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Abstract

We study the probability of connectedness for structures of size n when all components must

have size at least m: In the border between almost certain connectedness and almost certain

disconnectedness, we encounter a generalized Buchstab function of n=m:
r 2004 Elsevier Inc. All rights reserved.
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1. Results

We consider a class of decomposable combinatorial objects A and require that
each object attains a unique decomposition over a sub-class of the original class C;
called irreducible or connected components. We examine structures such as general
graphs or graphs with certain properties and their components, monic polynomials
over finite fields viewed as products of irreducible cycles, permutations viewed as sets
of cycles, to name a few.

There is a natural notion of size related to these combinatorial objects and their
components. We let An be the number of structures of size n and Cn the number of
those that are connected. We let AðxÞ denote the generating function for the objects
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and CðxÞ denote the generating function for the connected components. Some
combinatorial objects are labelled and some are unlabelled. In the case of labelled
structures without restrictions we obtain A with performing the set operator on C
and hence the exponential generating functions are related by (for example, see
[5,10])

AðxÞ ¼ expðCðxÞÞ:

For unlabelled structures, A is obtained by performing the multiset operator on C
and the ordinary generating functions are related by

AðxÞ ¼ exp
X
kX1

CðxkÞ=k

 !
:

The prime example for labelled combinatorial structures are cycles and
permutations. We have n! different permutation on n element and hence the
exponential generating function for permutations isX

nX0

n!
xn

n!
¼
X
nX0

xn ¼ 1

1� x
:

The number of cycles of size n is ðn � 1Þ! and the exponential generating function for
the cycles isX

nX0

ðn � 1Þ!x
n

n!
¼
X
nX0

xn

n
¼ log

1

1� x
:

Hence we check that

expðCðxÞÞ ¼ exp log
1

1� x

� �
¼ 1

1� z
¼ AðxÞ:

The prime example of unlabelled combinatorial structures are monic polynomials
over a finite field Fq with the generating functionX

nX0

qnxn ¼ 1

1� qx
;

where q is a power of a prime integer.
We let An;m be the number of structures of size n whose smallest component has size

at least m: For a general discussion over both labelled and unlabelled structures let

an ¼
An

n! if A is labelled;

An if A is unlabelled;

(

cn ¼
Cn

n! if C is labelled;

Cn if C is unlabelled;

(

an;m ¼
An;m

n! if A is labelled;

An;m if A is unlabelled:

(
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The probability of connectedness of objects of size n; Cn=An ¼ cn=an; was studied
in [2]. In particular, it was shown that if r ¼ limn-NCn=An exists then divergence of
CðRÞ implies r ¼ 0 while convergence implies 0oro1 and any value in that range is
possible, where 0oRoN is the radius of convergence of CðxÞ: Here we are
interested in the probability that an object of size n whose smallest component has
size at least m; is connected. Hence we study Cn=An;m ¼ cn=an;m and let m tend to

infinity along with n:
Buchstab [3] defined the following function, oðuÞ; for uX1

oðuÞ ¼ u�1 if 1pup2;
d
du
ðuoðuÞÞ ¼ oðu � 1Þ if uX2:

(

Here we need a generalization of this function. For each K40 we define a
generalized Buchstab function on ½1;NÞ by

OKðxÞ ¼
1 if 1pxo2;

1þ K
R x

2
OK ðt�1Þ

t�1
dt if xX2:

(

We note that the standard Buchstab function is O1ðxÞ=x:

Theorem 1.1. Fix e40 sufficiently small.

(a) If cnBf ðnÞ=nRn where f ðnÞ ¼ oð f 2ðanÞÞ uniformly for epap1� e; then

lim
n-N

cn=an;m ¼
1 if 1=2om=np1;

0 if epm=np1=2� e;

�

uniformly for epm=np1:

(b) If cnBf ðnÞ=nRn where f 2ðanÞ ¼ oðf ðnÞÞ uniformly for epap1� e; then

cn=an;mB1 uniformly for epm=np1:
(c) If cnBK=nRn; then cn=an;mB1=OKðn=mÞ uniformly for epm=np1:

Our proof is a modification of Buchstab’s treatment for the smallest prime factor
of the first n integers; however, he has log n and log m while we have n and m: We
adapt Tenenbaum’s presentation [11], however the fact that there can be many
components of a given size (rather than a single prime) leads to significant
modifications of his argument. Using other methods, Panario and Richmond [10]
obtained (c); however their formula for OK is more complicated except in the case
K ¼ 1 which they related to the Buchstab function.

2. Examples

The next three examples are from [5].
� Permutations: As mentioned previously the exponential generating function

for cycles in permutations is CðxÞ ¼ log 1
1�x

: Therefore Cn ¼ ðn � 1Þ! and hence

ARTICLE IN PRESS
E.A. Bender et al. / Journal of Combinatorial Theory, Series A 107 (2004) 117–125 119



cn ¼ ðn � 1Þ!=n! ¼ 1=n: On the other hand the radius of convergence of the function

log 1
1�x

is 1. Consequently part (c) of the theorem applies with K ¼ 1: This gives rise

to O1:
� Polynomials: As mentioned before, the ordinary generating function for monic

polynomials over a finite field Fq is 1
1�qx

and we have the well-known approximation

for Cn; the number of irreducible polynomials of degree n;

Cn ¼ qn

n
þ Oðqn=2Þ:

From this approximation we can find R; the radius of convergence of CðxÞ; as
follows:

R ¼ lim sup
n-N

jCnj�1=n ¼ lim sup
n-N

qn

n
þ Oðqn=2Þ

				
				
�1=n

¼ q�1:

From our definition cn ¼ Cn ¼ qn=n þ Oðqn=2Þ in the case of unlabelled objects. We
now compute the term 1=ðnRnÞ:

1

nRn
¼ ðR�1Þn

n
¼ qn

n
:

Hence K ¼ 1 and part (c) of the theorem applies.
� 2-regular graphs: The exponential generating function for labelled 2-regular

graphs is

e�x=2�x2=4

ð1� xÞ1=2
¼ exp

1

2
log

1

1� x
� x

2
� x2

4

� �
:

Hence the exponential generating function for the components is

1

2
log

1

1� x
� x

2
� x2

4

� �
:

Extracting coefficients yields in C1 ¼ C2 ¼ 0 and

Cn ¼ ðn � 1Þ!
2

:

Hence cn ¼ 1=2
n

and this gives rise to O1=2:

We now show some examples that parts (a) and (b) apply. Suppose

cnB
K

nsRn
¼ n1�s K

nRn
:

For so1 we have 1� s40, a positive exponent of n in f ðnÞ ¼ Kn1�s: Therefore we

get Kn1�s ¼ oðK2ðanÞ2ð1�sÞÞ and hence part (a) of the theorem applies. On the other

hand if s41 the exponent of n is negative and we get K2ðanÞ2ð1�sÞ ¼ oðKn1�sÞ and
part (b) applies.
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In the following we give some examples of graphs, which we describe by
their components. Trees give s ¼ 5=2 in the unrooted case and s ¼ 3=2 in the
rooted case. This holds for both labelled and unlabelled graphs [4,7].

� Rooted and unrooted trees: Let AðxÞ and CðxÞ be the exponential generating
functions for rooted trees. We know that AðxÞ ¼ expðCðxÞÞ and CðxÞ ¼ xAðxÞ: It
follows that Cn ¼ nn�1 and hence cn ¼ nn�1=n!: On the other hand we have that

R ¼ lim
n-N

nCn�1

Cn

¼ lim
n-N

nðn � 1Þn�2

nn�1
¼ lim

n-N

n � 1

n

� �n�2

¼ lim
n-N

1þ 1

n � 1

� �n�1

¼ 1

e
:

Using Stirling formula, that is n!B
ffiffiffiffiffiffi
2p

p
ðn=eÞn ffiffiffi

n
p

; we get

cn ¼ nn�1

n!
B

enffiffiffiffiffiffi
2p

p
n
ffiffiffi
n

p ¼ 1ffiffiffiffiffiffi
2p

p
n3=2ð1=eÞn

¼ 1ffiffiffiffiffiffi
2p

p
n3=2Rn

;

which gives rise to s ¼ 3=2: This result can be found in [4].
Let C0ðxÞ be the ordinary generating function of unrooted trees. Otter [8] showed

that cn
0 ¼ Cn

0BKn�5=2ðR0Þ�n; where R0 is the radius of convergence of C0ðxÞ: He also
obtained s ¼ 3=2 for unlabelled rooted trees. Asymptotics of unlabelled unrooted
forests was studied by Palmer and Schwenk [9].

� Achiral trees: A plane graph is one that can be drawn in the plane with no pair of
edges crossing. An achiral graph is a plane graph with plane symmetry. In other
words it is its own mirror image. The concept of chirality was motivated by organic
chemists. Achiral plane trees have been studied by Wormald in [12]. Generating
functions of plane, rooted or achiral trees and any combinations of those are given
by Harary and Robinson [6]. The generating function of achiral plane trees AðxÞ; as
it is proven in [6], is

AðxÞ ¼ x

2
�1þ ð1þ 2xÞð1� 4x2Þ

1
2

� �
:

The radius of convergence of this function is 1/2 and extracting coefficients results in

A2n ¼
2n � 2

n � 1

� �
and A2nþ1 ¼

1

2

2n

n

� �
:

Using Stirling’s approximation we get

A2nþ1B
22n�1ffiffiffiffiffiffi
pn

p ;

A2nB
22n�2ffiffiffiffiffiffi
pn

p

which gives us s ¼ 1=2:
� k-neighbour tree: A k-neighbour tree is a labelled tree consisting of a vertex of

degree k � 1 with k � 1 neighbours of degree one with no other vertices or edges.

These trees with k42 give s ¼ 1� k since Cn ¼ n!
n � 2
k � 1

� �
=k!: To see this, write a
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permutation of f1;y; ng in one line form, choose the first element for the center,
choose k � 1 places to divide the remainder into neighbours of the center, and ignore
the order of the neighbours.

3. Proofs

We begin with a simple lemma.

Lemma 3.1. If aob are integers,

Z b

a

f ðxÞ dx �
Xb

x¼aþ1

f ðxÞ
					

					pVf ða; bÞ;

where Vf ða; bÞ is the total variation of f on ½a; b
.

Proof. It suffices to consider the interval ½k; k þ 1
 and sum. The difference between
the largest and smallest value of f on this interval is at most Vf ðk; k þ 1Þ: Since

f ðk þ 1Þ and
R kþ1

k
f ðxÞ dx both lie between the max and min, we are done. &

The rest of this section is devoted to a proof of the theorem. It will be useful to

bound
Pn=2

i¼m
n

iðn�iÞ for enpmpn=2: The function 1
xðn�xÞ has negative derivative for

0pxon=2 and hence at i ¼ n=2 we have the minimum value and at i ¼ m the

maximum value of the terms in the sum
Pn=2

i¼m
n

iðn�iÞ: Therefore the terms lie between

4=n (at i ¼ n=2) and 2
ne (at i ¼ m). Since the number of terms is n=2� m þ Oð1Þ; we

have

Xn=2
i¼m

n

iðn � iÞp
2

ne

� �
ðn=2� m þ Oð1ÞÞp1

e
� 2

e
m

n


 �
þ O

1

ne

� �
:

This shows that the sum is bounded and is at least ð4=nÞðn=2� m þ Oð1ÞÞ which is
bounded away from 0 if m=n is bounded away from 1=2:

Since there cannot be two components of size exceeding n=2; an;m ¼ cn when

m4n=2:
To prove part (a), we let a ¼ b and a ¼ g to obtain

f ðnÞ ¼ oð f 2ðbnÞÞ and f ðnÞ ¼ oð f 2ðgnÞÞ

uniformly for epbpgp1� e: Multiplying the results, and taking the square root we
obtain

f ðnÞ ¼ oð f ðbnÞf ðgnÞÞ
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uniformly for epbpgp1� e: Considering only two components, one of size i with
mpion=2; we have

an;m

cn

X

X
mpion=2

cicn�i

cn

B
X

mpion=2

f ðiÞ f ðn � iÞn
iðn � iÞ f ðnÞ

¼
X

mpion=2

n

iðn � iÞoð1Þ;

which goes to infinity with n since
P

n
iðn�iÞ is bounded away from zero due to

m=np1=2� e:
For (b) and (c), we use induction on k where kpn=mok þ 1 after dealing with the

case m ¼ n=2: In this case an;mpcn þ c2m and c2m ¼ oðcnÞ: Thus an;mBcn:
Let i be the size of the smallest component. If we insist that there be only one

component of size i; we obtain the lower bound

an;m

cn

X1þ
Xn=2
i¼m

cian�i;iþ1

cn

: ð3:1Þ

On the other hand, if we mark a component of size i and allow other components of
size i; we obtain the upper bound

an;m

cn

p1þ
Xn=2
i¼m

cian�i;i

cn

: ð3:2Þ

Since 1pn�i
iþ1

on�i
i
pn

m
� 1ok; we can induct.

To prove (b) we use the induction hypothesis and the condition of f to rewrite
(3.2) as

an;m

cn

p1þ
Xn=2
i¼m

n oð1Þ
iðn � iÞ;

which equals 1þ oð1Þ since
P

n
iðn�iÞ is bounded. Similarly, (3.1) yields that

an;m=cnjX1þ oð1Þ:
We now turn our attention to (c). By the induction hypothesis and assumptions

about cn;

cian�i;iþ1

cn

¼ cicn�i

cn

an�i;iþ1

cn�i

B
n

iðn � iÞOK

n � i

i þ 1

� �
: ð3:3Þ

Note that, for any C41; OKðxÞX1 and is bounded and uniformly continuous on
½1;C
: Hence VOK

ð1;CÞ exists. It is known that

Vghða; bÞpMðhÞVgða; bÞ þ MðgÞVhða; bÞ; ð3:4Þ
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where Mð f Þ ¼ supfj f ðxÞj j xA½a; b
g: (For example, see Section 8.4 of [1].) Apply

the lemma with f ¼ gh; g ¼ n
iðn�iÞ and h ¼ Ok

n�i
iþ1


 �
; using (3.1), (3.3) and (3.4) to

obtain

an;m

cn

X1þ
Z n=2

m

Kn

xðn � xÞOK

n � x

x þ 1

� �
dx þ oð1Þ

Xn=2
i¼m

n

iðn � iÞ þ O
1

n

� �
;

where

* the oð1Þ comes from the induction hypothesis and the uniformity of the
approximation and

* the Oð1=nÞ comes from (3.4) and the fact that the magnitude and total variation of
g are Oð1=nÞ while those of h are bounded.

If we replace (3.1) by (3.2) and use (3.3) and (3.4), then we get an upper bound for
an;m=cn which is the same as the lower bound we got. This gives an asymptotic

formula for an;m=cn:
We observe that

OK ðx þ dÞ � OKðxÞ ¼ K

Z xþd

x

OKðt � 1Þ
t � 1

dt:

It follows that OKðxÞ is continuous for each xX1 and differentiable except at x ¼ 2
(the left- and right-hand derivatives are 0 and K ; respectively). However for x41 we
have

jOKðx þ dÞ � OKðxÞjpMd;

where M is a constant and depends only on e: Thus,

OK
n � x

x þ 1

� �
¼ OK

n � x

x


 �
þ O

1

n

� �
:

Using the asymptotic formula for an;m=cn from above, we now have

an;m

cn

¼ 1þ K

Z n=2

m

n

xðn � xÞ OK
n � x

x


 �
dx þ oð1Þ:

Substituting t ¼ n=x; we obtain

an;m

cn

B 1þ K

Z 2

n=m

t2

nðt � 1Þ OKðt � 1Þ ð�n=t2 dtÞ

¼ 1þ K

Z n=m

2

1

ðt � 1Þ OKðt � 1Þ dt ¼ OK

n

m


 �
:

This completes the proof. &
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