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Abstract

The determinant that is present in traditional formulations of multivariate Lagrange
inversion causes difficulties when one attempts (d+ 1)d_1 terms in contrast to the d!
terms of the determinantal form. Thus it is likely to prove useful only for asymptotic

purposes.
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1. Introduction

Many researchers have studied the Lagrange inversion formula, obtaining a variety
of proofs and extensions. Gessel [4] has collected an extensive set of references. For
more recent results see Haiman and Schmitt [6], Goulden and Kulkarni [5], and
Section 3.1 of Bergeron, Labelle, and Leroux [3].

Let boldface letters denote vectors and let a vector to a vector power be the
product of componentwise exponentiation as in x® = z{' ---z¢. Let [x"]h(x)
denote the coefficient of x™ in h(x). Let ||a; ;|| denote the determinant of the
d x d matrix with entries a; ;. A traditional formulation of multivariate Lagrange
inversion is

Theorem 1. Suppose that g(x), f1(x), -, fa(x) are formal power series in x such
that fi(0) # 0 for 1 < < d. Then the set of equations w; = t;fi(w) for 1 <i < d
uniquely determine the w; as formal power series in t and
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If one attempts to use this formula to estimate [t™] g(w(t)) by steepest descent
or stationary phase, one finds that the determinant vanishes near the point where
the integrand is maximized, and this can lead to difficulties as min(n;) — oo. We
derive an alternate formulation of (1) which avoids this problem. In [2], we apply
the result to asymptotic problems.

Let D be a directed graph with vertex set V and edge set E. Let the vectors
x and f(x) be indexed by V. Define

7 - (H a%)ﬁ(x)

Jjev (1,J)€E

where 0; ; is the Kronecker delta.

We prove

Theorem 2. Suppose that g(x), f1(x), -, fa(x) are formal power series in x such
that fi(0) # 0 for 1 < < d. Then the set of equations w; = t;fi(w) for 1 <i < d
uniquely determine the w; as formal power series in t and

"] g(W(t)) _ Hlni [Xn_l] Zr: 8(9, flnlaaT . :d)7 (2)

where 1 = (1,...,1), the sum is over all trees T with V ={0,1,...,d} and edges
directed toward 0, and the vector in /0T s indexed from 0 to d.

When d = 1, this reduces to the classical formula

g ()"

n

"] g(w(t)) =

Derivatives with respect to trees have also appeared in Bass, Connell, and Wright [1].
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2. Proof of Theorem 2

Expand the determinant ||¢; ; — a; j||. For each subset S of {1,...,d} and each
permutation 7 on S, select the entries —a; ~(;) for ¢ € S and é;; for 2+ € S. The sign

of the resulting term will be (—1)°l times the sign of 7. Since (i) the sign of 7 is
—1 to the number of even cycles in 7 and (ii) || has the same parity as the number
of odd cycles in 7, it follows that

16,5 — aijll = Z(—l)c(ﬂ) H i n(i) s (3)
S i€s

where ¢(7) is the number of cycles of 7 and the sum is over all S and 7 as described
above. (When S = (), the product is 1 and ¢(7) = 0.)

Applying (3) to (1) with hg = ¢, b1 = fi"",..., ha = f;* and understanding
that S C {1,...,d}, we obtain

(ITné) X"Tg(w(t))
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S, igS iZs i€s
i£0
n—1 c(m 1 ahﬂ'( )
L DI VEER § REC R [
S, igSs Ti igSs i€S
1Z£0
— [Xn—l] Z(_l)c(ﬂ') (H 0 ) (H hl H 8hn( ) ) : (4)
S igs Ozi igs €S
i£0

where, in the last line, the d/0x; operators replaced n;/x; because we are extracting
the coefficient of ™.
If we expand a particular S, 7 term in (4) by distributing the partial derivative

operators, we obtain a sum of terms of the form

(I o )

Jjev (1,J)€E

where V = {0,1,...,d} and E C V x V. Since each 0/0x; appears exactly once
per term, all vertices in the directed graph D = (V, E) have outdegree one, except
for vertex 0 which has outdegree zero. Thus adding the edge (0,0) to D gives a
functional digraph. The cycles of 7 are among the cycles of D, and, since the 9/0z;
for i € S can be applied to any factor, the remaining edges are arbitrary. Hence

a>< i 8h,r() >: oh

0
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where the sum ranges over all directed graphs D on V = {0,1,...,d} such that
(1) adjoining (0,0) produces a functional digraph and (ii) the cycles of D include 7.
Denote condition (ii) by # € D. We have shown that

([Tn:) [x™] g(w(t)) = [x" 1] Z(_l)c(ﬁ) g_;
S PACD
= [Xn—l] Z Z (_1)0(71')3_11;‘
D mmaCD

Since Eﬁcp(—l)c(”) = 0 when D has cyclic points and is 1 otherwise, the sum
reduces to a sum over acyclic directed graphs D such that adjoining (0,0) gives a
functional digraph. Since these are precisely the trees with edges directed toward

0, the proof is complete.
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