A Multivariate Lagrange Inversion Formula
for Asymptotic Calculations
Edward A. Bender
Department of Mathematics University of California, San Diego

La Jolla, CA 92093-0112, USA
ebender@ucsd.edu
L. Bruce Richmond

Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
lbrichmond@watdragon.uwaterloo.ca
Submitted: March 3, 1998
Accepted: June 30, 1998

Abstract

The determinant that is present in traditional formulations of multivariate Lagrange inversion causes difficulties when one attempts $(d+1)^{d-1}$ terms in contrast to the d ! terms of the determinantal form. Thus it is likely to prove useful only for asymptotic purposes.

1. Introduction

Many researchers have studied the Lagrange inversion formula, obtaining a variety of proofs and extensions. Gessel [4] has collected an extensive set of references. For more recent results see Haiman and Schmitt [6], Goulden and Kulkarni [5], and Section 3.1 of Bergeron, Labelle, and Leroux [3].

Let boldface letters denote vectors and let a vector to a vector power be the product of componentwise exponentiation as in $\mathbf{x}^{\mathbf{n}}=x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}$. Let $\left[\mathbf{x}^{\mathbf{n}}\right] h(\mathbf{x})$ denote the coefficient of $\mathbf{x}^{\mathbf{n}}$ in $h(\mathbf{x})$. Let $\left\|a_{i, j}\right\|$ denote the determinant of the $d \times d$ matrix with entries $a_{i, j}$. A traditional formulation of multivariate Lagrange inversion is

Theorem 1. Suppose that $g(\mathbf{x}), f_{1}(\mathbf{x}), \cdots, f_{d}(\mathbf{x})$ are formal power series in \mathbf{x} such that $f_{i}(\mathbf{0}) \neq 0$ for $1 \leq i \leq d$. Then the set of equations $w_{i}=t_{i} f_{i}(\mathbf{w})$ for $1 \leq i \leq d$ uniquely determine the w_{i} as formal power series in \mathbf{t} and

$$
\begin{equation*}
\left[\mathbf{t}^{\mathbf{n}}\right] g(\mathbf{w}(\mathbf{t}))=\left[\mathbf{x}^{\mathbf{n}}\right]\left\{g(\mathbf{x}) \mathbf{f}(\mathbf{x})^{\mathbf{n}}\left\|\delta_{i, j}-\frac{x_{i}}{f_{j}(\mathbf{x})} \frac{\partial f_{j}(\mathbf{x})}{\partial x_{i}}\right\|\right\}, \tag{1}
\end{equation*}
$$

where $\delta_{i, j}$ is the Kronecker delta.
If one attempts to use this formula to estimate $\left[\mathbf{t}^{\mathbf{n}}\right] g(\mathbf{w}(\mathbf{t}))$ by steepest descent or stationary phase, one finds that the determinant vanishes near the point where the integrand is maximized, and this can lead to difficulties as $\min \left(n_{i}\right) \rightarrow \infty$. We derive an alternate formulation of (1) which avoids this problem. In [2], we apply the result to asymptotic problems.

Let \mathcal{D} be a directed graph with vertex set V and edge set E. Let the vectors \mathbf{x} and $\mathbf{f}(\mathbf{x})$ be indexed by V. Define

$$
\frac{\partial \mathbf{f}}{\partial \mathcal{D}}=\prod_{j \in V}\left\{\left(\prod_{(i, j) \in E} \frac{\partial}{\partial x_{i}}\right) f_{j}(\mathbf{x})\right\}
$$

We prove
Theorem 2. Suppose that $g(\mathbf{x}), f_{1}(\mathbf{x}), \cdots, f_{d}(\mathbf{x})$ are formal power series in \mathbf{x} such that $f_{i}(\mathbf{0}) \neq 0$ for $1 \leq i \leq d$. Then the set of equations $w_{i}=t_{i} f_{i}(\mathbf{w})$ for $1 \leq i \leq d$ uniquely determine the w_{i} as formal power series in \mathbf{t} and

$$
\begin{equation*}
\left[\mathbf{t}^{\mathbf{n}}\right] g(\mathbf{w}(\mathbf{t}))=\frac{1}{\prod n_{i}}\left[\mathbf{x}^{\mathbf{n}-\mathbf{1}}\right] \sum_{\mathcal{T}} \frac{\partial\left(g, f_{1}^{n_{1}}, \ldots, f_{d}^{n_{d}}\right)}{\partial \mathcal{T}} \tag{2}
\end{equation*}
$$

where $\mathbf{1}=(1, \ldots, 1)$, the sum is over all trees \mathcal{T} with $V=\{0,1, \ldots, d\}$ and edges directed toward 0 , and the vector in $\partial / \partial \mathcal{T}$ is indexed from 0 to d.
When $d=1$, this reduces to the classical formula

$$
\left[t^{n}\right] g(w(t))=\frac{\left[x^{n-1}\right] g^{\prime}(t) f(t)^{n}}{n} .
$$

Derivatives with respect to trees have also appeared in Bass, Connell, and Wright [1].

2. Proof of Theorem 2

Expand the determinant $\left\|\delta_{i, j}-a_{i, j}\right\|$. For each subset S of $\{1, \ldots, d\}$ and each permutation π on S, select the entries $-a_{i, \pi(i)}$ for $i \in S$ and $\delta_{i, i}$ for $i \notin S$. The sign of the resulting term will be $(-1)^{|S|}$ times the sign of π. Since (i) the sign of π is -1 to the number of even cycles in π and (ii) $|S|$ has the same parity as the number of odd cycles in π, it follows that

$$
\begin{equation*}
\left\|\delta_{i, j}-a_{i, j}\right\|=\sum_{S, \pi}(-1)^{c(\pi)} \prod_{i \in S} a_{i, \pi(i)} \tag{3}
\end{equation*}
$$

where $c(\pi)$ is the number of cycles of π and the sum is over all S and π as described above. (When $S=\emptyset$, the product is 1 and $c(\pi)=0$.)

Applying (3) to (1) with $h_{0}=g, h_{1}=f_{1}^{n_{1}}, \ldots, h_{d}=f_{d}^{n_{d}}$ and understanding that $S \subseteq\{1, \ldots, d\}$, we obtain

$$
\begin{align*}
\left(\prod_{i}\right) & {\left[\mathbf{x}^{\mathbf{n}}\right] g(\mathbf{w}(\mathbf{t})) } \\
& =\left[\mathbf{x}^{\mathbf{n}}\right] \sum_{S, \pi}(-1)^{c(\pi)}\left\{\prod_{\substack{i \notin S \\
i \neq 0}} n_{i} \times \prod_{i \notin S} h_{i}(\mathbf{x}) \times \prod_{i \notin S} x_{i} n_{i} f_{\pi(i)}(\mathbf{x})^{n_{i}-1} \frac{\partial f_{\pi(i)}(\mathbf{x})}{\partial x_{i}}\right\} \\
& =\left[\mathbf{x}^{\mathbf{n}-\mathbf{1}}\right] \sum_{S, \pi}(-1)^{c(\pi)}\left\{\prod_{\substack{i \notin S \\
i \neq 0}} \frac{n_{i}}{x_{i}} \times \prod_{i \notin S} h_{i}(\mathbf{x}) \times \prod_{i \in S} \frac{\partial h_{\pi(i)}(\mathbf{x})}{\partial x_{i}}\right\} \\
& =\left[\mathbf{x}^{\mathbf{n}-\mathbf{1}}\right] \sum_{S, \pi}(-1)^{c(\pi)}\left\{\left(\prod_{\substack{i \notin S \\
i \neq 0}} \frac{\partial}{\partial x_{i}}\right)\left(\prod_{i \notin S} h_{i}(\mathbf{x}) \times \prod_{i \in S} \frac{\partial h_{\pi(i)}(\mathbf{x})}{\partial x_{i}}\right)\right\}, \tag{4}
\end{align*}
$$

where, in the last line, the $\partial / \partial x_{i}$ operators replaced n_{i} / x_{i} because we are extracting the coefficient of $x_{i}^{n_{i}-1}$.

If we expand a particular S, π term in (4) by distributing the partial derivative operators, we obtain a sum of terms of the form

$$
\prod_{j \in V}\left\{\left(\prod_{(i, j) \in E} \frac{\partial}{\partial x_{i}}\right) h_{j}(\mathbf{x})\right\}
$$

where $V=\{0,1, \ldots, d\}$ and $E \subset V \times V$. Since each $\partial / \partial x_{i}$ appears exactly once per term, all vertices in the directed graph $\mathcal{D}=(V, E)$ have outdegree one, except for vertex 0 which has outdegree zero. Thus adding the edge $(0,0)$ to \mathcal{D} gives a functional digraph. The cycles of π are among the cycles of \mathcal{D}, and, since the $\partial / \partial x_{i}$ for $i \notin S$ can be applied to any factor, the remaining edges are arbitrary. Hence

$$
\left(\prod_{\substack{i \notin S \\ i \neq 0}} \frac{\partial}{\partial x_{i}}\right)\left(\prod_{i \notin S} h_{i}(\mathbf{x}) \times \prod_{i \in S} \frac{\partial h_{\pi(i)}(\mathbf{x})}{\partial x_{i}}\right)=\sum_{\mathcal{D}} \frac{\partial \mathbf{h}}{\partial \mathcal{D}},
$$

where the sum ranges over all directed graphs \mathcal{D} on $V=\{0,1, \ldots, d\}$ such that (i) adjoining $(0,0)$ produces a functional digraph and (ii) the cycles of \mathcal{D} include π. Denote condition (ii) by $\pi \subseteq \mathcal{D}$. We have shown that

$$
\begin{aligned}
\left(\prod n_{i}\right)\left[\mathbf{x}^{\mathbf{n}}\right] g(\mathbf{w}(\mathbf{t})) & =\left[\mathbf{x}^{\mathbf{n}-\mathbf{1}}\right] \sum_{S, \pi}(-1)^{c(\pi)} \sum_{\mathcal{D}: \pi \subseteq \mathcal{D}} \frac{\partial \mathbf{h}}{\partial \mathcal{D}} \\
& =\left[\mathbf{x}^{\mathbf{n}-\mathbf{1}}\right] \sum_{\mathcal{D}} \sum_{\pi: \pi \subseteq \mathcal{D}}(-1)^{c(\pi)} \frac{\partial \mathbf{h}}{\partial \mathcal{D}}
\end{aligned}
$$

Since $\sum_{\pi \subseteq \mathcal{D}}(-1)^{c(\pi)}=0$ when \mathcal{D} has cyclic points and is 1 otherwise, the sum reduces to a sum over acyclic directed graphs \mathcal{D} such that adjoining (0,0) gives a functional digraph. Since these are precisely the trees with edges directed toward 0 , the proof is complete.

References

[1] H. Bass, E. H. Connell, and D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982) 287-330.
[2] E. A. Bender and L. B. Richmond, Asymptotics for multivariate Lagrange inversion, in preparation.
[3] F. Bergeron, G. Labelle, and P. Leroux (trans. by M. Readdy), Combinatorial Species and Tree-Like Structures, Encylopedia of Math. and Its Appl. Vol 67, Cambridge Univ. Press, 1998.
[4] I. M. Gessel, A combinatorial proof of the multivariate Lagrange inversion formula, J. Combin. Theory Ser. A 45 (1987) 178-195.
[5] I. P. Goulden and D. M. Kulkarni, Multivariable Lagrange invers, GesselViennot cancellation and the Matrix Tree Theorem, J. Combin. Theory Ser. A 80 (1997) 295-308.
[6] M. Haiman and W. Schmitt, Incidence algebra antipodes and Lagrange inversion in one and several variables, J. Combin. Theory Ser. A 50 (1989) 172-185.

