Noncommutative Real Algebraic Geometry and Its Friends

NC Real Algebraic Geometry
Jaka Cimpric, Igor Klep Ljubjiana U
Eric Evert UC San Diego
Scott McCullough, James Pascoe University of Florida
Victor Vinnikov Ben Gurion U of the Negev
Jurij Volčič Texas A\&M
Perfect Quantum 3 XOR games
Vern Paulsen Waterloo
Adam Bene Watts MIT \rightarrow Waterloo

Their collaborator Bill Helton UC San Diego

American Institute of Mathematics

 June 2021Advertisement: Try noncommutative computation
NCAlgebra NCSoSTools
Helton, de Oliveira (UCSD) Igor Klep

AIM: Noncommutative Inequalities (talk by Bill)

Huge math results of the last decade have been in these areas:
Quantum Games MIP* $=$ RE J, N, V, W, Y 2020
The Connes Embedding Conjecture is false.
Here: Anand Natarajan, Vern Paulsen, William Sloftsra;Mon, Anna Verschynana, Adam Bene Watts

Random Matrix Theory Kadison-Singer is True M, S, S. 2015 Here: N. Srivastava; Weds, J.G. Vargas

Invariant theory- CS: G, G, O, W 2015
Given a NC rational expression, is it identically 0 ? This can be determined in polynomial time.
Here: Harm Derksen, Visu Makam; Tues, Raphael Oliveira

These remarkable results had strong intersection with the rapidly developing area of

Non Commutative RAG and NC Analytic Maps

Here: Meric Augat, Eric Evert, Kate Juschenko, Igor Klep, Scott McCullough, Tim Netzer, James Pascoe Tues, Eli Shamovich, Tea Strekelj, Jurij Volčič; Tues, Victor Vinnikov

Ingredients of Talk: NC polynomials
$x=\left(x_{1}, \cdots, x_{g}\right) \quad x^{*}=\left(x_{1}^{*}, \cdots, x_{g}^{*}\right)$ noncommuting variables
Noncommutative polynomials: $\boldsymbol{p}(x)$:

$$
\text { Eg. } \quad p(x)=x_{1}^{*} x_{2}+x_{2}^{*} x_{1}
$$

An analytic polynomial contains no x_{j}^{*}.
Evaluate p : on matrices $X=\left(X_{1}, \cdots, X_{g}\right)$ a tuple of matrices.
Substitute matrices for variables

$$
x_{1} \mapsto X_{1}, x_{2} \mapsto X_{2} \quad x_{1}^{*} \mapsto X_{1}^{*}, x_{2}^{*} \mapsto X_{2}^{*}
$$

Eg. $\quad p(X)=X_{1}^{*} X_{2}+X_{2}^{*} X_{1}$.

Outline of Free (Real) Algebraic Geometry

NC (FREE) ALGEBRAIC GEOMETRY

(Algebra formulas equivalent to polynomial equalities)

Let $p \in \mathbb{C}<\mathbf{x}, \mathbf{x}^{*}>$ - polys in $\mathbf{n c}$ variables.

THREE TYPES OF ZEROES of p.

1. 'Hard Zeros' $p(X)=0$ for $X=\left(X_{1}, \ldots, X_{g}\right) \in\left(\mathbb{C}^{n \times n}\right)^{g}$ Eg. $p(x)=x_{1}^{2}+x_{2}^{2}-1 \quad Z_{\text {hard }}(p)=\left\{X \mid X_{1}^{2}+X_{2}^{2}=I\right\}$

- $Z_{\text {hard }}(p):=\bigcup_{n}\left\{X \in\left(\mathbb{C}^{n \times n}\right)^{g} \mid \quad p(X)=0\right\}$

2. Directional Zeros
$Z_{\text {dir }}(p):=\bigcup_{n}\left\{(X, \psi) \in\left(\mathbb{C}^{n \times n}\right)^{g} \times \mathbb{C}^{n} \mid \quad p(X) \psi=0\right\}$
3. Determinantal Zeros
$Z_{\text {det }}(p)=\bigcup_{n}\left\{X \in\left(\mathbb{C}^{n \times n}\right)^{g} \mid \quad \operatorname{det} p(X)=0\right\}$
GENERALITY $p=\left\{p_{1}, \cdots, p_{k}\right\}$
p_{i} can be a matrix with nc poly entries
NULLSTELLENSATZ Algebra "certificate"
$=\operatorname{Zeros}(f) \supset \operatorname{Zeros}(p)$.
"well understood" for analytic poly p
Hard Zeros: Amitsur 1957, Bresar-Klep 2011, Shamovich etal Directional Zeros: Bergman, H-McCullough-Putinar 2007 Determinantal Zeros: H-Klep-Volcic, 2019

Directional Zeros NullSS

$p(x)$ analytic means: no x_{j}^{*} appear in p :
Quiz: Is $p(x)=x_{1}^{4}+3 x_{2}^{*}$ analytic?
THM Directional Nullstellensatz (Bergman, $\boldsymbol{\mathrm { H }}$-McCullough-Putinar, 2007): Suppose $p(x)$ is nc analytic poly and $f(x)$ an nc poly. Then

$$
\begin{aligned}
Z_{\text {dir }}(f) \supset Z_{\text {dir }}(p) & \Longleftrightarrow f \in \mathcal{L I}(p) \text { the left ideal gen by } p \\
f(X) \psi=0 \quad \text { if } p(X) \psi=0 & \Longleftrightarrow f=\mathbb{C}<\mathbf{x}, \mathbf{x}^{*}>p
\end{aligned}
$$

Quiz: Compare to Hilbert NullSS on \mathbb{C}^{g}. Hilbert's certificate is

$$
f^{k}=h p \text { for some } k \text {, some } h
$$

Is this the "same form" as ours?
COR $\quad Z_{\text {dir }}(p)=$ empty $\quad \Longleftrightarrow \quad 1 \in \mathbb{C}<\mathbf{x}, \mathbf{x}^{*}>p$

Ex: XOR 2-players, 2-variables

The basic issue is: We are given a list of algebraic equations. Does a solution exist? Find a solution.

Def: A selfadjoint and unitary operator M is called a signature operator, $M^{2}=1$.

QUANTUM XOR : Do there exist signature matrices A_{0}, A_{1} and B_{0}, B_{1} and a vector $\psi \neq 0$, with all A_{i} commuting with all B_{j} which solve the equations (left sides called clauses):

$$
\begin{aligned}
& A_{0} B_{0} \psi=\psi \\
& A_{0} B_{1} \psi=\psi
\end{aligned}
$$

$$
\begin{aligned}
A_{1} B_{0} \psi & =\psi \\
-A_{1} B_{1} \psi & =\psi
\end{aligned}
$$

To use NullSS set $p:=\left\{A_{0} B_{0}-1, \ldots, A_{j}^{2}-1, \ldots\right\}$.
$\exists p(A, B) \psi=0 \quad$ IFF $Z_{\text {dir }}(p) \neq$ empty IFF $I \notin \mathcal{L I}(p)$
CAN NOT USE NullSS, since $A_{J}=A_{J}^{*}$ ETC. The polynomials ' p ' are NOT analytic. They contain *.

NONCOMMUTATIVE REAL
 ALGEBRAIC 'GEOMETRY

(Needed for self adjoint variables)
Classical RAG: compare zeros in \mathbb{R}^{g} of polynomials f and p. Hilbert $17^{\text {th }}$ 1890's Tarski-Seidenberg 1920s Dubois, Risler 1970ish

NC REAL DIRECTIONAL NULLSTELLENSATZ

Let \mathcal{A} be a pre C^{*} algebra (eg. a group C^{*} algebra) containing I. Exanple: $\mathcal{A}:=\mathbb{C}<\mathbf{x}, \mathbf{x}^{*}>$ - polys in g nc variables.

Def: NC Directional Real Zeroes
Fix $X \in B(H)^{g}$ selfadjt.
Then $\pi(p):=p(X)$ is a C^{*}-algebra representation of \mathcal{A} into $B(H)$.
General def.

$$
\begin{aligned}
Z_{\text {dir }}^{r e}(p):= & \{(\pi, \psi) \mid \quad \pi(p) \psi=0 \\
& \text { some } \left.C^{*} \text { representation } \pi: \mathcal{A} \rightarrow B(H), \quad \psi \in H, \text { all } H\right\}
\end{aligned}
$$

Let \mathcal{I} (resp. $\mathcal{L I}$) denote a two sided ideal (resp. left ideal) in \mathcal{A}.

$$
Z_{\text {dir }}^{\text {re }}(\mathcal{L I}(p))=Z_{\text {dir }}^{\text {re }}(p) \quad Z_{\text {hard }}^{\text {re }}(\mathcal{I}(p))=Z_{\text {hard }}^{\text {re }}(p)
$$

NC Real NuISS

THM - Dir Zeroes: $Z_{\text {dir }}^{\text {re }}(\mathcal{L I})$ [Cimpric,H, McCul, Nelson 2013] $Z_{\text {dir }}^{\text {re }}(f) \supset Z_{\text {dir }}^{\text {re }}(\mathcal{L I}) \quad$ IFF

$$
\begin{equation*}
-f^{*} f \in \text { closure }\left[S O S_{\mathcal{A}}+\mathcal{L I}+\mathcal{L I}^{*}\right] \tag{1}
\end{equation*}
$$

Special case $f=1$. For \mathcal{A} associated to a quantum game: $Z_{\text {dir }}^{\text {re }}(\mathcal{L I})$ is empty IFF

$$
\begin{equation*}
-1 \in \operatorname{SOS}_{\mathcal{A}}+\mathcal{L I}+\mathcal{L I}^{*} \tag{2}
\end{equation*}
$$

Ex: Applies to any game to tell if is perfect (quantum solvable).
THM - Hard Zeroes: $Z_{\text {hard }}^{\text {re }}(\mathcal{I})$ For $\mathcal{A} \sim$ to a quantum game: Suppose \mathcal{I} is a *-closed 2 sided ideal.

$$
Z_{\text {hard }}^{r e}(\mathcal{I}) \text { is empty } \quad \text { IFF } \quad-1 \in \operatorname{SOS}_{\mathcal{A}}+\mathcal{I} .
$$

Ex: Applies to all synchronous games- Vern Paulsen etal

NC Real NulSS with no SOS

Special with no SOS (Groups, groups, groups)
Cleve Liu Slofstra Mon -Two sided ideals
THM[Watts-Harrow-Kanwar-Natarajan 2018, Watts-H-Klep]
$\mathcal{G}:=$ cntable group. $\mathcal{A}=\mathbb{C}\left[Z_{2} \times \mathcal{G}\right]:=$ group algebra.
$Z_{2}:=\{-1,1\}$
$\mathcal{C}:=$ elements of $Z_{2} \times \mathcal{G}$ (think $c_{i} \in \mathcal{C}$ has form $c_{i}= \pm g_{i}$ for $\left.g_{i} \in \mathcal{G}\right)$.

Let $\mathcal{L I}(\mathcal{C}-1)$ be the left ideal generated by $\{c-1 \mid c \in \mathcal{C}\}$. Then the following are equivalent:

1. $Z_{\text {dir }}^{\text {re }}(\mathcal{C}-1)$ is empty.
2. $1 \in \mathcal{L I}(\mathcal{C}-1)+\mathcal{L I}(\mathcal{C}-1)^{*}$
3. $1 \in \mathcal{L I}(\mathcal{C}-1)$
4. $-1 \in\langle\mathcal{C}\rangle:=$ the group generated by \mathcal{C}

Example: 2XOR game revisited; CHSH

Do there exist signature matrices A_{0}, A_{1} and B_{0}, B_{1} and vector $\psi \neq 0$ with all A_{i} commuting with all B_{j} which solve the equations.

$$
\begin{aligned}
& A_{0} B_{0} \psi=\psi \\
& A_{0} B_{1} \psi=\psi
\end{aligned}
$$

$$
\begin{aligned}
A_{1} B_{0} \psi & =\psi \\
-A_{1} B_{1} \psi & =\psi .
\end{aligned}
$$

These equations have no matrix or operator soln (Bell 1960's)
Real NC NullSS applies directly.

$$
\mathcal{A}:=\mathbb{C}<x, x^{*}>/ \mathcal{I} \text { where } \mathcal{I}:=\operatorname{ideal}\left\{A_{i}^{2}-1, \ldots A_{i} B_{j}-B_{j} A_{i}=0\right\}
$$

The issue is $1 \in \mathcal{L I}_{\mathcal{A}}(\mathcal{C}-1)$?

$$
\mathcal{C}:=\left\{a_{0} b_{0}, a_{1} b_{0}, a_{0} b_{1},-a_{1} b_{1}\right\}
$$

This is easy to test, say, using a noncommutative (left) Groebner Basis type algorithm.
Advertisement: Use NCAlgebra

Not solvable (not perfect) games.

A measure b of how close to solvable a game「 is: the average of its (signed) clauses. Eg for CHSH

$$
b(A, B):=\frac{1}{4}\left(+A_{0} B_{0}+A_{1} B_{0}+A_{0} B_{1}-A_{1} B_{1}\right)
$$

Then the quantum value of the game Γ is

$$
\operatorname{Val}(\Gamma):=\max _{A, B,|u|=1} u^{*} b(A, B) u
$$

1. $\operatorname{Val}(\Gamma)=1 \Longleftrightarrow$ the eqs have a solution (perfect), since for all words $\left\|A_{i} B_{j}\right\| \leq 1$ and b averages them.
2. Games with (robustly) unique solutions are important, called self testing games. Key in Connes Counter example.

CLASSICAL: Find a 1 dim soln. Same as

$$
A_{i}= \pm 1, \quad B_{j}= \pm 1 \quad \psi=1
$$

This example is a classic: the CHSH game

ANS: (CHSH) (Bell 1964)

1. $\operatorname{Val}(C H S H)=\frac{\sqrt{2}}{2}$ and soln matrices are 4×4
2. ClassicalVal(CHSH) $=\frac{1}{2}$

Quantum Advantage $:=\frac{\mathrm{Val(CHSH})}{\operatorname{ClassicalVal(CHSH)}}=\sqrt{2}$
Historically super important: An experiment violated the Bell inequality thus validating quantum entanglement.

Outline of talk

NC (Free) Algebraic Geometry
NC Nullstellensatze
NC Real Nullstellensatze
A certificate without SOSs

XOR games
2 Player XOR games
3 Player XOR Games

NC RAG Positivstellensatz: Convexity
NC Convexity and LMIs
Enginering Motivation
NC (Free) Extreme Points
NC Positivstellensatz

3 XOR GAMES

Advertisement: XOR games package for quantum games Needs Mathematica
Igor Klep, Zehong Zhao, Zinan Hu, Bill Helton Mauricio de Oliveira
write Bill at helton at ucsd dot edu

Nonlocal Games

3XOR Setting
Group \mathcal{G} with generators::
Selfadjoint $A_{i}, B_{j}, C_{k} \quad i, j, k=1, \ldots, m$ and σ
and defining relations:

$$
A_{i}^{2}=B_{j}^{2}=C_{k}^{2}=I
$$

Players commute eg. $\quad A_{i} B_{j} A_{i}^{-1} B_{j}^{-1}=I$
$\sigma^{2}=1$ and σ commutes everything think $\sigma= \pm 1$

A particular game is defined by a set \mathcal{C} of signed words (called clauses)

$$
c_{1}:=\sigma^{t_{1}} A_{a_{1}} B_{b_{1}} C_{c_{1}}, \quad \ldots, \quad c_{e}:=\sigma^{t_{e}} A_{a_{e}} B_{b_{e}} C_{c_{e}} ?
$$

The point is we are given words with signs. Can we solve the corresponding matrix (or operator) equations:

$$
(-1)^{t_{1}} A_{a_{1}} B_{b_{1}} C_{c_{1}} \psi=\psi, \quad \ldots \quad(-1)^{t_{e}} A_{a_{e}} B_{b_{e}} C_{c_{e}} \psi=\psi
$$

3XOR perfection in polynomial time

Proof: Tricky long algebraic

HISTORICAL LANDMARKS FOR XOR games

1. Bell 1964 CHSH game, by another name
2. Two player XOR games are 'completely' understood by Tsierlson 1987:
2.1 Finding value of a 2 player game can be done by solving a Linear Matrix Inequality, (Its an SDP)
2.2 Quantum advantage \leq real Grothendieck constant ≤ 2
2.3 Whether or not a game is solvable (aka. perfect) can be decided in polynomial time.(do not need SDP)
2.4 This study originated the famous Tsierlson Conjecture, later proved equivalent to Connes Embedding Conjecture.

1. Three player not perfect games, 3 XOR

1.1 Determining the optimal value of a not perfect 3 player game is "thought" to be NP hard to approximate. Vidick 2013. But is OPEN.
1.2 The quantum advantage can go to ∞ as the number of variables m and dimension of the matrices A_{i}, B_{j}, C_{ℓ} go to ∞. Briet and Vidick 2012, Pérez-Garcia ... Junge 2008 respectively.

Perfect 3 player XOR games.
THM [Watts + H; arXiv 2020]

1. Given any 3XOR game, whether or not a (perfect) quantum solution exists can be decided in polynomial time. (Previously this problem was not known to be decidable.)
2. If there is a solution, then there is a "fairly explicit" solution with A_{i}, B_{j}, C_{ℓ} which are 8×8 matrices.
3. The quantum advantage of a perfect quantum solution is ≤ 8
Proof: Tricky (long) calculation on top of previous NullSS.

Our path

NC RAG and Convexity

NC Linear Matrix Inequalities

NC LINEAR MATRIX INEQUALITIES LMIs

GIVEN a monic symmetric linear pencil

$$
L(x):=I+L_{1} x_{1}+\cdots+L_{g} x_{g}
$$

Recall evaluation on $X=\left(X_{1}, \ldots, X\right)$

$$
L(X):=I+L_{1} \otimes X_{1}+\cdots+L_{g} \otimes X_{g}
$$

Example

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right) \otimes X=\left(\begin{array}{ll}
1 X & 2 X \\
3 X & 5 X
\end{array}\right)
$$

CONVEX SETS: have LMI representations

THM: [McCullough-H 2012, Kriel 2017]
SUPPOSE p is an nc symmetric poly, $p(0) \succ 0$ and \mathcal{D}_{p} bounded.
THEN
$\mathcal{D}_{p}^{n}:=\operatorname{compt}_{0}\left\{X \in\left(R^{n \times n}\right)^{g}: p(X) \succ 0\right\}$ is a convex set for each n

IFF

\mathcal{D}_{p} is a free spectrahedron, that is, there is a monic symmetric linear pencil $L(x)$ which "represents" \mathcal{D}_{p} as

$$
\mathcal{D}_{p}=\mathcal{D}_{L} .
$$

A "free convex set" \mathcal{D} has an operator coefficient LMI rep. [Effros - Winkler ~ 1999].

A Motivation: Linear Systems give fancy nc polynomials

Convexity is very important.

Linear Systems and Algebra Synopsis

A Signal Flow Diagram with L^{2} based performance, eg H^{∞} gives precisely a nc polynomial

$$
p(a, x):=\left(\begin{array}{ccc}
p_{11}(a, x) & \cdots & p_{1 k}(a, x) \\
\vdots & \ddots & \vdots \\
p_{k 1}(a, x) & \cdots & p_{k k}(a, x)
\end{array}\right)
$$

Such linear systems problems become exactly:
Given matrices A.
Find matrices X so that $p(A, X)$ is PosSemiDef.

The (SAD FOR ENGINEERING) MORAL OF THE STORY
THM Hay-H-Lim-McC 2008 A CONVEX in X. problem specified entirely by signal flow diagrams and L^{2} performance has p with degree ≤ 2 in x.

Hybrid free/classical problems

1. 「 convexity $p(a, x)$ is much more general than just convexity in x convexity but has many good properties.
Jury, Klep, Mancuso, McC, Pascoe Tues, arXIv 2019
2. Maximize a linear functional ℓ over $\mathcal{C}(n)$, level n of free convex set $\mathcal{C}:=\{X \mid p(X) \succ 0\}$.

$$
X^{\ell}:=\text { Maximizer }_{X \in \mathcal{C}(n)} \quad \ell(X)
$$

What are the properties of the optimixer X^{ℓ} ?
Not a free problem because n is fixed.

Open Question Does the 'free part of the structure' of this problem influence the outcome?

Max of ℓ occurs on extreme point BUT there are 3 natural kinds of extreme points

$$
\text { ordinary extreme } \supset \text { matrix extreme } \supset \text { free extreme }
$$

Experimental Finding Evert Fu, H, Yin 2020 Yes
Maximizer is:

1. (provably an ordinary extreme pt with prob $=1$)
2. for $g \leq d$ a free extreme point with super high probability

FREE RAG: Ex. Convex Positivstellensatz

THM Convex PosSS (H-K-McCullough Advances 2013) SUPPOSE q is a nc sym polynomial and L is monic linear pencil with \mathcal{D}_{L} bounded. THEN

$$
q(X) \succeq 0 \quad \text { if } \quad L(X) \succeq 0
$$

for X being tuples of matrices if and only if

$$
q(x)=\sum_{j=1}^{\kappa} W_{j}(x)^{*} L(x) W_{j}(x)
$$

where H is a finite dim space and W_{j} are matrix nc polynomials on \mathcal{D}_{L} with $\operatorname{deg} W_{j}=\left\lfloor\frac{\operatorname{deg} q}{2}\right\rfloor$.

Convex posSS for q degree $1 \sim \Longleftrightarrow \sim$ Steinspring-Arveson -Kraus CP (fin dim) map theory

THM True for q rational (Pascoe, arXiv 2017, Volcic).

FREE RAG: Ex. A General Positivstellensatz

THM General PosSS (H-McCullough 2004)
SUPPOSE q is a nc sym polynomial and $\{X \mid p(X) \succeq 0\}$ is bounded. THEN

$$
q(X) \succeq 0 \quad \text { if } \quad p(X) \succeq 0
$$

for X being tuples of operators if and only if for $\epsilon \geq 0$

$$
q(x)+\epsilon=\operatorname{SOS}^{\epsilon}+\sum_{j=1}^{\kappa} W_{j}^{\epsilon}(x)^{*} p(x) W_{j}^{\epsilon}(x)
$$

W_{j}^{ϵ} are matrices of nc polynomials.
NCSOS Tools Matlab package by Igor Klep et al

NPA Hierarchy

Recall Example CHSH game.
The quantum value of the game Γ is

$$
\begin{gathered}
\operatorname{Val}(\Gamma):=\sup _{A, B,|u|=1} u^{*} b(A, B) u \quad \text { where } \\
b(A, B):=\left(+A_{0} B_{0}+A_{1} B_{0}+A_{0} B_{1}-A_{1} B_{1}\right) / 4
\end{gathered}
$$

That is $\operatorname{Val}(\Gamma) I-b(A, B) \succeq 0$ sharply. By free PosSS for $\epsilon \downarrow 0$

$$
\operatorname{Val}(\Gamma)-b+\epsilon=\text { SOS }^{\epsilon}+\sum_{j=1}^{\kappa} W_{j}^{\epsilon^{*}} p W_{j}^{\epsilon}
$$

where $p:=\left\{ \pm\left(A_{j}^{2}-1\right), \pm\left(B_{j}^{2}-1\right), \pm\left(A_{j} B_{k}-B_{k} A_{j}\right)\right\}$.

$$
\operatorname{Val}(\Gamma)-b+\epsilon=\text { SOS }^{\epsilon}+I \text { deal }(p) \quad \text { this an }{ }^{\prime} \infty^{\prime} S D P
$$

NPA 2008 Navascués-Pironio- Acín 2008 and Doherty-Liangand -Toner- Wehner 2008

Tracial PosSS

THM Klep-Schweighoffer 2009
$\operatorname{Trace}(q(X)) \geq 0$ on $\{X \mid p(X) \succeq 0\}$, a 'bounded' set.
where X is in a vN algebra having a trace.
IFF For each $\epsilon>0$

$$
q+\epsilon=\operatorname{SOS}^{\epsilon}+\sum_{j=1}^{\kappa} W_{j}^{\epsilon^{*}} p W_{j}^{\epsilon}+\Sigma_{j}^{\tilde{k}} \text { commutator }_{j}
$$

Much recent progress by: Klep Macron Spenko Volcic, Tues on mixtures of polys and traces like $f(x)=p_{1} \operatorname{tr}\left(q_{1}\right)+\operatorname{tr}\left(q_{2}\right) p_{2}$

THM V. Paulsen, et. al. 2016 Every synchronous (2-player) game has value function of the from:

$$
\operatorname{Val}(\Gamma):=\max _{X \in \mathcal{D}_{p}} \text { Trace } b(X)
$$

Synchronus game「 Examples
The MIP* $=R E$ treats perfect synchronous games.
Graph coloring games are synchronous.

NC RAG not mentioned in my talk, but well represented at AIM

1. NC Analytic Functions Theory-Interpolation Shamovic, Vinnikov
2. Noncommutative Bianalytic maps
2.1 Polynomial Maps (Jacobian Conjecture) - -Meric Augat
2.2 Classify maps f of Free Convex sets: $f: C$ onto some \tilde{C} McCullough, Klep, Volcic, H
2.3 Convex functions composed with analytic, a.k.a NC Plurisubharmonic

- McCullough, Klep, Volcic, H; Pascoe
(Commutative) determinantal representations of polynomials
- H, Vinnikov, Srivastava

THANKS FOR CHECKING OUT THIS TALK

AND

ENJOY AIM

Ideas in the proof of perfect 3XOR Thm

Reminder:
The 3 XOR Group \mathcal{G} is the group with selfadjoint generators

$$
A_{i}, B_{j}, C_{k} \quad i, j, k=1, \ldots, m \quad \text { and } \quad \sigma
$$

and defining relations:

$$
A_{i}^{2}=B_{j}^{2}=C_{k}^{2}=1
$$

Players commute eg. $\quad A_{i} B_{j} A_{i}^{-1} B_{j}^{-1}=1$
$\sigma^{2}=1$ and σ commutes everything, think $\sigma=-1$
All 3XOR games live in \mathcal{G}.

A particular game is defined by words (called clauses)

$$
\mathcal{C}:=\left\{c_{1}:=\sigma^{t_{1}} A_{a_{1}} B_{b_{1}} C_{c_{1}}, \quad \ldots, \quad c_{e}:=\sigma^{t_{e}} A_{a_{e}} B_{b_{e}} C_{c_{e}}\right\}
$$

The point is we are given words with signs.
The Clause subgroup $\langle\mathcal{C}\rangle$ of \mathcal{G} is the subgroup generated by the clauses $\mathcal{C}:=\left\{c_{1}, \ldots, c_{e}\right\}$.

Part I:
THM (Watts, Harrow, Kanwar, Natarajan; arXiv2018)
A \mathbf{k} - XOR game has no solution IFF σ is in $\langle\mathcal{C}\rangle$.
Thus the key issue is the subgroup membership problem for the group \mathcal{G}.

Sadly, there exist subgroups BAD of \mathcal{G} where determining if a word w is in BAD is undecidable.

Part II:

$\mathcal{G}^{E}:=$ Even subgroup of \mathcal{G}, is all even length words in \mathcal{G}. $\langle\mathcal{C}\rangle^{E}:=$ Even subgroup of $\langle\mathcal{C}\rangle$, all even length words in $\langle\mathcal{C}\rangle$. Define \mathcal{K}, to be the normal subgroup of \mathcal{G}^{E} generated by the commutator subgroup of \mathcal{G}^{E}; its generators are

$$
\left[A_{i} A_{j}, A_{k} A_{\ell}\right],\left[B_{i} B_{j}, B_{k} B_{\ell}\right],\left[C_{i} C_{j}, C_{k} C_{\ell}\right] \in \mathcal{K}
$$

THM [Watts, H arXiv 2020]
A 3 XOR game has no solution IFF σ is in $\langle\mathcal{C}\rangle^{E} \bmod \mathcal{K}$.
PF: Hard:

The (multi) graph associated to the clauses.

COR This subgroup membership problem is decidable in polynomial time, since G^{E} / \mathcal{K} is a commutative group (finitely generated). (Classical fact)

QED

MERP Solution to 3XOR

1. Moreover, if a (perfect) quantum solution to a $3 X O R$ game exists, then an 8 dimensional solution exists of the tensor form
$A_{i}:=M_{a_{i}} \otimes I_{2} \otimes I_{2}, \quad B_{i}:=I_{2} \otimes M_{b_{i}} \otimes I_{2} \quad C_{i}:=I_{2} \otimes I_{2} \otimes M_{c_{i}}$ where each $M_{*_{i}}$ is a 2×2 signature matrix (a qubit) and the solution vector ψ is

$$
\psi=\frac{1}{\sqrt{2}}(1,0,0,0,0,0,0,1)^{T}
$$

2. (More detail) The matrices $M_{a_{i}} M_{b_{j}}, M_{c_{\ell}}$ have the form

$$
\begin{equation*}
M_{*}=\exp \left(i \theta \sigma_{z}\right) \sigma_{x} \exp \left(-i \theta \sigma_{z}\right) \tag{3}
\end{equation*}
$$

for some $\theta^{\prime} s$ which depend on a_{i}, b_{j}, c_{ℓ}. Here σ_{x}, σ_{z} are the Pauli X and Z matrices: $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$,

PF of MERP comes from WHKN2018: if a solution exists mod K, then there is a MERP solution.
PF quantum advantage ≤ 8 was previously known for any solution based on a state ψ of the form
$\psi=\frac{1}{\sqrt{2}}\binom{1}{0} \otimes\binom{1}{0} \otimes\binom{1}{0}+\binom{0}{1} \otimes\binom{0}{1} \otimes\binom{0}{1}=\frac{1}{\sqrt{2}}(1,0,0,0,0,0,0,1)$
MERP solution satisfies this.

