Math 142B

Midterm Exam 2 Solution

1. Given $f:[a, b] \rightarrow \mathbb{R}$ continuous. Use the Second Fundamental Theorem and additivity of the integral to show that

$$
\frac{d}{d x}\left[\int_{x}^{b} f\right]=-f(x) \quad \text { for all } x \text { in }(a, b)
$$

(Note: The definition that $\int_{b}^{a} f=-\int_{a}^{b} f$ is based on this result. Thus, your proof should not appeal to this definition.)
Given $x \in(a, b), \int_{x}^{b} f=\int_{a}^{b} f-\int_{a}^{x} f$. Thus, $\frac{d}{d x}\left[\int_{x}^{b} f\right]=-\frac{d}{d x}\left[\int_{a}^{x} f\right]$ by the Second Fundamental Theorem (and since $\frac{d}{d x}\left[\int_{a}^{b} f\right]=0$).
2. Given a polynomial p of degree at most n and x_{0} any point. Show that the $n^{\text {th }}$ Taylor polynomial for p at x_{0} is p itself. You may assume that p can be written in the form $p(x)=$ $a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}$.
Let p_{n} denote the the $n^{\text {th }}$ Taylor polynomial for p at x_{0}. By definition, $p_{n}\left(x_{0}\right)=p\left(x_{0}\right)$ and, given $x \neq x_{0}$, the Lagrange Remainder Theorem asserts the existence of a number c strictly between x and x_{0} at which

$$
p(x)-p_{n}(x)=\frac{p^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Since p is a polynomial of degree at most $n, p^{(n+1)}(c)=0$. It follows that $p_{n}(x)=p(x)$ for all x. (Note: This is Corollary 8.9.)
3. Given the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq \frac{1}{2} \\ 2 & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

As we've seen, f is integrable and $\int_{0}^{1} f=\frac{3}{2}$. Show that the Mean Value Theorem for Integrals does not hold for f and explain why f does not satisfy the hypotheses for the Mean Value Theorem for Integrals.
The mean value of f is $\frac{1}{(1-0)} \int_{0}^{1} f=\frac{3}{2}$, but there is no point x_{0} in $[0,1]$ at which $f\left(x_{0}\right)=\frac{3}{2}$. Thus, the Mean Value Theorem does not hold for $f . f$ does not satisfy the hypotheses for the Mean Value Theorem because it is not continuous at $x=\frac{1}{2}$.
4. Given a number r with $0<r<1$, let $f:[-r, r] \rightarrow \mathbb{R}$ be defined by $f(x)=(1-x)^{-1}$.
(a) Find a formula for the $n^{\text {th }}$ Taylor polynomial for f at 0 .

By induction, $f^{(n)}(x)=n!(1-x)^{-(n+1)}$. Thus, $\frac{f^{(n)}(0)}{n!}=1$ for every index n. It follows that the $n^{\text {th }}$ Taylor polynomial for f at 0 is $p_{n}(x)=\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\cdots+x^{n}$.
(b) Use the Lagrange Remainder Theorem to show that the Taylor series for f at 0 converges to $f(x)$ for all $x \in[-r, r]$.
Let x be in $[-r, r]$ with $x \neq 0$. By the Lagrange Remainder Theorem, there is a number c strictly between 0 and x at which

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}=\frac{(n+1)!(1-c)^{-(n+2)}}{(n+1)!} x^{n+1}=\frac{1}{1-c}\left(\frac{x}{1-c}\right)^{n+1} .
$$

Unfortunately, it is not obvious that $\left(\frac{x}{1-c}\right)^{n+1} \rightarrow 0$ as $n \rightarrow \infty$ since for $0<c<x, \frac{x}{1-c}<1$ if and only if $c<1-x$. Of course, $\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x} \rightarrow \frac{1}{1-x}$ as $n \rightarrow \infty$ for all $|x|<1$, using the Geometric Sum Formula.

