic order. For each v,
there are 2d ways to do this. This mapping can be extended to an embedding of
P 0 as a submap of M in at most one way. Thus, there are at most 2rd isomorphic
copies of P 0 that contain a1. Similar arguments work for edges and faces.

We conclude that when n is su�ciently large, there will be a submap of M
isomorphic to P 0 not containing a1; : : : ; ak as internal vertices, edges, or faces.
Within P 0 is a copy of P not containing a1; : : : ; ak.

We are now ready to prove the main theorem.

Theorem 5.2. Let C be a rich class of maps with large representativity. Then the

class of full cross representations of maps in C has a �rst-order 0{1 law. Moreover,

if C0 is another rich class of maps with large representativity, and C and C0 have

the same planar submaps, then the almost certain sentences for C and C0 are the

same.

Proof. We need to make some modi�cations to the proof of Theorem 2.3.
Fix an integer m � 0. We will consider maps of representativity at least 2m+2+8.

Since C has large representativity, almost all maps in C have this property.
Take an element a in the full cross representation A of such a map and pick r

such that 1 < r � 2m+1+2. If a 2 Ac, we suppose also that r is even; if a 2 Av[Af ,
we suppose r is odd. By Proposition 4.7, BA(a; r) is planar.

So far the situation looks as it did for circular words, but there is one crucial
di�erence: there may be (depending on which maps are in C) in�nitely many balls
of the form BA(a; r). The reason is that degrees of vertices are not bounded.

Let us think of a ball BA(a; r) as a structure over the vocabulary consisting of
the full cross representation relation symbols plus a constant interpreting a. On
structures over this vocabulary�m+1 is an equivalence relation of �nite index. From
every �m+1-class that contains one of the balls hB

A(a; r); ai pick a representative
ball. Let B1;B2; : : : ;Bk be a list of all such representatives. Although the region
covered by Bi is planar, it is not necessarily a map because it may be missing a
face, or even several faces since balls need not be simply connected. IfBi is missing
some faces, �nd a structure of representativity at least 2m+2 + 8 in C containing it
and add additional faces, edges and vertices toBi to form a planar submap Pi of A.
By Proposition 5.1, almost every map in C has the property that for every sequence
of elements a1; a2; : : : ; am�1, there is a submap isomorphic to Pi not containing any
of them.

Let E 0 the class of full cross representations such that for each Bi, as above, and
each sequence of elements a1; a2; : : : ; am�1, there is a substructure isomorphic to
Bi not containing a1; a2; : : : ; am�1. We have that E 0 has asymptotic probability 1.
We will show that Duplicator has a winning strategy in the m-round Ehrenfeucht-
Fra��ss�e game played on every pair of structures from E 0.

Take A;B 2 E 0 and suppose that at the beginning of the k-th round of the
game, the previously picked elements fromA are a1; a2; : : : ; ak�1, and the previously
picked elements from B are b1; b2; : : : ; bk�1.

Duplicator constructs a digraph D on the vertex set f1; 2; : : : ;mg as the game
progresses. Whenever i < j and aj is chosen so that dA(ai; aj) � 2m�j+1 or bj is
chosen so that dB(bi; bj) � 2m�j+1, a directed edge (j; i) is added to D. (Notice
that the distance used here is twice what it was for circular words.) Again, j is
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an anchor for k whenever there is a path from k to j in D and j has out-degree 0.
As in the proof of Theorem 2.3, we can show by induction that every k � m has a
unique anchor.

Suppose that Spoiler now picks an element, say ak, from A (The argument is
symmetrical if he chooses bk fromB.) Duplicator �nds the anchor j for k and sets
rk = 2m�k+1 + 2 if ak 2 Ae or r = 2m�k+1 + 1 if ak 2 Av [Af .

Suppose j = k. There is an i such that Bi �m+1 BA(ak; r). Since B 2 E 0,
Duplicator may choose bk so that BB(bk; r) is isomorphic to Bi and does not
contain b1; b2; : : : ; bk�1 by Proposition 5.1.

If j 6= k, then elements aj and bj were chosen so that hBA(aj; rj); aji �m+1

hBB(bj ; rj); bji. Thus, Duplicator has a winning strategy in the (m + 1)-move
Ehrenfeucht-Fra��ss�e game played on this pair of structures. (Note that we use both
directions of Theorem 2.2 in the proof of this 0{1 law.) Duplicator uses this strategy
in the game on A and B whenever Spoiler plays an element al (or bl) where j is
an anchor for l. By the time Spoiler plays ak several other elements with the same
anchor may have been played, but certainly no more than m � 1 elements, so the
strategy is good for picking bk, provided that we can show that ak is in BA(aj ; rj).

There is a path from k to j in D. Corresponding to each edge on this path
is a pair of elements ap and aq where p < q, so either dA(ap; aq) � 2m�q+1 or
dB(bp; bq) � 2m�q+1. Now Duplicator either chose aq in response to Spoiler's
choice of bq or bq in response to Spoiler's choice of aq. When she made this move, it
was at most the (q�1)-st move of an (m+1)-move game played on hBA(aj ; rj); aji
and hBB(bj; rj); bji. She plays a winning strategy in this game and there are at
least m�q+2 moves remaining. We can therefore regard this as a winning position
for Duplicator in an (m � q + 2)-move game and conclude that

hBA(aj; rj); ap; aqi �m�q+2 hB
B(bj; rj); bp; bqi:

By Proposition 4.1 and Proposition 4.6,

dA(ap; aq) = dB(bp; bq) � 2m�q+1:

Thus, summing over edges in D,

d(aj ; ak) � 2m�j + 2m�j�1 + : : :+ 2m�k+1 < 2m�j+1

so ak is in BA(aj ; rj).
Elements related by the full cross relations may be up to distance 2 apart (e.g.,

elements related by R and T ). This is the reason we used balls with radius twice
that used for circular words. We wanted to make sure that balls picked during
the game have radius greater than 2. The strategy ensures if d(ai; aj) � 2 or
d(bi; bj) � 2, there is a k such that ai; aj are in BA(ak; 2), bi; bj are in BB(bk; 2),
and hBA(ak; 2); ai; aji �2 hB

B(bk; 2); bi; bji. Therefore, ai; aj must satisfy the same
relations as bi; bj. This is a winning position for Duplicator.

The proof of the second part of the theorem is the same. If C and C0 have the
same planar submaps, and we take A from C and B from C0, Duplicator almost
certainly has a winning strategy in the m-move Ehrenfeucht-Fra��ss�e game on A and
B.
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Corollary 5.3. The following classes of maps on a surface of type t have a 0{1

law:

(i) the class of all maps;

(ii) the class of smooth maps;

(iii) the class of 2-connected maps;

(iv) the class of 3-connected maps;

(v) the class of triangular maps;

(vi) the class of 2-connected triangular maps;

(vii) the class of 3-connected triangular maps.

In each of these cases, the set of sentences with asymptotic probability 1 is indepen-

dent of t.

Proof. In all cases except (iv) and (vii), richness follows from results in section 5
of [3]. For (iv) and (vii), richness follows from Theorem 1 of [8]. Large representa-
tivity for (i), (ii), and (iii) follows from [5]. Large representativity for (iv) follows
from [5] and [7]. Large representativity for (v) follows from [5] and [20]. Large
representativity for (vi) follows from [5] and [21]. Large representativity for (vii)
follows from [5] and [22]. The results in these references are all stated for rooted
maps. However, by [29] they are valid as stated here.

Remark. For maps on the plane, large representativity is trivial and so only
richness needs to be veri�ed for a 0{1 law to hold. Richness has been proved for
many classes of planar maps. See [3] and [4] for a discussion. The proofs of richness
require that the number of n-edge maps in a class grows like rn(1+o(1)) for some
r > 0. Such a class is said to be smoothly growing. All of the smoothly growing
classes of planar maps listed in Theorem 1 of [3] and the table in [26] have 0{1 laws.
The descriptions of these classes are somewhat technical, so we do not include them
here.

6. CONCLUSION

Theorem 5.2 gives 0{1 laws for many classes of maps, but one interesting question
is still open. Does the class of planar graphs have a 0{1 law? By this we mean
that the probability measure is the uniform measure on graph isomorphism types;
i.e., graphs are not weighted according to the number of embeddings in the plane.
The answer to this question is probably yes, but all e�orts to obtain an asymptotic
estimate for the number of planar graphs have been unsuccessful. However, proving
a 0{1 law may be easier than obtaining an asymptotic estimate. As we have seen,
the proof of the 0{1 law requires only richness. (Large representativity is not an
issue for planar maps.)

The 0{1 law does hold for 3-connected graphs embeddable in a surface of �xed
type, and for 3-connected graphs embeddable as triangular maps in a surface of
�xed type. The reason is that by [7] almost all the maps in these two classes
have unique embeddings in the surface. Thus, the 0{1 laws follow directly from
Corollary 5.3 (iv) and (vii).
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It should be possible to derive 0{1 laws for other classes of maps using The-
orem 5.2. Some richness results are known for various kinds of maps counted by
vertices and faces simultaneously [6], but large representativity results are not avail-
able.

As we remarked in the introduction, the 0{1 law for relational structures has been
used in expected time analyses of database query optimizations [1]. This analysis
assumed that all databases (or structures over a given vocabulary) are equally
likely. This is certainly not the case in practice. It would be interesting to do an
expected time analysis of query optimization where databases are random maps
on a surface. This may be a more realistic model of certain kinds of databases.
The 0{1 law for relational structures is very di�erent from the 0{1 laws proved
in this paper. For example, the 0{1 law for relational structures does not use a
property such as richness; indeed, a random digraph almost certainly has diameter
two, which contradicts any kind of richness property. An expected time analysis for
random maps of the query optimization technique described in [1] would be more
di�cult than the analysis for random structures.

Finally, we remark that the proof of Theorem 5.2, based on game strategies and
keeping track of anchors, is quite general. It should have other applications, and
may simplify some proofs of 0{1 laws already in the literature.
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