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A. PROJECT SUMMARY
The classical core

This is a proposal to continue support for several projects in the parts of operator theory and functional analysis
related to engineering system theory. One branch of analysis closely related to applications is classical Nevanlinna-
Pick-Nehari theory, or equivalently commutant lifting theory, a part of the area called operator model theory. The
early development of this was done for the purest of mathematical reasons, but in the mid 1970’s and early 1980’s this
was shown to be critical to the design of engineering systems where stability of the system is the key constraint. This
motivated much more mathematical development and now it is one of the areas of functional analysis most closely
associated with control engineering. For many years (since Norbert Wiener) engineering design tools optimized
mean square performance. The theory above ultimately lead to (commercially commonplace) tools for optimizing
worst case frequency domain performance. The main development in linear systems engineering in the 1990s was the
development of powerful matrix inequality techniques which substantially generalize these core results. Convexity is
particularly desirable for the numerics they use.The goal of much of this research is to extend this theory in radically
new directions.
1. Noncommutative inequalities: Matrix-positive polynomials Abbreviate noncommutative by NC. We consider
NC polynomials,p(x, xT ), in variablesx = {x1, · · ·xg} etc. which respect an involution denotedT . We call
a symmetric NC polynomialmatrix-positive provided that when we substitute intop any matricesX1, · · · , Xg

of any dimensionη × η for x1, · · · , xg, and their transposes,XT
1 , · · · , XT

g for xT
1 , · · · , xT

g , the resulting matrix
p(X1, · · · , Xg, X

T
1 , · · · , XT

g ) is positive semi-de£nite.Matrix convexity is de£ned analogously. A polynomialp

is aSum of Squares, SoS,provided p(x, xT ) =
∑k

i=1 hi(x, xT )T hi(x, xT ) for some NC polynomialshi.

hm:PosIntro Theorem 0.1 (H01) Every matrix positive symmetric noncommutative polynomial can be written as a SoS.
It was known to Hilbert that positive commutative polynomials may not be a sum of squares of polynomials (eg. his
17th problem). More generally, the classical area of semialgebraic geometry (a branch of real algebraic geometry)
gives a systematic theory of polynomial inequalities. McCullough, Putinar and I are successfully extending semial-
gebraic geometry to NC polynomials and to NC rational functions where we analyse their action on variables which
are operators on a Hilbert spaceH. This has elegant behavior and seems like a rich new area.
2. Matrix Convexity: Theorem

thm:PosIntro
0.1 plus matrix convexity being equivalent to matrix positivity of a NC2nd

derivative gives:
thm:convp1 Theorem 0.2 (MHtrans) Every matrix convex symmetric NC polynomial has degree two or less.

3. Convexity vs LMIs We say a setC ⊂ Rg has aLinear Matrix Inequality (LMI) Representation provided that
there are real entried symmetric matricesL0, L1, L2, · · · , Lg for which the set

{s = (s1, s2, · · · sg) ∈ Rg : L0 + L1s1 + · · · + Lgsg is PosSemiDef}

equals the setC. Similarly in Noncommutative LMI Representations (NCLMI) we take thesj to be operators on
a Hilbert spaceH. V. Vinnikov and Helton [HVprept]described precisely which convex sets inRg, g = 2 have an
LMI representation.The characterization is elegant and A. S. Lewis, P. A. Parrilo and M. V. Ramana [arXive 2003]
used our result to verify a 1958 conjecture of Peter Lax as an immediate consequence. This was one of two results
featured by the IMA (Minnesota) in its summer 2003 report. Currently we are considering theg > 2 case; it seems
within reach.

We have results, stronger than Theorem
thm:convp1
0.2 suggesting that NC convexity and LMIs have a remarkably close

relationship, including much progress on our conjecture a rather special case of which is
Conjecture Letp be a symmetric NC polynomial. The positivity setDp := {X = {X1, · · · , Xg} : Xj an
operator on H making p(X) PosDef} of p is convex iffDp has a ”noncommutative LMI” representation.
Topics 1, 2, and 3 were subjects of plenary talks at SIAM Control Conf 2001 and the MTNS 2002.
4. Optimization over spaces of analytic functions and matrices(with Camino, H. Dym, and Skelton). We do:
Qualitative theory, computer algorithms based on this theory, analysis of such algorithms, connections with other
branches of mathematics. These are key optimization problems arising in designs of linear systems.
5. Highly nonlinear generalizations.The goal is to £nd canonical ”nonlinear generalizations” of analytic function
theory and the related parts of operator theory. There are many strong results and currently we are trying to extend
linear matrix inequality results to nonlinear operators.
6. Computer operator algebra.Linear engineering systems theory and operator theory are rife with calculations in
a noncommutative algebra. Helton’s group and M. Stankus are the main providers of software (called NCAlgebra)
for performing general noncommuting calculations in Mathematica. An emphasis now is on algorithms for treating
NC inequalities. Also we experiment on many problems with NC Gröbner bases a powerful technique.
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C. PROJECT DESCRIPTION

RESULTS FROM PRIOR SUPPORT
NSF Award Number DMS 9732891 From 7/1/98 to 6/30/01 for $150,000
NSF Award Number DMS 0100576 From 7/1/01 to 6/30/04 for $239,072.00

ARTICLES and PREPRINTS for the last £ve years of NSF support (from 1998 on were):
[HSW98], [YJH98], [HMW98], [AHS98], [HMer98], [HKD98], [HMer98], [HJ98], [HJM98], [HS99],

[H99], [HD99], [HJ99], [DHM99], [HD99], [HDJ99], [HHK99], [HK99], [HHK00], [HKMS00], [CHS00],
[HW00], [H01], [SHAPC01], [HJM01], [SHAPCb01], [H02], [DHM02], [H02] , [DHM03], [CHSY03],
[OH03], [OH03cdc], [HWsicon], [HM trans], [HMsimax], [HMPcre], [HSro], [HJMprept1], [HJMprept2],
[HJMprept3], [HVprept], [HMPprept], [BHRprept], [HMerprept], [HHKprept], [HHKprept],

A cohesive account of how this work relates to the proposed work appears later.

IMPACT ON HUMAN RESOURCES
My computational efforts have generated a small ’lab’ in the summer (the lab exists because of a core of NSF

funds). Students learn some math, develop computing skill and experience with math experiments, and get a taste
of systems engineering. Also they produced some of the software and results described in this proposal. In the lab
over 5 years, there were 12 graduate students and 2 undergrads. Some of these people spent several summers on the
project. Also partially supported from my grants were 4 postdocs. See also the students in the Synergistic Activities
section.

My work helps signi£cant collections of mathematicians in the US to have an awareness of engineering problems
and how mathematics techniques connect with them. See the biographical section, Synergistic Activities.

RESEARCH PLAN
1 OPERATOR THEORY & NONCOMMUTATIVE INEQUALITIES

sec:linOp Inequalities involving polynomials in matrices and their inverses and associated optimization problems have become
very important in control and systems engineering; this was the main development in linear systems theory in the
1990’s. When these polynomials are linear, the resulting matrix inequalities are calledLinear Matrix Inequalities,
LMI, and various numerical algorithms such as interior point methods apply directly. A dif£culty is that often an
engineering problem presents a matrix rational function problem whose conversion to an LMI takes considerable
skill, time, and luck to determine. Typically this is done by looking at a formula and recognizing complicated
patterns involving Schur complements; a tricky hit or miss procedure;§

sec:motiv
5 discusses such motivation. The goal here

is to begin to develop a systematic mathematical theory which pertains to these areas. This leads us directly into
mathematics problems very well suited for study by operator theorists.

We start discussion of matrix inequalities not by directly discussing “Linear Noncommutative Inequalities”, or
“Noncommutative Convexity”, but by describing some results on positive polynomials which feed into this work.
This amounts to a natural version of the classical subject of (real) semialgebraic geometry for noncommutative
polynomials.

1.1 Matrix Positive Polynomials
sec:intro A classic problem which goes back to Hilbert asks which real polynomials are a sum of squares. It is well known

that many positive polynomials are not a sum of squares. We consider a class of noncommutative polynomials and
show that if they are positive in a certain sense, then they are a sum of squares.

Abbreviate noncommutative by NC. We consider polynomials,p(x, xT ), in noncommutative indeterminants
x = {x1, · · ·xg} and xT = {xT

1 , · · ·xT
g } which respect an involution denotedT , denote these byN∗. Call a

polynomialp symmetric ifpT = p, and we call onematrix-positive provided that when we substitute intop any
matricesX1, · · · , Xg of any dimensionη × η for X1, · · · , Xg, and their transposes,XT

1 , · · · , XT
g for xT

1 , · · · , xT
g ,

the resulting matrixp(X1, · · · , Xg, X
T
1 , · · · , XT

g ) is positive semi-de£nite.

Example. Let p ∈ N∗ be given byp = x3x2 + 3x3x1x2 and notepT = x2x3 + 3x2x1x3. If X = (X1, X2, X3),
where

X1 =
(

1 1
1 −2

)
X2 =

(
0 1
1 0

)
X3 =

(
0 0
0 1

)
, then p(X) =

(
0 0
−5 3

)
and pT (X) =

(
0 −5
0 3

)
.

If q ∈ N∗ is the symmetric polynomialq = p + pT , thenq(X) =
(

0 −5
−5 6

)
. ¥
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Throughout lower case letters likexj will stand for variables (indeterminants) while corresponding capital letters
like Xj will stand for operators on a Hilbert spaceH substituted for them. OftenH will be £nite dimensional
in which case we callXj matrices. We say a polynomialp is a Sum of Squares, SoS,provided there are NC
polynomialshi such that

p(x, xT ) =
k∑

i=1

hi(x, xT )T hi(x, xT ) (1) eqn:SoS

Theorem 1.1 Every matrix positive symmetric noncommutative polynomial is a sum of squares

It was known to Hilbert that positive polynomials may not be a sum of squares of polynomials (eg. his17th

problem). The area of real semialgebraic geometry concerns this and more generally gives a systematic theory of
polynomial inequalities. A theorem at the center of that subject is the positivestellensatz which we describe next.

1.2 A Strict NC Positivstellensatz
sec:posSS LetP denote a collection of symmetric polynomials in noncommutative variablesx = {x1, · · · , xg}. Thepositivity

domain DP associated toP is the set of tuplesX = (X1, · · · , Xg) of symmetric bounded operators on separable
real Hilbert spaceH making p(X1, · · · , Xg) a positive semi-de£nite operator for eachp ∈ P. The domain is
bounded byκ if there exists a scalarκ so thatκ2I − XT

j Xj is positive semi-de£nite wheneverX ∈ DP .

Theorem 1.2 (HMtrans) Strict Positivstellensatz, PosSS SupposeDP is bounded byκ. A NC symmetric
polynomialq which is strictly positive onDP can be written as a weighted sum of squares

q =
N∑
1

sT
j pjsj +

M∑
1

rT
k rk +

g∑
`=1

N∑̀
m=1

tTm,`w`tm,` (2) eq:intro

for polynomialspj ∈ P, w` = κ2 − xT
` x` and some NC polynomialssj , rk, tm,`.

WhenDP is a convex set, the Hilbert spaceH used in our positivity hypothesis can be taken to be £nite dimen-
sional. Versions of this positivstellensatz are also proved for two additional classes of matrix-valued noncommutative
polynomials.

Pablo Parrilo developed a very effective algorithm for £nding commutative SoS and PosSS representations nu-
merically. It is based on ideas for algorithms by N. Z. Shor, Powers-Wormann and Reznick. Pablo Parrilo observed
that the critical problem here is an LMI. Software for solving LMIs abounds, seehttp://plato.la.asu.edu/dimacs.html
for results of benchmark comparisons of numerical packages for solving LMIs. The algorithm also works to im-
plement the representation in the positivstellensatz for both commutative and noncommutative polynomials. The
commutative version,SOS Tools, is available athttp://control.ee.ethz.ch/̃parrilo/sostools.Parrilo and collaborators
have many applications of the commutative version of this theorem, eg. to quantum entanglement, £nding Lyapunov
functions, and various graph theoretic problems.

1.3 Noncommutative Real Nullstellensatz
sec:nullSS What happens whenq(X) is positive semide£nite but not positive de£nite forX ∈ DP? For commutative polynomi-

als an extreme case is the real nullstellensatz concerning zeroes of polynomials. Now we turn to the noncommutative
situation. Supposep is a NC polynomial. De£ne its zero set

Zp := {(X, v) : X = (X1, . . . , Xg) a tuple of operators acting on the Hilbert space H

and a vector v ∈ H for which p(X)v = 0}.

1.3.1 Polynomials inx and xT : Bad news
One conceivable weak version of a noncommutative real nullstellensatz we investigated goes like this: Supposep
andq symmetric NC polynomials fromN∗. If Zp ⊂ Zq, then does it follow that

q2m + R = pr + rT p (3) eq:rnull

for some positive integerm, polynomialr ∈ N∗, andR a sum of squares,R =
∑

rT
j rj for rj ∈ N∗?

The example in [HMtrans],
p = (xT x + xxT )2 and q = x + xT , (4) eq:exN

where x is a single variable is shown to prove the representation in (
eq:rnull
3) is false.
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1.3.2 The Transpose Free Nullstellensatz: Good news
c:nullstatz The case wherep andq are polynomials purely inx and the “matrix zero set” ofq contains that ofp yields a satisfying

result (conjectured by McCullough and Helton) proved by George Bergman, see [HMtrans].

Theorem 1.3 Fix a £nite collectionP of polynomials in noncommuting variables{x1, . . . , xg} and letq be a given
polynomial in{x1, . . . , xg}. Letd denote the maximum of the deg(q) and{deg(p) : p ∈ P}. LetH be a real Hilbert

space of dimension
∑d

j=0 gj . If Zp ⊂ Zq for all p ∈ P, thenq is in the left ideal generated byP.

Question: If p contains no transposes, andq is symmetric, then does the representation (
eq:rnull
3) hold?

This and many variations of it are under study at the moment.

1.4 Non Strict Positivstellensatz
ubsec:inbtw

The example in equation (
eq:exN
4) gives strong evidence that a nice characterization of the “radical ideal” is unlikely.

However, in other respects the nonstrict case may be well behaved.
Question: Supposeq is a symmetric NC polynomial. Ifq(X) is PosSemiDef on{X : p(X) = 0}, then is there a
SoS,R :=

∑
j rT

j rj , such that

q(X) = R(X) for all X satisfyingp(X) = 0?

thm:sphere Theorem 1.4 [HMPcre] For p = 1 −
∑g

j xT
j xj , the answer is yes.This makes no mention of characterizing the

radical ideal of p and is false in the commutative case. Indeed, the answer in the general NC case is still an
intriguing mystery.

1.5 A Matrix Based Positivstellensatz
ubsec:posMB

Consider a noncommutative rational functionq(x)[h] in two different types of variables: distinguished by the fact
thatq is quadratic inh. Representq(x)[h] as

q(x)[h] = V (x)[h]T Mq(x)V (x)[h], (5)

whereMq(x) is a symmetric matrix with rational entries,V (x)[h] is linear inh, rational inx, and theh variables sit
to the left of allx variables. Now we roughly summarize our main result on this type of representation.

Result 1.1 (see Theorem 8.2 of [CHSY03]).Positivity: q versusMq.EX:NC
LetG denote the positivity domain based onMq(x), namely,

G := {X : Mq(X) is PosSemiDef}.

Thenq(X)[H] is PosSemiDef for eachX ∈ G and for allH.
Conversely, assume:

1. all hj are restricted to be symmetric (other cases also work well);

2. theMq representation ofq has aV [h] meeting a simple linear independence condition;

3. the inequality domainG contains an open set in a certain topology and is the closure of that set.

Then the closure ofG in that same topology is the biggest domain on whichq(X)[H] is a matrix positive quadratic.

This is something of a Positivestellensatz for noncommutative quadraticsq, a very special class of functions,
but the conclusions are more re£ned in that they give precisely the “set of positivity” forq. Also strictness is not
required. This is very useful in convexity work to soon be described.

To further analyze positivity ofq we apply the noncommutative LDL decomposition to the matrixMq(x), i.e.,
Mq(x) = LDLT . The diagonal matrixD has the form

D = diag {ρ1(x), · · · , ρc(x)}

We use this to show that under reasonable hypotheses,q has a weighted sum of squares decomposition

q(x)[h] =
r∑

j=1

Lj(x)[h]T Dj(x)Lj(x)[h]

3



with Lj , Dj rational andLj linear in h, such that formal inequalities involving theDj determine a set

G := {X : Dj(X) is PosDef}

Moreover, a certain “closure” ofG is the largest such set.
McCullough, Putinar and I have extended Result

EX:NC
1.1 to polynomials in two classes of variablesx, h which are

not necessarily quadraticin h, [HMPcre].
Open questions: Extending Result

EX:NC
1.1 to several simultaneous matrix inequalities is important. This corresponds

to having several noncommutative rational functions. Replacing invertibility requirements on theDj(X) by pseudo-
invertibility is an issue which is uncharted (and not too high on my list).

2 MATRIX CONVEX FUNCTIONS
sec:lin.1.2

2.1 De£nition of Matrix Convexity

WhenA andB are symmetric matrices, the notation

A > B means A − B is PosDef and A ≥ B means A − B is PosSemiDef.

A noncommutative rational symmetric functionΓ of x = {x1, . . . , xg} will be calledgeometrically matrix convex
provided that whenever the noncommutative variablesx are taken to be any matricesX, then for all scalars0 ≤ α ≤ 1
we have that

αΓ(X1) + (1 − α)Γ(X2) ≥ Γ(αX1 + (1 − α)X2)

HereX1 = {X1
1 , . . . , X1

g} andX2 = {X2
1 , . . . , X2

g} areg-tuples of matrices. We are all familiar with the fact that
for an ordinary (commutative) functionf , convexity corresponds to positivity of the second derivatives off . Now
we describe a quite practical noncommutative version of this.
Noncommutative Functions and their Derivatives Noncommutative rational functions of indeterminantsa, x, y, etc
are polynomials ina, x, y, etc and in inverses of polynomials ina, x, y, etc. For example,F in (

ex:5.2b
9 ) can be regarded

as a noncommutative rational function of indeterminants, rather than a function on matrices. A notion of second
derivative of a functionΓ which we £nd useful for noncommutative symbolic computation is that of directional sec-
ond derivative: namely, the second order terms (the Hessian) of a Taylor expansion ofΓ(x + th) aboutt = 0 ∈ R in
the directionh. Thus we de£ne theHessianof Γ, denoted byHessΓ, as

HessΓ(x)[h] :=
d2

dt2
Γ(a, x + th)

∣∣∣
t=0

.

This is a quadratic function ofh := {h1, . . . , hg}. The functionΓ(x) is said to bematrix convex with respect to
variablex on a positivity domainD provided its HessianHessΓ(X)[H] is a positive semide£nite matrix for allA,X
in D and allH.

One can show that matrix convexity is equivalent to matrix positivity of the noncommutative second derivative,
see [HMercdc98]. Our positivity theory described above applies to this second derivative and leads to strong results
on convexity.

2.2 NC Polynomials
ec:ConvPolyhm:ConvPoly Theorem 2.1 (MHtrans) Every symmetric NC polynomial which is matrix convex (even if just “nearx = 0”) has

degree two or less.

The one variable case has been known for 20 years and is due to T. Ando. There is no parallel to this very rigid
behavior in the commutative case.

2.3 NC Rational Functions and Linear Pencils
sec:ConvRat The issue at hand is how does the extremely rigid structure imposed on NC polynomials by convexity extend to NC

rational functions. We believe that it is closely allied to “linear pencils”, the key ingredient of LMIs, so popular these
days in engineering .

We shall use the termlinear pencil to refer to a family of symmetric matrices

L(x) := L0 + L1s1 + · · · + Lgsg

4



wheres = (s1, · · · , sg) areg real scalars andL0, L1, L2, · · ·Lg are symmetric reald × d matrices, and we call the
pencilmonic if L0 = I. A NC linear pencil is

L(x) := L0 ⊗ I + L1 ⊗ x1 + L2 ⊗ x2 + · · · + Lg ⊗ xg (6) eq:NCpen

in symmetric noncommuting variablesxj . Then, ifX is a tuple of matrices or operators,L(X) is formed from (
eq:NCpen
6)

using termsLj ⊗ Xj where⊗ denotes tensor product. We now give an example.
Example Takeg = 2,d = 2 andL0 := I and

L1 :=
(

2 3
3 0

)
, L2 :=

(
3 5
5 0

)
, then L1 ⊗ X1 :=

(
2X1 3X1

3X1 0

)

and the pencilL(X) is

L(X) =
(

1 + 2X1 + 3X2 3X1 + 5X2

3X1 + 5X2 1

)
. (7) eq:Ldef1

Clearly, if we were to replaceX by 2-tuples of3 × 3 matrices, thenL(X) would be a6 × 6 matrix.

Conjecture A large classC of symmetric NC rational functions has the property thatr ∈ C is matrix convex “near
x=0” if and only if it has the form

r(x) = C[L0 ⊗ I + L1 ⊗ x1 + L2 ⊗ x2 + · · · + Lg ⊗ xg]−1 [L2 ⊗ x2 + · · · + Lg ⊗ xg]CT + D. (8) eq:repTF

for someD ∈ R1, C ∈ R1×d and some symmetricLj ∈ Rd×d, havingL0 = I. Moreover, the set ofX with Xj

operators onH which maker(X) £nite has connected component of 0 denoted byF andr onF is matrix convex.
There is considerable progress by Helton, McCullough and Vinnikov; and we think it is likely that our layout of

a proof will work. Critical are the realization results in progress by Joe Ball and T. Malakorn, extending those of M.
Fliess from 25 years ago. Our proofs suggest the natural classC of NC rational functions for the Conjecture may be
those satisfying a growth estimate at in£nity. Currently algorithms for computing this type of realization are under
investigation for implementation in NCAlgebra, see§

sec:compMisc
6.3.

This problem bears directly on the NC LMI representation problem to be discussed in§
sec:LMIrep
3.2.

2.4 Convexity Checking Algorithm
c:ConvCheck The positivstellensatz theory then leads to and validates a symbolic algorithm for determining regions of convexity

which is currently implemented in NCAlgebra. We introduce the topic with an example of an NCAlgebra command
(which embodies it). Our command is

NCConvexityRegion[FunctionΓ, x ].
It actually runs at greater generality than our de£nitions allow, since to save space in this proposal we have worked at
a low level of generality. When we input a noncommutative rational functionΓ(a, x) this command outputs a family
of inequalities which determine a domainG of a, x on whichΓ is “matrix convex” inx. This is illustrated by
Example Suppose one wished to determine the domain of convexity (or concavity) of the following function on
matrices, wherex = xT , y = yT :

F (x, y) := −(y + aT xb)(r + bT xb)−1(y + bT xa) + aT xa. (9) ex:5.2b

Apply the commandNCConvexityRegion[F , {x, y}]. This command outputs the list

{−2 (r + bT xb)−1, 0, 0, 0}.

This output has the meaning that wheneverA, B, R are £xed matrices, the functionF is “x, y-matrix concave” on
the domain of matricesX, andY

GA,B,R := {(X,Y ) : (R + BT XB)−1 > 0}.

The command NCConvexityRegion also has an important feature which for this problem assures us no domain bigger
than

ḠA,B,R := {(X,Y ) : R + BT XB ≥ 0}
is a “domain of concavity” forF . The last assertion requires the theory and proofs in§

subsec:posMB
1.5.

Our Convexity AlgorithmS:A
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1. Compute symbolically the Hessianq(x)[h] := HessΓ(x) [h], representq(x)[h]
asq(x)[h] = V (a, x)[h]T Mq(a, x)V (a, x)[h], and extract the coef£cient matrixMq(a, x).

2. Apply the noncommutative LDL decomposition to the matrixMq(a, x), i.e.,Mq(a, x) = LDLT . The diagonal
matrixD has the formD = diag {ρ1(a, x), . . . , ρc(a, x)}

3. The Hessianq(X)[H] is positive semide£nite for allH on the set of matrix tuplesA,X which makes the
diagonal matrixD positive semide£nite. Thus a setD whereΓ is matrix convex is given by

D = {A,X : ρj(A,X) is PosDef, j = 1, . . . , c}. (10) eq:algGdef

The surprising and deep feature is that the closure ofD is the largest possible domain of convexity.This requires
the NC Positivity Theory of§

subsec:posMB
1.5. Also it is hard to imagine precise “convexity region algorithm” not based on

noncommutative calculations, the problem being that matrices of practical size often have thousands of entries, so
would lead to calculations with huge numbers of polynomials in thousands of variables.

The algorithm and Mathematica implementation of NCConvexityRegion[ ] was done jointly with graduate stu-
dents Juan Camino and Josh Grif£n. Experiments with this software suggested Theorem

thm:ConvPoly
2.1 and the conjectures in

§
sec:ConvRat
2.3 as well as valid directions for proof. Algorithms which improve our NC LDU decomposition, eg. simplifying

the pivots (rational functions) is a big issue, are helpful for upgrading NCConvexityRegion[ ]. Algorithms in new
directions will be mentioned later.

3 CONVEX SETS vs. LMI REPRESENTATIONS
c:LMIrepCom

3.1 Commutative LMIs

We say a setC ⊂ Rg has aLinear Matrix Inequality Representation provided that there are real symmetric
matricesL0, L1, L2, · · · , Lg for which the set

DL := {s = (s1, s2, · · · sg) ∈ Rg : L0 + L1s1 + · · · + Lgsg is PosSemiDef}

equals the setC. That is,C is the positivity set of some linear pencil. Obviously, an LMI representable set must be
convex. So the issue is how close is the converse to being true. Without loss it is possible to takeL0 = I and take
0 ∈ C.

In the many applications which LMIs have found, there is no systematic way to produce LMIs for general classes
of problems. Before there is hope of producing LMIs systematically one must have a good idea of which types of
constraint sets convert to LMIs and which do not. This seems like a fundamental issue regarding LMI’s and was
stated formally as an open question forg = 2 by Pablo Parrilo and Berndt Sturmfels in a 2001 preprint. We shall
sketch brie¤y a solution developed with Victor Vinnikov in [HVprept] .

We say a polynomial onRg satis£es thereal zeroes condition RZ if for everys ∈ Rg, s 6= 0, all the zeroes of
p(ts) for t complex are real numbers. Call suchp anRZ polynomial.

thm:lmirep Theorem 3.1 (HVprept) Assumeg = 2. An RZ polynomialp is the determinant of some monic linear pencilL, that
is p(s) = detL(s). A convex setC containing 0 has an LMI representation iff the minimal degree polynomial whose
zero set contains the boundary ofC is an RZ polynomial.

The proof is not at all elementary and involves a considerable amount of Riemann surface theory. The proof
is based on earlier work of V. Vinnikov [V89], [V93] and improved by more recent work with J. A. Ball [BV96]
[BV99]. The proof itself can be found in [HVprept]. There we give two proofs. One of them is (in principle) a self
contained construction of theL0, L1, L2 based on Riemann surface theory,θ functions and such.

A. S. Lewis, P. A. Parrilo and M. V. Ramana [prept 2003] used this result to immediately solve a 1958 conjecture
of Peter Lax to the effect that “hyperbolic” polynomials have such pencil representations. A hyperbolic polynomial
is a type of homogenization of an RZ polynomial. Their result was the £rst of two pieces of research featured for
Summer 2003 by the Minnesota IMA, seehttp://www.ima.umn.edu/newsltrs/updates/summer03/outcomes.shtml

Currently Vinnikov and I have two separate lines of argument for theg > 2 cases which leads us to
Conjecture Theorem

thm:lmirep
3.1 including the 1958 Lax conjecture is true for all dimensionsg.

Question (raised by Nestrov and Nimmerovski in 1994)Find a test which insures that a convex setC in Rg lifts to
some LMI representable set̃C in a possibly bigger spaceRg+k. That is, £nd necessary and suf£cient properties on
a given setC in Rg which insure that there exists an LMI representable setC̃ in Rg+k whose projection ontoRg

equals the setC?
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No serious apriori restrictions on such a convexC is apparent, either from theoretical considerations or from
numerical experiments (done informally by Pablo Parrilo). Of course,C has to be a semi-algebraic set with a
connected interior, which is equal to the closure of its interior.

3.2 NC Convex Sets and NC LMIs
sec:LMIrep

There seems to be a disconnect between the results of the previous section and much of the control theory LMI
literature. In the literature, one often sees methods for construction which depend on Schur complement formulas
and which clearly represent only very special sets with LMI’s. In the previous section we saw that the relatively weak
RZ condition was all that was required for there to exist an LMI representation at least in 2 dimensions. Maybe one
reason is that most formulas obtained in the systems literature are noncommutative (see§

sec:motiv
5 for why). In this section

we turn to noncommutative versions of LMI representations.
Conjecture NCLMI 1 Supposer is a symmetric NC rational function. The positivity set

Dr := {X = {X1, · · · , Xg} : Xj an operator on H, r(X) is PosDef and finite}

has “component” containing zero which is is a convex set iffDr has a “noncommutative LMI” representation, that
is there is a monic NC symmetric linear pencil L such thatDL = Dr. Recall the de£nition of a NC linear pencilL
from §

sec:ConvPoly
2.2. Recall it has symmetric noncommuting variablesxj which are substituted by symmetric matrices in the

de£nition ofL(X) .
Conjecture NCLMI 2 Let p be a symmetric NC polynomial. The positivity setDp of p is convex only if there is a
symmetric NC polynomial̃p of degree 2 or less such that

Dp = Dp̃.

This is the extension to sets of Theorem
thm:ConvPoly
2.1.

Example Relationship between the conjectures NCLMI1 and NCLMI2. Consider the following degree 2 polyno-
mial p(x) given by

p(x) := 1 + 2x1 + 3x2 − (3x1 + 5x2)(3x1 + 5x2). (11) eq:poly2

It is easy to show that the answer to Conjecture NCLMI 1 is yes for this polynomialp(x). Indeed, the monic linear
pencilL(x) given in equation (

eq:Ldef1
7) andp(x) satisfyDp = DL. To see this note thatp(x) is a Schur complement for

the2 × 2 matrix functionL(x) and thatp(X) being PSD implies1 + 2X1 + 3X2 is also PSD, which together are
equivalent toL(X) being PSD. Any degree 2 concave polynomial can be put in a factored form like (

eq:poly2
11). ¥

McCullough, Vinnikov and Helton are making considerable progress on the conjectures, it requires building con-
siderable operator theoretic machinery along the lines of a noncommutative real algebraic geometry. Our approach
combines progress on the NC rational representation problem in§

sec:ConvRat
2.3 with the characterization of convex setsC as

having de£ning function whose Hessian is positive on the tangent space to the boundary ofC at each point. The
later makes formal sense as a purely algebraic condition but an issue is proving that a NC “Zariski” tangent space is
the true tangent space on a type of “NC Zariski open set”. This parallels a basic piece of structure in the classical
commutative case.
Question: Also in engineering, certain simple changes of variable, typically linear fractional or bilinear, occur.
Completely open is to see the realm of effectiveness of such NC transformations on NC convex sets. Helton’s guess
is that the NC case is better (more rigidly) behaved than the commutative case.This seems important and work on it
is actually beginning to show some promise.

4 OPTIMIZATION OVER MATRICES AND OVER SPACES OF ANA-
LYTIC FUNCTIONS

sec:opt 4.1 Analytic Functions

The OPT problem: Given the functionΓ(eiθ, z) ≥ 0 of eiθ ∈ T andz ∈ CN £nd

(OPT) inf
f∈AN

sup
θ

Γ(eiθ, f(eiθ))

whereAN is the class of smoothCN -valued functions onT which have analytic continuations on the disk. The
special caseN = 1 andΓ(eiθ, z) = |g(eiθ) − z|2 gives the classicalNehari problem
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(Neh) inf
f∈A

‖g − f‖∞

of £nding the distance of the smooth functiong to A1. HereT denotes the unit circle.
The Qualitative Theory of OPT is: GivenΓ(eiθ, z) real analytic inz, smooth inθ, with z sublevel sets which are
connected, simply connected and uniformly bounded.

EXISTENCE: An optimumf∗ in H∞
N exists under a polynomial convexity assumption (which will hold for most

engineeringΓ) Helton- Marshall 1990, Slodkowski.
SMOOTHNESS: Is an optimumf∗ in H∞ smooth? Yes, whenN = 1, (Helton- Marshall) Yes, whenN > 1

with strict convexity (Slodkowski). Otherwise OPEN whenN > 1.
UNIQUENESS: WhenN = 1, f∗ is unique (Helton-Marshall). WhenN > 1 sometimes unique, sometimes

not. WhenΓ(eiθ, z) is a strictly convex function inz, yes, (Helton-Howe 1986). WhenΓ “misses convexity by one
dimension”, yes, by Vityaev 1997 (my student). An elegant test for global optimality is [HWsicon].

This area is in good enough shape that Merino and I wrote a book [HMer98]. The book describes engineering
control design methodology, mathematical theory, and computer algorithms.
MOPT

GivenΓ(eiθ, z) a smooth, self-adjoint,m × m-matrix valued function (values are inMm×m)
Findf∗ ∈ AN andγ∗ > 0 such that

(MOPT) γ∗=sup
θ

‖Γ(eiθ, f∗(eiθ))‖m×m = inf
f∈AN

sup
θ

‖Γ(eiθ, f(eiθ))‖m×m

Here‖ · ‖m×m denotes the operator norm (largest singular value.) WhileΓ is smooth, the matrix norm is not. And

so the functionΓ(eiθ, z) := ‖Γ(eiθ, z)‖m×m is not smooth.
Example 1. The Nehari problem for matrix valued functions.is a rather special case of MOPT studied by many

mathematicians including Ando, Nagy-Foias, Sarason, Adamajan-Arov-Krein, Clark and subsequently Douglas-
Muhly-Pearcy, Aresene-Ceausescu-Foias, DeWilde-Dym, Glover, Foias-Frazho, Foias- Tannenbaum, Rovnayk-Rosenblum,
Ball-Gohberg, Ball-Helton, and at least a thousand engineers.

Example 2 . Competing constraints such as “Multidisk” Nehari Problems.
Example 3. Solving large classes of matrix inequalities.
Example 4. Spectral Radius Nevannlina-Pick Interpolation.This was studied by Bercovici-Foias- Tannenbaum,

Peller-Young, Agler-Young. This is a special case ofµ-synthesis.
The problem is (in my opinion) central to a systematic theory for frequency domain design of engineering sys-

tems. Most problems with many inputs and outputs present themselves as one with a matrix valued performance
measures (cf. books by Ball-Gohberg-Rodman, Doyle-Francis-Tannenbaum, Dym, Foias-Frazho, Francis, Glover-
McFarland, Greene and Limebeer, Helton, Merino-Helton [HMer98]). Going to a smooth scalar valued function as
in OPT is an approximation. Getting rid of this approximation besides being mathematically interesting, has the
bene£t that one can go after engineering problems in a way which is exactly as they appear in engineering treatments
and commercial software for doing analytic optimization (eg.µ- tools, matlab tool box).
Characterization of Optima The beginning of theory typically calls for characterization of solutions to MOPT.
This is done not only in terms of the solutionf∗, but also in terms of a solutionΨ to a dual problem. One gets
what is called a primal dual optimality condition. For this problem it is Theorem 17.1.1 of [HM98]. The optimality
conditions can be grossly abbreviated as T (f∗,Ψ, γ∗) = 0.

which denotes an equation on the unknown functionsf∗,Ψ onTand on the positive numberγ∗.
SinceT is smooth we can take its differential,T ′ quite explicitly. The key issue for numerical computation is

the invertibility ofT ′ and of variants ofT ′. The motivation is that this invertibility is what determines good (second
order) convergence in Newton’s method and in most other methods for solving the equationT (f∗,Ψ, γ∗) = 0.
Different computer algorithms arise by parameterizingf∗ andΨ differently. In particular two algorithms Dym,
Merino and I have recently studied are based on representingΨ as

Algo 1: Ψ = GT + G or Algo 2: Ψ = GT G

whereG is matrix valued and analytic on the disk. Indeed after a bit of massaging we recently found

res:toep Result 4.1 (DHM02) For both algorithms the differentialT ′ of T always has the form

T ′ = a block Toeplitz operator+ a block Hankel operator

In Algo 1 the block Toeplitz operator is selfadjoint with some useful added structure.

A consequence of the special form ofT ′ in Result
res:toep
4.1 is that the key step in Newton’s method should be imple-

mentable with a fast linear solver (as studied by T. Kailath, A. Sayed, V. Olshevsky and others).
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Result 4.2 (DH03) For Algorithm (2.) we have a simple formula to tell ifT ′ is Fredholm of index 0.

Our computer experiments show that whether or not the Fredholm index ofT ′ is 0 is an excellent predictor of
the performance of Newton type algorithms. We think this actually gives the most practical approach to analyzing
numerical algorithms for these problems. Computing invertibility ofT ′ is likely impossible. However, index 0
computation (while a bit tricky and not that obvious) is doable on broad classes of problems and gives a theoretical
tool for algorithm evaluation and development.

A corollary of these results for the multidisk problem alluded to in Example 2 is

Result 4.3 (DH03) For a “nondegenerate” v- disk Nehari problem withv ≤ m, the Fredholm of index ofT ′ is 0 if
and only ifv = m.

Indeed, thev = m problem turns out to be well behaved for Algorithm (2.) andv ≤ m does not.
Currently, we are analyzing Algorthm (1.). Conspicuously open is that whenv ≤ m and relaxed variant (an

interior point method) of Newton’s algorithm works well. This is a very interesting thing to analyze. Also we have
in qualitative properties of multidisk problems: if all data are rational functions then for “nondegenerate”v = m
problems the optimum is rational. Uniqueness in thev = m case is open. Also interesting is the possibility of
applications of these methods inspired by primal-dual numerical approaches to other problems, like optimization for
matrix inequalities, which we now describe.

4.2 Optimization to Solve Matrix Inequalities
sec:optmat

A serious effort with Camino (student) and Skelton MAE Dept. UCSD is going into numerical solution of matrix in-
equalities (not necessarily linear) on matrix unknowns. We preserve the matrix structure of the unknowns throughout
our algorithm for as long as possible, as opposed to other semide£nite programming algorithms which at the outset
express an unknown matrix, sayX as{xij}, which in applications often has thousands of variables. The £rst part
of the algorithm is symbolic and produces noncommutative directional £rst and second derivatives to symbolically
produce a linear subproblem. Then the code feeds this to a numerical linear equation solver.

This plus our ConvexityRegion command produces an alternative strategy to LMI’s which are used now through-
out systems engineering. With LMI’s one must actually convert a problem (if possible) to an LMI; this an art not
a science. Advantages of LMI’s are that their inherent convexity guarantees that solutions found are a global op-
tima and, as mentioned before, numerical software is very highly developed. With our approach one need not know
anything about LMI’s. One uses NCAlgebra’s ConvexityRegion command to determine a regionR on which the
problem is convex. On this region our code is reliable numerically (an experimental as well as theoretical observa-
tion) and the optimum we £nd is a global optimum. In speed comparisons our code is in its £rst incarnation a little
slower than the LMI toolbox which is very highly developed.
Questions:concern comparison of this to problems tractable with LMI methods. Here it would be very interesting
to know how our region of convexityR corresponds to the regimes described by the LMI. This is an untouched
theoretical issue. Also the linear subproblemL our algorithm produces has at the symbolic level the special form

M∑
j

ajhbj + bT
j haT

j = q (12) eq:linSub

whereh is the update direction which one must compute numerically at each iteration and the coef£cientsaj , bj

are NC rational functions of the basic unknownsx in the problem. One linear system of equations can have many
different representations (

eq:linSub
12 ) with many possibleM . The speed of our brute force numerical linear solver decreases

with M . What is the best possibleM (or at least get some estimates)? Find symbolic methods for writing the linear
subproblemL with the smallest possibleM . Our current symbolic method for reducingM is sensible, often saves
factor of more than 10 in time, but is crude. Finding numerical solvers which use the special structure of (

eq:linSub
12) very

ef£ciently would be valuable.

5 LINEAR SYSTEM THEORY MOTIVATION
sec:motiv

Matrix inequalities have come to be extremely important in linear systems engineering in the past decade. This is
because many linear systems problems convert directly into matrix inequalities.

Matrix inequalities take the form of a list of requirements that polynomials or rational functions of matrices be
positive semide£nite. Of course while some engineering problems present rational functions which are well behaved,
many other problems present rational functions which are badly behaved. Thus taking the list of functions which a
design problem presents and converting these to a nice form, or at least checking if they already have or do not have
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a nice form is a major enterprise. Since matrix multiplication is not commutative, one sees much effort going into
calculations (by hand) on noncommutative rational functions, although engineers seldom use (don’t like even) the
word noncommutative. A major goal in systems engineering is to convert, if possible,“noncommutative inequalities”
to equivalent Linear Noncommutative Inequalities (effectively to LMI’s).

The most basic efforts, such as determining when noncommutative polynomials are positive, convex, convertible
to noncommutative LMI’s, transformable to convex inequalities, etc., force one to the rich area of undeveloped
operator and matrix theory described in this proposal.

Many different types of matrix inequalities have come up in the mathematics of the previous century, but the ones
which predominate in engineering systems usually take the form of a polynomial or rational function of matrices
being positive semide£nite. An extremely simple example is the Riccati inequality

AX + XAT − XBBT X + CT C is PosSemiDef. (13) ineq:ric

Also there is the LMI (
AX + XAT + CT C XB

BT X I

)
is PosSemiDef. (14) ineq:lmi

The inequalities (
ineq:ric
13) and (

ineq:lmi
14) are equivalent in that given matricesA,B,C they have the same set of solutionsX.

Note (
ineq:lmi
14) is linear in the unknownX; thus is an LMI. It is algebraic formulas like these (though typically more

complicated) that are programmed into the main computer packages in engineering.
A user of one of these packages when doing a design puts in the math model for his system, that is, he gives

speci£c matricesA,B,C. Numerical software in the package then solves forX.
Thus to produce design software there are two main issues.

(1) Algebraic: complicated inequalities involving polynomials and rational functions occur, convert them to nice
ones or prove this impossible.
(2) Numerical: Find numerical methods for solving nice ones.
Most of the research proposed here is on such algebraic (rather than numerical) issues.

5.1 To Commute or Not Commute: “Dimensionless” Formulas

This section discusses two different ways of writing matrix inequalities. As an example, we could consider either
the Riccati inequality (

ineq:ric
13) or the equivalent LMI in (

ineq:lmi
14). Let us focus on this LMI, and discuss the various ways one

could write this linear matrix inequality.
The LMI in (

ineq:lmi
14) has the same form regardless of the dimension of the system and its de£ning matricesA,B,C.

In other words, if we take the matricesA,B,C andX to have compatible dimension, (regardless of what those
dimensions are), then the inequality (

ineq:lmi
14) is meaningful and substantive and its form does not change.

When the dimensions of the matricesA,B,C andX are speci£ed it is common to write (
ineq:lmi
14) as a linear combi-

nation of known matricesL0, L1, . . . , Lg of dimensiond × d in unknown real numberss1, . . . , sg:

L0 +
g∑

j=1

Ljsj is PosSemiDef (15) ineq:Ugh

For example, in the inequality (
ineq:Ugh
15) if A ∈ R2×2, B ∈ R2×1, C ∈ R1×2, thenXT = X ∈ R2×2 and we would take

m = 3 and the numberssi in X =
(

s1 s2

s2 s3

)
as unknowns in the inequality (

ineq:Ugh
15). The unpleasant part is that the

Li areL0 :=
(

CT C 0
0 I

)
L1 :=




2a11 a21 b11 b12

a21 0 0 0
b11 0 0 0
b12 0 0 0




L2 :=




2a12 a11 + a22 b21 b22

a22 + a11 2a21 b11 b12

b21 b11 0 0
b22 b12 0 0


 L3 :=




0 0 0 a12

0 0 0 a22

0 0 0 b21

a12 a22 b21 2b22


.

Now considerA ∈ R3×3, B ∈ R3×2, C ∈ R2×3, X ∈ R3×3. This gives a messier formula. The point is that the
formula (

ineq:Ugh
15), with commutative unknowns, does not scale simply with dimension of the matrices or of the system

producing them, while formula (
ineq:lmi
14) does, but (

ineq:lmi
14) contains noncommutative unknowns.
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Helton sees problems as splitting into two natural typesdimensionless, the dimension of the system does not
directly enter the statement of the problem, anddimension dependent. Most classical systems problems are di-
mensionless, eg. theH2 control problem,H∞ control problem, state estimation problems, etc.. It is an empirical
observation that dimensionless problems convert to matrix inequalities in noncommutative variables, while those
which are dimension dependent lose this structure and have commutative variables. For example, theH2 control
problem converts to solving one Riccati inequality, while theH∞ control problem converts to solving two Riccati’s
and a coupling inequality; all of these are inequalities on polynomials in noncommutative variables.

6 NONCOMMUTATIVE COMPUTER ALGEBRA
sec:ncalg Operator theory and linear systems engineering are rife with calculations in a noncommuting algebra. Indeed it is

likely that someday there will be a branch of these subjects devoted to their symbolic computational aspects. While
commutative computer algebra has seen heavy development and use, since the MACSYMA project in the 1960’s,
general noncommutative computer algebra has only recently come to the beginning stages of experimentation; still
the £eld is uncharted, certainly with respect to engineering and operator theory problems. For perspective, 10 years
ago there was little noncommutative algebra software publically available. Unfortunately, to bring noncommutative
computer algebra to nearly its potential requires a creation of a small world of algorithms and software. Also the
£eld, to get started, faces the task of doing many experiments to £nd a collection of successful applications and of
developing more algorithms to £ll major application gaps.
Our software. Helton-Stankus plus many students are the main providers to Mathematica of platform (called NCAl-
gebra) for performing general noncommuting calculations in Mathematica. It has over a thousand downloads. Our
effort, which includes many features, now consists of1.8 Megabytes of Mathematica code with2.14 Megabytes of
C++ linked. See the NCAlgebra homepage,www.math.ucsd/∼ ncalg.

The pure Mma part of NCAlgebra can be used as a very powerful ‘yellow pad’, and runs on most platforms.
In the last year we have implemented algorithms involving noncommutative inequalities, for example the convexity
checker mentioned in§

sec:ConvCheck
2.4 These include a noncommutative LDU decomposition.

The noncommutative Gröbner basis, NCGB part of NCAlgebra, implements algorithms due to Mora in C++ and
links to Mathematica. We have algorithms for sorting and ”shrinking” the output in various ways ( this is crucial for
noncommutative situations). It supports Solaris; Windows; and Linux.

6.1 Experiments on Inequalities
sec:expInq

Progress has been fast in the areas proposed in§
sec:linOp
1,

sec:lin.1.2
2,

sec:LMIrepCom
3 due partly to Mathematica experiments. For example,

these helped vet the Sum of Squares results, and our NC Algebra command ConvexityRegion and related software
suggested the extremely rigid structure of convex polynomials and convex rational functions. Also they vetted the
proof outlines we are now following on noncommutative rational functions and NC LMI representations. In fact
most of our experiments in the last year have been directed at these questions.

Recently graduate students Slinglend and Shopple came up with a new algorithm and NC Algebra implemen-
tation of it for producing representations for rational functions as in (

eq:repTF
8). This will allow much more penetrating

experiments and even the possibility of producing an LMI representation algorithmically.

6.2 Noncommutative Gr̈obner Basis

Noncommutative Gr̈obner Bases are experimental, but we £nd them a valuable tool. They can be used to eliminate
variables from systems of polynomial equations. NCAlgebra is linked with NCGB, an implementation of Mora’s
algorithm, developed by Mark Stankus my former postdoc. We have done many experiments and continue to.
NCGB was quite useful in work with M. Oliveria described below. We found that NCGB plus our ”throwing out
redundant relations” methods, when tried on singular perturbation problems as one sees in linear control, works well,
see [HKMS00]. We are planning to try NCGB in addressing the problem of makingN as small as possible in the
linear subproblem (

eq:linSub
12). Understanding the behavior of noncommutative GB for pseudoinverses and sums of several

pseudoinveses would have serious implications if they behave simply. We have done numerous experiments and tried
the results with mixed results on the LMI producing method of R. E. Skelton, T. Iwasaki, K. Grigonidas [SIG97]

Stankus has recently made a major overhaul of his NCGB code, producing big speed improvements, and we plan
over the next few years to link this new version to NCAlgebra. Of other noncommuters, Ed Green at VPI has been
helpful to us, as was his former postdoc, Ben Keller, who wrote the excellent noncommutative GB code OPAL. The
only other noncommutative GB codes we know of,http://www.singular.uni-kl.de/DEMOS/PLURAL/overview.html
andhttp://www.win.tue.nl/∼ amc/pub/grobner/doc.html,are from Europe and we are not sure of their scope (or the
extent to which they will be supported).
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6.3 Miscellaneous
ec:compMisc

Computer Algebra for Standard LMI Methods One venture with Mauricio Oliveria, a postdoc in MAE, concerns
the unifying 1997 book [SIG97] on control vs. linear matrix inequalities. We, in [OH03], have developed algorithms
(mostly factorization) which allow implementing the method in this book. There is another well known method ”the
change of variables approach” by C. W. Scherer, P. Gahinet and M. Chilali in 1997. Here much can be implemented
and we are doing experiments on the tricky change of variables involved, [OH03cdc]. They seem to £t the mold of a
rather modest change of variables procedure proposed in [HS99]. Methodology so far is implemented in NCAlgebra,
although not distributed yet. Parts of all of this involving automatic production of pseudoinverses provide interesting
challenges.
Mathematica’s Control Toolbox Mathematica has a control toolbox which operates at the commuting level.
Thus it will not deal with block systems. We have and plan to maintain a small package underNCAlgebra which
links it to Mathematica ‘s package and gives it a reasonable amount of noncommuting capability. This requires no
change toMathematica ’s package just load our package in. Then one can manipulate theA,B,C,D of systems
theory much as a human would do. See Synergistic Activities in this proposal.

7 NONLINEAR OPERATOR THEORY AND CONTROL
sec:nl

The last main topic in the proposal is a major interest but will receive only brief treatment, since we are out of space.
In the linear case there are many equivalent formulations of the problems and results described in the proposal.

They can be presented in several very different terminologies such as modern operator theory and classical complex
variables, control engineering, classical circuit theory. It is an overwhelming job to give them all in this proposal, so
we typically present only one formulation and urge the reader to use some imagination in converting the result to the
language most familiar to him. Outside the linear realm what result is equivalent to what is an interesting research
topic, but still the correspondences are strong.

The nonlinear area is open ended and results with James are already extensive enough that we are forced to write
a monograph [HJ99] in order to have a complete account of our results. The most dramatic results and ideas of
proofs were announced in Conf. on Decision and Control proceedings.

It would be appropriate to start gently with something fun like the non-linear generalization of the analytic
function maximum principle. But in a 15 page sprint I must go directly to heavier things.
The problem After manipulation, theH∞ control problem reduces to the problem involving the following £gure:

- -
-

¾u y

w out

K

G

Figure CTRL.

The given systemG, described by state space equations

dx/dt = A(x) + B1(x)w + B2(x)u, out = C1(x) + D12(x)u, y = C2(x) + D21(x)w,

is nonlinear but time-invariant. We always assume homogeneity, i.e.A(0) = 0, C1(0) = 0, C2(0) = 0. One wishes
to £nd a nonlinear time-invariant feedback systemK of the form

dz/dt = a(z, y), u = c(z)

which achieves given performanceγ. The standard problem ofH∞ control in the nonlinear setting is

(CTRL) Find a feedback law(a, c) so that the resulting closed loop system when initialized at 0 satis£es the
dissipation inequality

∫ t1

t0

‖out‖2 dt ≤ γ2

∫ t1

t0

‖w‖2 dt

for a preassigned tolerance levelγ and which makesx(t) → 0 regardless of initial state.
In the case of linear systems

A(x) = Ax, Bj(x) = Bj , Cj(x) = Cjx andDij(x) = Dij

whereA, Bj , Cj , Dij are matrices and the feedback system is linear as well. The frequency response functions of
the systems (which describe the input output behavior of the systems) are rational matrix valued functions. The
question (CTRL) and related questions can be recast in terms of frequency response functions (FRF) and become
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complex variable problems of a type studied by operator model theorists. The special case of (CTRL) where the
given system is stable and theu → y FRF is 0 is called the model matching problem in engineering, or the (matrix
valued) Nevanlinna-Pick (NevP) problem (with a £nite number of interpolating conditions) in mathematics.

CTRL also is the problem of making a circuit dissipative using feedback. For linear systems key cases were
solved in 1965 (SISO) by Youla and Saito and (MIMO) in 1976 by Helton. In the early 80’s Zames and Francis
formulatedH∞ control and solved the math problem by drawing on the earlier solutions to this circuits problem. In
the beginning the subject ofH∞ control evolved quickly in signi£cant part because key math problems were already
reasonably understood by operator theorists.
Parameterization of all linear H∞ solutions to (CTRL) can be done once one expresses the given system in Fig
CTRL in certain coordinates and writes it as the composition of two systems with special properties; this amounts
to a “ J-inner/outer” factorization of a given operator on vector valuedL2[0,∞]. Mathematically this is a vast
extension of the Beurling Theoerm which says that functions analytic on the right half plane (RHP) have an inner
outer factorization and this is the general area which the Nagy-Foias commutant-lifting theorem addresses (following
a basic insight of Sarason). The £rst solution to linear (CTRL) was done not in statespace form as presented here but
in terms of FRF’s, using commutant lifting solutions to the matrix Nevanlinna-Pick problem by Zames and Francis.
It followed my suggestion to Zames. Then K. Glover gave a solution in statespace terms. Ordinary inner/outer
factorization is classical Beurling -Lax theory. It was Ball - Helton who showed that “J-inner/outer” factorization
had the powerful properties indicated above.
Older nonlinear work The formulation of, and £rst work on nonlinear (CTRL) was by Ball-Helton-Foias-
Tannenbaum in 1987; and actually focused on the factoring problem. This was done in terms of Taylor series
expansions of the system’s input output operators and it did not use statespace. Foias-Tannenbaum with Gu ulti-
mately developed this into a rich and complete theory.

The control and factorization problem for large classes of stable nonlinear systems was reduced to a Hamiltonian-
Jacobi-Bellman-Isaacs (HJBI) inequality by Ball and Helton in the late 1980’s. This gave a nonlinear theory which
was a strict generalization of the statespace linear theory. Work of Byrnes and Isidori around 1992, making a system
stable with feedback, was at the same level of generality. Ball and van der Schaft gave a beautiful theory of nonlinear
Wiener-Hopf factorization. This gives a way of producing J-inner/outer factors in the nonlinear case. Unfortunately,
all of these constructions and methods work only in the stable case. In the mid 1990’s the general (unstable) theory
has made a big advance due to work of James-Baras- Helton, Didinsky-Basar, and also van der Schaft. The problem
of extendingH∞ control to a nonlinear system has now been converted to solving two particular types of PDEs.
One PDE,the HJBI , is the key to understanding the situation whereA is stable. It is

∇xV (x) ◦ [A(x) − B(x)D(x)−1C(x)] +
1
2
∇xV (x)BJUBT∇xV T (x) = 0 (16) eq:HJBI

andV is called stabilizing provided the differential equationẋ = [A + BJUBT∇xV T ](x) is asymptotically stable.
The other equation is new and it is scalledthe information state PDE, ISPDE:

ṗt = f(pt, s(t)), (17) is-dyn

wheref(p, s) is the differential operator

f(p, s) := −∇xp · (A + Bs) + 1
2 |C + Ds|2JQ

(18) f-def

Under many assumptions the control problem(CTRL) having a solution is close to the function
pt(x) + V (x), (19)

de£ned onx ∈ Rn the space of states, being well behaved and having a unique maximizer. HereV is the sta-
blizing solution to the HJBI.This and improvements is the subject of the research monograph [HJ99]. The papers
[HJMprept] give formulas which replace the ISPDE with a related one on a lower dimensional space, thereby saving
computational effort.

At this time conspicuously missing is how the matrix inequalities which revolutionized linear systems extend to
the nonlinear case. For the HJBI equation such extension is standard, but not for the IS PDE.

More speci£cally, the main question I am working on (with James and his postdoc Huang) is the ”low order
controller problem”. This is (CTRL) but with the dimension of the state space of the controller prespeci£ed, sayd.
In the linear case there is a elegant solution, see Ch 8 R. E. Skelton, T. Iwasaki, K. Grigonidas [SIG97]. There are two
decoupled Riccati inequalities which must have solutionsX Y both PosSemiDef respectively. These must satisfy
thecoupling conditionY −1 −X is NegSemiDef and it has rank≤ d. This problem will require us to understand the
HJBI inequality, the information state inequality together with how the coupling condition behaves. I am optimistic
about our approach, it is to the place where we are doing numerical tests of our conjectured formulas.

For perspective, a classical analytic function problem this generalizes is: Given a rational functionf of one
variable analytic in the closed RHP. Find a rational functiong analytic in the closed RHP withd or fewer poles
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whose supremum norm distance tof is less than or equal toγ. This is a highly nonconvex problem. The matrix
inequality solution mentioned above (handles this classical problem) and the solution converts to LMIs except for
the rank condition. A signi£cant engineering effort is devoted to research on compromise solutions in the presence
of such rank constraints.

8 OTHER
sec:other To my delight UCSD just built a strong group in control. Bob Skelton was the £rst of the new wave and we already are

working on several projects. One is developing computer algebra for facilitating manipulation of matrix inequalities
was described in§

sec:optmat
4.2 and§

sec:ConvCheck
2.4.

Another, involves tensegrity structures. These make heavy use of cables, since pound for pound cables are
stronger than steel beams. This seems like a rich area for theory and has not been extensively developed. Mathemat-
ically, these produce elegant generalizations of static structure problems where one has ”signed objects” rather than
positive ones. Our £ndings so far are in [SHAPC01] and various conference proceedings.

Ed Bender, Bruce Richmond and I solved a combinatorics question about the frequencies of sequences of ”ups
and downs” in strings of integers. This uses the Krien-Rutman Theorem plus some explicit calculations with integral
operators [BHRprept]. Here a nice open question is what happens for a certain more general class of sequences, see
Conjecture 1 [BHRprept]. It suggests a novel extension of the classical Krein Rutman Theorem.

Local Navy researchers and I discuss uses of the techniques in§
sec:opt
4; this led to US. patent [SHA03] on an algorithm.

My former Phd student Mike Walker is the main controls person for fusion research here in San Diego (biggest
tokamak in the U.S.). we discuss plans for future control systems.

Also Ford Motor Co. has given several gifts to support my research.

9 PERSPECTIVE

Motivation §
sec:motiv
5 Matrix inequalities have recently come to dominate linear systems theory. These lead to two natural

types of algebraic problems: those with variables which are noncommutative and those with commutative variables.
These correspond physically to whether or not the problem is or is not ”dimensionless”. Convexity is a major
issue because ultimately numerical methods are optimization based. LMI’s play a dominant role now in systems
algorithms and software; at least a thousand papers concern them. The state of the engineering art is: there are clever
tricks for producing LMI, but little that is systematic and in many problems MIs but no LMIs emerge. Consequently,
the algebra underlying both noncommutative and commutative inequalities needs a thorough investigation. Though
noncommutative ”inequalities” are more common in classical control or systems books, a theory is just beginning.
The situation at the moment is
Noncommutative Semialgebraic Geometry,§

sec:linOp
1 This operator theoretic version of the classical branch of real

algebraic geometry called semialgebraic geometry has emerged in the last 3 years. Its status is
1. SoS and Theorem

thm:sphere
1.4 behave better in the NC than in the commutative case.

2. Our NC strict Positivstellensatz behaves comparably to the Putinar-Vasilescu 1999 version of the classical
commutative Positivstellensatz (which goes back to the 1970’s).

3. Characterization of the radical ideal behaves badly in the noncommutative case (as opposed to the commuta-
tive case). Various nullstellensatzs are possible. There are many open questions in non-strict cases.

4. A noncommutative version of the Tarski’s elimination of quanti£ers principle (which predates the Positivstel-
lensatz) has yet to be explored.
NC Convexity §

sec:lin.1.2
2 When the variables are noncommuting the structure is extremely rigid. Nothing like this holds

for commuting variables.
Convexity vs LMIs §

sec:LMIrepCom
3

1. For commutative variables convex sets are not all representable; for dimensiong = 2 precise conditions are
known, while forg > 2 they are conjectured. Possibly ”lifts” of convex sets have LMI representations.

2. We conjecture that ”noncommutative convex sets” all have noncommutative LMI representations. Indeed for
noncommutative situations we believe that LMIs and convexity are intimately linked. There is considerable progress
toward proving it. Changes of variable to achieve NC convexity is an open frontier, but may well be better behaved
than what one sees classically in several complex variables.
NC Computation §

sec:ncalg
6 Noncommutative algebraic algorithms can be readily implemented using NCAlgebra which

runs under Mathematica. We do research on algorithms, implementation, experiments and we support NCAlgebra.
For noncommutative problems, numerical algorithms which completely bypass LMIs are in being tested, see§

sec:optmat
4.2

Our design methodology potentially has the advantages of LMIs (including guarantees of global optimality because
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of our noncommutative convexity checker) without the headaches and uncertainty of trying to convert ones problem
to LMIs.
Nonlinear operators and systems§

sec:nl
7 An achievement of the last ten years has been to elegantly extend substantial

pieces of linear theory to nonlinear operators and systems. Now a frontier is extending the linear inequality theory
of systems to nonlinear situations. Much remains here.
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E. BIOGRAPHICAL SKETCH
Vita

J. William Helton, Math Dept. UCSD, La Jolla, Cal. 92093.
helton@math.ucsd.edu, 858 755 3437 home, 858 755 2379 fax at home, 858 534 5273 fax at ucsd.

Date/Place of Birth: November, 1944/Jacksonville, Texas

Education: BS from U Texas (Austin) in Math 1964, PhD. from Stanford in Math in 1968.

Positions Held: Associate UC San Diego 1974 - 1979, Full Professor UC San Diego 1979 - Present, Visiting
Assoc. Professor UCLA 1974, Assistant and Associate Professor SUNY-Stony Brook 1968 - 1973

Five Papers Closely Related to the Proposal
[H02],[CHSY03], [HMtrans], [HVprept] and [HJ99]

Five Signi£cant Publications
I gather we are supposed to list £ve in¤uential papers here. To give a ¤avor of my work before doing mathematics

connected with control (heavily discussed earlier in the proposal) I decided to pick 5 earlier papers written before
1980.

[H72] J. W. Helton: ”In£nite dimensional Jordan operators and Sturm-Liouville conjugate point theory,” Trans.
Amer. Math. Soc., 170 (1972), 305 331.

This gives an unexpected lifting theory for a class of seemingly abstract operators de£ned algebraically. It turns
out to generalize classical O .D. E. theorems. This was the forerunner of Agler’s very powerful hereditary operator
theory.

[H74] J. W. Helton, Discrete time systems, operator models and scattering theory, J. Functional Analysis,16 (1974),
15–38.

This was the discovery that operator models and engineering systems theory are essentially equivalent. Inde-
pendently P. Fuhrmann and P. DeWilde observed something similar. It lead to a branch of operator theory which
interacts with engineering.

[HH76] J. W. Helton and R. Howe, Traces of commutators of integral operators, Acta Math.,136(1976), 272–305.
This was the £rst paper which revealed surprisingly concrete and elegant structure in this area. The paper in-

¤uenced Alain Connes in his invention of noncommutative differential geometry. (Howe and I did the highest
cohomology class in Connes cyclic cohomology.)

[H77] J. W. Helton, An operator algebra approach to partial differential equations; propagation of singularities and
spectral theory, Indiana J. of Math. (1977), 997–1017.

Gives a basic result on the spectrum of the Laplacian on any manifold whose geodesics have uniformly bounded
length.

[H78] J. W. Helton, Orbit structure of the M̈obius transformation semigroup action onH∞ (broadband matching),
Advances in Math. Suppl. Studies,3, Academic Press, new York (1978), 129–197.

This found the Poincare distance of a function inBL∞ to BH∞. It also solved the long standing circuits
problem of multiport broadband gain equalization. This work introduced commutant lifting and AAK techniques to
engineering.H∞ control is where these found their biggest use.H∞ type packages now dominate linear control
systems software.

Synergistic Activities
1. I devote much effort to promoting interactions between operator theorists and engineers. One is by doing research
at the boundary of the subjects. Another is through conferences. I think that ‘ ‘pure” mathematicians, applied
mathematicians, and engineers, should meet from time to time, at the minimum for educational purposes and at the
maximum for serious collaboration. Thus I think having some broad ranging conferences is valuable. With Gohberg,
I founded the conference International Workshop on Operator Theory and Applications (IWOTA) in 1981. Gohberg,
Kaashoek and I constitute the central committee and have managed to sustain it. Also I am an originator and (a
steering committee) mainstay of the Mathematical Theory of Networks and Systems. Both meet every 2 years -
IWOTA year 2000 meeting had 170 participants- MTNS had 950. IWOTA year 2002 meeting had 100 participants-
MTNS had 400.
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2. Mark Stankus and I together with students provide ( for free) the noncommutative computer algebra package,
NCAlgebra, which gives Mathematica general noncommutative capability. It has had over a thousand downloads.
See§

sec:ncalg
6 for descriptions of related research. We have good ties with Wolfram Research Inc., for example, Mathematica

has a control toolbox (by I. Bakshee) which of course operates at the commuting level. Thus it (or any other package)
will not deal with systems in a way similar to the way a human deals with systems. We wrote a small package which
links it to NCAlgebra with some advice from I. Bakshee which gives Mathematica’sControl System Professionala
reasonable amount of non-commutative capability. I think this is a £rst for systems packages. Our enhancement is
distributed free with NCAlgebra. See the NCAlgebra home page, www.math.ucsd/∼ ncalg.
3. Teaching- Summer graduate student computer lab (see Human Resources) Students learn more math, gain com-
puting skills and get a taste of engineering. I am developing an Undergrad ”taste of engineering” math course. The
prerequisite is linear algebra and complex analysis. The material is not close to any course I have seen.
4. Book with Merino [HMer98] gives a uni£ed engineering control design methodology, the corresponding mathe-
matical theory developed over the last 10 years, computer algorithms, and some software implementing our algrithms.
About 60 % of the book is very expository and attempts to achieve a balance between mathematics and engineering
which can serve as an introduction to both audiences.
5. Associate Editor: Journal of Operator Theory, Journal of Operator Theory and Integral Equations, Nonlinear
and Robust Control, CRC book series, Journal of Fourier Analysis and its Applications, Birkhauser book series in
Control, SIAM book series: Advances in Design and Control.
Collaborators over the last 48 months

J. Agler, Math UCSD; Adhikari, R. E. unknown; E. Bender Math UCSD; J. F Camino, Wailung Chan, Gr
Stu Eng UCSD; P. Dower, Eng Melborne U; H. Dym, Math Weitzman Inst.; M. Hardt, Math Tech U Darmstadt;
M. R. James, Eng ANU; K. Kreutz-Delgado, Eng UCSD; F. D. Kronewitter, Titan Inc.; W. M. McEneaney,
Math & MAE UCSD ; O. Merino, Math URI; M. Oliveria, postdoc MAE UCSD; M. Putinar, Math UCSB; B.
Richmond, math U Waterloo; Lev Sakhnovic Courant Inst Vis Scholar; R. E. Skelton, Eng. UCSD; M. Stankus,
Math Cal Poly San Luis Obisbo; O van Stryk, Math T U Darmstadt; V. Vinnikov, Math BG U of the Negev; T.
Walker, Software consulting; J. Wavrik, Math UCSD; M. A. Whittlesey, Math Cal State San Marcos; J. Ye, in
Singapore; S. Yuliar, A Univ. in Indonesia;

My Graduate Adviser Mike Crandall 1968

Graduate and Postgraduate advisees in last 5 years
Postdoctorals— P. Dower- Eng. Melborne U. , Matthew Kennel, Mikhail Sushchik- Inst Nonlin Studies UCSD,
Andres Balogh - Math Dept. UTexas Pan Am
Graduate students— who were Phd advisees, or substantial coauthors with me and who recieved some funding are:
D. Kronewitter - Titan Inc. M. Hardt - TU-Darmstadt (Postdoc Applied Math).
Additional Grad Studentsfunded from various Helton grants (most worked on various computational and engineer-
ing related projects.)– In math: Brett Kotschwar, Poon Chuan Adrian Lim, Karl Hakan John Shopple, Nicholas
Slinglend, Anthony Mendes, Jeffrey Scott Ovall, Anthony Shaheen, Jason Bell, Josh Grif£n, Daniel Curtis, Jieping
Ye, Dave Glickenstien, E. Rowell, In engineering: Juan Camino, Michael Hardt.
UndergradsMike Torre, Maria Campbell

Often these math grad students get Phd’s in pure math so, the lab experience and association with the engineering
students broadens them considerably.
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BUDGET JUSTIFICATION
Salaries.

The request is for one month of summer salary for the PI, for some postdoc, graduate student and undergraduate
support. Besides graduate students who work directly with me, many do computer and related projects. Some of this
is described in§

sec:ncalg
6 on NCAlgebra. Also computer experiments with graduate students played a critical role in £nding

Theorems
thm:PosIntro
0.1,

thm:convp1
0.2,

EX:NC
1.1 as well as the Conjectures in Sections

sec:ConvRat
2.3,

sec:LMIrep
3.2 and research in Sections

sec:opt
4

sec:other
8.

Foreign travel. I usually go to between 2 to 4 conferences per year. Often one is international the others are
domestic. I usually go to an IEEE conference , MTNS, IWOTA, and attend individual operator theory conferences
or other conferences as they come up.
Equipment. I could sure use a faster computer with fast access memory for our computer algebra calculations. Cost
is $5000 in year 1 only.
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