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Counting degree restricted maps

Abstract

Let D be a set of positive integers. Let m(n) be the number of n edged rooted

maps on the sphere all of whose vertex degrees (or, dually, face degrees) lie in D. Using

Brown’s technique, we obtain the generating function for m(n) implicitly. We use it

to prove that, when gcd(D) is even,

m(n) ∼ C(D)n−5/2γ(D)n.

It also yields known formulas for various special D.
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Counting degree restricted maps

Section 1: Introduction

Let D be a set of positive integers containing some element exceeding 2, let

M(x, y) =
∑

i Mi(x)yi be the generating function by edges and root face degree for

rooted maps on the sphere such that each nonroot face degree lies in D and let m(n)

be the number of n edged rooted maps all of whose face degrees lie in D. Define the

coefficient operator with respect to y by

[yk]
(∑

i≥0 fi(x)yi
)

= fk(x)

and define [xk] similarly. We will prove

Theorem 1. There exist unique power series R1(x) and R2(x) such that

R1 =
x

2

∑
i∈D

[yi−1](R−1/2) (1.1)

and

R2 =
x

2

∑
i∈D

[yi](R−1/2) + x − 3R2
1, (1.2)

where R = 1 − 4R1y − 4R2y
2. We have

m(n) =
1

n + 1
[xn]

(
M ′

2(x)
)

= [xn]
(

(R2(x) + R1(x)2)(R2(x) + 9R1(x)2)
(n + 1)x2

)
.

(1.3)

Although the sums in (1.1) and (1.2) appear quite formidable, they can be sim-

plified in some interesting cases. Two particularly simple situations are those in which

gcd(D) is even and those related to arithmetic progressions and finite sets. We have
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Corollary 1.1. If, when viewed as a multiset, D differs from the union of a finite

number of arithmetic progressions by a finite multiset, then M(x, y) is algebraic.

Corollary 1.2. (Tutte [6]). The number of 2d regular, nd edge, rooted maps on the

sphere is

2(nd)!
n! (nd − n + 2)!

(
2d − 1

d

)n

. (1.4)

Corollary 1.3. (Liu [4]). The number of n edge, rooted, bipartite (or, dually, eule-

rian) maps on the sphere is

3
2(n + 1)(n + 2)

(
2n

n

)
2n. (1.5)

Theorem 2. If gcd(D) = 2d, then

m(n) ∼ 2d(σγ)5/2

(πλ)1/2
n−5/2γn, (1.6)

where n is a multiple of d, σ is the positive real root of

2 =
∑
2i∈D

(i − 1)
(

2i

i

)
σi,

λ =
∑
2i∈D

i(i − 1)
(

2i

i

)
σi and γ = 1

2

∑
2i∈D

i

(
2i

i

)
σi−1.

We will use a Tutte type decomposition to obtain a quadratic equation for M(x, y)

when D is finite. Such equations are usually solved by the quadratic method [3]. That

approach does not seem to work here. We must look more closely at what Brown’s

result [2] says about the discriminant of the quadratic. Having established Theorem

1 for finite D, we then pass to the limit. When gcd(D) is even, R1 = 0. This results

in considerable simplification of the equations in Theorem 1 which leads easily to
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Corollaries 1.2 and 1.3. It also leads to equations which suggest that there may be an

interesting bijection between various bipartite maps and pairs of some other objects.

We have not been able to find the bijection. In Section 4, we use a result of Meir and

Moon [5] to obtain Theorem 2 from Theorem 1.

At this time we have no general asymptotic result when gcd(D) is odd. We suspect

that a result of the form (1.6) will hold. This can be verified on a case by case basis

with lengthy calculations. For example, with D the set of odd positive integers, we

have used Maple to prove that

m(n) ∼ Cn−5/2x−n
0

where

x0 = 0.10519 . . . , C = 3τ1/2/4π1/2 = 0.71772 . . .

and both x0 and τ are algebraic of degree 6.

Section 2: Proof of Theorem 1

For all of this section except the last paragraph, we assume that D is a finite set

with largest element t.

Note that (1.1) tells us that R1 has no constant term. If we specifiy R1 and R2

through terms of degree k in x and substitute them in the right sides of (1.1) and

(1.2), the left sides give us R1 and R2 through degree k + 1. Thus the power series R1

and R2 are uniquely determined by (1.1) and (1.2) and have no constant terms.

Let C denote the complex numbers, let R[[x]] denote formal power series over the

commutative ring R and let R[y] denote polynomials. Let

θk(y) =
∑
i∈D
i≥k

yt−i. (2.1)

5



Counting degree restricted maps

Note that θk(y) ≡ θ0(y) (mod yt−k+1).

We use a standard construction [7] to obtain a functional equation for M(x, y).

Either a map consists of just one vertex, with generating function 1, or it has a root

edge. The generating function for maps for which the removal of the root edge leaves

two components is given by xy2M(x, y)2. There is one more case, namely removing

the root edge does not disconnect the map. Reversing these removals gives a recursive

construction for the maps. If the root face has degree j and we wish to add a new root

that reverses the last case, we can create a nonroot face of degree k and a root face of

degree j + 2 − k. This construction leads to

M(x, y) = 1 + xy2M(x, y)2 + x
∑
j≥0

Mj(x)
∑
k∈D

k≤j+1

yj+2−k.

After some algebra,

M(x, y) = 1 + xy2M(x, y)2 + xy2−tθ0(y)M(x, y)

− x
t−2∑
j=0

θj+2(y)yj+2−tMj(x).
(2.2)

It is important to note that the recursive nature of this construction guarantees that

there is a unique power series solution to (2.2).

Regarding (2.2) as a quadratic in M(x, y), we obtain

2xytM(x, y) = yt−2 − xθ0(y) ± B(x, y)1/2 (2.3)

where

B(x, y) =
(
xθ0(y) − yt−2

)2 − 4xy2t−2 + 4x2yt
t−2∑
j=0

θj+2(y)Mj(x)yj . (2.4)
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We show that (2.3) is true algebraically modulo y2t−1 for any Mj(x) ∈ C[[x]]

provided that M0(x) = 1 and the proper sign is chosen for the square root. (By “al-

gebraically”, we mean that no map information is needed.) To see this, first rearrange

(2.3) as

±B(x, y)1/2 ≡ xθ0(y) − yt−2 + 2xytM(x, y) (mod y2t−1)

and note that the right side contains a nonzero term in y0. Thus this congruence holds

if and only if

B(x, y) ≡
(
xθ0(y) − yt−2 + 2xytM(x, y)

)2 (mod y2t−1)

≡ (xθ0(y) − yt−2)2 + 4x2ytθ0(y)M(x, y) − 4xy2t−2M0(x) (mod y2t−1),

which is easily verified using (2.4).

¿From the previous paragraph, it follows that any choice for M1(x), . . . ,Mt−2(x) ∈

C[[x]] which leads to a power series for B(x, y)1/2 will be a solution to (2.3) and, hence,

the unique solution.

Since B(x, y) ∈ C[[x]][y] has degree 2t − 2 in y, Brown’s theorem [2] guarantees

that B(x, y) = Q(x, y)2R(x, y), for some Q, R ∈ C[[x]][y] with R(x, 0) = 1. We will

show that one solution can be found with

Q(x, y) = x +
t−2∑
i=1

Qi(x)yi and R(x, y) = 1 − 4R1(x)y − 4R2(x)y2. (2.5)

To begin with, Q2R has the same degree as B with respect to y, namely 2t − 2.

Since (2.3) is true algebraically modulo y2t−1, it suffices to determine the t unknown

functions R1, R2, Q1, . . . , Qt−2 by looking at the coefficients of y, y2 up to yt in

2xytM(x, y) = yt−2 − xθ0(y) + Q(x, y)R(x, y)1/2 (2.6)

and then showing that M1(x), . . . ,Mt−2(x) are in fact power series.
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It follows from (2.6) that

Q(x, y) ≡ R(x, y)−1/2
(
xθ0(y) − yt−2 + 2xyt

)
(mod yt+1). (2.7)

Since we defined Q to have degree t − 2 in y, reduction modulo yt−1 determines Q in

terms of R1 and R2 while the coefficients of yt−1 and yt in (2.7) give two polynomial

equations in the two unknowns R1 and R2. These equations are (1.1) and (1.2). We

have shown that Qi(x) ∈ C[[x]] and Rj ∈ C[[x]] can be found. Since R1(x) and R2(x)

have no constant terms and Q(x, y) has degree t − 2 in y, it follows from (2.6) that

xMj(x) has no constant term and so Mj(x) is a power series. This completes the proof

that (2.5) and (2.7) determine the unique power series solution M(x, y) to (2.3).

We now prove (1.3). Using G′ to denote ∂G/∂x, we have

(QR1/2)′ = 1
2R−1/2(2Q′R + QR′) (2.8)

and, from (2.7),

(QR1/2)′ ≡ θ0(y) + 2yt (mod yt+1). (2.9)

Thus

2Q′R + QR′ ≡ 2R1/2
(
θ0(y) + 2yt

)
(mod yt+1). (2.10)

Define the truncation operator with respect to y by

Tk

(∑
i≥0 fi(x)yi

)
=

k∑
i=0

fi(x)yi.

Since the left side of (2.10) equation has degree t in y,

2Q′R + QR′ = Tt

(
2R1/2

(
θ0(y) + 2yt

))
.

8



Counting degree restricted maps

Thus

x(QR1/2)′R1/2 = xTt

(
R1/2

(
θ0(y) + 2yt

))

= Tt

(
R1/2

(
xθ0(y) − yt−2 + 2xyt

))
+ Tt

(
R1/2yt−2

)

= Tt

(
R R−1/2

(
xθ0(y) − yt−2 + 2xyt

))
+ yt−2T2

(
R1/2

)

= RQ + yt−2T2(R1/2),

by (2.7). Combining this with (2.3), we have

2x(xMj(x))′ = [yt+j ]
(
x(QR1/2)′

)

= [yt+j ](QR1/2) + [yt+j ]
(
R−1/2yt−2T2(R1/2)

)

= 2xMj(x) + [yj+2]
(
R−1/2T2(R1/2)

)
.

Rearranging the two ends of this equation gives us

M ′
j(x) =

1
2x2

[yj+2]
(
R−1/2T2(R1/2)

)
. (2.11)

Set m(0) = 1 and let M(x) be the generating function for m(n). By removing the root

edge from a map counted by M2(x), it is easily seen that

M(x) = M2(x)/x. (2.12)

This combined with a bit of algebra on (2.11) gives us (1.3). The proof of Theorem 1

for finite D is complete.

Let D be arbitrary and define D(t) to be those elements of D which do not exceed

t. We may apply Theorem 1 to D(t). If we replace t by t′ > t, then it is a simple

matter to check that the terms of degree less than t/2 do not change in the formulas

for R1 and R2. Thus, we may simply let t → ∞.
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Section 3: Simple applications of Theorem 1

The reader may be amused to carry out the calculations in Theorem 1 when D is

the positive integers, thereby rederiving the generating function for all maps: In this

case, (1.1) and (1.2) become

R1 =
x

2
(1 − 4R1 − 4R2)−1/2

R2 =
x

2

(
(1 − 4R1 − 4R2)−1/2 − 1

)
+ x − 3R2

1.

Eliminating R2 leads to the quartic equation

0 = (12R2
1 − 2R1 + x)(4R2

1 − 2R1 − x).

Since R1 has no constant term and since the generating function for maps must have

a positive real singularity, the correct solution is

R1 =
1 −

√
1 − 12x

12
.

The equation for M(x) follows easily from (1.3) and (2.12).

To prove Corollary 1.1, we observe that (1.1) and (1.2) can be summed for i in an

arithmetic progression by using multisection of the series R−1/2 with respect to y and

then setting y = 1. Thus the equations for R1 and R2 are algebraic. Now use (2.6)

and the value of Q from (2.7).

When gcd(D) is even, R1 = 0. One can see this either by noting that M(x, y)

cannot have any odd degree terms in y or by noting that the assumption R1 = 0 leads

to a solution and so must be the unique solution. Since R1 = 0, we have

[y2i](R−1/2) = [y2i]
(
(1 − 4R2y

2)−1/2
)

=
(

2i

i

)
Ri

2. (3.1)
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Thus, (1.1) becomes 0 = 0, (1.2) becomes

R2 =
x

2

∑
2i∈D

(
2i

i

)
Ri

2 + x (3.2)

and (1.3) becomes

m(n) = 1
n+1 [xn]

(
M ′

2(x)
)

= 1
n+1 [xn]

(
x−2R2(x)2

)
(3.3)

Since
(
2i
i

)
is even, it follows from (3.1) that R2(x) has nonnegative integer coefficients.

This combined with M ′
2(x) =

(
R2(x)/x

)2 from (3.3) suggests that there is probably

an interesting bijection between rooted maps with a distinguished edge and pairs of

combinatorial objects when gcd(D) is even.

When D = {2d}, the sum in (3.2) has only one term and Corollary 1.2 follows

easily by Lagrange inversion.

To prove Corollary 1.3, note that (3.2) becomes

R2 =
x

2

(
(1 − 4R2)−1/2 − 1

)
+ x.

After a bit of algebra, one obtains

R2(x) =
4x + 1 −

√
1 − 8x

8
, (3.4)

where the minus sign was chosen on the square root because R2(0) = 0. Thus

R2(x)2

x2
=

8x2 + 1
32x2

+
(

(1 − 8x)3/2

32x

)′
.

By (2.12) and (3.3),

M(x) = M2(x)/x =
1
4
− 1

32x2
+

(1 − 8x)3/2

32x2
+

3
8x

.

Corollary 1.3 follows easily.
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Section 4: Proof of Theorem 2

Suppose that 2d = gcd(D). It follows from (3.2) that R2(x) = x + xw(xd) where

the power series w(z) is determined by

w = F (z, w) = 1
2

∑
2id∈D

(
2id

id

)
zi(w + 1)id. (4.1)

Let (ρ, τ) be a positive real solution, if any, of the simultaneous equations (4.1) and

1 = Fw(z, w). With a bit of algebra, ρ(τ + 1)d is the positive real root of

2 =
∑

2id∈D

(id − 1)
(

2id

id

)(
ρ(τ + 1)d

)i (4.2)

and τ > 0 is then determined by (4.1).

We wish to apply Meir and Moon’s [5, Thm. 1] and thereby obtain asymptotics

by using their correction to [1, Thm. 5]. If D is finite, F (z, w) is analytic for all z and

w and the conditions for [5, Thm. 1] are satsified. Suppose that D is infinite. Then

F (z, w) is analytic for 4
∣∣z(w+1)d

∣∣ < 1 since
(
2n
n

)
∼ 4n/(πn)1/2 and (4.2) has a solution

with 4ρ(τ + 1) < 1 since (id − 1)
(
2id
id

)
is unbounded. Again, [5, Thm. 1] applies.

Combining this with [1, (7.1)], we find that

[zn](w + 1) ∼
(
(τ + 1)/2πFww(ρ, τ)d

)1/2

n−3/2ρ−n

and w behaves like τ + 1 + C(1 − z/ρ)1/2 near z = ρ. Thus

[zn]
(
(w + 1)2

)
∼ 2(τ + 1)

(
(τ + 1)/2πFww(ρ, τ)d

)1/2

n−3/2ρ−n. (4.3)

In terms of the notation in Theorem 2, one finds with a bit of algebra that ρ = γ−d,

τ + 1 = σγ and Fww(ρ, τ) = λ/2(σγ)2. Theorem 2 now follows easily from (3.3),

R2/x = w + 1 and (4.3).
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