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Abstract

Let d(n; q) be the number of labeled graphs with n vertices, q � N =
�n
2

�
edges,

and no isolated vertices. Let x = q=n and k = 2q�n. We determine functions wk � 1,

a(x), and '(x) such that d(n; q) � wk

�N
q

�
en'(x)+a(x) uniformly for all n and q > n=2.
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1 Introduction and statement of results.

For integers n and q, an (n; q)-graph is a labeled graph having n vertices and q edges. In a

recent paper [1] we studied c(n; q), the number of connected (n; q)-graphs. We proved the

following asymptotic formula, with error bound uniform in q,

c(n; q) = uk

 
N

q

!
F (x)nA(x)(1 + o(1)); (1.1)

wherein k = q�n, N =
�
n

2

�
, x = q=n, and uk is a known function with uk = 1+O(1=k). The

functions F (x) and A(x) appearing in (1.1) may be obtained by substituting the expression�
N

q

�
F (x)nA(x) for c(n; q) into an exact recursion for c(n; q), rearranging to obtain 1 on one

side of the equation, expanding the other side as an asymptotic series, and then \equating

coe�cients." The last step leads to di�erential equations involving F (x) and A(x) which turn

out to have exact solutions. One may say that (1.1) is the formal asymptotic solution of the

recursion satis�ed by c(n; q). The proof that the formula so obtained provides a uniformly

good estimate of c(n; q) is long and messy.

It is of interest to see if this method of \formal solution" can succeed on other classes

of graphs, and also to see if the general form of (1.1) holds for other classes of labeled

graphs. The present paper begins this further study. The class of graphs singled out for

investigation are the (n; q)-graphs having no isolated vertices. The number of such graphs

will be denoted d(n; q), \d" being both the next letter after \c" and also the �rst letter

of the word \dumbbell," which is the typical component for small q. (See Lemma 3.1.)

This class is interesting for two reasons. First, the recursion satis�ed by d(n; q), (see (1.2)

below), is simpler than the nonlinear recursion satis�ed by c(n; q), (see [1, (1.11)]). Hence,

it may be easier to gain insight into the method from the results on d(n; q) than from those

on c(n; q). Second, the functions F (x) and A(x) in (1.1) reduce when q = 1
2
n ln n + �n,

to an expression for c(n; q) equivalent to a famous theorem of Erd}os and R�enyi featured

in the classic paper [3]. As is well known in the study of random graphs, the proof of

the latter theorem begins by showing that, for the stated range of q, \connected" and \no

isolated vertices" are roughly equivalent properties. With a uniform estimate of d(n; q) we

can compare these two properties for the entire range of q.

Here is the recursion satis�ed by d(n; q), the number of (n; q)-graphs having no isolated

vertices, with N =
�
n

2

�

qd(n; q) = (N � q + 1)d(n; q � 1) + n(n � 1)d(n � 1; q � 1) +Nd(n � 2; q � 1): (1.2)

With the boundary conditions d(0; q) = �q;0 and d(n; 0) = �n;0, the above determines d(n; q).

The proof of (1.2) is immediate: the removal of an edge from a graph counted by d(n; q)

creates either zero, one, or two isolated vertices, respectively.

In the remainder of this paper, we will use the following notation:

n = number of vertices

N =

 
n

2

!
= number of possible edges
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q = number of edges

k = 2q � n

x = q=n

y = y(x) =

8><
>:

the positive solution of 2xy = � ln(1� y); if x > 1
2
,

0; if x = 1
2
,

: (1.3)

Thus, associated with the pair (n; q) is a triple of values (k; x; y), and given n, any one of

q; k; x; or y determines the other three. If k and n are given rather than q and n, it is

always understood that q = (n+k)=2 is an integer, that is, we assume that k � n (mod 2).

Similarly, if x or y is given rather than k or q, it is understood that they are such that q is an

integer. By expanding x = � ln(1� y)=2y as a power series in y, it is clear that x 7! y(x) is

an increasing bijection from [1=2;1) to [0; 1). We use the notation (n)s for n falling factorial

s, that is, the product n(n� 1) � � � (n� s+ 1).

For k > 0 we de�ne

wk =
p
2�k (k=e)k=k!

d�(n; q) = wk

 
N

q

! 
e�2xy1�2x

1� y

!ns
1� y

1 � 2x(1� y)
ex+x

2(1�y2):

Note that, by Stirling's formula, wk = 1+O(1=k). The easily derived alternative expression

 
e�2xy1�2x

1� y

!n

= y�ke�2q(1�y)

may be useful, but is not used here. For even n, we de�ne

d�(n; n=2) =

 
N

n=2

!
e3=4�n

p
2�n;

which, in fact, is the limit of d�(n; q) as y # 0.
Our main goal is to prove

Theorem 1. Let � > 0 be a real constant and let n=2 � q � N . Uniformly in q as n!1
we have

d(n; q) = d�(n; q)
�
1 +O(1=n1=7��)

�
:

Remark. Experimental evidence suggests that the estimate in Theorem 1 has an actual

relative error of O(1=q) uniformly over n; by direct computation we have found

����� d(n; q)d�(n; q)
� 1

����� < 1:35

q
for n � 160:

We obtain Theorem 1 from the following three theorems, which give better estimates for the

error in d(n; q)=d�(n; q) for various ranges of x.
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Theorem 2. Let k � 0 and k = o(n2=3). Then, uniformly in k as n!1,

d

 
n;
n+ k

2

!
=

p
2
(1=2)k

k!
n(n+3k)=2 exp

(
�n
2
+

5k2

12n
+O

 
k + 1

n

!
+O

 
k3

n2

!)

= d�(n; q)

 
1 +O

 
k + 1

n

!
+O

 
k3

n2

!!
:

Theorem 3. Let k � 0. Then, uniformly in q as n!1,

d(n; q) =

 
N

q

!�
1 +O(ne�2x)

�
:

Uniformly in x > 3 ln n as n!1,

d(n; q) = d�(n; q) (1 +O(1=n)) :

Theorem 4. Let � > 0 be a real constant and let n=2 < q � N . Then, uniformly in q as
n!1

d(n; q) = d�(n; q)
�
1 +O(1=k) +O(k1=7=n2=7��)

�
:

To obtain Theorem 1, use Theorem 2 for k � n2=5��, Theorem 3 for k > 6n ln n, and

Theorem 4 for the remaining range.

Once isolated points are forbidden, there are only �nitely many graphs with q edges. We

will prove the following two theorems. As for Theorem 1, the relative error in Theorem 5

appears to be (1=q).

Theorem 5. For q � 1, denote the number of labeled graphs with q edges and no isolated
vertices by

d(q) =
X
n

d(n; q);

where the sum is over all n such that n=2 � q � N . For any � > 0,

d(q) = C0(C1q)
q(1 + q�1=7+�);

where

C0 =
1

21+ln 2=4 ln 2
� 0:6397054049

C1 =
2

(ln 2)2e
� 1:5313857152:
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Theorem 6. The number of vertices in a random labeled graph with q edges and no isolated

vertices has an asymptotic distribution which is normal with mean q= ln 2 and variance

1 � ln 2

2(ln 2)2
q:

The rest of the paper is organized as follows. Section 2 develops a few facts about the

function y = y(x), and some other related functions. Sections 3, 4, and 5 are devoted to

Theorems 2, 3, and 4, respectively. We prove Theorem 2 by a combinatorial argument, The-

orem 3 by computing the expected number of isolated vertices, and Theorem 4 by induction

based on (1.2), using the results of Theorems 2 and 3 for extreme ranges of x. Theorems 5

and 6 are proved in Section 6. In Section 7 we discuss further avenues for exploration.

2 Some analytic facts.

We want our asymptotic estimate of d(n; q) to be in the form
�
N

q

�
expfn'(x) + a(x)g, and

so we introduce the functions '(x) and a(x), de�ned for x > 1=2 by

'(x) = �2x+ (1� 2x) ln y � ln(1� y) (2.1)

and

a(x) = x2(1� y2) + x+ 1
2
ln(1� y)� 1

2
ln(1� 2x(1 � y)): (2.2)

In this notation,

d�(n; q) = wk

 
N

q

!
expfn'(x) + a(x)g: (2.3)

It is clear that as x # 1=2, '(x)! �1 and a(x)!1. Our �rst two lemmas concern relations

satis�ed by these functions.

Lemma 2.1. With '(x) de�ned by (2.1), we have the two relations

y2 = e�'
0(x) (2.4)

y (1 + expf�2x� '(x) + x'0(x)g) = 1: (2.5)

Proof. We have

'(x) = �2x+ (1� 2x) ln y � ln(1� y)

'0(x) = �2 + 1 � 2x

y

dy

dx
� 2 ln y +

1

1� y

dy

dx

=
1

y

 
�2y � 2x

dy

dx
+

1

1 � y

dy

dx

!
� 2 ln y

= �2 ln y;
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because when we di�erentiate the relation (1.3) with respect to x, we �nd that

�2y � 2x
dy

dx
+

1

1� y

dy

dx
= 0:

We now introduce three functions g0(x), g1(x), and g2(x). How these three functions

arise is clari�ed later in Lemma 5.1. For now our purpose is to record the fact that the

function a(x) given in (2.2) satis�es a certain di�erential equation. We de�ne

g0(x) =
�
1
2
'00(x)� a0(x)

�
y2 (2.6)

g1(x) =
�
2� 2x2 + 1

2
(x� 1)2'00(x) + (x� 1)a0(x)

�
2y(1� y) (2.7)

g2(x) =
�
4� 4x� 4x2 + 1

2
(2x � 1)2'00(x) + (2x � 1)a0(x)

�
(1� y)2: (2.8)

Lemma 2.2. With '(x), a(x), and gi(x) de�ned as above, we have

g0(x) + g1(x) + g2(x) = 0:

Proof. We have, since e�'
0(x) = y2 by the previous lemma,

'00(x) =
�2 dy=dx

y
(2.9)

and, from (2.2),

a0(x) = 2x(1 � y2)� 2x2y
dy

dx
+ 1 � dy=dx

2(1 � y)
+

1� y � x dy=dx

1� 2x(1� y)
: (2.10)

Substitution of these formulas, along with the fact from (1.3) that

dy

dx
=

2y(1 � y)

1 � 2x(1� y)
;

reduces the lemma to a calculation within the �eld of rational functions of x and y.

The next two lemmas obtain upper bounds which will be useful later.

Lemma 2.3. We have, uniformly for 0 � y < 1,

1� y = O(e�2x)

Proof. Since y! 1 as x!1, the function x(1�y) = xe�2xy is uniformly bounded. Hence,

1� y = e�2xe2x(1�y) = O(e�2x):
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Lemma 2.4. With '(x) and a(x) de�ned by (2.1) and (2.2), we have, uniformly for

0 � y < 1,

'00(x) = O(1=y); '000(x) = O(1=y2); a0(x) = O(1=y); and a00(x) = O(1=y2):

Proof. During this proof let Z = 1� 2x(1� y). Because dy=dx = (1� y)2y=Z, we �nd that

the class R of all functions of the form

(1 � y)
p(x; y)

Zm
;

in which p(x; y) is a polynomial and m is a nonnegative integer, is closed under d
dx
. From

(2.9) and (2.10) we see, since dy=dx and dZ=dx are in R, that a00(x), '00(x), and all higher

derivatives of both functions belong to R. Any function h(x) belonging to the class R will

satisfy, in view of Lemma 2.3, h(x) ! 0 as x ! 1. Although a0(x) does not qualify for

membership in R, it is clearly bounded for y � 1=2. Hence, a0(x); a00(x); '00(x); and '000(x)

are all bounded for y � 1
2
. Note that in the range y � 1=2 each of '00(x) and a0(x) is

expressable as 1=y times a power series in y convergent for y < 1. The lemma follows.

The �nal lemma of this section will play an important role later. It is a bit di�erent from

the other four lemmas in that the variables k and n are again involved.

Lemma 2.5. Let A and B be real constants with 1 � A > B=2 � 0. There is a constant
c1 such that, uniformly in A, B, and k � 1,

Ay

k
� B(1� y)

n
�

8>>><
>>>:

c1(A�B=2)

n
; if y � 1=2,

c1(A�B=2)

k
; if y � 1=2.

Proof. Since 2x� 1 = k=n, the quantity in question may be written

Ay �B(1� y)(2x� 1)

k
;

which may be expanded as a power series in y:

1

k

 �
A� B

2

�
y +B

1X
m=2

ym

m(m+ 1)

!
:

This proves the lemma for the case y � 1=2. For y � 1=2 we observe from the expansion of

2x � 1 = k=n as a power series in y that y must be greater than some constant times k=n.

The lemma follows.

We remark, but will not use, that c1 in the previous lemma can be taken equal to 1=2.
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3 The proof of Theorem 2.

The proof of Theorem 2 appears after we state and prove �ve preliminary lemmas. Through-

out this section we let D(n; q) be the class of graphs with n vertices and q edges having no

isolated vertices; thus,

jD(n; q)j = d(n; q):

We shall see that when k = o(n2=3), most graphs in D(n; q) contain only four types of

components: a single edge, a path with three vertices and two edges, a star with a central

vertex joined to three others, and a path with four vertices and three edges. These are the four

possible trees with four or less vertices, and we shall refer to them by the names K2; P3;K1;3;

and P4, respectively. Lemmas 3.2 and 3.4 below are examples of \switching arguments."

Switching has proven to be a useful enumerative tool, especially in asymptotic enumeration

where it eliminates hard to estimate sums with alternating signs from inclusion/exclusion.

No survey exposition has appeared yet; see however [5] and [6] for early examples.

Lemma 3.1. Any graph G belonging to the class D(n; q) has at least n � 3k vertices in
K2 components.

Proof. Letting N1 denote the number of vertices in question, and N2 the rest, we have

N1 +N2 = n:

Every component containing vertices of the second class has an edge/vertex ratio of 2/3 or

more; hence,
N1

2
+

2N2

3
� n+ k

2
:

The lemma follows easily.

The corank of a graph G = (V;E) having c components is jEj � jV j + c, which is the

dimension of the cycle space of G [2, p.36]. In particular, a graph is a forest if and only if its

corank is zero. We now write

D(n; q) =M0 [M1 [ � � � ;

Mh being the class of graphs in D(n; q) having corank equal to h.

Lemma 3.2. Let the classes M0;M1; : : : be de�ned as above, k = o(n2=3), and n ! 1.
Then, uniformly in h and k,

jMhj = O(k3=(hn2)) jMh�1j:

Consequently, all but O(k3=n2) of the graphs in D(n; q) are cycle-free.
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Proof. Given a graph in Mh, remove an edge which belongs to a cycle and use it to join

two K2's into a P4. The resulting graph belongs toMh�1. Since the corank is the dimension

of the cycle space, there are at least h edges which belong to a cycle. Thus the operation of

removing an edge from a cycle and joining two K2's may be done in at least

1
2
h � (n� 3k)(n� 3k � 2)

ways. A given graph inMh�1 is obtained by such an operation in at most (3k=4)
�
3k

2

�
ways.

In the latter estimate, the �rst factor bounds the number of P4 components and the second

factor bounds the choices of two vertices in the same component which are not joined by

an edge. The �rst assertion of the lemma now follows easily, and the second assertion is

obtained by summing.

The next lemma is an easy consequence of the Pr�u�er algorithm [7, p. 229].

Lemma 3.3. Let L be an ordered set of labels with L = jLj � 5. Then there is an injection
from R1 to R2, where

R1 = fT : T is a tree on the set Lg,
R2 =

n
(T;X1;X2; : : : ;XL�4) : T is a rooted tree with three vertices from the set L, and

each Xi 2 L
o
.

Proof. As in the usual Pr�ufer algorithm, prune the given tree T of one leaf at a time, always

pruning the leaf with the smallest label. Each time a leaf is removed, write down in sequence

the vertex to which it was attached, except for the (L� 3)-rd, which is the last. When the

(L�3)-rd vertex is removed, let the point of its attachment become the root of the remaining

tree of size 3. That this process is injective follows from the usual Pr�ufer bijection.

The algorithm for realizing the injection of Lemma 3.3 will be referred to as the \partial

Pr�ufer algorithm," since it amounts to applying the usual algorithm and stopping just a few

steps early.

We now write

M0 = N0 [ N1 [ � � � ;
Nh being those cycle-free graphs in the class D(n; q) having h components of size 5 or greater.

Lemma 3.4. Let N0;N1; : : : be the class of graphs de�ned above, k = o(n2=3), and n!1.

Then, uniformly in k and h,

jNhj = O
�
k3=(hn2)

�
jNh�1j:

Consequently, all but O(k3=n2) of the graphs in D(n; q) are forests whose components belong

to the set fK2; P3;K1;3; P4g.
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Proof. First, we claim there is a injection from S1 to S2 where
S1 =

n
(G;C;X1;X2; : : : ;XL�3) : G is a graph in Nh, C is a component of G having L � 5

vertices, each Xi is an endpoint of a K2 component of G, and no two Xi belong to the

same K2 component
o

S2 =
n
(G;T; fY1; Y2; : : : ; YL�3g; Z1; Z2; : : :ZL�4) : G is a graph in Nh�1; T is a component of

G which is a tree of size 3, T has been rooted, the set fYig is an unordered collection

of endpoints of P3 components of G, no two Yi belonging to the same P3 component,

each Zj is either a vertex of T or one of the Yi, and repitition is allowed among the

Zj

o
.

Although the sets S1 and S2 are lengthy in description, the bijection is not: Given

(G;C; : : :) in S1, apply the partial Pr�ufer algorithm to the tree C, obtaining a rooted tree T of

size 3 and an (L�4)-tuple (Z1; Z2; : : : ; ZL�4) of points of attachment; the set Y1; Y2; : : : ; YL�3
is the set of leaves removed from C; each is attached, in turn, to the corresponding ordered

Xi yielding a P3 component of which Yi is an endpoint; the order of removal is then forgotten.

As a consequence of this injection we have, with N (L)
h denoting the class of graphs in Nh

having a component of size L � 5 distinguished,

���N (L)
h

��� L�4Y
i=0

(n� 3k � 2i) � jS1j � jS2j

� 1

(L � 3)!

�L�4Y
i=0

(2k � 2i)

�
(3k) � LL�4 � jNh�1j

The leftmost inequality follows from the fact that, given (G;C) 2 N (L)
h , we have by Lemma 3.1

at least n � 3k vertices from which the X1;X2; : : : ;XL�3 may be selected. The rightmost

inequality follows from the fact that, given G 2 Nh�1, we have by Lemma 3.1 at most 2k

endpoints of P3's from which to choose Yi, at most 3k choices for a root of a tree of size 3,

and of course LL�4 choices for the Zj . In all of the above, L can be at most 3k. Hence,

uniformly in k; h; and L,

���N (L)
h

��� = O

0
@ LL�4

(L � 3)!

 
2k

n� 3k

!L�3

3k

1
A jNh�1j: = O

 
LL�4

(L � 3)!

(3k)L�2

nL�3

!
jNh�1j:

When we sum the above for L � 5 we obtain

h jNhj = O(k3=n2) jNh�1j:
This is equivalent to the �rst assertion of the lemma. The second follows by summing on h,

and using Lemma 3.2.

Lemma 3.5. Let k � 1; k = o(n2=3), and n!1. Then, uniformly in k,

X
s>4k1=2

(8k2=3n)s

s!
= O(k3=n2):

11



Proof. Considering ratios of consecutive terms, the sum is O(1) times the �rst term. Using

s! > (s=e)s and 4k1=2 � 2 completes the proof of the lemma.

We are now ready for the proof of Theorem 2.

Proof. (of Theorem 2) When k = 0, and n is even, we have

d(n; n=2) =
n!

(n=2)! 2n=2
=
p
2 nn=2e�n=2(1 +O(1=n));

which is consistent with the �rst equality in the theorem. The second equality follows easily.

Henceforth in the proof we assume k � 1, and note, uniformly in k,

n!�
n�3k
2

�
! k! 2(n�k)=2

=
p
2
(1=2)k

k!
n(n+3k)=2 expf�n=2 � 9k2=4ng

�
�
1 +O(k=n) +O(k3=n2)

�
; (3.1)

where we have used k = o(n2=3). Consider a graph G whose every component is one of K2,

P3, K1;3, or P4. If the graph G contains s components of size 4, then it must contain k � 2s

of size 3 and s+(n� 3k)=2 of size 2. In view of Lemma 3.4 and the fact that there are nn�2

unrooted, labeled n-vertex trees, we have

d(n; q) =
X

0�s�k=2

n! (33�2)k�2s(44�2)s (1 +O(k3=n2))

(2!)s+(n�3k)=2
�
s+ n�3k

2

�
! (3!)k�2s (k � 2s)! (4!)s s!

=
n! (1 +O(k3=n2))�
n�3k
2

�
! k! 2(n�k)=2

X
0�s�k=2

ts; (3.2)

where

ts =
(k)2s(4=3)

s

(s+ (n� 3k)=2)s s!
:

Since
ts

ts�1
� 8k2

3s(n� 3k)
;

it is readily seen that ts � (8k2=3(n � 3k))
s
/s! and so

X
k=2�s>4k1=2

ts = O(1)

 
2ek3=2

3(n� 3k)

!4k1=2

= O(k3=n2);

the �rst bound following from the facts that the sum is O(1) times its �rst term (k = o(n2=3))

and that s! � (s=e)s, and the second bound from the fact that 4k1=2 > 2. Because t0 = 1,

X
0�s�k=2

ts =

� X
0�s�4k1=2

ts

��
1 +O(k3=n2)

�
: (3.3)
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Uniformly for 0 � s � 4k1=2, we have

(k)2s = k2s
�
1 +O(s2=k)

�
;

(s+ (n� 3k)=2)s = ((n� 3k)=2)
s
�
1 +O(s2=n)

�
= (n=2)s (1 +O(ks=n)) ;

and

ts = (8k2=3n)s(s!)�1
�
1 +O(s2=k) +O(ks=n)

�
:

The sum of the right side over s � 0 is expf8k2=3ng (1 +O(k3=n2)). Invoking Lemma 3.5,

we �nd X
0�s�4k1=2

ts = expf8k2=3ng
�
1 +O(k3=n2)

�
: (3.4)

The �rst equality of the theorem, for k � 1, now follows by combining (3.1), (3.2), (3.3),

and (3.4), noting �9
4
+ 8

3
= 5

12
. We have the following uniform estimates, which follow from

Stirling's formula and the de�nition of y: 
N
n+k
2

!
=

n(n+k)=2p
�n

expfn=2 � 3=4 � k2=4n +O(k=n) +O(k3=n2)g;

y = (2k=n)(1 � 4k=3n)
�
1 +O(k2=n2)

�
;

y(1�2x)n = y�k = (n=2k)k exp
n
4k2=3n +O(k3=n2)

o
;

(1� y)�n = exp
n
2k � 2k2=3n +O(k3=n2)

o
;

1 � 2x(1� y) = (k=n) (1 +O(k=n)) ;

and

x2(1 � y2) + x = 3=4 +O(k=n):

Putting the above together yields the second equality in Theorem 2.

4 The proof of Theorem 3.

The probability that there is an isolated vertex in a randomly chosen (n; q)-graph is no greater

than the expected number of isolated vertices. With X denoting the random variable which

counts isolated vertices, we calculate

E(X) =
n
�
(n�12 )

q

�
�
N

q

� = n

�
n�1

2

�
q

(N)q

� n

�
n�1

2

�q
N q

= n

�
1 � 2

n

�q
� ne�2x;

and the �rst part of Theorem 3 follows. The following lemma completes the proof of the

theorem and provides a tighter error bound.
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Lemma 4.1. Let x > 3 lnn, and n!1. Then, uniformly in q,

d(n; q) =

 
N

q

!
expfn'(x) + a(x)g

�
1 +O(1=n4)

�
:

Proof. For large x we have the following, using Lemma 2.3 and (1.3),

y = 1 +O(e�2x);

y(1�2x)n = y�k = 1 +O(ke�2x);

1 � y = e�2xy = e�2xe2x(1�y) = e�2x
�
1 +O(xe�2x)

�
; 

e�2x

1� y

!n
= 1 +O(nxe�2x);

q
1 � y = e�x

�
1 +O(xe�2x)

�
;

and

ex
2(1�y2)+x

s
1 � y

1� 2x(1 � y)
= 1 +O(x2e�2x);

leading to

expfn'(x) + a(x)g = 1 +O(qe�2x):

Comparing with the �rst part of Theorem 3, the lemma follows.

5 The proof of Theorem 4.

Let the two dimensional array b(n; k) be de�ned by the equation

d(n; q) =

 
N

q

!
en'(x)+a(x) (1 + b(n; k)) ; (5.1)

where '(x) and a(x) are given by (2.1) and (2.2). Our object is to establish an upper bound

on b(n; k). Throughout this section we shall use the three inequalities

y � 1=2; x � ln 2; and k � (2 ln 2� 1)n

interchangeably, without repeatedly remarking on the equivalence. We de�ne the function

� = �(n; q) by

� =

�
1=k; if y � 1=2,

1=n; if y > 1=2.

Substituting (5.1) into the recurrence (1.2) and dividing through by q
�
N

q

�
expfn'(x)+a(x)g,

we �nd

1 + b(n; k) = W0(1 + b(n; k � 2))

+W1(1 + b(n� 1; k � 1)) (5.2)

+W2(1 + b(n� 2; k));
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where, for example,

W1 =
n(n� 1)

�
(n�12 )
q�1

�
q
�
N

q

� exp
n
(n� 1)'

�
q�1
n�1

�
+ a

�
q�1
n�1

�
� n'(x)� a(x)

o
;

and similar quotients may be written for W0 and W2. The object of the next lemma is to

estimate each quotient Wi.

Lemma 5.1. Let the three quotients W0, W1, and W2 be de�ned as above in (5.2), let the

functions gi(x) be as introduced in (2.6) { (2.8), and let the \error terms" ei = ei(n; q) be

de�ned so that

W0 = y2 +
g0(x)

n
+ e0(n; q)

W1 = 2y(1 � y) +
g1(x)

n
+ e1(n; q)

W2 = (1 � y)2 +
g2(x)

n
+ e2(n; q):

Finally, let n2=5 � k = o(n3=2), and n!1. Then, uniformly in k, the error terms ei satisfy

ei = O(x4�2):

Proof. We shall write down details for W1. The proofs for W0 and W2 are very similar.

Starting from the identity q
�
N

q

�
= N

�
N�1

q�1

�
, it follows that

n(n� 1)
�
(n�12 )
q�1

�
q
�
N

q

� = 2

 
(n� 1)(n� 2)

n(n� 1)� 2

!q�1 q�2Y
i=0

1 � i
.�

n�1

2

�
1� i=(N � 1)

= 2 exp
n
�2x+ 2�2x2

n
+O(q4=n6)

o
: (5.3)

Since (q � 1)=(n � 1) = x+ (x� 1)=(n � 1), we have, by Taylor's formula with remainder,

exp
n
(n � 1)'

�
q�1
n�1

�
+ a

�
q�1
n�1

�
� n'(x)� a(x)

o
= exp

n
�'(x) + (x� 1)'0(x) + (x�1)2'00(x)

2n
+ (x�1)a0(x)

n
+ E1

o
; (5.4)

where

E1 =
1
2
(x� 1)2'00(x) + (x� 1)a0(x)

n(n� 1)

+
(x� 1)3'000(�)

6(n � 1)2
+

(x� 1)2a00(�)

2(n� 1)2
;

with � and � known to be between x and x+ (x� 1)=(n � 1). From

(2x� 1) =
y

2
+
y2

3
+ � � � < y=2

1 � y

15



we see that

y � (2x� 1) = k=n for y � 1=2: (5.5)

If y is divided by 2 the e�ect on the corresponding x is to reduce it by more than y=4. Using

this, (5.5), and k � n2=5 when y � 1=2, and easier reasoning when y � 1=2, we see that the

y values associated with � and � are at least y=2; by Lemma 2.4 then

'000(�) = O(1=y2); a00(�) = O(1=y2):

Applying Lemma 2.4 to the other two terms in E1 we conclude

E1 = O(x3�2):

Again by Lemma 2.4,
�
1
2
(x� 1)2'00(x) + (x� 1)a0(x)

�.
n = O(x2�). We may thus expand

the \expf� � �g" term in (5.4). Recalling that y2 = e�'
0(x), we �nd

exp
n
(n� 1)'

�
q�1

n�1

�
+ a

�
q�1

n�1

�
� n'(x)� a(x)

o
(5.6)

= y2 exp f�'(x) + x'0(x)g
 
1 +

(x� 1)2'00(x)

2n
+

(x� 1)a0(x)

n
+O(x4�2)

!
:

Combining (5.3) and (5.6) yields the desired estimate of W1. The quotients W0 and W2 may

be handled similarly, and the lemma is complete.

The next lemma de�nes and bounds �ve additional error terms which are needed in the

proof of Theorem 4.

Lemma 5.2. Let A and B be real constants with 0 < A;B < 1 and let W0, W1 and W2

be as in (5.2). Let ei = ei(n; q;A;B), 3 � i � 7, be de�ned by the equations

(k � 2)A

nB
=

kA

nB

�
1� 2A

k
+ e3

�
(k � 1)A

(n� 1)B
=

kA

nB

�
1� A

k
+
B

n
+ e4

�

kA

(n� 2)B
=

kA

nB

�
1 +

2B

n
+ e5

�

W0 +W1 +W2 = 1 + e6

W0

�
1� 2A

k
+ e3

�
+ W1

�
1 � A

k
+
B

n
+ e4

�
+W2

�
1 +

2B

n
+ e5

�

= 1� 2Ay

k
+

2B(1� y)

n
+ e7:

Finally, let n2=5 � k = o
�
n3=2

�
and n!1. Then, uniformly in A;B; and q,

ei = O
�
x4�2

�
; for 3 � i � 7:
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Proof. The assertions about e3; e4; and e5 are very simple, and that about e6 follows from the

preceding lemma and the fact (Lemma 2.2) that g0(x)+g1(x)+g2(x) = 0. There remains e7.

Expand the left side of the equation which de�nes e7 to obtain the four quantities displayed

here:

W0

�
1� 2A

k
+ e3

�
+ W1

�
1 � A

k
+
B

n
+ e4

�
+W2

�
1 +

2B

n
+ e5

�

= (W0 +W1 +W2) � A

k
(2W0 +W1)

+
B

n
(W1 + 2W2) + (W0e3 +W1e4 +W2e5):

The �rst term on the right is 1+e6. For the second and third terms, we note �rst by Lemma

5.1

2W0 +W1 = 2y +
2g0(x) + g1(x)

n
+ 2e0(n; q) + e1(n; q)

W1 + 2W2 = 2(1� y) +
g1(x) + 2g2(x)

n
+ e1(n; q) + 2e2(n; q):

Using Lemma 2.4 we check that all three of gi(x) are uniformly bounded, as are the Wi by

Lemma 5.1. Since both 1=k and 1=n are O(�), we obtain the desired bound on e7 from the

known bounds on e0; : : : e6. This concludes the proof of Lemma 5.2.

Proof of Theorem 4. Let 0 < � < 2=7 be given. De�ne A = 1=7 and B = 2=7 � �. Since

1=k � kA=nB for k � n2=5, it su�ces to exhibit a constant C su�ciently large that

jb(n; k)j � C

 
1

k + 1
+
kA

nB

!
for k � n2=5 (5.7)

jb(n; k)j � C
kA

nB
for n2=5 � k � n2 � 2n: (5.8)

Let c1 be the constant given in Lemma 2.5. By Lemmas 5.1 and 5.2, there is a su�ciently

large c2 such that jeij � c2x
4�2 for 0 � i � 7 and n2=5 � k = o(n3=2). With these two

constants and � known in advance, we claim that C may be chosen as follows:

C1. Choose n0 su�ciently large that, for all n � n0,

(a) n3=5 � n2=5 + 2,

(b) (324c2=c1�)(lnn)
4 � n1=5, and

(c) (1944c2=c1�)(lnn)
5 � n.

C2. Choose C su�ciently large that (5.7) and (5.8) hold for the �nitely many pairs (n; q)

with n < n0.

C3. Choose C su�ciently large, by Theorem 2, that (5.7) and (5.8) hold provided k � n3=5.

C4. Choose C su�ciently large, by Lemma 4.1, that (5.8) holds provided x � 3 ln n.

17



C5. Choose C su�ciently large that

(a) (324c2=c1�)((lnn)
4=n�) � C for n � n0.

(b) (1944c2=c1�)((lnn)
5=n4=5+�) � C for n � n0.

We now prove that (5.7) and (5.8) hold for this choice of C, using proof by contradiction.

Assume that the set of pairs (n; q) for which one of (5.7) or (5.8) fails is nonempty, and

choose one such pair which is minimal with respect to the product partial order on N� N.

By Conditions C2, C3, and C4 we must have n � n0; k > n3=5, and x � 3 ln n. Because

(n; q�1), (n�1; q�1), and (n�2; q�1) are all smaller than (n; q) in the product partial order,

and because Condition C1(a) implies k � 2 � n2=5, k � 1 � (n � 1)2=5, and k � (n � 2)2=5,

we will have, by minimality of our counterexample,

b(n; k � 2) � C
(k � 2)A

nB

b(n� 1; k � 1) � C
(k � 1)A

(n� 1)B

b(n� 2; k) � C
kA

(n� 2)B
:

Denoting the three quantities b(n; k � 2), b(n � 1; k � 1), and b(n � 2; k) by b0, b1; and b2
respectively, we have from (5.2)

jb(n; k)j �
���XWi � 1

���+ ���XWibi
��� � ���XWi � 1

���+X
Wi jbij ;

since Wi � 0. By the de�nitions of ei in Lemma 5.2,
P
Wi � 1 = e6(n; q) and

X
Wijbij � W0 � C kA

nB

�
1 � 2A

k
+ e3

�
+W1 � C kA

nB

�
1 � A

k
+
B

n
+ e4

�

+W2 � C kA

nB

�
1 +

2B

n
+ e5

�

= C
kA

nB

 
1� 2Ay

k
+

2B(1� y)

n
+ e7(n; q)

!
;

and so, by Lemma 5.2,

jb(n; k)j � c2x
4�2 + C

kA

nB

 
1 � 2Ay

k
+

2B(1� y)

n
+ c2x

4�2

!
: (5.9)

In terms of � and � the conclusion of Lemma 2.5 may be expressed

2Ay

k
� 2B(1 � y)

n
� c1�

�nk
:

When y � 1
2
, � = 1=k, and k � n3=5, Condition C1(b) implies

c2x
4�2 � c1�

4�nk
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and Condition C5(a) implies

c2x
4�2 � C

kA

nB
c1�

4�nk
:

When y > 1=2, � = 1=n, and x � 3 lnn, Condition C1(c) implies

c2x
4�2 � c1�

4�nk
;

and Condition C5(b) implies

c2x
4�2 � C

kA

nB
c1�

4�nk
:

Thus, from (5.9),

jb(n; k)j � C
kA

nB
c1�

4�nk
+ C

kA

nB

�
1 � c1�

�nk
+

c1�

4�nk

�

= C
kA

nB

�
1� c1�

2�nk

�
;

contradicting the assumption that jb(n; k)j > CkA=nB. This completes the proof.

6 The proof of Theorems 5 and 6.

We require the following estimate for d(n+ t; q).

Lemma 6.1. Fix � > 0. Then uniformly for 1
2
+ � � x = O(1) and jtj � q2=3, we have

ln
d(n + t; q)�
N

q

�
en'(x)+a(x)

= t(2x+ '(x)� x'0(x)) + t2x2q�1(�1 + 1
2
x'00(x)) +O(q�1=7+� + jtj3q�2):

Proof. By writing

(K)q =
rY

i=�r

(K � r + i) =
rY

i=�r

((K � r)2 � i2)1=2

with r = (q � 1)=2 and routine expansion, we �nd that

ln

�
(n+t2 )
q

�
�
(n2)
q

� = 2tx� tx2(t� 2x� 1)

q
+O

 jtj3 + 1

q2

!
:

From Theorem 1, (2.4), (2.9) and the fact that ea(x) and its derivative are bounded for

x 2 [1
2
+ �;1], we have

ln
d(n+ t; q)�
N

q

�
en'(x)+a(x)

= 2tx� t2x2=q + u(n+ t)'0(x) + 1
2
u2(n+ t)'00(x) + t'(x)

+O(q�1=7+� + njuj3 + (1 + jtj)q�1 + jtj3q�2);
where u = q=(n + t) � q=n. Substituting u = �tx2=q + O(t2x3q�2), we have the required

expansion.
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We now prove Theorems 5 and 6.

Note �rst that x0 = ln 2 is a solution to the equation 2x + '(x) � x'0(x) = 0. De�ne

n0 = q=x0. Substituting into Lemma 6.1, we �nd that for jtj � q2=3 and integer n0 + t, we

have

d(n0 + t; q) =

 �
n0
2

�
q

!
(6.1)

en0'(x0)+a(x0) exp

 
� (ln 2)2t2

(1� ln 2)q

!
(1 +O(q�1=7+� + jtj3q�2)):

Applying Euler-Maclaurin summation, we �nd that

X
jtj�q2=3

d(n0 + t; q) =

 �
n0
2

�
q

!
en0'(x0)+a(x0)

q
�(1� ln 2)q

ln 2
(1 +O(q�1=7+�)):

Finally, we substitute the values of x0 and n0 with the aid of the expansion

 �
n0
2

�
q

!
=

 
eq

2x20

!q
(2�q)�1=2e�x0�x

2
0(1 +O(q�1))

to obtain X
jtj�q2=3

d(n0 + t; q) = C0(C1q)
q(1 +O(q�1=7+�)): (6.2)

It remains to be shown that larger values of t do not signi�cantly contribute. We begin

by establishing a log-concavity result. For any q > 0 and all n, de�ne

�(n; q) =

8<
:
�
N

q

�
en'(q=n); q=n > 1

2
;

0; otherwise.

Note that �(2q; q) = 0. Since

  
n

2

!
� i

!2

�
  

n� 1

2

!
� i

!  
n + 1

2

!
� i

!
;

we have  �
n

2

�
q

!2

�
 �

n�1

2

�
q

! �
n+1

2

�
q

!
:

Also, if g(z) = z'(1=z) then g00(z) = '00(1=z)=z3, which is negative for z < 2. Hence,

e2n'(q=n) � e(n�1)'(q=(n�1))e(n+1)'(q=(n+1))

for 2q > n+ 1. If �(n; q) = 0, then �(n + 1; q) = 0 and so we have

�(n; q)2 � �(n � 1; q)�(n+ 1; q) (6.3)

for all n.
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When t < �q2=3, the ratio q=(n0 + t) is strictly larger than q=n0 = log 2 > 1
2
, and so

a(q=(n0 + t)) is bounded. By Theorem 1 we have

X
t<�q2=3

d(n0 + t; q) = O(1)
X

t<�q2=3

�(n0 + t; q): (6.4)

De�ne n1 = bn0c, n2 = bn0 � q2=3c. Using Lemma 6.1 we �nd that for su�ciently large q

and some c > 0,
�(n2; q)

�(n1; q)
� e�cq

1=3

:

By (6.3), this implies that for i � 0,

�(n2 � i; q) � �(n2; q) exp(�cq1=3i=(n1 � n2))

and so, summing a geometric series,

X
i�0

�(n2 + i; q) = O(q1=3)�(n2; q) = O(q1=3e�cq
1=3

)�(n1; q) = O(q1=3e�cq
1=3

)d(n1; q):

Since d(n1; q) is a term of the sum (6.2), we see that the terms for t < �q2=3 contribute to
d(q) less than the error terms of (6.2).

For the upper tail (the sum over t > q2=3), almost the same argument applies. The range

of the sum is 2q�n0 � t > q2=3. Since �(2q; q) had been de�ned to be 0, it is necessary (and

easy) to account for d(2q; q) separately. In the remaining range, namely 2q�n0�1 � t > q2=3,

we have
q

n0 + t
� q

2q � 1
� 1

2
+

1

4q
:

Noting that a(x) is decreasing, that

2x(1 � y) =
� ln(1� y)

y
(1 � y) = 1�

 
y

2
+
y2

6
+ � � �

!
;

and that y � c1(2x � 1) for some c1 > 0, we �nd that for x = q=(n0 + t) and 2q � n0 � 1 �
t > q2=3, we have

ea(x) =

s
1 � y

1� 2x(1� y)
ex+x

2(1�y2) >
c2

y1=2
= O(q1=2)

for some c2 > 0. Replacing the O(1) term in (6.4) by O(q1=2), we may now follow the same

argument used for t < q�2=3.

Theorem 6 follows from Equation (6.1) and the tail bounds established above.
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7 Some unexplored trails.

The above results leave a lot of unanswered questions. Here are a few in what may be an

increasing order of di�culty.

1. The probability that a random graph with n vertices, q edges has exactly t isolated

vertices is  
n

t

!
d(n � t; q)

, 
N

q

!
:

When q = 1
2
n log n + �n, routine analysis shows that this is asymptotically a Poisson

distribution with parameter e�2�, as noted by Erd}os and R�enyi [3]. One might explore

the entire range from this Poisson to the normal distribution that occurs when q is

small.

2. Let G be a connected labeled graph with s vertices and t edges, and de�ne X =

X(G;n; q) to be the expected number of components isomorphic to G in a random

labeled graph with n vertices, q edges, and no isolated vertices. Then,

E(X) =
(n)s

jAut(G)jd(n � s; q � t)=d(n; q):

In this equation Aut(G) is the graph G's automorphism group. Using Theorem 1, we

can estimate E(X) uniformly. Similarly, any moment of the distribution of X can be

estimated. In many cases, this would allow us to infer a Poisson or normal asymptotic

distribution for X. A more challenging project would be to consider deeper questions

such as the point at which a large component appears when q increases.

3. For what range of q is it true that almost all (n; q) graphs without isolated vertices

have only tree and unicyclic connected components ? Preliminary calculations indicate

that the boundary is near the point x = 1
2
e=(e� 1).

4. Having no isolated vertices is the same as requiring that the minimum degree be at

least 1. Can one obtain similar results when the minimum degree is 2? (Requiring the

minimum degree to be at least t > 2 may bring in new di�culties.)

5. It might be possible to prove the stronger relative error estimate O(1=q) mentioned in

the Remark after Theorem 1 by applying our method to

 
N

q

!
expfn'(x) + a(x) +

�1(x)

n
g:

Presumably formal expansion yields a di�erential equation for �1(x). Theorem 3 prob-

ably su�ces for large x, but Theorem 2 may need to be extended to a larger range

of k with an explicit term of the form ck3=n2 in the exponential. On the other hand

perhaps there is a di�erent and better method awaiting discovery.
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6. Can our results be generalized to the case in which each component has at least t

vertices? If so, do the functions corresponding to '(x) and a(x) converge to those

found in [1] for connected graphs as t ! 1? It seems likely that '(x) will converge

but it may be too much to ask the same of a(x).

Note added in proof. It has come to our attention that A. D. Korshunov [4] has inde-

pendently studied the numbers d(n; q), and obtained a number of results. We state here his

Theorem 1.5 which is similar to the main result of our paper, (we convert his notation to

the x and y as de�ned in the present paper)

d(n; q) �
 bnzc

q

!  bnzc
n

!�1
(2�nze�2x=z(1� e�2x=z � (2x=z)e�2x=z))

�1=2
;

uniformly for q 2 [n=2 + n2=3= log n; (1=3)n log n], where z > 1 is an arbitrary number

satisfying

jz � 1=yj � (n log ne�2x)
�1=2

:

By using Stirling's formula on the binomial coe�cients, one can show the above to be con-

sistent with our Theorem 1 for q in the stated range. Korshunov has other theorems to

cover other ranges of q. His proofs proceed along di�erent lines, using probability and not

relying on the recursion as we do; he does not state explicit error bounds in his theorems.

Korshunov has worked out the distribution of the number of isolated points, and obtained

results described in unexplored area 1 above.

References

[1] Bender, E. A., E. R. Can�eld, and B. D. McKay, The asymptotic number of labeled

connected graphs with a given number of vertices and edges, Random Structures and

Algorithms 1 (1990) 127{169.

[2] Bollob�as, B. Graph Theory. An Introductory Course, Springer-Verlag (1979).

[3] Erd}os, P., and A. R�enyi, On random graphs I, J. Publ. Math. Debrecen 6 (1959) 290{297.

[4] Korshunov, A. D., On the number of graphs with a �xed number of vertices, edges, and

isolated vertices, Siberian Adv. Math. 5 (1995) no. 4, 50{112.

[5] McKay, B. D., Subgraphs of random graphs with speci�ed degrees, Congressus Numer-

antium 33 (1981) 213{223.

[6] Stein, C. M., Asymptotic evaluation of the number of latin rectangles, J. Combin.

Theory, Series A 25 (1978) 38{49.

[7] Williamson, S. G., Combinatorics for Computer Science, Computer Science Press

(1985).

23


