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PROBLEM: Find a control law K : 3 — w which

makes the system dissipative over every finite horizon:
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The unknown K is the system

d—£:a£+b u=cé
dt

So a, b, ¢ are the critical unknowus.

CONVERSION TO ALGEBRA
Engineering Problem: Make a given sys-
tem dissipative by designing a feedback law.
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H> Control Problem
ALGEBRA PROBLEM:
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Solve the inequalily (H =
Zr zz

knowns

a, b, ¢ and for E11, Eq2, Eo1 and Eo9

When can they be solved?

If these equations can be solve. tind fornmlas for the solution.

TEXTBOOK SOLUTION TO THE
H>* PROB

DGKF — Doyle-Glover Kargonekar - Francis 1989 il

KEY Riccatis

DGKFx = (A~ ByC))X + X(A — ByCy)
+X(y BB} — By 'B)X

DGKFy = A“Y+Y A +Y (y 2010 —CLCy)Y

here A == A — B1Ch.

THM DGKF There is a system K solving
the control problem if there exist solutions

X>0 and Y -0
to inequalities the
DGKFy <0 and DGKFx <0
which satisfy the coupling condition
XY~ <o

This is iff provided Y > 0 and Y1 ig inter-
preted correctly.




BIG TECHNIQUE IN LIN SYS

MATRIX INEQUALITIES

Riccati Inequalities
AlX + XA +XGTG X + R <0
ALX + XAy + XGEGoX + Ry < 0
X0
These are “malrix convex” in the unknown X,

If such an X exists, then can shmultancously
control or stablize several systoms.

Riccati Inequalities
AlX + XA +XGTHX + R <0
ALX 4+ XAy + XGEGoX + Ry <0
X =0
Equivalent to Linear matrix inequality. LML
( —[AIX + XA + R)] G1X> 0

xGT -1
( 7[A/1X + X71ﬂ41 + Rl] G2X> .0
XGT o
X >0

Numerical Solution Can solve convex (es-
pecially linear) matrix inequalitics numerically
with X smaller than 50 x 50 matrices using inte-
rior point optimization methods - called semidef-
inite programming.

Main Algebra Problem in Linear Sys-

tems Engineering

”Convert” your engineering problem to
a set of equivalent‘linear matrix inequal-
ities, if possible. Is it possible? .

More Flexible Goal

Converting your engineering problem

to a set of equivalent “convex” matrix
inequalities will do fine in practice. .

QUESTION: How much more general
are CONVEX MlIs, than LINEAR MIs?




