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Abstract

The constant tg appears in the asymptotic formulas for a variety of rooted maps
on the orientable surface of genus g. Heretofore, studying this constant has been
difficult. A new recursion derived by Goulden and Jackson for rooted cubic maps
provides a much simpler recursion for tg that leads to estimates for its asymptotics.

1 Introduction

Let Σg be the orientable surface of genus g. A map on Σg is a graph G embedded on Σg

such that all components of Σg −G are simply connected regions. These components are

called faces of the map. A map is rooted by distinguishing an edge, an end vertex of the

edge and a side of the edge.

With Mn,g the number of rooted maps on Σg with n edges, Bender and Canfield [1]

showed that

Mn,g ∼ tgn
5(g−1)/212n as n →∞, (1)

where the tg are positive constants which can be calculated recursively using a complicated

recursion involving, in addition to g, many other parameters. The first three values are

t0 =
2√
π

, t1 =
1

24
and t2 =

7

4320
√

π
.

Gao [3] showed that many other interesting families of maps also satisfy asymptotic for-

mulas of the form

αtg(βn)5(g−1)/2γn (2)

and presented a table of α, β and γ for eleven families. Richmond and Wormald [6]

showed that many families of unrooted maps have asymptotics that differ from the rooted

asymptotics by a factor of four times the number of edges. See Goulden and Jackson [4]

for a discussion of connections with mathematical physics.

Although α, β and γ in (2) seem relatively easy to compute, the common factor tg
has been difficult to study. A recursion for rooted “cubic” maps derived by Goulden and

Jackson [4] leads to a much simpler recursion for tg than that in [1]. We will use it to

derive the following recursion and asymptotic estimate for tg.

Theorem 1 Define ug by u1 = 1/10 and

ug = ug−1 +
g−1∑

h=1

1

R1(g, h)R2(g, h)
uhug−h for g ≥ 2, (3)

where

R1(g, h) =
[1/5]g

[1/5]h[1/5]g−h

, R2(g, h) =
[4/5]g−1

[4/5]h−1[4/5]g−h−1
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and [x]k is the rising factorial x(x + 1) · · · (x + k − 1). Then

tg = 8
[1/5]g[4/5]g−1

Γ
(

5g−1
2

)
(

25

96

)g

ug

∼ 40 sin(π/5)K√
2π

(
1440g

e

)−g/2

as g →∞, (4)

where ug ∼ K
.
= 0.1049 is a constant.

Added after publication: Marino [5] has pointed out that

K =
(3/5)1/2 Γ(1/5) Γ(4/5)

4π2
.

2 Cubic Maps

A map is called cubic if all its vertices have degree 3. The dual of cubic maps are called

triangular maps whose faces all have degree 3. Let Tn,g be the number of triangular maps

on Σg with n vertices and let Cn,g be the number of cubic maps on Σg with 2n vertices.

It was shown in [2] that

Tn,g ∼ 3
(
37 × 29

)(g−1)/2
tgn

5(g−1)/2(12
√

3)n as n →∞. (5)

Since a triangular map on Σg with v vertices has exactly 2(v + 2g − 2) faces,

Cn,g = Tn−2g+2,g ∼ 3× 6(g−1)/2tgn
5(g−1)/2(12

√
3)n as n →∞. (6)

Define

Hn,g = (3n + 2)Cn,g for n ≥ 1, (7)

H−1,0 = 1/2, H0,0 = 2 and H−1,g = H0,g = 0 for g 6= 0.

Goulden and Jackson [4] derived the following recursion for (n, g) 6= (−1, 0):

Hn,g =
4(3n + 2)

n + 1

(
n(3n− 2)Hn−2,g−1 +

n−1∑

i=−1

g∑

h=0

Hi,hHn−2−i,g−h

)
. (8)

This is significantly simpler than the recursion derived in [2]. We will use it to derive

information about tg.

3 Generating Functions

Define the generating functions

Tg(x) =
∑

n≥0

Tn,gx
n, Cg(x) =

∑

n≥0

Cn,gx
n, Hg(x) =

∑

n≥0

Hn,gx
n and Fg(x) = x2Hg(x).
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It was shown in [2] that Tg(x) is algebraic for each g ≥ 0, and

T0(x) =
1

2
t3(1− t)(1− 4t + 2t2) with x =

1

2
t(1− t)(1− 2t), (9)

where t = t(x) is a power series in x with non-negative coefficients.

It follows from (6) and (7) that

Cg(x) = x2g−2Tg(x) for g ≥ 0, (10)

Fg(x) = 3x3C ′
g(x) + 2x2Cg(x) for g ≥ 1. (11)

We also have

F0(x) = H0,0x
2 +

∑

n≥1

(3n + 2)Cn,0x
n+2

= 2x2 + 3x3C ′
0(x) + 2x2C0(x)

= 2x2 + 3xT ′
0(x)− 4T0(x)

=
1

2
t2(1− t), (12)

where we have used (9). Hence Cg(x) and Fg(x) are both algebraic for all g ≥ 0.

In the following we assume g ≥ 1. From the recursion (8), we have

1

4

∑

n≥0

n + 1

3n + 2
Hn,gx

n =
∑

n≥1

n(3n− 2)Hn−2,g−1x
n

+ 2
∑

n≥0

H−1,0Hn−1,gx
n + x2

g∑

h=0

Hh(x)Hg−h(x).

Using (7) with a bit manipulation, we can rewrite the above equation as

1

4

∑

n≥0

(n + 1)Cn,gx
n = 3x2F ′′

g−1(x) + xF ′
g−1(x) + xH−1,g−1

+ x−1Fg(x) + x−2
g∑

h=0

Fh(x)Fg−h(x).

With δi,j the Kronecker delta, this becomes

x3C ′
g(x) + x2Cg(x) = 12x4F ′′

g−1(x) + 4x3F ′
g−1(x) + 2x3δg,1

+ 4xFg(x) + 8F0(x)Fg(x) + 4
g−1∑

h=1

Fh(x)Fg−h(x).

It follows from (11) that

(1− 12x− 24F0(x)) Fg(x) = 36x4F ′′
g−1(x) + 12x3F ′

g−1(x) + 6x3δg,1

+ 12
g−1∑

h=1

Fh(x)Fg−h(x)− x2Cg(x). (13)
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Substituting (12) and (9) into (13), we obtain

Fg(x) =
1

1− 6t + 6t2

(
36x4F ′′

g−1(x) + 12x3F ′
g−1(x) + 6x3δg,1

+ 12
g−1∑

h=1

Fh(x)Fg−h(x)− x2Cg(x)
)
. (14)

We now show that this equation can be used to calculate Cg(x) more easily than the

method in [2]. For this purpose we set s = 1− 6t + 6t2 and show inductively that Cg(x)

is a polynomial in s divided by sa for some integer a = a(g) > 0. (It can be shown that

a = 5g−3 is the smallest such a, but we do not do so.) The method for calculating Cg(x)

follows from the proof. Then we have

x2 =
1

432
(s− 1)2(2s + 1) and

ds

dx
=

144x

s(s− 1)
. (15)

Thus

x
d

dx
= x

ds

dx

d

ds
=

(s− 1)(2s + 1)

3s

d

ds
,

d2

dx2
=

(
ds

dx

)2
d2

ds2
+

d(ds/dx)

dx

d

ds
=

48(2s + 1)

s2

d2

ds2
− 48(s + 1)

s3

d

ds
.

From the above and (11)

Fg(x) +
x2Cg

1− 6t + 6t2
= x2

(
3x

dCg

dx
+

(2s + 1)Cg

s

)
=

x2(2s + 1)

s

d((s− 1)Cg)

ds
.

With some algebra, (14) can be rewritten as

d((s− 1)Cg)

ds
=

4(s− 1)2(2s + 1)

s2

d2Fg−1

ds2
+

4(s− 1)

s3

dFg−1

ds

+
5184

(s− 1)2(2s + 1)2

g−1∑

h=1

FhFg−h for g ≥ 2. (16)

In what follows P (s) stands for a polynomial in s and a a positive integer, both

different at each occurrence. It was shown in [2] that

C1(x) = T1(x) =
1− s

12s2
.

By (11), (15) and the induction hypothesis, the right hand side of (16) has the form

P (s)/sa. Integrating, (s − 1)Cg = P (s)/sa + K log s. Since we know Cg(x) is algebraic,

so is (s − 1)Cg and hence K = 0. Since s = 1 corresponds to x = 0, Cg is defined there.

It follows that P (s) in (s− 1)Cg = P (s)/sa is divisible by s− 1, completing the proof.
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Using Maple, we obtained

C2 =
1

26 34

(2s + 1)(17s2 + 60s + 28)(1− s)3

s7
,

C3 =
1

29 38

(5052s4 − 747s3 − 33960s2 − 35620s− 9800)(2s + 1)2(s− 1)5

s12
,

C4 =
1

214 311

P4(s)(2s + 1)3(s− 1)7

s17
,

C5 =
1

217 314

P5(s)(2s + 1)4(1− s)9

s22
,

where

P4(s) = −12458544− 63378560s− 103689240s2 − 42864016s3

+ 31477893s4 + 20750256s5 + 417636s6,

P5(s) = 7703740800 + 50294009360s + 117178660480s2

+ 100386081272s3 − 16827627792s4 − 67700509763s5

− 21455389524s6 + 4711813020s7 + 1394857272s8.

4 Generating Function Asymptotics

Suppose A(x) is an algebraic function and has the following asymptotic expansion around

its dominant singularity 1/r:

A(x) =
k∑

j=l

aj(1− rx)j/2 + O
(
(1− rx)(k+1)/2

)
,

where aj are not all zero. Then we write

A(x) ≈
k∑

j=l

aj(1− rx)j/2.

The following lemma is proved in [2].

Lemma 1 For g ≥ 0, Tg(x) is algebraic,

T0(x) ≈
√

3

72
− 5

216
+

1

54
√

6
(1− 12

√
3x)3/2,

Tg(x) ≈ 3
(
37 × 29

)(g−1)/2
tg Γ

(
5g − 3

2

)
(1− 12

√
3x)−(5g−3)/2 for g ≥ 1.
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Let

fg = 24−3/26g/2 Γ
(

5g − 1

2

)
tg. (17)

Using Lemma 1, (10) and (11), we obtain

Cg(x) ≈ 288

(5g − 3)
fg(1− 12

√
3x)−(5g−3)/2 for g ≥ 1,

Fg(x) ≈ fg(1− 12
√

3x)−(5g−1)/2 for g ≥ 1.

As noted in [2], the function t(x) of (9) has the following asymptotic expansion around

its dominant singularity x = 1
12
√

3
:

t ≈ 3−√3

6
−
√

2

6
(1− 12

√
3x)1/2.

Using this and (12), we obtain

F0(x) ≈ 3−√3

72
+ f0(1− 12

√
3x)1/2,

1

1− 6t + 6t2
≈

√
6

2
(1− 12

√
3x)−1/2.

Comparing the coefficients of (1− 12
√

3x)(5g−1)/2 on both sides of (14), we obtain

fg =

√
6

96
(5g − 4)(5g − 6)fg−1 + 6

√
6

g−1∑

h=1

fhfg−h. (18)

Letting

ug = fg

(
25
√

6

96

)−g
6
√

6

[1/5]g[4/5]g−1

.

and using (17), the recursion (18) becomes (3).

5 Asymptotics of tg

It follows immediately from (3) that ug ≥ ug−1 for all g ≥ 2. To show that ug approaches

a limit K as g →∞, it suffices to show that ug is bounded above. The value of K is then

calculated using (3).

We use induction to prove ug ≤ 1 for all g ≥ 1. Since u1 = 1
10

and u2 = u1 + 1
480

, we

can assume g ≥ 3 for the induction step. From now on g ≥ 3.

Note that

R1(g, 1)R2(g, 1) = 5(g − 4
5
)(g − 6

5
) > 5(g − 4

5
)(g − 9

5
)

R1(g, 2)R2(g, 2) = 25
24

(g − 6
5
)(g − 11

5
)
(
5(g − 4

5
)(g − 9

5
)
)

> 25
24

(g − 6
5

+ 4
5
)(g − 11

5
− 4

5
)
(
5(g − 4

5
)(g − 9

5
)
)

≥ 2(g − 3)
(
5(g − 4

5
)(g − 9

5
)
)
.

the electronic journal of combinatorics 15 (2008), #R51 corrected 7



Note that Ri(g, h) = Ri(g, g − h) and, for h < g/2, Ri(g,h+1)
Ri(g,h)

≥ 1. Combining all these

observations and the induction hypothesis with (3) we have

ug = ug−1 +
g−1∑

h=1

uhug−h

R1(g, h)R2(g, h)

< ug−1 +
2u1ug−1

5(g − 4
5
)(g − 9

5
)

+
g−2∑

h=2

1

R1(g, 2)R2(g, 2)

< ug−1 +
1/5

5(g − 4
5
)(g − 9

5
)

+
1/2

5(g − 4
5
)(g − 9

5
)

< ug−1 +
1

5g − 9
− 1

5g − 4
.

Hence

ug < u2 +
g∑

k=3

(
1

5k − 9
− 1

5k − 4

)
< u2 +

1

5× 3− 9
< 1.

The asymptotic expression for tg in (4) is obtained by using

[x]k =
Γ(x + k)

Γ(x)
, Γ(1/5)Γ(4/5) =

π

sin(π/5)
,

and Stirling’s formula

Γ(ag + b) ∼
√

2π(ag)b−1/2
(

ag

e

)ag

as g →∞,

for constants a > 0 and b.

6 Open Questions

We list some open questions.

• From (18), we can show that f(z) =
∑

g≥1 fgz
g satisfies the following differential

equation

f(z) = 6
√

6(f(z))2 +

√
6

96
z

(
25z2f ′′(z) + 25zf ′(z)− f(z) +

√
6

72

)
.

The asymptotic expression of fg implies that f(z) cannot be algebraic. Can one

show that f(z) is not D-finite, that is, f(z) does not satisfy a linear differential

equation?

• There is a constant pg that plays a role for maps on non-orientable like tg plays

for maps on orientable surfaces [3]. Is there a recursion for maps on non-orientable

surfaces that can be used to derive a theorem akin to Theorem 1 for pg?

• Find simple recursions akin to (8) for other classes of rooted maps that lead to

simple recursive calculations of their generating functions as in (16).
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