PRACTICE MIDTERM I

Follow these instructions carefully.

- 1. No calculators or other electronic computational aids may be used during the exam.
- 2. You may have one page of notes, but no books or other assistance.
- 3. Write your name, PID, and section on the cover of your bluebook.
- 4. Show all your work in the bluebook.
- 5. No credit will be given for unsupported answers.
- 6. Present your answer clearly.
 - a) Carefully indicate the number of each question and question part.
 - b) Try to present your answers in the same order they appear in the exam.
 - c) Start each question on a new side of a page.

There are four questions. Each question is worth 10 points.

Question 1.

- 1. Compute the sum of the binary numbers 1010111 and 1011101. Leave your answer in binary.
- 2. Convert the binary number 111 to base 10.
- 3. Is the binary number 1100000011 odd or even?
- 4. Multiply the binary number 111 by 8. Leave your answer in binary.

Question 2.

Prove the following claim in propositional logic by giving a two column proof:

$$(p \to (q \lor r)) \land ((r \land p) \to q) \implies p \to q$$

In your proof, you may use the rules described in Figure 1.

Question 3.

Let P(x) be the predicate "x is a bleep." and Q(x) be the predicate "x is a blop." Write a paragraph explaining why $(\exists x)(P(x) \to Q(x))$ is not the translation of the sentence "there is a bleep that is a blop," and also why $(\forall x)(P(x) \to Q(x))$ is the translation of the sentence "all bleeps are blops."

Question 4.

Give a direct proof of the following claim: the product of any two odd numbers is an odd number. Be sure that your proof refers to the definition of an odd number.

Equivalence	Name	Inference	Name
$\neg \neg p \iff p$	double negation	$p \longrightarrow n \wedge q$	conjunction
$p \to q \iff (\neg p) \lor q$	implication	$q \int q \int q$	conjunction
$\neg (p \land q) \iff (\neg p) \lor (\neg q)$	De Morgan's laws	p	-
$\neg (p \lor q) \iff (\neg p) \land (\neg q)$		$p \rightarrow q \qquad \Rightarrow q$	modus ponens
$p \wedge q \iff q \wedge p$	commutivity		
$p \lor q \iff q \lor p$		$ \qquad \ \ ^{\prime q} \rangle \implies \neg p$	modus tollens
$p \wedge (q \wedge r) \iff (p \wedge q) \wedge r$	associativity	$p \rightarrow q$	
$p \lor (q \lor r) \iff (p \lor q) \lor r$		$p \land q \implies p$	simplification
$p \wedge p \iff p$	idempotents	$p \implies p \lor q$	addition
$p \lor p \iff p$		$p \rightarrow q$	theneitisites
$p \to q \iff \neg q \to \neg p$	contraposition	$ q \to r \rangle \implies p \to r$	transitivity

Figure 1: Equivalence rules (left) and inference rules (right). For use in Question 2.