Montecarlo Combinatorics

or better
How to transform Probabilistic Existence Proofs
into

Constructions

Problem 1

Given an $n \times n$ matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \quad a_{i j}= \pm 1 .
$$

Construct two ± 1 vectors

$$
X=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Such that

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} y_{j} a_{i, j}\right) \geq \sqrt{\frac{2}{\pi}} \times n^{3 / 2} \tag{1}
\end{equation*}
$$

Algorithm:

Step 1 Produce a random Y, with $P\left[y_{i}= \pm 1\right]=1 / 2$
Step 2 Compute for each i the sum $S_{i}=\sum_{j=1}^{n} y_{j} a_{i, j}$
Step 3 Set $x_{i}=\operatorname{sign} S_{i}$
Step 4 Test if (1) is satisfied.

Repeat until it is

Why does this work?

This gives

$$
\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} y_{j} a_{i, j}\right)=\sum_{i=1}^{n}\left|\sum_{j=1}^{n} y_{j} a_{i, j}\right|
$$

Since for each i the random variables

$$
a_{i, 1} y_{1}, a_{i, 2} y_{1}, \ldots, a_{i, n} y_{n}
$$

are independent identically distributed and mean zero, the Central Limit Theorem gives

$$
\begin{equation*}
E\left[\left|\sum_{j=1}^{n} y_{j} a_{i, j}\right|\right] \approx \sqrt{\frac{2}{\pi}} \times n^{1 / 2} \tag{2}
\end{equation*}
$$

This suggests that if we repeat steps $1,2,3,4$ we are bound to find the desired X and Y.
How good is the approximation in (2)? This is easily verified by computing

$$
E\left[\left|\sum_{j=1}^{n} y_{j} a_{i, j}\right|\right]=\sum_{i=0}^{n}\binom{n}{i}|2 i-n| \times \frac{1}{2^{n}}
$$

Problem 2

Given a set of n integers

$$
\mathbf{S}=\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{n}}\right\}
$$

construct a "sum free" subset \mathbf{T} of cardinality $\mathbf{n} / \mathbf{3}$.
(Erdos proved that such a subset exists)

Algorithm:

Step 1 Produce a Random subset $\mathbf{T} \subseteq \mathbf{S}$
Step 2 Check if T is sum free.

Repeat until you find it.

Note: It is good to test if \mathbf{S} itself is sum free. If so we are done.
Computer experimentation with this algorithm reveals two interesting facts:
a) The overwhelming majority of cardinality $n / 3$ subsets are sum free.
b) If the integers are all positive then any subset of the largest $n / 2$ elements of S

Note: Define for a given \mathbf{S}
is very likely to be sum free.

$$
\mathbf{i}_{0}=\max \left\{\mathbf{i}: \text { there exists } k>j>i \text { such that } r_{i}+r_{j}=r_{k}\right\}
$$

By choosing at random n distinct positive integers we could not find an example for which $\mathbf{i}_{\mathbf{0}}>\mathbf{n} / \mathbf{2}$

Theorem

On 2-Colorings of the edges of Kn

For each $n>1$ there exists a 2-coloring of the edges of $\mathbf{K}_{\mathbf{n}}$ with no monochromatic a-cliques,
provided

$$
a \geq 2 \log _{2}[n]
$$

Proof

Let \mathcal{C} be a random 2-coloring of the edges of \mathbf{K}_{n} and set

$$
N(\mathcal{C})=\sum_{T \subseteq[1, n] \&|T|=a} \chi\left(K_{T} \text { is monochromatic }\right)
$$

Under a random 2-coloring \mathcal{C} the probability that the clique with vertices in T is monochromatic is

$$
2 \times \frac{1}{2^{\binom{(T)}{2}}}
$$

Thus the expected number of monochromatic a-cliques is

$$
E[N(\mathcal{C})]=\binom{n}{a} \times \frac{2}{2^{\left(\frac{a}{2}\right)}}
$$

In particular it follows that

$$
P[N(\mathcal{C}) \geq 1] \leq\binom{ n}{a} \times \frac{2}{2^{\left(\frac{a}{2}\right)}}
$$

Now it can be shown that $\binom{n}{a} \times \frac{2}{2^{(a)} 2}$ a $) ~<1$ when $a>2 \log _{2}[n]$. For such choices of a we have

$$
1-P[N(\mathcal{C}) \geq 1]=P[N(\mathcal{C})=0]>0 \quad \text { Q.E.D. }
$$

Problem 3

For a given n construct the 2-coloring of the edges of $\mathbf{K}_{\mathbf{n}}$ guaranteed by the previous theorem

Algorithm:

Step 1 Produce a Random 2-coloring of the edges of $\mathbf{K}_{\mathbf{n}}$
Step 2 Count the number of Monochromatic a-cliques.

Repeat until you get a zero count

The previous theorem guarantees that you will find the desired coloring when $a \geq 2 \log _{2}[n]$
Note: In the following table, under each $10 \leq n \leq 30$, I placed the smallest a such that

$$
\binom{n}{a} 2 \times \frac{1}{2^{(a)} 2}<1
$$

and under it I placed the ceiling of $2 \log _{2}[n]$:

$$
\left(\begin{array}{ccccccccccccccccccccc}
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
5 & 5 & 6 & 6 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 8 & 8 & 8 \\
7 & 7 & 7 & 7 & 8 & 8 & 8 & 8 & 8 & 8 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 10 & 10 & 10 & 10
\end{array}\right)
$$

In the table below, under each $1 \leq a \leq 8$, we have the value of $\quad\binom{20}{a} \frac{2}{2^{\left({ }_{2}^{a}\right)}}$

$$
\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
40 . & 190 . & 285 . & 151.406 & 30.2813 & 2.36572 & 0.0739288 & 0.00093855
\end{array}\right)
$$

In particular we see that in a random 2-coloring of the edges of $\mathbf{K}_{\mathbf{2 0}}$
we should expect to find about 30 monochromatic 5 -cliques.

