The map asymptotics constant t_{g}

Edward A. Bender
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112
ebender@ucsd.edu
Zhicheng Gao*
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S5B6
Canada
zgao@math.carleton.ca
L. Bruce Richmond ${ }^{\dagger}$
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

Submitted: Jan 28, 2008; Accepted: Mar 22, 2008; Published: Mar 28, 2008
Corrrected and extended Sept 23, 2008
Mathematics Subject Classification: 05C30

[^0]
Abstract

The constant t_{g} appears in the asymptotic formulas for a variety of rooted maps on the orientable surface of genus g. Heretofore, studying this constant has been difficult. A new recursion derived by Goulden and Jackson for rooted cubic maps provides a much simpler recursion for t_{g} that leads to estimates for its asymptotics.

1 Introduction

Let Σ_{g} be the orientable surface of genus g. A map on Σ_{g} is a graph G embedded on Σ_{g} such that all components of $\Sigma_{g}-G$ are simply connected regions. These components are called faces of the map. A map is rooted by distinguishing an edge, an end vertex of the edge and a side of the edge.

With $M_{n, g}$ the number of rooted maps on Σ_{g} with n edges, Bender and Canfield [1] showed that

$$
\begin{equation*}
M_{n, g} \sim t_{g} n^{5(g-1) / 2} 12^{n} \quad \text { as } \quad n \rightarrow \infty \tag{1}
\end{equation*}
$$

where the t_{g} are positive constants which can be calculated recursively using a complicated recursion involving, in addition to g, many other parameters. The first three values are

$$
t_{0}=\frac{2}{\sqrt{\pi}}, \quad t_{1}=\frac{1}{24} \quad \text { and } \quad t_{2}=\frac{7}{4320 \sqrt{\pi}} .
$$

Gao [3] showed that many other interesting families of maps also satisfy asymptotic formulas of the form

$$
\begin{equation*}
\alpha t_{g}(\beta n)^{5(g-1) / 2} \gamma^{n} \tag{2}
\end{equation*}
$$

and presented a table of α, β and γ for eleven families. Richmond and Wormald [6] showed that many families of unrooted maps have asymptotics that differ from the rooted asymptotics by a factor of four times the number of edges. See Goulden and Jackson [4] for a discussion of connections with mathematical physics.

Although α, β and γ in (2) seem relatively easy to compute, the common factor t_{g} has been difficult to study. A recursion for rooted "cubic" maps derived by Goulden and Jackson [4] leads to a much simpler recursion for t_{g} than that in [1]. We will use it to derive the following recursion and asymptotic estimate for t_{g}.

Theorem 1 Define u_{g} by $u_{1}=1 / 10$ and

$$
\begin{equation*}
u_{g}=u_{g-1}+\sum_{h=1}^{g-1} \frac{1}{R_{1}(g, h) R_{2}(g, h)} u_{h} u_{g-h} \quad \text { for } \quad g \geq 2 \tag{3}
\end{equation*}
$$

where

$$
R_{1}(g, h)=\frac{[1 / 5]_{g}}{[1 / 5]_{h}[1 / 5]_{g-h}}, \quad R_{2}(g, h)=\frac{[4 / 5]_{g-1}}{[4 / 5]_{h-1}[4 / 5]_{g-h-1}}
$$

and $[x]_{k}$ is the rising factorial $x(x+1) \cdots(x+k-1)$. Then

$$
\begin{align*}
t_{g} & =8 \frac{[1 / 5]_{g}[4 / 5]_{g-1}}{\Gamma\left(\frac{5 g-1}{2}\right)}\left(\frac{25}{96}\right)^{g} u_{g} \\
& \sim \frac{40 \sin (\pi / 5) K}{\sqrt{2 \pi}}\left(\frac{1440 g}{e}\right)^{-g / 2} \quad \text { as } \quad g \rightarrow \infty, \tag{4}
\end{align*}
$$

where $u_{g} \sim K \doteq 0.1049$ is a constant.
Added after publication: Marino [5] has pointed out that

$$
K=\frac{(3 / 5)^{1 / 2} \Gamma(1 / 5) \Gamma(4 / 5)}{4 \pi^{2}}
$$

2 Cubic Maps

A map is called cubic if all its vertices have degree 3. The dual of cubic maps are called triangular maps whose faces all have degree 3. Let $T_{n, g}$ be the number of triangular maps on Σ_{g} with n vertices and let $C_{n, g}$ be the number of cubic maps on Σ_{g} with $2 n$ vertices. It was shown in [2] that

$$
\begin{equation*}
T_{n, g} \sim 3\left(3^{7} \times 2^{9}\right)^{(g-1) / 2} t_{g} n^{5(g-1) / 2}(12 \sqrt{3})^{n} \quad \text { as } \quad n \rightarrow \infty . \tag{5}
\end{equation*}
$$

Since a triangular map on Σ_{g} with v vertices has exactly $2(v+2 g-2)$ faces,

$$
\begin{equation*}
C_{n, g}=T_{n-2 g+2, g} \sim 3 \times 6^{(g-1) / 2} t_{g} n^{5(g-1) / 2}(12 \sqrt{3})^{n} \quad \text { as } \quad n \rightarrow \infty . \tag{6}
\end{equation*}
$$

Define

$$
\begin{gather*}
H_{n, g}=(3 n+2) C_{n, g} \text { for } n \geq 1 \tag{7}\\
H_{-1,0}=1 / 2, \quad H_{0,0}=2 \quad \text { and } \quad H_{-1, g}=H_{0, g}=0 \text { for } g \neq 0 .
\end{gather*}
$$

Goulden and Jackson [4] derived the following recursion for $(n, g) \neq(-1,0)$:

$$
\begin{equation*}
H_{n, g}=\frac{4(3 n+2)}{n+1}\left(n(3 n-2) H_{n-2, g-1}+\sum_{i=-1}^{n-1} \sum_{h=0}^{g} H_{i, h} H_{n-2-i, g-h}\right) . \tag{8}
\end{equation*}
$$

This is significantly simpler than the recursion derived in [2]. We will use it to derive information about t_{g}.

3 Generating Functions

Define the generating functions
$T_{g}(x)=\sum_{n \geq 0} T_{n, g} x^{n}, \quad C_{g}(x)=\sum_{n \geq 0} C_{n, g} x^{n}, \quad H_{g}(x)=\sum_{n \geq 0} H_{n, g} x^{n} \quad$ and $\quad F_{g}(x)=x^{2} H_{g}(x)$.

It was shown in [2] that $T_{g}(x)$ is algebraic for each $g \geq 0$, and

$$
\begin{equation*}
T_{0}(x)=\frac{1}{2} t^{3}(1-t)\left(1-4 t+2 t^{2}\right) \quad \text { with } \quad x=\frac{1}{2} t(1-t)(1-2 t), \tag{9}
\end{equation*}
$$

where $t=t(x)$ is a power series in x with non-negative coefficients.
It follows from (6) and (7) that

$$
\begin{align*}
C_{g}(x) & =x^{2 g-2} T_{g}(x) \quad \text { for } \quad g \geq 0 \tag{10}\\
F_{g}(x) & =3 x^{3} C_{g}^{\prime}(x)+2 x^{2} C_{g}(x) \quad \text { for } \quad g \geq 1 \tag{11}
\end{align*}
$$

We also have

$$
\begin{align*}
F_{0}(x) & =H_{0,0} x^{2}+\sum_{n \geq 1}(3 n+2) C_{n, 0} x^{n+2} \\
& =2 x^{2}+3 x^{3} C_{0}^{\prime}(x)+2 x^{2} C_{0}(x) \\
& =2 x^{2}+3 x T_{0}^{\prime}(x)-4 T_{0}(x) \\
& =\frac{1}{2} t^{2}(1-t) \tag{12}
\end{align*}
$$

where we have used (9). Hence $C_{g}(x)$ and $F_{g}(x)$ are both algebraic for all $g \geq 0$.
In the following we assume $g \geq 1$. From the recursion (8), we have

$$
\begin{aligned}
\frac{1}{4} \sum_{n \geq 0} \frac{n+1}{3 n+2} H_{n, g} x^{n}= & \sum_{n \geq 1} n(3 n-2) H_{n-2, g-1} x^{n} \\
& +2 \sum_{n \geq 0} H_{-1,0} H_{n-1, g} x^{n}+x^{2} \sum_{h=0}^{g} H_{h}(x) H_{g-h}(x)
\end{aligned}
$$

Using (7) with a bit manipulation, we can rewrite the above equation as

$$
\begin{aligned}
\frac{1}{4} \sum_{n \geq 0}(n+1) C_{n, g} x^{n}= & 3 x^{2} F_{g-1}^{\prime \prime}(x)+x F_{g-1}^{\prime}(x)+x H_{-1, g-1} \\
& +x^{-1} F_{g}(x)+x^{-2} \sum_{h=0}^{g} F_{h}(x) F_{g-h}(x) .
\end{aligned}
$$

With $\delta_{i, j}$ the Kronecker delta, this becomes

$$
\begin{aligned}
x^{3} C_{g}^{\prime}(x)+x^{2} C_{g}(x)= & 12 x^{4} F_{g-1}^{\prime \prime}(x)+4 x^{3} F_{g-1}^{\prime}(x)+2 x^{3} \delta_{g, 1} \\
& +4 x F_{g}(x)+8 F_{0}(x) F_{g}(x)+4 \sum_{h=1}^{g-1} F_{h}(x) F_{g-h}(x) .
\end{aligned}
$$

It follows from (11) that

$$
\begin{align*}
\left(1-12 x-24 F_{0}(x)\right) F_{g}(x)= & 36 x^{4} F_{g-1}^{\prime \prime}(x)+12 x^{3} F_{g-1}^{\prime}(x)+6 x^{3} \delta_{g, 1} \\
& +12 \sum_{h=1}^{g-1} F_{h}(x) F_{g-h}(x)-x^{2} C_{g}(x) . \tag{13}
\end{align*}
$$

Substituting (12) and (9) into (13), we obtain

$$
\begin{align*}
F_{g}(x)=\frac{1}{1-6 t+6 t^{2}}(& 36 x^{4} F_{g-1}^{\prime \prime}(x)+12 x^{3} F_{g-1}^{\prime}(x)+6 x^{3} \delta_{g, 1} \\
& \left.+12 \sum_{h=1}^{g-1} F_{h}(x) F_{g-h}(x)-x^{2} C_{g}(x)\right) \tag{14}
\end{align*}
$$

We now show that this equation can be used to calculate $C_{g}(x)$ more easily than the method in [2]. For this purpose we set $s=1-6 t+6 t^{2}$ and show inductively that $C_{g}(x)$ is a polynomial in s divided by s^{a} for some integer $a=a(g)>0$. (It can be shown that $a=5 g-3$ is the smallest such a, but we do not do so.) The method for calculating $C_{g}(x)$ follows from the proof. Then we have

$$
\begin{equation*}
x^{2}=\frac{1}{432}(s-1)^{2}(2 s+1) \quad \text { and } \quad \frac{d s}{d x}=\frac{144 x}{s(s-1)} \tag{15}
\end{equation*}
$$

Thus

$$
\begin{aligned}
x \frac{d}{d x} & =x \frac{d s}{d x} \frac{d}{d s}=\frac{(s-1)(2 s+1)}{3 s} \frac{d}{d s} \\
\frac{d^{2}}{d x^{2}} & =\left(\frac{d s}{d x}\right)^{2} \frac{d^{2}}{d s^{2}}+\frac{d(d s / d x)}{d x} \frac{d}{d s}=\frac{48(2 s+1)}{s^{2}} \frac{d^{2}}{d s^{2}}-\frac{48(s+1)}{s^{3}} \frac{d}{d s} .
\end{aligned}
$$

From the above and (11)

$$
F_{g}(x)+\frac{x^{2} C_{g}}{1-6 t+6 t^{2}}=x^{2}\left(3 x \frac{d C_{g}}{d x}+\frac{(2 s+1) C_{g}}{s}\right)=\frac{x^{2}(2 s+1)}{s} \frac{d\left((s-1) C_{g}\right)}{d s} .
$$

With some algebra, (14) can be rewritten as

$$
\begin{align*}
\frac{d\left((s-1) C_{g}\right)}{d s}= & \frac{4(s-1)^{2}(2 s+1)}{s^{2}} \frac{d^{2} F_{g-1}}{d s^{2}}+\frac{4(s-1)}{s^{3}} \frac{d F_{g-1}}{d s} \\
& +\frac{5184}{(s-1)^{2}(2 s+1)^{2}} \sum_{h=1}^{g-1} F_{h} F_{g-h} \quad \text { for } g \geq 2 \tag{16}
\end{align*}
$$

In what follows $P(s)$ stands for a polynomial in s and a a positive integer, both different at each occurrence. It was shown in [2] that

$$
C_{1}(x)=T_{1}(x)=\frac{1-s}{12 s^{2}} .
$$

By (11), (15) and the induction hypothesis, the right hand side of (16) has the form $P(s) / s^{a}$. Integrating, $(s-1) C_{g}=P(s) / s^{a}+K \log s$. Since we know $C_{g}(x)$ is algebraic, so is $(s-1) C_{g}$ and hence $K=0$. Since $s=1$ corresponds to $x=0, C_{g}$ is defined there. It follows that $P(s)$ in $(s-1) C_{g}=P(s) / s^{a}$ is divisible by $s-1$, completing the proof.

Using Maple, we obtained

$$
\begin{aligned}
C_{2} & =\frac{1}{2^{6} 3^{4}} \frac{(2 s+1)\left(17 s^{2}+60 s+28\right)(1-s)^{3}}{s^{7}} \\
C_{3} & =\frac{1}{2^{9} 3^{8}} \frac{\left(5052 s^{4}-747 s^{3}-33960 s^{2}-35620 s-9800\right)(2 s+1)^{2}(s-1)^{5}}{s^{12}} \\
C_{4} & =\frac{1}{2^{14} 3^{11}} \frac{P_{4}(s)(2 s+1)^{3}(s-1)^{7}}{s^{17}} \\
C_{5} & =\frac{1}{2^{17} 3^{14}} \frac{P_{5}(s)(2 s+1)^{4}(1-s)^{9}}{s^{22}}
\end{aligned}
$$

where

$$
\begin{aligned}
P_{4}(s)= & -12458544-63378560 s-103689240 s^{2}-42864016 s^{3} \\
& +31477893 s^{4}+20750256 s^{5}+417636 s^{6}, \\
P_{5}(s)= & 7703740800+50294009360 s+117178660480 s^{2} \\
& +100386081272 s^{3}-16827627792 s^{4}-67700509763 s^{5} \\
& -21455389524 s^{6}+4711813020 s^{7}+1394857272 s^{8} .
\end{aligned}
$$

4 Generating Function Asymptotics

Suppose $A(x)$ is an algebraic function and has the following asymptotic expansion around its dominant singularity $1 / r$:

$$
A(x)=\sum_{j=l}^{k} a_{j}(1-r x)^{j / 2}+O\left((1-r x)^{(k+1) / 2}\right)
$$

where a_{j} are not all zero. Then we write

$$
A(x) \approx \sum_{j=l}^{k} a_{j}(1-r x)^{j / 2}
$$

The following lemma is proved in [2].
Lemma 1 For $g \geq 0, T_{g}(x)$ is algebraic,

$$
\begin{aligned}
& T_{0}(x) \approx \frac{\sqrt{3}}{72}-\frac{5}{216}+\frac{1}{54 \sqrt{6}}(1-12 \sqrt{3} x)^{3 / 2} \\
& T_{g}(x) \approx 3\left(3^{7} \times 2^{9}\right)^{(g-1) / 2} t_{g} \Gamma\left(\frac{5 g-3}{2}\right)(1-12 \sqrt{3} x)^{-(5 g-3) / 2} \quad \text { for } \quad g \geq 1
\end{aligned}
$$

Let

$$
\begin{equation*}
f_{g}=24^{-3 / 2} 6^{g / 2} \Gamma\left(\frac{5 g-1}{2}\right) t_{g} \tag{17}
\end{equation*}
$$

Using Lemma 1, (10) and (11), we obtain

$$
\begin{aligned}
& C_{g}(x) \approx \frac{288}{(5 g-3)} f_{g}(1-12 \sqrt{3} x)^{-(5 g-3) / 2} \text { for } g \geq 1, \\
& F_{g}(x) \approx f_{g}(1-12 \sqrt{3} x)^{-(5 g-1) / 2} \text { for } g \geq 1
\end{aligned}
$$

As noted in [2], the function $t(x)$ of (9) has the following asymptotic expansion around its dominant singularity $x=\frac{1}{12 \sqrt{3}}$:

$$
t \approx \frac{3-\sqrt{3}}{6}-\frac{\sqrt{2}}{6}(1-12 \sqrt{3} x)^{1 / 2}
$$

Using this and (12), we obtain

$$
\begin{aligned}
F_{0}(x) & \approx \frac{3-\sqrt{3}}{72}+f_{0}(1-12 \sqrt{3} x)^{1 / 2} \\
\frac{1}{1-6 t+6 t^{2}} & \approx \frac{\sqrt{6}}{2}(1-12 \sqrt{3} x)^{-1 / 2}
\end{aligned}
$$

Comparing the coefficients of $(1-12 \sqrt{3} x)^{(5 g-1) / 2}$ on both sides of (14), we obtain

$$
\begin{equation*}
f_{g}=\frac{\sqrt{6}}{96}(5 g-4)(5 g-6) f_{g-1}+6 \sqrt{6} \sum_{h=1}^{g-1} f_{h} f_{g-h} . \tag{18}
\end{equation*}
$$

Letting

$$
u_{g}=f_{g}\left(\frac{25 \sqrt{6}}{96}\right)^{-g} \frac{6 \sqrt{6}}{[1 / 5]_{g}[4 / 5]_{g-1}} .
$$

and using (17), the recursion (18) becomes (3).

5 Asymptotics of t_{g}

It follows immediately from (3) that $u_{g} \geq u_{g-1}$ for all $g \geq 2$. To show that u_{g} approaches a limit K as $g \rightarrow \infty$, it suffices to show that u_{g} is bounded above. The value of K is then calculated using (3).

We use induction to prove $u_{g} \leq 1$ for all $g \geq 1$. Since $u_{1}=\frac{1}{10}$ and $u_{2}=u_{1}+\frac{1}{480}$, we can assume $g \geq 3$ for the induction step. From now on $g \geq 3$.

Note that

$$
\begin{aligned}
R_{1}(g, 1) R_{2}(g, 1) & =5\left(g-\frac{4}{5}\right)\left(g-\frac{6}{5}\right)>5\left(g-\frac{4}{5}\right)\left(g-\frac{9}{5}\right) \\
R_{1}(g, 2) R_{2}(g, 2) & =\frac{25}{24}\left(g-\frac{6}{5}\right)\left(g-\frac{11}{5}\right)\left(5\left(g-\frac{4}{5}\right)\left(g-\frac{9}{5}\right)\right) \\
& >\frac{25}{24}\left(g-\frac{6}{5}+\frac{4}{5}\right)\left(g-\frac{11}{5}-\frac{4}{5}\right)\left(5\left(g-\frac{4}{5}\right)\left(g-\frac{9}{5}\right)\right) \\
& \geq 2(g-3)\left(5\left(g-\frac{4}{5}\right)\left(g-\frac{9}{5}\right)\right) .
\end{aligned}
$$

Note that $R_{i}(g, h)=R_{i}(g, g-h)$ and, for $h<g / 2, \frac{R_{i}(g, h+1)}{R_{i}(g, h)} \geq 1$. Combining all these observations and the induction hypothesis with (3) we have

$$
\begin{aligned}
u_{g} & =u_{g-1}+\sum_{h=1}^{g-1} \frac{u_{h} u_{g-h}}{R_{1}(g, h) R_{2}(g, h)} \\
& <u_{g-1}+\frac{2 u_{1} u_{g-1}}{5\left(g-\frac{4}{5}\right)\left(g-\frac{9}{5}\right)}+\sum_{h=2}^{g-2} \frac{1}{R_{1}(g, 2) R_{2}(g, 2)} \\
& <u_{g-1}+\frac{1 / 5}{5\left(g-\frac{4}{5}\right)\left(g-\frac{9}{5}\right)}+\frac{1 / 2}{5\left(g-\frac{4}{5}\right)\left(g-\frac{9}{5}\right)} \\
& <u_{g-1}+\frac{1}{5 g-9}-\frac{1}{5 g-4} .
\end{aligned}
$$

Hence

$$
u_{g}<u_{2}+\sum_{k=3}^{g}\left(\frac{1}{5 k-9}-\frac{1}{5 k-4}\right)<u_{2}+\frac{1}{5 \times 3-9}<1
$$

The asymptotic expression for t_{g} in (4) is obtained by using

$$
[x]_{k}=\frac{\Gamma(x+k)}{\Gamma(x)}, \quad \Gamma(1 / 5) \Gamma(4 / 5)=\frac{\pi}{\sin (\pi / 5)}
$$

and Stirling's formula

$$
\Gamma(a g+b) \sim \sqrt{2 \pi}(a g)^{b-1 / 2}\left(\frac{a g}{e}\right)^{a g} \quad \text { as } \quad g \rightarrow \infty
$$

for constants $a>0$ and b.

6 Open Questions

We list some open questions.

- From (18), we can show that $f(z)=\sum_{g \geq 1} f_{g} z^{g}$ satisfies the following differential equation

$$
f(z)=6 \sqrt{6}(f(z))^{2}+\frac{\sqrt{6}}{96} z\left(25 z^{2} f^{\prime \prime}(z)+25 z f^{\prime}(z)-f(z)+\frac{\sqrt{6}}{72}\right)
$$

The asymptotic expression of f_{g} implies that $f(z)$ cannot be algebraic. Can one show that $f(z)$ is not D-finite, that is, $f(z)$ does not satisfy a linear differential equation?

- There is a constant p_{g} that plays a role for maps on non-orientable like t_{g} plays for maps on orientable surfaces [3]. Is there a recursion for maps on non-orientable surfaces that can be used to derive a theorem akin to Theorem 1 for p_{g} ?
- Find simple recursions akin to (8) for other classes of rooted maps that lead to simple recursive calculations of their generating functions as in (16).

References

[1] E.A. Bender and E.R. Canfield, The asymptotic number of maps on a surface, J. Combin. Theory, Ser. A, 43 (1986), 244-257.
[2] Z.C. Gao, The Number of Rooted Triangular Maps on a Surface, J. Combin. Theory, Ser. B, 52 (1991), 236-249.
[3] Z.C. Gao, A Pattern for the Asymptotic Number of Rooted Maps on Surfaces, J. Combin. Theory, Ser. A, 64 (1993), 246-264.
[4] I. Goulden and D.M. Jackson, The KP hierarchy, branched covers and triangulations, preprint (2008).
[5] M. Marino, private communication.
[6] L.B. Richmond and N.C. Wormald, Almost all maps are asymmetric, J. Combin. Theory, Ser. B, 63 (1995), 1-7.

[^0]: *Research supported by NSERC
 ${ }^{\dagger}$ Research supported by NSERC

