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Abstract

Ehrenborg obtained asymptotic results for nearly alternating permutations and
conjectured an asymptotic formula for the number of permutations that have a
nearly periodic run pattern. We prove a generalization of this conjecture, rederive
the fact that the asymptotic number of permutations with a periodic run pattern has
the form Cr−n n!, and show how to compute the various constants. A reformulation
in terms of iid random variables leads to an eigenvalue problem for a Fredholm
integral equation. Tools from functional analysis establish the necessary properties.
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1 Introduction

Definition 1 (words) A word is a sequence of symbols. If v and w are words, then vw
is the concatenation and wk is the concatenation of k copies of w. The length |w| of w is
the number of symbols in the sequence.

The descent word of a sequence σ1, . . . , σn of numbers is α = a1 · · · an−1 ∈ {d, u}n−1

where ai = d if σi > σi+1 and ai = u otherwise.
If a permutation has descent word α, then its run word is a sequence L of positive

integers where Li is the length of the ith run in α. The size ‖L‖ of a run word L is the
sum of its parts plus 1. Thus, its size is one more than the length of the corresponding
descent word. In other words, it is the size of the set being permuted.

Let Run(N) be the number of permutations that begin with an ascent and have run
word N .

For example, the descent and run words of the permutation 3, 2, 7, 5, 1, 4, 6 are dudduu and
1122, respectively, and ‖1122‖ = 7. Note that each run word corresponds to two descent
words: just interchange the roles of d and u. Thus the total number of permutations with
run word N is 2 Run(N).

We prove the following generalization of Ehrenborg’s Conjecture 7.1 [3].

Theorem 1 Let L0, . . . , Lk be (possibly empty) run words and let M1, . . . ,Mk be nonempty
run words. There are nonzero constants B0, . . . , Bk such that

Run(L0M
a1

1 L1M
a2

2 · · ·Mak

k Lk)

‖L0M
a1

1 L1M
a2

2 · · ·Mak

k Lk‖!
∼ B0 · · ·Bk

Run(Ma1

1 . . .Mak

k )

‖Ma1

1 . . .Mak

k ‖!

as min(a1, . . . ak) → ∞. The Bi are given by

Bi =















































lim
n→∞

Run(L0M
n
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Run(Mn
1 ) ‖L0Mn

1 ‖!
, if i = 0,

lim
n→∞

Run(Mn
i LiM

n
i+1) ‖M

n
i M

n
i+1‖!

Run(Mn
i M

n
i+1) ‖M

n
i LiMn

i+1‖!
, if 0 < i < k,

lim
n→∞

Run(Mn
k Lk) ‖M

n
k ‖!

Run(Mn
k ) ‖Mn

k Lk‖!
, if i = k.

We also rederive

Theorem 2 [6] For a run pattern L there are constants C(L) and λ(L) such that the
fraction of permutations with run pattern Ln is asymptotic to C(L)λ(L)n.

Since ‖Ln‖ − 1 = n(‖L‖ − 1), the theorem can be rewritten

Run(Ln) ∼ C∗(L)(λ∗(L))‖L
n‖ ‖Ln‖!, (1.1)
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where λ∗ = λ1/(‖L‖−1) and C∗ = C/λ∗.
When L = 1, Run(Ln) counts alternating permutations of size n+ 1 and so we obtain

the Euler numbers:1 Run(1n) = En+1 ∼ 2(2/π)n+2(n+ 1)!. Thus

C(1) = 8/π2 and λ(1) = 2/π (1.2)

in Theorem 2. Permutations with L = t1 (in other notation, utd) were studied by Leeming

and MacLeod [5]. They proved that (Run(Ln−1t))1/n(t+1) ∼ n(t+1)
e |pt+1|

, where pℓ is the zero

of
∑∞

n=0 z
ℓn/(ℓn)! of smallest modulus. It follows that

λ(L) ∼ (Run(Ln))1/n ∼ ((n(t+ 1) + 1)!)1/n

(

n(t+ 1)

e |pt+1|

)t+1

and so
λ(t1) = |pt+1|

−(t+1). (1.3)

Lemma 2 and Theorem 4 in the next section provide the tools for calculating all the con-
stants in Theorems 1 and 2. In Section 3, we illustrate by rederiving (1.3) and computing
the associated C(t1) in (3.6).

In giving proofs, we find it more convenient to work with descent words and then
translate those results into run-word terms. Our proofs are based on the probabilistic
approach of Ehrenborg, Levin and Readdy [4]. This leads us to the study of a Fredholm
integral equation. In the next section, we introduce the probabilistic approach and state
the relevant probabilistic theorems. In Sections 4–9, we prove the various theorems.

2 A Probabilistic Formulation

Definition 2 (ends of descent words) The lengths of the longest initial and final constant
strings in a descent word α are denoted by A(α) and Z(α), respectively. These are the
initial and final integers in the run word corresponding to α.

We now define the probability distributions and a measure of deviation from independence
that play a central role in our approach.

Definition 3 (some probability) If α ∈ {d, u}n−1, then f(x, y, α) is the probability den-
sity function for the event that the sequence X1, . . . , Xn of iid random variables with the
uniform distribution on [0, 1] has X1 = x, Xn = y and descent word α. Also, f(x, y | α)
is the conditional density function. We replace x and/or y with ∗ to indicate marginal

distributions. For example, f(x, ∗, α) =
∫ 1

0
f(x, y, α) dy.

Let α1, α2, . . . be a sequence of descent words with |αn| → ∞. We call the sequence
asymptotically independent if either

1This works for both odd and even n since 12k corresponds to (ud)k and 12k+1 corresponds to (ud)ku.
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(a) limn→∞A(αn) = ∞,

(b) limn→∞ Z(αn) = ∞, or

(c) A(αn) and Z(αn) are bounded and

lim
n→∞

(

sup
(x,y)

∣

∣

∣
f(x, y | αn) − f(x, ∗ | αn)f(∗, y | αn)

∣

∣

∣

)

= 0. (2.1)

We call the sequence stable if limn→∞ f(x, ∗ | αn) and limn→∞ f(∗, y | αn) exist or are
delta functions.

Clearly any infinite subsequence of an asymptotically independent or stable sequence also
has that property.

The following lemma, noted in [4], connects the probability distributions with permu-
tations.

Lemma 1 If X1, . . . , Xn are independent identically distributed (iid) random variables
with a continuous density function, then the probability that the sequence X1, . . . , Xn has
descent word α equals the probability that a random permutation of {1, . . . , n} has
descent word α. In other words, the number of permutations with descent word α is
(1 + |α|)! f(∗, ∗, α).

Due to the lemma, we may study permutations via the probability distributions. Stability
and asymptotic independence imply a result needed to prove Theorem 1:

Theorem 3 Fix k > 0. Suppose that, for each 1 ≤ i ≤ k, the sequence αi,1, αi,2, . . . is
stable and asymptotically independent. Suppose that βi are possibly empty descent words
for 0 ≤ i ≤ k. Let

δn = β0α1,nβ1 · · ·αk,nβk.

Let a(β) and z(β) be the first and last letters in β, respectively. If βi is not empty, assume
both

• that Z(αi,na(βi)) is bounded for all n when 0 < i ≤ k and

• that A(z(βi)αi+1,n) is bounded for all n when 0 ≤ i < k.

If βi is empty and 0 < i < k, assume either

• that Z(αi,n) and A(αi+1,n) are bounded for all n or

• that z(αi,n) 6= a(αi+1,n) for all n.
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Then
f(∗, ∗, δn)

∏k
i=1 f(∗, ∗, αi,n)

∼
k
∏

i=0

Ci, (2.2)

where the Ci are nonzero and given by

Ci =















































lim
n→∞

f(∗, ∗, β0α1,n)

f(∗, ∗, α1,n)
, if i = 0,

lim
n→∞

f(∗, ∗, αi,nβiαi+1,n)

f(∗, ∗, αi,n) f(∗, ∗, αi+1,n)
, if 0 < i < k,

lim
n→∞

f(∗, ∗, αk,nβk)

f(∗, ∗, αk,n)
, if i = k.

Theorem 4 below proves stability and asymptotic independence for repeated descent pat-
terns.

Conjecture 1 While stability clearly depends on the form of the words αi,1, αi,2, . . ., we
conjecture that |αi,n| → ∞ implies asymptotic independence.

We now provide the tools for calculating the constants in Theorems 1 and 2.

Definition 4 (reversal of descent words) For any descent word α, define αR to be α read
in reverse order and α to be α with the roles of d and u reversed.

Lemma 2 Let α and β be arbitrary descent words, We have

f(x, y, u) =

{

0, if x > y,
1, otherwise,

(2.3)

f(x, y, α) = f(y, x, αR) = f(1 − x, 1 − y, α) (2.4)

f(x, y, αβ) =

∫ 1

0

f(x, t, α)f(t, y, β) dt (2.5)

f(∗, ∗, α) ≥ f(∗, ∗, αβ) (2.6)

We omit the proof of the lemma since it is simple and is essentially contained in Section 2
of [4].

Theorem 4 Let µ = m1 . . .m|µ| be a descent word containing both d and u. The sequence
µ, µ2, µ3, . . . is asymptotically independent and stable.

Let ω = e2πi/|µ|. Define the |µ| × |µ| matrix M for 0 ≤ k, ℓ < |µ| by

Mk,ℓ =

{

ωkℓ, if mk+1 = d ,
ωkℓ exp(rωℓ), if mk+1 = u.
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Let r be the smallest magnitude number for which the matrix M is not invertible. Let
U(µ) be the number of u’s in µ. Then, uniformly for (x, y) ∈ [0, 1]2,

f(x, y, µn) = C(µ)
(

φ(x, µ)φ(y, µR) + o(1)
)

λ(µ)n, (2.7)

where

λ(µ) =
(−1)U(µ)

r|µ|
, (2.8)

φ(x, µ) =

|µ|−1
∑

t=0

Dt exp(rωtx), (2.9)

C(µ) =
1

∫ 1

0
φ(x, µ)φ(x, µR) dx

, (2.10)

and D = (D0, . . . , D|µ|−1)
t is the solution of MD = 0 such that

∫ 1

0
φ(x, µ) dx = 1. The

value of φ(y, µR) is found by replacing x with y and µ with µR. The values of λ and |r|
are the same for µ and µR. We may assume arg r = 0 if U(µ) is even, and arg r = π/|µ|
otherwise.

In particular, f(∗, ∗, µn) ∼ C(µ)λ(µ)n.

Remark If (2.7) is integrated over x or y, we obtain Theorem 2 of Shapiro, Shapiro
and Vainshtein [6], including the same formulas for calculating C, λ and φ. Their method
of proof differs from ours. If our Conjecture 1 were proved, then our Theorem 4 would
follow from Theorem 2 [6].

Remark The second smallest magnitude r, say r2, for which M is singular gives the
“second largest eigenvalue” λ2 = 1/|r2|

|µ|, which is discussed in later sections. This
can be used to obtain information about rate of convergence because of (6.1). See also
Section 8.

Using the lemma, one can compute f(x, y, α) for any particular descent word α. We
use (2.4) to convert results for d into results for u and results for the left end of α into
results for the right, generally without comment. To study the asymptotics of something
like f(∗, ∗, αkβµℓ) as k, ℓ→ ∞, one combines the lemma and theorem:

f(∗, ∗, αkβµℓ) =

∫ 1

0

∫ 1

0

f(∗, x, αk) f(x, y, β) f(y, ∗, µℓ) dx dy

∼ C(α)C(µ)λ(α)k λ(µ)ℓ

∫ 1

0

∫ 1

0

φ(x, αR) f(x, y, β)φ(y, µ) dx dy.

3 An Illustration: µ = udℓ−1

We now obtain equations for C, φ and λ when µ = udℓ−1. The value of λ is given
implicitly and, since φ and C depend on λ, they are given implicitly as well. Of course,
our equation for λ will be the same as Leeming and MacLeod’s result. Note that |µ| = ℓ.
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The matrix equation MD = 0 in Theorem 4 is written as |µ| separate equations
in (8.11). With ω = e2πi/ℓ, these are

ℓ−1
∑

t=0

ωktDt = 0 for 1 ≤ k ≤ ℓ− 1.

It is easily seen that these equations have the one parameter solution given by D0 = D1 =
· · · = Dℓ−1 The condition for k = 0 is

0 =
ℓ−1
∑

t=0

Dt exp(rωt) = D0

ℓ−1
∑

t=0

exp(rωt). (3.1)

Since we do not want the identically zero solution, (3.1) gives us the complex transcen-
dental equation

∑ℓ−1
t=0 exp(rωt) = 0 for r. This can be simplified by using the Taylor

series for ez to expand exp(rωt) and then collecting terms according to powers of r:

ℓ
∞
∑

k=0

rkℓ

(kℓ)!
= 0, (3.2)

since the sum of ωtn over t vanishes when n is not a multiple of ℓ. This is the result
of Leeming and MacLeod [5] mentioned after Theorem 2. In their notation, r = pℓ, the
smallest magnitude zero of (3.2). By (2.8), we can rewrite (3.2) as

0 =
∞
∑

k=0

(−1/λ)k

(kℓ)!
, (3.3)

which can be solved numerically for the largest λ > 0. By (2.9) and Taylor series expansion
of the exponentials,

φ(x, µ) = D0

ℓ−1
∑

t=0

exp(rωtx) = ℓD0

∞
∑

k=0

(rx)kℓ

(kℓ)!
= ℓD0

∞
∑

k=0

(−1/λ)kxkℓ

(kℓ)!
.

Integrating over [0, 1] gives 1 = ℓD0

∑∞
k=0

(−1/λ)k

(kℓ+1)!
and so

φ(x, udℓ−1) =
∞
∑

k=0

(−1/λ)kxkℓ

(kℓ)!

/ ∞
∑

k=0

(−1/λ)k

(kℓ+ 1)!
. (3.4)

For µR = uℓ−1d, the conditions (8.11) for 0 ≤ k ≤ ℓ− 2 become

0 =
ℓ−1
∑

t=0

ωktDt exp(rωt) =
ℓ−1
∑

t=0

ω(k+1)t
(

ω−tDt exp(rωt)
)

.
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With Et = ω−t exp(rωt)Dt, these become
∑ℓ−1

t=0 ω
jtEt = 0 for 1 ≤ j ≤ ℓ− 1 and so, as

before, E0 = E1 = · · · = Eℓ−1. For k = ℓ− 1 we have

0 =
ℓ−1
∑

t=0

ωt(ℓ−1)Dt =
ℓ−1
∑

t=0

ω−t(ωt exp(−rωt)Et) = E0

ℓ−1
∑

t=0

exp(−rωt).

This is the same as (3.1) with −r replacing r. Thus r = −pℓ and

φ(x, uℓ−1d) =
ℓ−1
∑

t=0

Dt exp(−pℓxω
t) = E0

ℓ−1
∑

t=0

ωt exp(pℓω
t) exp(−pℓxω

t)

= E0

ℓ−1
∑

t=0

ωt exp(pℓ(1 − x)ωt) =
ℓE0

pℓ

∞
∑

k=1

(−1/λ)k(1 − x)kℓ−1

(kℓ− 1)!
,

by expanding the exponentials in Taylor series as before. Integrating over [0, 1] gives

1 =
ℓE0

pℓ

∞
∑

k=1

(−1/λ)k

(kℓ)!
= −

ℓE0

pℓ

by (3.3). Thus

φ(x, uℓ−1d) = −
∞
∑

k=1

(−1/λ)k(1 − x)kℓ−1

(kℓ− 1)!
. (3.5)

Combining (3.4) and (3.5) with the (2.10), we have

C(udℓ−1) =

−
∞
∑

k=0

(−1/λ)k

(kℓ+ 1)!

∞
∑

s=0

∞
∑

t=1

∫ 1

0

(−1/λ)sxsℓ

(sℓ)!

(−1/λ)t(1 − x)tℓ−1

(tℓ− 1)!
dx

=

−
∞
∑

k=0

(−1/λ)k

(kℓ+ 1)!

∞
∑

s=0

∞
∑

t=1

(−1/λ)s+t

((s+ t)ℓ)!

=

−
∞
∑

k=0

(−1/λ)k

(kℓ+ 1)!

∞
∑

k=1

k(−1/λ)k

(kℓ)!

. (3.6)

The following table contains some values of λ(udℓ−1) and C(udℓ−1) and well as the de-
nominator of (3.4) and λ1/ℓ. The denominator is needed in computing φ and λ1/ℓ is used
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in (1.1).

ℓ λ(udℓ−1) C(udℓ−1) (3.4) denom. λ1/ℓ

2 0.405285 0.810569 0.636620 0.636620
3 0.157985 0.786835 0.744142 0.540595
4 4.1064e−2 0.810569 0.798696 0.450158
5 8.3001e−3 0.836374 0.833030 0.383546
6 1.3874e−3 0.858002 0.857071 0.333964
7 1.9835e−4 0.875238 0.874983 0.295844
8 2.4800e−5 0.888954 0.888885 0.265647
9 2.7557e−6 0.900018 0.899999 0.241128

To further illustrate the calculation procedure, we compute asymptotics in Theorem 1
when the permutation alternates up/down, except for some internal cases of uu. To do
this, we take all ai to be even except possibly ak, Mi = 1 for all i, Li = 1 for 1 ≤ i ≤ k−1,
and L0 and Lk empty. We need to compute Bi.

Ehrenborg’s Theorem 4.1 [3] gives the value. When a is even and b is odd, what he calls
β(1a, 2, 1b) is the number of permutations with pattern (ud)a/2u(ud)(b+1)/2. He compares
this with En, the number of alternating permutations of the same length n = ‖1a21b‖.
On the other hand, Bi compares it with En−1 Since the fraction of n-long permutations
that alternate is asymptotic to C(1)λ(1)n, we obtain an extra factor of λ(1) = 2/π:

Bi ∼ λ(1)
β(1a, 2, 1b)

En

∼
4

π2
, where min(a, b) → ∞.

Thus Bi = 4/π2. Ehrenborg also discusses computing β(1a, L, 1b).
To illustrate the use of our formulas, we now compute Bi without using Ehrenborg’s

result. Note that Run(Mn
i M

n
i+1) is just counting alternating permutations. To evaluate

Run(Mn
i LiM

n
i+1), we apply (2.5) twice to compute f(x, y, (ud)mu(ud)m) and integrate this

over x and y. Since

f(x, y, (ud)m) = C(1)
(

φ(x, u)φ(y, u) + o(1)
)

λ(1)2m,

where C and λ are given by (1.2), we need to know φ(x, u). One can use (3.5) with ℓ = 2
or [4] to conclude that

φ(x, u) = (π/2) sin(πx/2).

In computing Bi in Theorem 1, the formulas we are using are probabilities and so we
will be estimating Run(P )/‖P‖! for patterns P . Remembering that

∫ 1

0
φ(x, α) dx = 1,

Bi =
C(1)2λ(1)2n

∫ 1

0

∫ 1

0
sin(πs/2) sin(πt/2)f(s, t, u) ds dt

C(1)2λ(1)2n
∫ 1

0
sin(πs/2)2 ds

,

where f(s, t, u) is given by (2.3). The integral in the denominator is 1/2 and the integral
in the numerator is
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∫

0<s<t<1

sin(πs/2) sin(πt/2) ds dt =

∫ 1

0

sin(πs/2)(2/π) cos(πs/2) ds

= (1/π)

∫ 1

0

sin(πs) ds = 2/π2.

Hence Bi = 4/π2.

4 Proof of Theorem 3

Lemma 3 Let α and β be descent words.

(a) If |α| > 1, then f(x, y, α) is a monotonic uniformly continuous function of x and y
on the unit square. In fact, it is increasing in x if and only if α begins with d and
is increasing in y if and only if α ends with u.

(b) f(x, y, αduβ) ≥ f(x, ∗, αd) f(∗, y, uβ).

(c) If α contains both u and d, there is are functions U(k) and L(x, y, k) such that, for
each k, L(x, y, k) is strictly positive for (x, y) in the interior of [0, 1]2 and such that

U(k) ≥ f(x, y | α) ≥ L(x, y, k) where k = max{A(α), Z(α)}.

Similarly,
U1(A(α)) ≥ f(x, ∗ | α) ≥ L1(x,A(α))

and
U1(Z(α)) ≥ f(∗, y | α) ≥ L1(y, Z(α))

for functions U1 and L1 where L1(x, k) is strictly positive for 0 < x < 1.

Proof It is easily seen that (2.3) is monotonic. It follows by induction that f(x, y, α) is
continuous if |α| > 1. Suppose α = uβ where β is not the empty word. By (2.5)

f(x, y, α) =

∫ 1

x

f(t, y, β) dt,

which is clearly a decreasing function of x.
We now prove (b). By (2.5),

f(x, y, αduβ) =

∫ 1

0

f(x, t, αd) f(t, y, uβ) dt.

By (a), both f(x, t, αd) and f(t, y, uβ) are monotonic decreasing functions of t. By the
integral form of Chebyshev’s integral inequality [7],

∫ 1

0

f(x, t, αd) f(t, y, uβ) dt ≥

∫ 1

0

f(x, t, αd) dt

∫ 1

0

f(t, y, uβ) dt = f(x, ∗, αd) f(∗, y, uβ).
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This completes the proof of (b).
We now prove (c). Let B(m) be an upper bound for f(x, y, um). Suppose α = amβbn

where either

• β is empty and b = a or

• β = aδb.

By part (b) of the lemma,

f(x, y, α) ≥ f(x, ∗, am) f(∗, ∗, β) f(∗, y, bn).

On the other hand,

f(x, y, α) =

∫ 1

0

∫ 1

0

f(x, s, am) f(s, t, β) f(t, y, bn) ds dt ≤ B(m)B(n)f(∗, ∗, β).

Thus we have

B(m)B(n)f(∗, ∗, β) ≥ f(x, y, α) ≥ f(x, ∗, am) f(∗, ∗, β) f(∗, y, bn)

and so

f(∗, ∗, am) f(∗, ∗, β) f(∗, ∗, bn) ≤ f(∗, ∗, α) ≤ B(m)B(n)f(∗, ∗, β).

Dividing gives

B(m)B(n)

f(∗, ∗, am) f(∗, ∗, bn)
≥ f(x, y | α) ≥

f(x, ∗, am) f(∗, y, bn)

B(m)B(n)
.

Let U(k) be the maximum of the left side over m,n ≤ k and let L(x, y, k) be the minimum
of the right side over m,n ≤ k and a, b ∈ {d, u}. The last statement for (c) is proved in
a similar manner.

Proof (of Theorem 3) We assume all βi are nonempty. The modifications for an empty
βi are straightforward.

Let Vm(x) be the m-dimensional unit cube [0, 1]m in coordinates x0, . . . , xm−1. Using
(2.5) we have

f(∗, ∗, δ )
∏k

i=1 f(∗, ∗, αi,n)
=

∫

Vk+1(s)

∫

Vk+1(t)

f(t0, s0, β0) × (4.1)

(

k
∏

i=1

(f(si−1, ti | αi,n) f(ti, si, βi)) dti dsi

)

dt0 ds0.

Our goal is to show that, asymptotically, we can replace

∫ 1

0

f(ti−1, si−1, βi−1) f(si−1, ti | αi,n) dsi−1 (4.2)
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with
∫ 1

0

f(ti−1, si−1, βi−1) f(si−1, ∗ | αi,n) f(∗, ti | αin) dsi−1. (4.3)

Since the f(ti, si, βi) are either uniformly continuous by Lemma 3(a) or a step function
as in (2.3), we can rearrange limits and integrals to obtain (2.2), except for showing that
the Ci exist and are nonzero. Note that this gives

Ci = lim
n→∞

∫ 1

0

∫ 1

0

f(∗, s | αi,n) f(s, t, βi) f(t, ∗ | αi+1,n) ds dt (4.4)

for 0 < i < k and similar results for i = 0 and k. These Ci are easily seen to be equivalent
to those in the theorem.

We distinguish cases according to whether or not A(αi,n) and/or Z(αi,n) are bounded.
First suppose both A(αi,n) and Z(αi,n) are bounded. In this case, the definition of

asymptotic independence gives us

f(si−1, ti | αi,n) = f(si−1, ∗ | αi,n) f(∗, ti | αi,n) + o(1)

uniformly over the range of integration. Thus we can replace (4.2) with (4.3) plus
∫

f(ti−1, si−1, βi−1) o(1). The effect of this latter is to add a term of products of Cj’s
with Ci−1Ci replaced by o(1). Since the Ci will be shown to be nonzero, the asymptotics
are unchanged.

Now suppose A(αi,n) → ∞ and a(αi,n) = u the cases of Z and d are handled by (2.4).
For simplicity, we drop the i subscripts. Write αn = umγ where m → ∞ and a(γ) = d.
By assumption, z(β) = d. Note that f(s, t, β), f(t, x, um) and f(x, y, γ) are decreasing
functions of t and x. Also, for each fixed x > 0, f(t, x | um) approaches a delta function
as m→ ∞ and so, for 0 < s, x < 1,

∫ 1

0

f(s, t, β) f(t, x, um) ds = (f(s, 0, β) + o(1)) f(∗, x, um).

By the uniform continuity of f(s, t, β) when |β| > 1 or (2.3) when β = d, this is also true
for s = 0. Multiplying by f(x, y, γ), integrating on x, using the monotonicity in x and
dividing by f(∗, ∗, αn),

∫ 1

0

f(s, t, β) f(t, y | αn) ds = (f(s, 0, β) + o(1)) f(∗, y | αn).

Since f(t, y | αn) approaches a delta function for each y > 0, we finally have

∫ 1

0

f(s, t, β) f(t, y | αn) ds =
(

∫ 1

0

(f(s, t, β) + o(1)) f(t, ∗ | αn) dt
)

f(∗, y | αn). (4.5)

We consider 0 < i < k and write

Ci = lim
n→∞

∫ 1

0

∫ 1

0

f(∗, s | αi,n) f(s, t, βi) f(t, ∗ | αi+1,n) ds dt.
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The case of unbounded runs at the end of αi,n can be handled as in the derivation of (4.5).
Otherwise, stability guarantees that f(∗, s | αi,n) and f(t, ∗ | αi+1,n) approach a limit and
Lemma 3(c) guarantees that the limits are bounded. Since f(s, t, βi) is well behaved, Ci

exists. Furthermore, it is positive because of the lower bound in Lemma 3(c).

5 A Functional Analysis Formulation of Theorem 4

Suppose µ is a descent word containing both d and u. Without loss of generality, we
suppose that µ begins with d. Define K(x, y) = f(x, y, µ) and

Km(x, y) =

{

K(x, y) = f(x, y, µ), if m = 1,
∫ 1

0
K(x, t)Km−1(t, y) dt, if m > 1.

Since f(x, y, µn) = Kn(x, y), studying f(x, y, µn) as n → ∞ is equivalent to studying
large powers of an integral operator T whose kernel is K. If we were dealing with matrices,
we would simply be taking powers of a matrix K with strictly positive entries and so K
would have a unique eigenvalue λ1 of maximum modulus. It would be positive real and
have left and right eigenspaces of dimension 1. Thus we would have Kn ∼ Cλn

1uv′ for
left and right eigenvectors u and v. This is the discrete form of Theorem 4. We prove
analogous results for the function K(x, y) using functional analysis.

We begin with some relevant properties of the kernel.

Lemma 4 Let K(x, y) = f(x, y, µ), where µ is descent word beginning with d and
containing u. Then we have the following.

(a) K(x, y) is uniformly continuous on the unit square [0, 1]2 and strictly positive on
(0, 1] × (0, 1).

There is a continuous strictly increasing function ẽ(x) on [0, 1] with ẽ(0) = 0 such that

(b) for every positive Borel measure ν on [0, 1] with ν( (0, 1) ) > 0, there is a number
τν > 0 such that

τν ẽ(x) ≤

∫

K(x, y)dνy for all x ∈ [0, 1]; (5.1)

(c) there is a constant MK such that, for every Borel measure νy on [0, 1],
∣

∣

∣

∣

∫

K(x, y)dνy

∣

∣

∣

∣

≤

(

MK

∫

d|νy|

)

ẽ(x) for all x ∈ [0, 1]; (5.2)

(d) The function

q(x, y) =

{

ẽ(x)−1K(x, y), if x > 0,

limx→0+ ẽ(x)−1K(x, y), if x = 0,

is continuous on [0, 1]2 and is strictly positive on [0, 1] × (0, 1).
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Proof Lemma 3 implies (a).
We now prove (b). Without loss of generality, µ = dkuβ for some k > 0 and so, by

Lemma 3(b), K(x, y) ≥ f(x, ∗, dk)f(∗, y, uβ). Set

ẽ(x) = f(x, ∗, dk) and τν =
1

2

∫

f(∗, y, uβ)dνy. (5.3)

Note that f(x, ∗, δ) > 0 on (0, 1) for any δ, so ẽ(x) is also positive there. Also note that
f(∗, y, δ) is strictly positive and continuous on (0, 1), so τν > 0.

We now prove (c). Since f(x, y, µ) is nonnegative and (uniformly) continuous in the
unit square, there is a constant MK such that f(x, y, µ) ≤ MKf(x, ∗, µ). Combine this
with the fact that

f(x, ∗, δγ) ≤ f(x, ∗, δ) for all δ, γ

to get
K(x, y) ≤ MKf(x, ∗, µ) ≤ MKf(x, ∗, dk) = MK ẽ(x).

Thus
∣

∣

∣

∣

∫

K(x, y) dνy

∣

∣

∣

∣

≤

∫

K(x, y) d|νy| ≤ MK ẽ(x)

∫

d|νy|.

We now prove (d). Since e(x) is continuous and strictly positive on (0, 1] and K(x, y)
is continuous on [0, 1]2, the claim holds on (0, 1]× [0, 1]. Since K(x, y) is monotonic in y,
so is e(x)−1K(x, y). It suffices to study the limit of this ratio as x→ 0. We claim that

f(x, y, dk) =

{

0, if y ≥ x,
(x− y)k−1/(k − 1)!, otherwise.

(5.4)

To see this, consider the sequence of independent, identically distributed, random variables
X1, . . . , Xk+1 conditioned on X1 = x > y = Xk+1. The probability that X2, . . . , Xk all
lie in [y, x] is (x− y)k−1 and the probability that they are in increasing order is 1/(k− 1)!
since there (k − 1)! ways to arrange them. Since these two events are independent, (5.4)
follows.

By repeated application of l’Hospital’s Rule

lim
x→0

K(x, y)

ẽ(x)
= lim

x→0

∫ x

0
(x− t)k−1f(t, y, uβ) dt
∫ x

0
(x− t)k−1 dt

= lim
x→0

∫ x

0
(x− t)k−2f(t, y, uβ) dt
∫ x

0
(x− t)k−2 dt

= · · · = lim
x→0

∫ x

0
f(t, y, uβ) dt
∫ x

0
dt

= lim
x→0

f(x, y, uβ) = f(0, y, uβ).

This completes the proof since f(0, y, uβ) > 0 for 0 < y < 1.
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6 Operators Which Preserve Cones

Before considering integral operators like K(x, y), we develop some general properties of
linear operators that are needed for our proof. We follow the terminology in [2] and try
to keep the expositions reasonably self-contained.

Definition 5 (cones, a partial order, semi-monotonic norms) Suppose (B, ‖ ‖) is a real
Banach space. A cone P is a closed convex set with

• P 6= {0},

• λP ⊂ P for any number λ ≥ 0 and

• P ∩ −P = 0.

Given a cone P, define a partial order by x ≥ y if and only if x − y ∈ P and let
[a, c] = {b : a ≤ b ≤ c}.
A norm ‖ ‖ is called semi-monotonic with respect to P if there is a γ ∈ R

+ such that
0 ≤ x ≤ y implies ‖x‖ ≤ γ‖y‖.

A real Banach space can be complexified to a (unique) complex Banach space Bc and an
operator T on B extends uniquely to Bc. (See [2], Chapter 9.8.)

Here is the Krein-Rutman Theorem as stated in Theorem 19.3 of [2]. It plays a central
role in our analysis of K(x, y).

Theorem 5 (Krein-Rutman) Suppose T is a compact linear operator T : B → B which
maps P, except for 0, into its interior, denoted P0, then the maximum magnitude eigen-
value λ1 of T extended to the complexification Bc is real and positive. The eigenvector
φ corresponding to λ1 is unique (up to a scalar multiple) and lies in P0. Any other
eigenvector of T does not lie in P.

As is often the case with Krein-Rutman applications we shall find that our map T maps
a cone P into itself, but not into its interior. We now describe a standard patch which
allows one to still use the theorem.

Definition 6 (the norm ‖ ‖e) Given a cone P in the Banach space (B, ‖ ‖), recall the
partial order of Definition 5. Pick e ∈ P, set

Be =
⋃

t>0

t[−e, e]

and define a norm on Be by

‖b‖e = inf{t > 0 : b ∈ t[−e, e]} for b ∈ Be.

Define a cone Pe by

Pe = Be ∩ P = {b ∈ P : te− b ∈ P for some t > 0}.
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Beware: Be is not complete in this norm. Note that [−e, e] is the unit ball in Be. The
key facts about ‖ ‖e are as follows.

Lemma 5 If (B, ‖ ‖) is a real Banach space with cone P and e ∈ B, the following are
true.

(a) The norm ‖ ‖e is semi-monotonic on Be with respect to the cone Pe.

(b) If ‖ ‖ is semi-monotonic on B with respect to the cone P, then (Be, ‖ ‖e) is complete
and hence a real Banach space. Also there is a number γ such that γ‖b‖e ≥ ‖b‖ for
all b in Be.

(c) If T : B → B is a operator such that

(i) T maps the cone P into P,

(ii) ‖ ‖ is semi-monotonic on B with respect to the cone P,

(iii) for each b in B there is a number τb such that −τb e ≤ T (b) ≤ τb e,

(iv) for each b ∈ P there is a number Mb > 0 such that e ≤ Mb T (b),

then T maps Pe into its interior.
If in addition T is a compact operator on Be, then Theorem 5 applies on Be to give
λ1 ∈ R

+ and φ ∈ Pe.

Proof Parts (a) and (b) are Proposition 19.9 of [2].
We prove (c). We claim that the interior of Pe is {b ∈ Be : b ≥ te for some t > 0}. To

prove this, first note that b ∈ Be is in the interior of Pe if and only if

b+ t[−e, e] ⊂ Pe for some t > 0,

which is true if and only if

b± te ∈ Pe for some t > 0,

which is true if and only if

t′e ≥ b± te ≥ 0 for some t, t′ > 0.

This gives four inequalities that must hold. All follow automatically from b ∈ Be except
the inequality b ≥ te. This proves the claim. By (iii), T : B → Be, and so, by the claim
and (iv), we are done.

We now turn our attention to powers of operators.

Definition 7 (operator norms) The norm ‖ ‖L(B) on operators on B that is induced by
‖ ‖ is defined by

‖T‖L(B) = sup
b 6=0

(

‖Tb‖

‖b‖

)

.
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Lemma 6 Suppose T is a linear operator T : B → B. Suppose λ1 > 0 is the only
maximum magnitude eigenvalue λ1 of T on Bc and has multiplicity one. Also suppose λ1

is isolated from the rest of the spectrum of T on Bc; that is, there is some λ2 such that

if λ ∈ (spectrum(T ) ⊖ {λ1}), then |λ| ≤ |λ2| < |λ1|.

Then there is a rank one operator Q : B → B such that

‖Tm − λm−1
1 Q‖L(B) ≤ (|λ2| + ε)m (6.1)

for all ε > 0 and large enough m = m(ε).

Proof First use the Riesz functional calculus (see [1] Proposition 4.11) with one contour
around λ1 and another around the remaining spectrum of T on Bc to write T on Bc as
T = Q+ E where Q and E act on Bc, QE = 0 = EQ, spectrum(Q) = {λ1, 0}, and
spectrum(E) = spectrum(T ) ⊖ {λ1}. Now Tm = Qm + Em, so

‖Tm −Qm‖L(Bc) = ‖Em‖L(Bc).

Since the spectral radius ρ(A) of any continuous operator satisfies

ρ(A) = lim
m→∞

(

‖Am‖L(Bc)

)1/m

we have for any ε > 0 and large enough m = m(ε)

‖Tm −Qm‖L(Bc) ≤ (ρ(E) + ε)m. (6.2)

Let φ be an eigenvector of Q associated with λ1. Since λ1 is an eigenvalue of T of
multiplicity 1, φ spans the range of Q and

Qb = φℓ(b) (6.3)

where ℓ : Bc → C is a linear functional satisfying ℓ(φ) = λ1. Thus

Qm(b) = ℓ(φ)m−1φℓ(b) = λm−1
1 Q(b). (6.4)

Since Tm : B → B and, by (6.4) and (6.2),

‖Tm/λm−1
1 −Q‖L(Bc) =

‖Tm −Qm‖L(Bc)

λm−1
1

→ 0,

it follows that Q : B → B. Thus we may take ‖ ‖L(B) rather than ‖ ‖L(Bc) in (6.2).

Next we look at the adjoint T ′ of T . The dual Banach space of B will be denoted B′.
Define the dual cone P ′ to P by

P ′ = {ℓ ∈ B′ : ℓ(b) ≥ 0 for all b ∈ P}.

We note some properties of the adjoint.
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• If T (P) ⊂ P then T ′(P ′) ⊂ P ′, since if ℓ ∈ P ′, then

[T ′ℓ](b) = ℓ(Tb) ≥ 0.

• The adjoint of a compact operator is compact and, if the sequence of operators
Tm/λm−1

1 : B → B converges in ‖ ‖L(B) to an operator Q, then the sequence
(T ′)m/λm−1

1 : B′ → B′ converges in ‖ ‖L(B′) to Q′.

• spectrum(T ′ on Bc′) equals spectrum(T on Bc).

These facts allow us to apply Theorem 5 and Lemma 6 to T ′ and obtain, like before,

‖(T ′)m − λm−1
1 Q′‖L(B′) ≤ (|λ2| + ε)n. (6.5)

As before Q′ has the form

Q′(η) = Lα(η) for all η ∈ B′.

Here L ∈ P and α ∈ (B′)′. The definition of adjoint and (6.3) imply

L(b)α(η) = Q′(η)(b) = η(Q(b)) = η(φ)ℓ(b) (6.6)

for all η and b. Thus L = ℓ and α(η) = η(φ) for all η ∈ B′. Thus we have proved

Lemma 7 In the notation of Lemma 6, there exist φ ∈ P and L ∈ P ′ such that

Q(b) = φL(b), Tφ = λ1φ and T ′(L) = λ1L.

7 Asymptotics for Integral Operators

We now take K(x, y) of Section 5 to be the kernel of an integral operator acting on a space
of measures as follows. The space C[0, 1] of continuous functions on [0, 1] with norm given
by ‖g‖∞ = sup

0≤x≤1
|g(x)| is a real Banach space whose dual M is the Banach space of finite

total mass Borel measures with ‖ν‖M =
∫ 1

0
d|ν|, the total mass of ν. Define T : M → M

by

T (νy) =

(
∫

K(x, y)dνy

)

dx (7.1)

on any ν in M. If K is continuous on the unit square, T (ν) is a continuous function times
dx. Moreover,

{T (ν) : ‖ν‖M ≤ 1}

the electronic journal of combinatorics 10 (2003), #R40 18



is an equicontinuous family of continuous functions times dx.2 By the Arzela-Ascoli
Theorem every sequence has a ‖ ‖∞ convergent subsequence, which implies it is convergent
in ‖ ‖M. Thus T is a compact operator on M and it maps into C[0, 1] dx.

Let P denote the cone of positive measures in M. Let ẽ ∈ C[0, 1] be given by Lemma 4
and denote the measure ẽ(x)dx by e ∈ P. Construct Pe and ‖ ‖e as in Definition 6. Note
that measures in Pe all have the form of continuous functions times Lesbeque measure.
Semi-monotonicity of ‖ ‖M follows because 0 ≤ ν1 ≤ ν2 implies ‖ν1‖M ≤ ‖ν2‖M. Thus
the conclusions of Lemma 5(a,b) are true. Moreover, observe that the estimates (5.1) and
(5.2) imply the hypothesis of Lemma 5(c), provided that we can show that T : Me → Me

is a compact operator. We do that next.

Lemma 8 View T of (7.1) as an operator on Me. Then T : Me → Me is a compact
operator.

Proof First we show

‖g dx‖Me
= sup

x
|g(x)/ẽ(x)| = ‖g/ẽ‖∞ . (7.2)

In proving it we must verify this for all g in C[0, 1] which vanish faster than ẽ(x) at x = 0,
since we can complete this to obtain Me. Such g dx is in the unit ball of Me if and only
if |g(x)| ≤ ẽ(x), which holds if and only if |g(x)|

|ẽ(x)|
≤ 1. Since (7.2) is linear in g, we may

rescale to prove the formula.
Define

Ǩ(x, y) = ẽ(x)−1K(x, y),

which by Lemma 4(d) is continuous on the closed square. The integral operator

Ť (ν) =

∫

Ǩ(x, y)dνy

maps the unit ball of M to a precompact set of C[0, 1] in ‖ ‖∞, using the same type of
estimate as in the previous footnote. If νn is a sequence in the unit ball of M, then set
hn dx = T (νn) and observe

‖hn dx− hk dx‖Me
=

∥

∥

∥

∥

hn

e
−
hk

e

∥

∥

∥

∥

∞

=
∥

∥Ť (νn) − Ť (νk)
∥

∥

∞
. (7.3)

2Equicontinuity follows from

∣

∣T (ν)(x1) − T (ν)(x2)
∣

∣ ≤

∫

∣

∣K(x1, y) − K(x2, y)
∣

∣ d|νy|

≤ sup
y

∣

∣K(x1, y) − K(x2, y)
∣

∣

∫

d|νy| ≤ sup
y

∣

∣K(x1, y) − K(x2, y)
∣

∣,

which for any ε > 0 is less than ε, provided |x1 − x2| < δε, by Lemma 4(a).
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Precompactness of the range of Ť forces a subsequence of Ť (νn) to be a Cauchy sequence,
and the estimate (7.3) forces T (νn) to be Cauchy in ‖ ‖Me

.
To this point we have T : M → Me is a compact operator. Now use ‖b‖Me

≥ ‖b‖M
to see that the unit ball of M is contained in the unit ball of C[0, 1]. We are done.

We conclude from all of this the first part of

Lemma 9 The point in spectrum(T on Me) having largest absolute value is λ1 and the
remaining points in the spectrum of T on the complexification of Me have absolute value
at most |λ2|. There is a unique (up to scalar multiple) eigenfunction, φdx in Pe, of T .
Moreover,

spectrum(T on Mc) = spectrum(T on Mc
e).

Proof It remains to prove the last assertion of the lemma. An eigenvector ν of T on
M has the form g(x) dx where g ∈ C[0, 1] and |g(x)| ≤ τ ẽ(x) for some τ . This is true
because T maps Mc to Mc

e. Compactness of T implies that its spectrum, except possibly
0, consists solely of eigenvalues.

This lemma permits us to apply Lemma 6 to powers of T on M, in order to obtain the
operator Q : M → M.

To characterize Q more precisely we consider the adjoint T ′ of T which is defined
on M′, a rather unpleasant space. Fortunately, C[0, 1] ⊂ M′ through the isometry
which takes g ∈ C[0, 1] to the functional on measures

∫

g dν. This reflects the duality
C[0, 1]′ = M. For g ∈ C[0, 1],

T ′(g) =

∫

g(x)K(x, y)dx ∈ C[0, 1].

The estimate (6.5) implies convergence

(

T ′(g)

λ1

)m

→
Q′(g)

λ1

of continuous functions in ‖ ‖∞ to Q′(g); since ‖ ‖M′ on C[0, 1] equals ‖ ‖∞. Thus
Q′(g) ∈ C[0, 1]. Moreover, the integral operator form of T ′ implies

Q′(g) = ψ(x)ℓ̃(g) for some ψ ∈ C[0, 1] and linear functional ℓ̃ : C[0, 1] → R.

Now use Lemma 7 to obtain the precise structure of Q:

Lemma 10 We have

Q(ν) =

∫

ϕ(x)ψ(y)dνy. (7.4)

where

• λ1 is the unique eigenvalue of T (resp. T ′) of maximum modulus and has multiplic-
ity 1,
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• ϕ is an eigenfunction of T corresponding to λ1 and satisfying

0 < τ ẽ(x) ≤ ϕ(x) ≤ M ẽ(x)

• ψ is an eigenfunction of T ′ corresponding to λ1 and satisfying

0 < τ ′ ẽ′(x) ≤ ψ(x) ≤ M ′ ẽ′(x)

where ẽ′(x) = f(x, ∗, dk) is positive except at x = 0.

Note
∫

ϕ(x)ψ(x)dx = λ1.

The proof of the last estimate on ψ follows exactly the same track as the one already
completed in detail for ϕ.

8 Proof of Theorem 4

Note that powers of the operator T on M are the integral operators

Tm+1(ν) =

(
∫ ∫

K(x, s)Km(x, y)ds dνy

)

dx =

(
∫

Km+1(x, y)dνy

)

dx.

We now go from earlier conclusions about iterates of integral operators to strong conclu-
sions about the kernels Km. This can be done because we went to the trouble of having
our integral operators act on the (very big) space of measures. Our first goal is to show
that (2.1) holds for αn = µn. That is, we want

lim
m→∞

(

sup
(x,y)

∣

∣

∣

∣

Km(x, y)
∫ ∫

Km(x, y)dx dy
−

∫

Km(x, y)dy
∫ ∫

Km(x, y)dx dy

∫

Km(x, y)dx
∫ ∫

Km(x, y)dx dy

∣

∣

∣

∣

)

= 0,

where all integrals are over [0, 1].
The delta function ν = δy0

is a measure in M and the bound on Tm(δy0
)−λm−1

1 Q(δy0
)

in (6.1) is

∣

∣

∣

∣

Km(x, y0) − λm−1
1

∫

ϕ(x)ψ(y)δy0
(y)dy

∣

∣

∣

∣

≤ (|λ2| + ε)m

∫

δy0
dy

for all x, y0 in [0, 1], that is

∣

∣Km(x, y0) − λm−1
1 ϕ(x)ψ(y0)

∣

∣ ≤ (|λ2| + ε)m. (8.1)

Similarly, take ν = dy

∣

∣

∣

∣

∫

Km(x, y)dy − λm−1
1 ϕ(x)

∫

ψ(y)dy

∣

∣

∣

∣

≤ (|λ2| + ε)m (8.2)
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and apply (T ′)m to 1 to get
∣

∣

∣

∣

∫

Km(x, y)dx− λm−1
1 ψ(y)

∫

ϕ(x)dx

∣

∣

∣

∣

≤ (|λ2| + ε)m. (8.3)

Integrate (8.1) on y to obtain
∣

∣

∣

∣

∫ ∫

Km(x, y)dx dy − λm−1
1

∫

ψ(y)dy

∫

ϕ(x)dx

∣

∣

∣

∣

= (|λ2| + ε)m.

Thus
∫ ∫

Km(x, y)dx dy ∼ λm−1
1

∫

ψ(y)dy

∫

ϕ(x)dx.

Use this and the estimates (8.1), (8.2) and (8.3), respectively, to get

Km(x, y)
∫ ∫

Km(x, y) dx dy
=

ϕ(x)ψ(y)
∫

ψ(y)dy
∫

ϕ(x)dx
+ o(1),

∫

Km(x, y)dy
∫ ∫

Km(x, y) dx dy
=

ϕ(x)
∫

ϕ(x)dx
+ o(1), (8.4)

∫

Km(x, y)dx
∫ ∫

Km(x, y) dx dy
=

ψ(y)
∫

ψ(y)dy
+ o(1). (8.5)

Thus
Km(x, y)

∫ ∫

Km(x, y)dx dy
=

∫

Km(x, y)dy
∫ ∫

Km(x, y)dx dy

∫

Km(x, y)dx
∫ ∫

Km(x, y)dx dy
+ o(1),

which proves asymptotic independence. Stability is (8.4) and (8.5). This completes the
proof of the first part of Theorem 4.

Equation (2.7) and the remark after the theorem follow from (8.1), provided we obtain
formulas for C, λ and φ. (There is no C in (8.1), but it is needed now because we normalize

φ to have
∫ 1

0
φ = 1 and we incorporate a factor of λ in C.)

One can interpret finding the eigenfunction φ in terms of the inverse of the integral
operator. Equivalently, one can use basic calculus and arrive at the same destination: a
simple differential equation with boundary conditions. We begin by obtaining the formulas
for λ and φ and then for C.

The integral equation for φ(x) is

λφ(x) =

∫ 1

0

f(x, y, µ)φ(y) dy, (8.6)

where λ > 0 is as large as possible.
For a functional analysis approach, observe that the two operators

Ndg(x) =

∫ x

0

g(y) dy and Nug(x) =

∫ 1

x

g(y) dy
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correspond to prepending d and u to α when g(y) = f(y, ∗, α). To study the behavior
of f(x, ∗, ab . . . z) one studies the eigenfunctions of T = NaNb · · ·Nz. Equivalently, we
can work with T−1 and thus deal with eigenfunctions of the differential operators N−1

d

and N−1
u , which are d/dx and −d/dx, respectively, with boundary conditions at 0 and 1,

respectively. Using this approach, it can be shown that (8.6) becomes

λ
d|µ|φ

dx|µ|
(x) = (−1)U(µ)φ(x) (8.7)

with boundary conditions

dkφ

dxk
= 0 at

{

x = 0, if mk+1 = d,
x = 1, if mk+1 = u,

(8.8)

for 0 ≤ k < |µ|; however, we will derive it using elementary calculus.
Observe that

∂f(x, y, dα)

∂x
= f(x, y, α) and

∂f(x, y, uα)

∂x
= −f(x, y, α). (8.9)

Using this and differentiating (8.6), we have

λ
dφ(x)

dx
= (−1)U(m1)

∫ 1

0

f(x, y,m2 . . .m|µ|)φ(y) dy,

where µ = m1 . . .m|µ| and U(α) is the number of u’s in α. Differentiating (8.6) k < |µ|
times, we obtain

λ
dkφ(x)

dxk
= (−1)U(m1...mk)

∫ 1

0

f(x, y,mk+1 . . .m|µ|)φ(y) dy.

Since f(0, y, dα) = f(1, y, uα) = 0, we have the boundary conditions (8.8). A final
differentiation to obtain d|µ|φ/dx|µ| gives us (8.7).

We now solve the differential equation. The general solution to (8.7) is

φ(x) =

|µ|−1
∑

t=0

Dt exp(rωtx), where ω = e2πi/|µ| and r|µ| =
(−1)U(µ)

λ
. (8.10)

Since λ ∈ R
+, we may assume arg r = 0 if U(µ) is even and arg r = π/|µ| if U(µ) is odd.

Since λ is to be as large as possible, |r| is to be as small as possible. Substituting (8.10)
into (8.8) and dividing out by rk gives us

0 =































|µ|−1
∑

t=0

ωtkDt, if mk+1 = d,

|µ|−1
∑

t=0

ωtkDt exp(rωt), if mk+1 = u,

(8.11)
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for 0 ≤ k < |µ|. Since φ is an eigenvector, the value of r must be such that these |µ|
linear equations in D1, . . . , D|µ| are singular. The requirement that the determinant of the
coefficients vanish gives a transcendental equation in r. We want the smallest magnitude
r and may restrict arg r as described earlier. Given r, one has linear equations in the
Dt, which can be solved up to a scalar multiple. The multiple is determined by the
requirement that

∫

φ = 1.

Now that we can calculate λ and φ, there is a simple way to calculate C. By (2.4),
f(∗, y, α) = f(y, ∗, αR). Since f(∗, ∗, α) = f(∗, ∗, αR), it follows that C(µR) = C(µ) and
λ(µR) = λ(µ). Thus

f(∗, ∗, µ2n) =

∫ 1

0

f(∗, x, µn) f(x, ∗, µn) dx ∼ C2λ2n

∫ 1

0

φ(x, µR)φ(x, µ) dx.

Since f(∗, ∗, µ2n) ∼ Cλ2n, we have (2.10).
Finally (2.7) implies the last claim in the theorem.

9 Proofs of Theorems 1 and 2

All mentions of Run(· · ·) in Theorem 1 are divided by factorials and so can be thought of as
functions of the form f(∗, ∗, γ) according to Lemma 1. Thus one could apply Theorems 3
and 4 and deduce Theorems 1 and 2 except for two minor complications which we now
discuss.

The first complication is the fact that the forms are not quite the same: A direct
application would give

k
∏

i=1

Run(Mai

i )

‖Mai

i ‖!
instead of

Run(Ma1

1 . . .Mak

k )

‖Ma1

1 . . .Mak

k ‖!

and

Ci = lim
n→∞

Run(Mn
i LiM

n
i+1) ‖M

n
i ‖! ‖M

n
i+1‖!

Run(Mn
i ) Run(Mn

i+1) ‖M
n
i LiMn

i+1‖!

in place of Bi for 0 < i < k. (For the “end” values, B0 = C0 and Bk = Ck.) This
complication is taken care of by writing down the same formula for all the Li empty and
dividing one formula by the other, obtaining for 0 < i < k,

Bi = lim
n→∞

Run(Mn
i LiM

n
i+1) ‖M

n
i ‖! ‖M

n
i+1‖!

Run(Mn
i ) Run(Mn

i+1) ‖M
n
i LiMn

i+1‖!
×

lim
n→∞

Run(Mn
i ) Run(Mn

i+1) ‖M
n
i M

n
i+1‖!

Run(Mn
i M

n
i+1) ‖M

n
i ‖! ‖M

n
i+1‖!

= lim
n→∞

Run(Mn
i LiM

n
i+1) ‖M

n
i M

n
i+1‖!

Run(Mn
i M

n
i+1) ‖M

n
i LiMn

i+1‖!
,
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as stated in Theorem 1.
The second complication is more tedious to deal with. Let M be a run word with

corresponding descent word µ. If |M | is even, then Mk corresponds to µk; however, if |M |
is odd, then M2k corresponds to (µµ)k and M2k+1 corresponds to (µµ)kµ. As a result,
for each Mi of odd length we must consider two cases depending on whether ai is odd or
even. It suffices to consider the case in which M1 and Mk have odd length and all other
Mi have even length since it illustrates all the ideas involved. We must consider four types
of descent words:

a1 = 2b1 ak = 2bk δ1 = β0(α1α1)
b1β1α

a2

2 . . . βk−1(αkαk)
bkβk

a1 = 2b1 ak = 2bk + 1 δ2 = β0(α1α1)
b1β1α

a2

2 . . . βk−1(αkαk)
bkαkβk

a1 = 2b1 + 1 ak = 2bk δ3 = β0(α1α1)
b1α1β1α

a2

2 . . . βk−1(αkαk)bkβk

a1 = 2b1 + 1 ak = 2bk + 1 δ4 = β0(α1α1)
b1α1β1α

a2

2 . . . βk−1(αkαk)bkαkβk

To deal with this, we consider each limit separately, replacing βi with αiβi when ai and
|Mi| are odd. Because of (2.4), the long overlines can be removed from the formulas in
Theorem 3. We now show how the resulting four formulas can be reduced to a single for-
mula. It suffices to consider δ1 and δ2 since the others are similar. For δ2, the denominator
on the right of (2.2) contains the factor f(∗, ∗, (α1α1)

b1) while we want f(∗, ∗, (α1α1)
b1α1).

Also,

C1 = lim
b1,a2→∞

f(∗, ∗, (α1α1)
b1α1β1α

a2

2 )

f(∗, ∗, (α1α1)b1) f(∗, ∗, αa2

2 )

while we want

C1(δ2) = lim
b1,a2→∞

f(∗, ∗, (α1α1)
b1α1β1α

a2

2 )

f(∗, ∗, (α1α1)b1α1) f(∗, ∗, αa2

2 )

and want to know that this is the same value of C1 as is obtained for δ1, namely

C1(δ1) = lim
b1,a2→∞

f(∗, ∗, (α1α1)
b1β1α

a2

2 )

f(∗, ∗, (α1α1)b1) f(∗, ∗, αa2

2 )
.

The denominator differences between the left sides of the two versions of (2.2) and between
C1 and C1(δ2) can be adjusted by moving denominator factors from one side to another
through the limit because C1 6= 0 and, as we shall see C1(δ2) = C1(δ1) 6= 0. (The
nonzero results are due to Theorem 3.) It remains to show that C1(δ2) = C1(δ1). With
γ = (α1α1)

b1 and noting that γα1 = α1γ, we have

C1(δ1) ∼
f(∗, ∗, γβ1α

a2

2 )

f(∗, ∗, γ) f(∗, ∗, αa2

2 )

=
f(∗, ∗, α1γ) f(∗, ∗, γβ1α

a2

2 )

f(∗, ∗, γ) f(∗, ∗, α1γ) f(∗, ∗, αa2

2 )

=
f(∗, ∗, γ)

∫ 1

0

∫ 1

0
f(∗, s, α1) f(s, ∗ | γ) f(∗, t | γ) f(t, ∗, β1α

a2

2 ) ds dt

f(∗, ∗, α1γ) f(∗, ∗, αa2

2 )
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∼
f(∗, ∗, γ)

∫ 1

0

∫ 1

0
f(∗, s, α1) f(s, t | γ) f(t, ∗, β1α

a2

2 ) ds dt

f(∗, ∗, α1γ) f(∗, ∗, αa2

2 )

=

∫ 1

0

∫ 1

0
f(∗, s, α1) f(s, t, γ) f(t, ∗, β1α

a2

2 ) ds dt

f(∗, ∗, α1γ) f(∗, ∗, αa2

2 )

=
f(∗, ∗, γα1β1α

a2

2 )

f(∗, ∗, α1γ) f(∗, ∗, αa2

2 )
=

f(∗, ∗, γα1β1α
a2

2 )

f(∗, ∗, γα1) f(∗, ∗, αa2

2 )
∼ C1(δ2).

This completes the proof of Theorem 1.
We now turn our attention to Theorem 2. If |L| is even and corresponds to the descent

word µ, the fraction of permutations with run pattern Ln is f(∗, ∗, µn) and so we are done
by Theorem 4.

Suppose |L| is odd and L corresponds to descent word α. Let M = LL. Then
M corresponds to µ = αα. Us the previous paragraph and define C(L) = C(M) and
λ(L) =

√

λ(M). This completes the proof for L2n. We now consider L raised to an odd
power. We have

f(∗, ∗, (αα)2k+1) =

∫ 1

0

f(∗, s, (αα)kα) f(s, ∗, α(αα)k) ds

=

∫ 1

0

f(∗, s, α(αα)k)2 ds

=

∫ 1

0

(

∫ 1

0

f(∗, t, α) f(t, s, (αα)k) dt
)2

ds

∼

∫ 1

0

(

∫ 1

0
f(∗, t, α) f(t, ∗, (αα)k) f(∗, s, (αα)k) dt

)2

ds

f(∗, ∗, (αα)k)2

=
f(∗, ∗, α(αα)k)2

∫ 1

0
f(∗, s, (αα)k)2 ds

f(∗, ∗, (αα)k)2

=
f(∗, ∗, α(αα)k)2f(∗, ∗, (αα)2k)

f(∗, ∗, (αα)k)2
.

Using the even-length case, this becomes

C(M)λ(M)2k+1 ∼
f(∗, ∗, α(αα)k)2C(M)λ(M)2k)

(C(M)λ(M)k)2
.

Hence f(∗, ∗, α(αα)k)2 ∼ C(M)2λ(M)2k+1. Take the square root of both sides.
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