HOW NONCOMMUTING

ALGEBRA ARISES IN SYSTEMS

THEORY

Bill at UC San Diego
helton@ucsd.edu

Asymptotically stable
$\operatorname{Re}(\operatorname{eigvals}(A)) \prec 0 \Longleftrightarrow$

$$
A^{T} \mathrm{E}+\mathrm{E} A \prec 0 \quad \mathrm{E} \succ 0
$$

$$
\begin{gathered}
\text { Energy dissipating } \\
G: L^{2} \rightarrow L^{2} \\
\int_{0}^{T}|v|^{2} d t \geq \int_{0}^{T}|G v|^{2} d t \\
x(0)=0
\end{gathered}
$$

Two minimal systems
$[A, B, C, D]$ and $[a, b, c, d]$
with the same input
to output map.

॥ $\exists \mathrm{M}$ invertible, so that

$$
\begin{aligned}
\mathrm{M} A \mathrm{M}^{-1} & =a \\
\mathrm{M} B & =b \\
C \mathrm{M}^{-1} & =c
\end{aligned}
$$

Every state is reachable $\|_{\|}\left(B A B A^{2} B \cdots\right): \ell^{2} \rightarrow X$ from $x=0$ is onto
\| $\quad \exists \mathrm{E}=\mathrm{E}^{T} \succeq 0$
$H:=A^{T} \mathrm{E}+\mathrm{E} A+$ $+\mathrm{E} B B^{T} \mathrm{E}+C^{T} C=0$
E is called a storage function

H^{∞} Control Problem

$$
\begin{aligned}
\frac{d x}{d t} & =A x+B_{1} w+B_{2} u \\
\text { out } & =C_{1} x+D_{12} u+D_{11} w \\
y & =C_{2} x+D_{21} w \\
D_{21} & =I \quad D_{12} D_{12}^{\prime}=I \quad D_{12}^{\prime} D_{12}=I \quad D_{11}=0
\end{aligned}
$$

PROBLEM: Find a control law $\mathrm{K}: y \rightarrow u$ which makes the system dissipative over every finite horizon:

$$
\int_{0}^{T}|o u t(t)|^{2} d t \leq \int_{0}^{T}|w(t)|^{2} d t
$$

The unknown \mathbf{K} is the system

$$
\frac{d \xi}{d t}=\mathbf{a} \xi+\mathbf{b} \quad u=\mathbf{c} \xi
$$

So a, b, c are the critical unknowns.

CONVERSION TO ALGEBRA

Engineering Problem: Make a given system dissipative by designing a feedback law.

DYNAMICS of "closed loop" system: BLOCK matrices

$$
\begin{array}{llll}
\mathcal{A} & \mathcal{B} & \mathcal{C} & \mathcal{D}
\end{array}
$$

ENERGY DISSIPATION:

$$
\begin{gathered}
H:=\mathcal{A}^{T} \mathrm{E}+\mathbb{E} \mathcal{A}+\mathbb{E} \mathcal{B B}^{T} \mathrm{E}+\mathcal{C}^{T} \mathcal{C}=0 \\
\mathrm{E}=\left(\begin{array}{ll}
\mathrm{E}_{11} & \mathrm{E}_{12} \\
\mathrm{E}_{21} & \mathrm{E}_{22}
\end{array}\right) \quad \mathrm{E}_{12}=\mathrm{E}_{21}^{T} \\
H=\left(\begin{array}{cc}
H_{x x} & H_{x y} \\
H_{y x} & E_{y y}
\end{array}\right) \quad H_{x y}=H_{y x}^{T}
\end{gathered}
$$

H^{∞} Control Problem

ALGEBRA PROBLEM:

Given the polynomials:
$H_{x x}=\mathbb{E}_{11} A+A^{T} \mathbb{E}_{11}+C_{1}^{T} C_{1}+\mathbb{E}_{12}{ }^{T} \mathbf{b} C_{2}+C_{2}^{T} \mathbf{b}^{T} \mathbb{E}_{12}{ }^{T}+$ $\mathrm{E}_{11} B_{1} \mathbf{b}^{T} \mathrm{E}_{12}^{T}+\mathrm{E}_{11} B_{1} B_{1}^{T} \mathrm{E}_{11}+\mathrm{E}_{12} \mathbf{b} \mathbf{b}^{T} \mathrm{E}_{12}{ }^{T}+\mathrm{E}_{12} \mathbf{b} B_{1}^{T} \mathrm{E}_{11}$
$H_{x z}=\mathrm{E}_{21} A+\frac{a^{T}\left(\mathrm{E}_{21}+\mathrm{E}_{12}{ }^{T}\right)}{2}+\mathrm{c}^{T} C_{1}+\mathrm{E}_{22} \mathrm{~b} C_{2}+\mathrm{c}^{T} B_{2}^{T} \mathrm{E}_{11}^{T}+$
$\frac{\mathrm{E}_{21} B_{1} \mathrm{~b}^{T}\left(\mathrm{E}_{21}+\mathrm{E}_{12}{ }^{T}\right)}{2}+\mathrm{E}_{21} B_{1} B_{1}^{T} \mathrm{E}_{11}{ }^{T}+\frac{\mathrm{E}_{22} \mathrm{~b} \mathrm{~b}^{T}\left(\mathrm{E}_{21}+\mathrm{E}_{12}{ }^{T}\right)}{2}+\mathrm{E}_{22} \mathrm{~b} B_{1}^{T} \mathrm{E}_{11}{ }^{T}$
$H_{z x}=A^{T} \mathrm{E}_{21}{ }^{T}+C_{1}^{T} \mathbf{c}+\frac{\left(\mathrm{E}_{12}+\mathrm{E}_{21}{ }^{T}\right) \mathrm{a}}{2}+\mathrm{E}_{11} B_{2} \mathbf{c}+C_{2}^{T} \mathbf{b}^{T} \mathrm{E}_{22}{ }^{T}+$
$\mathrm{E}_{11} B_{1} \mathbf{b}^{T} \mathrm{E}_{22}^{T}+\mathrm{E}_{11} B_{1} B_{1}^{T} \mathrm{E}_{21}{ }^{T}+\frac{\left(\mathrm{E}_{12}+\mathrm{E}_{21}{ }^{T}\right) \mathrm{bb}^{T} \mathrm{E}_{22}{ }^{T}}{2}+\frac{\left(\mathrm{E}_{12}+\mathrm{E}_{21}{ }^{T}\right) \mathrm{b} B_{1}^{T} \mathrm{E}_{21}{ }^{T}}{2}$
$H_{z z}=\mathbb{E}_{22} \mathbf{a}+\mathbf{a}^{T} \mathbb{E}_{22}{ }^{T}+\mathbf{c}^{T} \mathbf{c}+\mathrm{E}_{21} B_{2} \mathbf{c}+\mathbf{c}^{T} B_{2}^{T} \mathrm{E}_{21}^{T}+\mathrm{E}_{21} B_{1} \mathbf{b}^{T} \mathrm{E}_{22}{ }^{T}+$
$\mathrm{E}_{21} B_{1} B_{1}^{T} \mathrm{E}_{21}^{T}+\mathrm{E}_{22} \mathbf{b} \mathbf{b}^{T} \mathrm{E}_{22}^{T}+\mathrm{E}_{22} \mathbf{b} B_{1}^{T} \mathrm{E}_{21}^{T}$
(HGRAIL) $A, B_{1}, B_{2}, C_{1}, C_{2}$ are knowns.
Solve the inequality $\left(\begin{array}{cc}H_{x x} & H_{x z} \\ H_{z x} & H_{z z}\end{array}\right) \succeq 0$ for unknowns
a, b, c and for $\mathbb{E}_{11}, \mathbb{E}_{12}, \mathbb{E}_{21}$ and \mathbb{E}_{22}

When can they be solved?

If these equations can be solved, find formulas for the solution.

TEXTBOOK SOLUTION TO THE H^{∞} PROB

DGKF = Doyle-Glover Kargonekar - Francis 1989 ish KEY Riccatis

$$
\begin{aligned}
D G K F_{X} & :=\left(A-B_{2} C_{1}\right)^{\prime} \mathrm{X}+\mathrm{X}\left(A-B_{2} C_{1}\right) \\
& +\mathrm{X}\left(\gamma^{-2} B_{1} B_{1}^{\prime}-B_{2}^{-1} B_{2}^{\prime}\right) \mathrm{X}
\end{aligned}
$$

$D G K F_{Y}:=A^{\times} \mathrm{Y}+\mathrm{Y} A^{\times \prime}+\mathrm{Y}\left(\gamma^{-2} C_{1}^{\prime} C_{1}-C_{2}^{\prime} C_{2}\right) \mathrm{Y}$ here $A^{\times}:=A-B_{1} C_{2}$.
THM DGKF There is a system K solving the control problem if there exist solutions

$$
\mathbf{X} \succeq 0 \quad \text { and } \quad Y \succ 0
$$

to inequalities the

DGKF $_{\mathbf{Y}} \preceq \mathbf{0}$ and DGKF $_{\mathbf{X}} \preceq \mathbf{0}$

 which satisfy the coupling condition$$
X-Y^{-1} \prec 0 .
$$

This is iff provided $Y \succeq 0$ and Y^{-1} is interpreted correctly.

ALL THE RAGE

Riccati Inequalities

$$
\begin{gathered}
A_{1}^{\prime} \mathrm{X}+\mathrm{X} A_{1}+\mathrm{X} Q_{1} \mathrm{X}+R_{1} \preceq 0 \\
A_{2}^{\prime \mathrm{X}}+\mathrm{X} A_{2}+\mathrm{X} Q_{2} \mathrm{X}+R_{2} \preceq 0 \\
\mathrm{X} \succeq 0
\end{gathered}
$$

These are "matrix convex" in the unknown \mathbf{X} provided Q_{1}, Q_{2} are positive semidefinite matrices. If such an \mathbf{X} exists, then can simultaneously control or stablize several systems.

Numerical Solution Can solve convex (especially linear) matrix inequalities numerically with X smaller than 150×150 matrices using interior point optimization methods - called semidefinite programming.

Main Algebra Problem "Convert" your engineering problem to a set of equivalent'convex matrix inequalities" .

