PRACTICE MIDTERM II

Follow these instructions carefully.

- 1. No calculators or other electronic computational aids may be used during the exam.
- 2. You may have one page of notes, but no books or other assistance.
- 3. Write your name, PID, and section on the cover of your bluebook.
- 4. Show all your work in the bluebook.
- 5. No credit will be given for unsupported answers.
- 6. Present your answer clearly.
 - a) Carefully indicate the number and letter of each question and question part.
 - b) Try to present your answers in the same order they appear in the exam.
 - c) Start each question on a new side of a page.

There are four questions. Each question is worth 10 points.

Question 1.

Let \mathcal{L} be the set of lists of natural numbers. For each part below, give an example of a recursively defined function f with domain \mathcal{L} that satisfies the condition named in each part. Note that you can use a different function for each part.

- (a) f is a bijection
- (b) f is not surjective
- (c) f is not injective

Question 2.

Recall that the factorial function n! is defined recursively by 0! = 1 and for n > 0, $n! = (n-1)! \cdot n$.

Prove by induction that $n! \ge 2^n$ for $n \ge 4$. Be sure to indicate what kind of induction proof you are using.

Question 3.

Let B(k) be a sequence defined by the following recurrence relation: B(1) = 1 and for $k \ge 2$, $B(k) = B(k-1) + k^2$. Let h(k) = k(k+1)(2k+1)/6.

Prove that for all $k \ge 1$ that B(k) = h(k).

Question 4.

Prove the following claim by induction on n: If X is a finite set, with |X| = n, then the number of two element subsets of X is $n \cdot (n-1)/2$.

Hint: Take any $x \in X$, and form the set $X' = X \setminus \{x\}$. Since |X'| = n - 1, the induction hypothesis applies to X'.