Noncommutative Real Algebraic Geometry and Its Friends

NC Real Algebraic Geometry Jaka Cimpric, Igor Klep Ljubjiana U Eric Evert UC San Diego Scott McCullough, James Pascoe University of Florida Victor Vinnikov Ben Gurion U of the Negev Jurij Volčič Texas A&M

Perfect Quantum 3 XOR games

Vern Paulsen	Waterloo
Adam Bene Watts	$MIT \to Waterloo$

Their collaborator Bill Helton UC San Diego

American Institute of Mathematics June 2021

Advertisement: Try noncommutative computation

NCAlgebra NCSoSTools Helton, de Oliveira (UCSD) Igor Klep AIM: Noncommutative Inequalities (talk by Bill)

Huge math results of the last decade have been in these areas:

Quantum Games *MIP*^{*} = *RE* J, N, V, W, Y 2020 The Connes Embedding Conjecture is false. Here: Anand Natarajan, Vern Paulsen, William Sloftsra;Mon, Anna Verschynana, Adam Bene Watts

Random Matrix Theory Kadison-Singer is True M, S, S. 2015 Here: N. Srivastava; Weds, J.G. Vargas

Invariant theory- CS: G, G, O, W 2015 Given a NC rational expression, is it identically 0? This can be determined in polynomial time.

Here: Harm Derksen, Visu Makam; Tues, Raphael Oliveira

These remarkable results had strong intersection with the rapidly developing area of

Non Commutative RAG and NC Analytic Maps

Here: Meric Augat, Eric Evert, Kate Juschenko, Igor Klep, Scott McCullough, Tim Netzer, James Pascoe Tues, Eli Shamovich, Tea Strekelj, Jurij Volčič; Tues, Victor Vinnikov Ingredients of Talk: NC polynomials

 $\mathbf{x} = (\mathbf{x}_1, \cdots, \mathbf{x}_g)$ $\mathbf{x}^* = (\mathbf{x}_1^*, \cdots, \mathbf{x}_g^*)$ noncommuting variables

Noncommutative polynomials: p(x):

Eg.
$$p(x) = x_1^* x_2 + x_2^* x_1$$

An analytic polynomial contains no x_i^* .

Evaluate p: on matrices $X = (X_1, \dots, X_g)$ a tuple of matrices. Substitute matrices for variables

$$\begin{array}{ll} \mathbf{x}_1 \mapsto \mathbf{X}_1, \, \mathbf{x}_2 \mapsto \mathbf{X}_2 & \mathbf{x}_1^* \mapsto \mathbf{X}_1^*, \, \mathbf{x}_2^* \mapsto \mathbf{X}_2^* \\ \\ \mathbf{Eg.} & \mathbf{p}(\mathbf{X}) = \mathbf{X}_1^* \mathbf{X}_2 + \mathbf{X}_2^* \mathbf{X}_1. \end{array}$$

Outline of Free (Real) Algebraic Geometry

NC (FREE) ALGEBRAIC GEOMETRY (Algebra formulas equivalent to polynomial equalities)

Let $p \in \mathbb{C} < x, x^* >$ - polys in nc variables. THREE TYPES OF ZEROES of p.

- 1. **'Hard Zeros'** p(X) = 0 for $X = (X_1, ..., X_g) \in (\mathbb{C}^{n \times n})^g$ **Eg.** $p(x) = x_1^2 + x_2^2 - 1$ $Z_{hard}(p) = \{X \mid X_1^2 + X_2^2 = I\}$. $Z_{hard}(p) := \bigcup_n \{X \in (\mathbb{C}^{n \times n})^g \mid p(X) = 0\}$
- 2. Directional Zeros

 $Z_{dir}(p) := \bigcup_n \{ (X, \psi) \in (\mathbb{C}^{n \times n})^g \times \mathbb{C}^n | p(X)\psi = 0 \}$

3. Determinantal Zeros $Z_{det}(p) = \bigcup_{n} \{ X \in (\mathbb{C}^{n \times n})^{g} | \det p(X) = 0 \}$

GENERALITY $p = \{p_1, \dots, p_k\}$ p_i can be a matrix with nc poly entries

NULLSTELLENSATZ Algebra "certificate"

= Zeros(f) \supset Zeros(p).

"well understood" for analytic poly pHard Zeros: Amitsur 1957, Bresar-Klep 2011, Shamovich etal Directional Zeros : Bergman, H-McCullough-Putinar 2007 Determinantal Zeros : H-Klep-Volcic, 2019

Directional Zeros NullSS

.

p(x) analytic means: no x_j^* appear in p: Quiz: Is $p(x) = x_1^4 + 3x_2^*$ analytic?

THM Directional Nullstellensatz (Bergman, H-McCullough-Putinar, 2007): Suppose p(x) is no analytic poly and f(x) an no poly. Then

$$Z_{dir}(f) \supset Z_{dir}(p) \iff f \in \mathcal{LI}(p)$$
 the left ideal gen by p
 $f(X)\psi = 0$ if $p(X)\psi = 0 \iff f = \mathbb{C} < \mathbf{x}, \mathbf{x}^* > p$

Quiz: Compare to Hilbert NullSS on \mathbb{C}^{g} . Hilbert's certificate is

$$f^k = hp$$
 for some k, some h

Is this the "same form" as ours?

Ex: XOR 2-players, 2-variables

The basic issue is: We are given a list of algebraic equations. Does a solution exist? Find a solution.

Def: A selfadjoint and unitary operator M is called a signature operator, $M^2 = 1$.

QUANTUM XOR: Do there exist signature matrices A_0, A_1 and B_0, B_1 and a vector $\psi \neq 0$, with all A_i commuting with all B_j which solve the equations (left sides called clauses):

$A_0B_0\psi=\psi$	$A_1B_0\psi=\psi$
$A_0B_1\psi=\psi$	$-A_1B_1\psi=\psi.$

To use NullSS set $p := \{A_0B_0 - 1, ..., A_j^2 - 1, ...\}$. $\exists p(A, B)\psi = 0$ IFF $Z_{dir}(p) \neq$ empty IFF $I \notin \mathcal{LI}(p)$ CAN NOT USE NullSS, since $A_J = A_J^*$ ETC. The polynomials 'p' are NOT analytic. They contain *.

NONCOMMUTATIVE REAL

ALGEBRAIC GEOMETRY

(Needed for self adjoint variables)

Classical RAG: compare zeros in \mathbb{R}^g of polynomials f and p. Hilbert 17^{th} 1890's Tarski-Seidenberg 1920s Dubois, Risler 1970ish

NC REAL DIRECTIONAL NULLSTELLENSATZ

Let \mathcal{A} be a pre C^* algebra (eg. a group C^* algebra) containing /. Example: $\mathcal{A} := \mathbb{C} < \mathbf{x}, \mathbf{x}^* > -$ polys in g nc variables.

Def: NC Directional Real Zeroes Fix $X \in B(H)^g$ selfadjt. Then $\pi(p) := p(X)$ is a C^* -algebra representation of \mathcal{A} into B(H).

General def.

$$egin{aligned} Z^{re}_{dir}(p) := & \{(\pi,\psi) \mid \ \pi(p)\psi = 0 \ & \text{some } C^* \ representation \ \pi : \mathcal{A} o B(H), \ \psi \in H, \ \text{all } H \} \end{aligned}$$

Let \mathcal{I} (resp. \mathcal{LI}) denote a two sided ideal (resp. left ideal) in \mathcal{A} .

$$Z_{dir}^{re}(\mathcal{LI}(p)) = Z_{dir}^{re}(p) \qquad \qquad Z_{hard}^{re}(\mathcal{I}(p)) = Z_{hard}^{re}(p)$$

NC Real NulSS

THM - **Dir Zeroes:** $Z_{dir}^{re}(\mathcal{LI})$ [Cimpric,H, McCul, Nelson 2013] $Z_{dir}^{re}(f) \supset Z_{dir}^{re}(\mathcal{LI})$ IFF

$$-f^*f \in closure[SOS_{\mathcal{A}} + \mathcal{LI} + \mathcal{LI}^*]$$
(1)

Special case f = 1. For A associated to a quantum game: $Z_{dir}^{re}(\mathcal{LI})$ is empty IFF

$$-1 \in \frac{SOS_{\mathcal{A}}}{\mathcal{L}} + \mathcal{LI} + \mathcal{LI}^* \tag{2}$$

Ex: Applies to any game to tell if is perfect (quantum solvable).

THM - Hard Zeroes: $Z_{hard}^{re}(\mathcal{I})$ For $\mathcal{A} \sim$ to a quantum game: Suppose \mathcal{I} is a *-closed 2 sided ideal.

 $Z_{hard}^{re}(\mathcal{I})$ is empty IFF $-1 \in SOS_{\mathcal{A}} + \mathcal{I}$.

Ex: Applies to all synchronous games– Vern Paulsen etal

NC Real NuISS with no SOS

Special with **NO SOS** (Groups, groups, groups) Cleve Liu Slofstra Mon - Two sided ideals

THM[Watts-Harrow-Kanwar-Natarajan 2018, Watts-H-Klep] $\mathcal{G} := \text{cntable group.}$ $\mathcal{A} = \mathbb{C}[Z_2 \times \mathcal{G}] := \text{group algebra.}$ $Z_2 := \{-1, 1\}$ $\mathcal{C} := \text{elements of } Z_2 \times \mathcal{G} \text{ (think } c_i \in \mathcal{C} \text{ has form } c_i = \pm g_i \text{ for } g_i \in \mathcal{G} \text{).}$

Let $\mathcal{LI}(\mathcal{C}-1)$ be the left ideal generated by $\{c-1 \mid c \in \mathcal{C}\}$. Then the following are equivalent:

1. $Z_{dir}^{re}(\mathcal{C}-1)$ is empty.

2.
$$1 \in \mathcal{LI}(\mathcal{C}-1) + \mathcal{LI}(\mathcal{C}-1)^*$$

- 3. $1 \in \mathcal{LI}(\mathcal{C}-1)$
- 4. $-1 \in \langle \mathcal{C} \rangle :=$ the group generated by \mathcal{C}

Example: 2XOR game revisited; CHSH

Do there exist signature matrices A_0 , A_1 and B_0 , B_1 and vector $\psi \neq 0$ with all A_i commuting with all B_j which solve the equations.

$$\begin{aligned} A_0 B_0 \psi &= \psi & A_1 B_0 \psi &= \psi \\ A_0 B_1 \psi &= \psi & -A_1 B_1 \psi &= \psi. \end{aligned}$$

These equations have no matrix or operator soln (Bell 1960's)

Real NC NullSS applies directly.

$$\mathcal{A} := \mathbb{C} < x, x^* > /\mathcal{I}$$
 where $\mathcal{I} := ideal\{A_i^2 - 1, \dots, A_iB_j - B_jA_i = 0\}$

The issue is $1 \in \mathcal{LI}_{\mathcal{A}}(\mathcal{C}-1)$?

$$\mathcal{C} := \{ a_0 b_0, \ a_1 b_0, \ a_0 b_1, \ -a_1 b_1 \}$$

This is easy to test, say, using a noncommutative (left) Groebner Basis type algorithm. Advertisement: Use NCAlgebra Not solvable (not perfect) games.

A measure *b* of how close to solvable a game Γ is: the average of its (signed) clauses. Eg for CHSH

$$b(A, B) := \frac{1}{4} (+A_0B_0 + A_1B_0 + A_0B_1 - A_1B_1)$$

Then the quantum value of the game Γ is

$$Val(\Gamma) := \max_{A,B,|u|=1} u^* b(A,B)u$$

1. $Val(\Gamma) = 1 \iff$ the eqs have a solution (perfect),, since for all words $||A_iB_j|| \le 1$ and b averages them.

2. Games with (robustly) unique solutions are important, called self testing games. Key in Connes Counter example.

CLASSICAL: Find a 1 dim soln. Same as

$$A_i = \pm 1, \quad B_j = \pm 1 \quad \psi = 1.$$

This example is a classic: the CHSH game

ANS: (CHSH) (Bell 1964)

- 1. $Val(CHSH) = \frac{\sqrt{2}}{2}$ and soln matrices are 4×4
- 2. ClassicalVal(CHSH) = $\frac{1}{2}$

Quantum Advantage := $\frac{Val(CHSH)}{ClassicalVal(CHSH)} = \sqrt{2}$

Historically super important: An experiment violated the Bell inequality thus validating quantum entanglement.

Outline of talk

NC (Free) Algebraic Geometry NC Nullstellensatze NC Real Nullstellensatze A certificate without SOSs

XOR games 2 Player XOR games

3 Player XOR Games

NC RAG Positivstellensatz: Convexity NC Convexity and LMIs Enginering Motivation NC (Free) Extreme Points NC Positivstellensatz

3 XOR GAMES

Advertisement: XOR games package for quantum games Needs Mathematica Igor Klep, Zehong Zhao, Zinan Hu, Bill Helton Mauricio de Oliveira

write Bill at helton at ucsd dot edu

3XOR Setting

Group \mathcal{G} with generators:: Selfadjoint A_i, B_j, C_k i, j, k = 1, ..., m and σ and defining relations:

> $A_i^2 = B_j^2 = C_k^2 = I$ Players commute eg. $A_i B_j A_i^{-1} B_j^{-1} = I$ $\sigma^2 = 1$ and σ commutes everything think $\sigma = \pm 1$

A particular game is defined by a set ${\mathcal C}$ of signed words (called clauses)

$$c_1 := \sigma^{t_1} A_{a_1} B_{b_1} C_{c_1}, \quad \dots, \quad c_e := \sigma^{t_e} A_{a_e} B_{b_e} C_{c_e}?$$

The point is we are given words with signs. Can we solve the corresponding matrix (or operator) equations:

$$(-1)^{t_1} A_{a_1} B_{b_1} C_{c_1} \psi = \psi, \quad \dots \quad (-1)^{t_e} A_{a_e} B_{b_e} C_{c_e} \psi = \psi$$

3XOR perfection in polynomial time

Proof: Tricky long algebraic

HISTORICAL LANDMARKS FOR XOR games

- 1. Bell 1964 CHSH game, by another name
- 2. Two player XOR games are 'completely' understood by Tsierlson 1987:
 - 2.1 Finding value of a 2 player game can be done by solving a Linear Matrix Inequality, (Its an SDP)
 - 2.2 Quantum advantage \leq real Grothendieck constant \leq 2
 - 2.3 Whether or not a game is solvable (aka. perfect) can be decided in polynomial time.(do not need SDP)
 - 2.4 This study originated the famous Tsierlson Conjecture, later proved equivalent to Connes Embedding Conjecture.

1. Three player not perfect games, 3 XOR

- 1.1 Determining the optimal value of a not perfect 3 player game is "thought" to be NP hard to approximate. Vidick 2013. But is OPEN.
- 1.2 The quantum advantage can go to ∞ as the number of variables *m* and dimension of the matrices A_i, B_j, C_ℓ go to ∞ . Briet and Vidick 2012, Pérez-Garcia ... Junge 2008 respectively.

Perfect 3 player XOR games. THM [Watts + H; arXiv 2020]

- 1. Given any 3XOR game, whether or not a (perfect) quantum solution exists can be decided in polynomial time. (Previously this problem was not known to be decidable.)
- 2. If there is a solution, then there is a "fairly explicit" solution with A_i, B_j, C_ℓ which are 8×8 matrices.
- 3. The quantum advantage of a perfect quantum solution is ≤ 8

Proof: Tricky (long) calculation on top of previous NullSS.

Our path

NC Positiv stellen satz NC Nullstellen satz f(x) 15 PSD 15 p(x)15 PsD Zeroslf) > Zeros(p) Finite $f = SoS + \Sigma h, ph$ -ff=Sos + hp+pt f= hp NOT PERFECT Quantum Games No SOS terms: Group Algebra's and special p PosSS gives sharp upper bound On the value of 3XOR a quantum game. PERFECT QUANTUM Dotrerty, Liang, Toner, Webner 2008 STRATEGIES Navascues, Pironio, Acin 2008 Tracial H, McCullongh 2004 nomials

NC RAG and Convexity

NC Linear Matrix Inequalities

NC LINEAR MATRIX INEQUALITIES LMIs GIVEN a monic symmetric linear pencil

$$L(\mathbf{x}) := I + L_1 \mathbf{x}_1 + \dots + L_g \mathbf{x}_g$$

Recall evaluation on $X = (X_1, \ldots, X)$

$$L(\mathbf{X}) := I + L_1 \otimes \mathbf{X}_1 + \dots + L_g \otimes \mathbf{X}_g$$

Example

$$\left(\begin{array}{rrr}1 & 2\\3 & 5\end{array}\right)\otimes \mathbf{X} = \left(\begin{array}{rrr}1\mathbf{X} & 2\mathbf{X}\\3\mathbf{X} & 5\mathbf{X}\end{array}\right)$$

CONVEX SETS: have LMI representations

THM: [McCullough-H 2012, Kriel 2017] SUPPOSE p is an nc symmetric poly, $p(0) \succ 0$ and D_p bounded. THEN

 $\mathcal{D}_p^n := compt_0 \{ X \in (\mathbb{R}^{n \times n})^g : p(X) \succ 0 \}$ is a convex set for each n

IFF

 \mathcal{D}_p is a free spectrahedron, that is, there is a monic symmetric linear pencil L(x) which "represents" \mathcal{D}_p as

$$\mathcal{D}_p = \mathcal{D}_L.$$

A "free convex set" ${\cal D}$ has an operator coefficient LMI rep. [Effros - Winkler \sim 1999].

A Motivation: Linear Systems give fancy nc polynomials

Convexity is very important.

Linear Systems and Algebra Synopsis

A Signal Flow Diagram with L^2 based performance, eg H^{∞} gives precisely a nc polynomial

$$p(a, \mathbf{x}) := \begin{pmatrix} p_{11}(a, \mathbf{x}) & \cdots & p_{1k}(a, \mathbf{x}) \\ \vdots & \ddots & \vdots \\ p_{k1}(a, \mathbf{x}) & \cdots & p_{kk}(a, \mathbf{x}) \end{pmatrix}$$

Such linear systems problems become exactly:

Given matrices A. Find matrices X so that p(A, X) is PosSemiDef.

The (SAD FOR ENGINEERING) MORAL OF THE STORY

THM Hay-H-Lim-McC 2008 A CONVEX in X. problem specified entirely by signal flow diagrams and L^2 performance has

p with degree ≤ 2 in *x*.

Hybrid free/classical problems

1. $\[Gamma]$ convexity p(a, x) is much more general than just convexity in x convexity but has many good properties. Jury, Klep, Mancuso, McC, Pascoe Tues, arXIv 2019

2. Maximize a linear functional ℓ over C(n), level n of free convex set $C := \{X \mid p(X) \succ 0\}$.

$$X^\ell := M$$
aximizer $_{oldsymbol{X} \in \mathcal{C}(n)} \quad \ell(oldsymbol{X})$

What are the properties of the optimixer X^{ℓ} ? Not a free problem because *n* is fixed. **Open Question** Does the 'free part of the structure' of this problem influence the outcome?

Max of ℓ occurs on extreme point BUT there are 3 natural kinds of extreme points

ordinary extreme \supset matrix extreme \supset free extreme

Experimental Finding Evert Fu, H, Yin 2020 Yes Maximizer is:

- 1. (provably an ordinary extreme pt with prob = 1)
- 2. for $g \le d$ a free extreme point with super high probability

FREE RAG: Ex. Convex Positivstellensatz

THM Convex PosSS (H-K-McCullough Advances 2013) SUPPOSE q is a nc sym polynomial and L is monic linear pencil with \mathcal{D}_L bounded. THEN

$$q(X) \succeq 0$$
 if $L(X) \succeq 0$

for X being tuples of matrices if and only if

$$q(\mathbf{x}) = \sum_{j=1}^{\kappa} \mathbf{W}_j(\mathbf{x})^* L(\mathbf{x}) \mathbf{W}_j(\mathbf{x}),$$

where *H* is a finite dim space and W_j are matrix nc polynomials on \mathcal{D}_L with $degW_j = \lfloor \frac{deg \ q}{2} \rfloor$.

Convex posSS for q degree $1 \sim \Longleftrightarrow \sim$ Steinspring-Arveson -Kraus CP (fin dim) map theory

THM True for *q* rational (Pascoe, arXiv 2017, Volcic).

FREE RAG: Ex. A General Positivstellensatz

THM General PosSS (H-McCullough 2004) SUPPOSE q is a nc sym polynomial and $\{X | p(X) \succeq 0\}$ is bounded. THEN

$$q(\mathbf{X}) \succeq 0$$
 if $p(\mathbf{X}) \succeq 0$

for X being tuples of operators if and only if for $\epsilon \ge 0$

$$q(\mathbf{x}) + \epsilon = SOS^{\epsilon} + \sum_{j=1}^{\kappa} W_j^{\epsilon}(\mathbf{x})^* p(\mathbf{x}) W_j^{\epsilon}(\mathbf{x}),$$

 W_i^{ϵ} are matrices of nc polynomials.

NCSOS Tools Matlab package by Igor Klep et al

NPA Hierarchy

Recall Example CHSH game. The quantum value of the game Γ is

$$Val(\Gamma) := \sup_{A,B,|u|=1} u^* b(A,B)u$$
 where

 $b(A,B) := (+A_0B_0 + A_1B_0 + A_0B_1 - A_1B_1)/4$

That is $Val(\Gamma)I - b(A, B) \succeq 0$ sharply. By free PosSS for $\epsilon \downarrow 0$

$$Val(\Gamma) - b + \epsilon = \frac{SOS^{\epsilon}}{\sum_{j=1}^{\kappa} W_j^{\epsilon^*} \rho W_j^{\epsilon}},$$

where $p := \{\pm (A_j^2 - 1), \pm (B_j^2 - 1), \pm (A_j B_k - B_k A_j)\}.$

 $Val(\Gamma) - b + \epsilon = SOS^{\epsilon} + Ideal(p)$ this an '\infty' SDP

NPA 2008 Navascués-Pironio- Acín 2008 and Doherty-Liangand -Toner- Wehner 2008

Tracial PosSS

THM Klep-Schweighoffer 2009

 $Trace(q(X)) \ge 0$ on $\{X \mid p(X) \succeq 0\}$, a 'bounded' set. where X is in a vN algebra having a trace.

IFF For each $\epsilon > 0$

$$q + \epsilon = SOS^{\epsilon} + \sum_{j=1}^{\kappa} W_{j}^{\epsilon^{*}} p W_{j}^{\epsilon} + \sum_{j=1}^{\tilde{k}} Commutator_{j}$$

Much recent progress by: Klep Macron Spenko Volcic, Tues on mixtures of polys and traces like $f(x) = p_1 tr(q_1) + tr(q_2)p_2$

THM V. Paulsen, et. al. 2016 Every synchronous (2-player) game has value function of the from:

$$Val(\Gamma) := \max_{oldsymbol{X} \in \mathcal{D}_p} \ Trace \ b(oldsymbol{X})$$

Synchronus game Γ Examples The $MIP^* = RE$ treats perfect synchronous games. Graph coloring games are synchronous. NC RAG not mentioned in my talk, but well represented at AIM

- 1. NC Analytic Functions Theory-Interpolation Shamovic, Vinnikov
- 2. Noncommutative Bianalytic maps
 - 2.1 Polynomial Maps (Jacobian Conjecture) - Meric Augat
 - 2.2 Classify maps f of Free Convex sets: f : C onto some \tilde{C} McCullough, Klep, Volcic, H
 - 2.3 Convex functions composed with analytic, a.k.a NC Plurisubharmonic — McCullough, Klep, Volcic, H; Pascoe

(Commutative) determinantal representations of polynomials — H, Vinnikov, Srivastava

THANKS FOR CHECKING OUT THIS TALK

AND

ENJOY AIM

Ideas in the proof of perfect 3XOR Thm

Reminder:

The **3XOR Group** \mathcal{G} is the group with selfadjoint generators

$$A_i, B_j, C_k$$
 $i, j, k = 1, \dots, m$ and σ

and defining relations:

$$A_i^2 = B_j^2 = C_k^2 = 1$$

Players commute eg. $A_i B_j A_i^{-1} B_j^{-1} = 1$
 $\sigma^2 = 1$ and σ commutes everything, think $\sigma = -1$
All 3XOR games live in \mathcal{G} .

A particular game is defined by words (called clauses)

$$\mathcal{C} := \{ c_1 := \sigma^{t_1} A_{a_1} B_{b_1} C_{c_1}, \dots, c_e := \sigma^{t_e} A_{a_e} B_{b_e} C_{c_e} \}$$

The point is we are given words with signs. The Clause subgroup $\langle C \rangle$ of G is the subgroup generated by the clauses $C := \{c_1, \ldots, c_e\}$.

Part I:

THM (Watts, Harrow, Kanwar, Natarajan; arXiv2018) A k- XOR game has no solution IFF σ is in $\langle C \rangle$. Thus the key issue is the subgroup membership problem for the group \mathcal{G} .

Sadly, there exist subgroups BAD of G where determining if a word w is in BAD is undecidable.

Part II:

 $\mathcal{G}^{\mathcal{E}} :=$ Even subgroup of \mathcal{G} , is all even length words in \mathcal{G} . $\langle \mathcal{C} \rangle^{\mathcal{E}} :=$ Even subgroup of $\langle \mathcal{C} \rangle$, all even length words in $\langle \mathcal{C} \rangle$.

Define \mathcal{K} , to be the normal subgroup of $\mathcal{G}^{\mathcal{E}}$ generated by the commutator subgroup of $\mathcal{G}^{\mathcal{E}}$; its generators are

 $[A_iA_j, A_kA_\ell], \ [B_iB_j, B_kB_\ell], \ [C_iC_j, C_kC_\ell] \in \mathcal{K}$

THM [Watts, H arXiv 2020] A 3XOR game has no solution IFF σ is in $\langle C \rangle^E \mod K$. PF: Hard:

The (multi) graph associated to the clauses.

COR This subgroup membership problem is decidable in polynomial time, since G^{E}/\mathcal{K} is a commutative group (finitely generated). (Classical fact)

QED

MERP Solution to 3XOR

1. Moreover, if a (perfect) quantum solution to a 3XOR game exists, then an 8 dimensional solution exists of the tensor form

 $A_i := M_{a_i} \otimes I_2 \otimes I_2$, $B_i := I_2 \otimes M_{b_i} \otimes I_2$ $C_i := I_2 \otimes I_2 \otimes M_{c_i}$ where each M_{*_i} is a 2 × 2 signature matrix (a qubit) and the solution vector ψ is

$$\psi = rac{1}{\sqrt{2}}(1,0,0,0,0,0,0,0,1)^{ au}$$

2. (More detail) The matrices $M_{a_i} M_{b_j}$, M_{c_ℓ} have the form

$$M_* = \exp(i\theta\sigma_z)\sigma_x \exp(-i\theta\sigma_z) \tag{3}$$

for some $\theta's$ which depend on a_i, b_j, c_ℓ . Here σ_x, σ_z are the Pauli X and Z matrices: $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, **PF of MERP** comes from WHKN2018: if a solution exists mod *K*, then there is a MERP solution.

PF quantum advantage ≤ 8 was previously known for any solution based on a state ψ of the form

$$\psi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (1, 0, 0, 0, 0, 0, 0, 1)$$

MERP solution satisfies this.