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Abstract

The determinant that is present in traditional formulations of multivariate Lagrange

inversion causes di�culties when one attempts (d+1)d�1 terms in contrast to the d!

terms of the determinantal form. Thus it is likely to prove useful only for asymptotic

purposes.
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1. Introduction

Many researchers have studied the Lagrange inversion formula, obtaining a variety

of proofs and extensions. Gessel [4] has collected an extensive set of references. For

more recent results see Haiman and Schmitt [6], Goulden and Kulkarni [5], and

Section 3.1 of Bergeron, Labelle, and Leroux [3].

Let boldface letters denote vectors and let a vector to a vector power be the

product of componentwise exponentiation as in x
n = xn1

1
� � �xnd

d . Let [xn]h(x)

denote the coe�cient of xn in h(x). Let kai;jk denote the determinant of the

d � d matrix with entries ai;j . A traditional formulation of multivariate Lagrange

inversion is

Theorem 1. Suppose that g(x); f1(x); � � � ; fd(x) are formal power series in x such

that fi(0) 6= 0 for 1 � i � d. Then the set of equations wi = tifi(w) for 1 � i � d

uniquely determine the wi as formal power series in t and

[tn] g(w(t)) = [xn]

�
g(x) f(x)n





�i;j � xi

fj(x)

@fj (x)

@xi






�
; (1)

where �i;j is the Kronecker delta.

If one attempts to use this formula to estimate [tn] g(w(t)) by steepest descent

or stationary phase, one �nds that the determinant vanishes near the point where

the integrand is maximized, and this can lead to di�culties as min(ni) ! 1. We

derive an alternate formulation of (1) which avoids this problem. In [2], we apply

the result to asymptotic problems.

Let D be a directed graph with vertex set V and edge set E. Let the vectors

x and f(x) be indexed by V . De�ne

@f

@D
=
Y
j2V

8<
:
� Y
(i;j)2E

@

@xi

�
fj(x)

9=
; :

We prove

Theorem 2. Suppose that g(x); f1(x); � � � ; fd(x) are formal power series in x such
that fi(0) 6= 0 for 1 � i � d. Then the set of equations wi = tifi(w) for 1 � i � d

uniquely determine the wi as formal power series in t and

[tn] g(w(t)) =
1Q
ni

[xn�1]
X
T

@(g; fn1
1

; : : : ; fnd

d )

@T
; (2)

where 1 = (1; : : : ; 1), the sum is over all trees T with V = f0; 1; : : : ; dg and edges
directed toward 0, and the vector in @=@T is indexed from 0 to d.

When d = 1, this reduces to the classical formula

[tn] g(w(t)) =
[xn�1] g0(t)f(t)n

n
:

Derivatives with respect to trees have also appeared in Bass, Connell, andWright [1].
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2. Proof of Theorem 2

Expand the determinant k�i;j � ai;jk. For each subset S of f1; : : : ; dg and each

permutation � on S, select the entries �ai;�(i) for i 2 S and �i;i for i 62 S. The sign

of the resulting term will be (�1)jSj times the sign of �. Since (i) the sign of � is

�1 to the number of even cycles in � and (ii) jSj has the same parity as the number

of odd cycles in �, it follows that

k�i;j � ai;jk =
X
S;�

(�1)c(�)
Y
i2S

ai;�(i); (3)

where c(�) is the number of cycles of � and the sum is over all S and � as described

above. (When S = ;, the product is 1 and c(�) = 0.)

Applying (3) to (1) with h0 = g; h1 = fn1
1

; : : : ; hd = fnd

d and understanding

that S � f1; : : : ; dg, we obtain

(
Q
ni) [x

n] g(w(t))

= [xn]
X
S;�

(�1)c(�)

8>><
>>:
Y
i62S
i6=0

ni �
Y
i62S

hi(x) �
Y
i2S

xini f�(i)(x)
ni�1

@f�(i)(x)

@xi

9>>=
>>;

= [xn�1]
X
S;�

(�1)c(�)

8>><
>>:
Y
i62S
i6=0

ni

xi
�
Y
i62S

hi(x) �
Y
i2S

@h�(i)(x)

@xi

9>>=
>>;

= [xn�1]
X
S;�

(�1)c(�)

8>><
>>:
�Y

i62S
i6=0

@

@xi

��Y
i62S

hi(x) �
Y
i2S

@h�(i)(x)

@xi

�
9>>=
>>;

; (4)

where, in the last line, the @=@xi operators replaced ni=xi because we are extracting

the coe�cient of xni�1

i .

If we expand a particular S; � term in (4) by distributing the partial derivative

operators, we obtain a sum of terms of the form

Y
j2V

8<
:
� Y
(i;j)2E

@

@xi

�
hj(x)

9=
; ;

where V = f0; 1; : : : ; dg and E � V � V . Since each @=@xi appears exactly once

per term, all vertices in the directed graph D = (V;E) have outdegree one, except

for vertex 0 which has outdegree zero. Thus adding the edge (0; 0) to D gives a

functional digraph. The cycles of � are among the cycles of D, and, since the @=@xi
for i 62 S can be applied to any factor, the remaining edges are arbitrary. Hence�Y

i62S
i6=0

@

@xi

��Y
i62S

hi(x) �
Y
i2S

@h�(i)(x)

@xi

�
=
X
D

@h

@D
;
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where the sum ranges over all directed graphs D on V = f0; 1; : : : ; dg such that

(i) adjoining (0; 0) produces a functional digraph and (ii) the cycles of D include �.

Denote condition (ii) by � � D. We have shown that

(
Q
ni) [x

n] g(w(t)) = [xn�1]
X
S;�

(�1)c(�)
X

D:��D

@h

@D

= [xn�1]
X
D

X
�:��D

(�1)c(�)
@h

@D
:

Since
P

��D(�1)
c(�) = 0 when D has cyclic points and is 1 otherwise, the sum

reduces to a sum over acyclic directed graphs D such that adjoining (0; 0) gives a

functional digraph. Since these are precisely the trees with edges directed toward

0, the proof is complete.
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