1. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ -1 & \text { if } x \text { is irrational }\end{cases}
$$

(a) Show that f is not integrable on $[0,1]$.

Given a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$,

$$
\begin{aligned}
m_{i} & =\inf \left\{f(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}=-1, \text { and } \\
M_{i} & =\sup \left\{f(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}=1
\end{aligned}
$$

for every partition interval $\left[x_{i-1}, x_{i}\right]$. Thus,

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)=2 \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=2
$$

for every partition P. It follows that f is not integrable.
(b) Show that $|f|$ is integrable on $[0,1]$.
$|f(x)|=1$ for every $x \in[0,1]$. Thus, $|f|$ is integrable (since $|f|$ is a constant function).
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq \frac{1}{2} \\ 2 & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

(a) Let P_{n} be the $n^{\text {th }}$ regular partition of $[0,1]$ into n partition intervals. Show that $\left\{P_{n}\right\}$ is Archimedean for f on $[0,1]$.
Let P_{n} be the $n^{\text {th }}$ regular partition of $[0,1]$. Observe that

$$
M_{i}-m_{i}= \begin{cases}1 & \text { if } \frac{1}{2} \in\left[x_{i-1}, x_{i}\right], \\ 0 & \text { otherwise } .\end{cases}
$$

Since $\frac{1}{2}$ is in at most two partition intervals, it follows that

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \frac{1}{n} \leq \frac{2}{n} \rightarrow 0 .
$$

Hence, $\left\{P_{n}\right\}$ is Archimedean for f.
(b) Determine the value of $\int_{0}^{1} f$.

$$
\int_{0}^{1} f=\int_{0}^{\frac{1}{2}} 1+\int_{\frac{1}{2}}^{1} 2=1\left(\frac{1}{2}-0\right)+2\left(1-\frac{1}{2}\right)=\frac{3}{2} .
$$

3. Let $f:(-1,1) \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{1-x^{2}}$ and $g:(-1,1) \rightarrow \mathbb{R}$ be defined by $g(x)=\sin \left(\frac{1}{1-x^{2}}\right)$.
(a) Extend f to $f:[-1,1] \rightarrow \mathbb{R}$ by defining $f(-1)=f(1)=0$. Is f integrable on $[-1,1]$? Explain.
No, f is not integrable on $[-1,1]$ because f is not bounded on $[-1,1]$.
(b) Extend g to $g:[-1,1] \rightarrow \mathbb{R}$ by defining $g(-1)=g(1)=0$. Is g integrable on $[-1,1]$? Explain.
Yes, g is integrable on $[-1,1]$ because it is bounded on $[-1,1]$ and continuous on $(-1,2)$. (Theorem 6.19)
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be monotonically decreasing.
(a) Show that f is bounded on $[a, b]$.

Since f is montonically decreasing, $f(b) \leq f(x) \leq f(a)$ for every $x \in[a, b]$. Thus, f is bounded.
(b) Let P_{n} be the $n^{\text {th }}$ regular partition of $[a, b]$ into n partition intervals. Show that $\left\{P_{n}\right\}$ is Archimedean for f on $[a, b]$.

$$
\begin{aligned}
U\left(f, P_{n}\right)-L\left(f, P_{n}\right) & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \frac{(b-a)}{n} \text { since } P_{n} \text { is the } n^{\text {th }} \text { regular partition of }[a, b], \\
& =\sum_{i=1}^{n}\left[f\left(x_{i-1}\right)-f\left(x_{i}\right)\right] \frac{(b-a)}{n} \text { since } f \text { is monotonically decreasing, } \\
& =[f(a)-f(b)] \frac{(b-a)}{n} \rightarrow 0 .
\end{aligned}
$$

Hence, $\left\{P_{n}\right\}$ is Archimedean for f.

