•••

Instructions

- 1. You may use any type of calculator, but no other electronic devices during this exam.
- 2. You may use one page of notes, but no books or other assistance during this exam.
- 3. Write your Name, PID, and Section on the front of your Blue Book.
- 4. Write your solutions clearly in your Blue Book
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order they appear in the exam.
 - (c) Start each question on a new page.
- 5. Read each question carefully, and answer each question completely.
- 6. Show all of your work; no credit will be given for unsupported answers.
- 1. Let $f:[0,1] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational,} \\ 1 & \text{if } x \text{ is irrational.} \end{cases}$$

Prove that f is not integrable on [0, 1].

2. Let $f:[a,b] \to \mathbb{R}$ be continuous. Use the First Fundamental Theorem to prove that

$$\frac{d}{dx}\left[\int_{x}^{b} f\right] = -f(x) \quad \text{for all } x \in (a,b).$$

(Note: This result motivates the definition $\int_d^c f = -\int_c^d f$ for c < d in [a, b]. You must, of course, prove the result without using this definition.)

3. Let $f: [a, b] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{if } a \le x < \frac{a+b}{2}, \\ 1 & \text{if } \frac{a+b}{2} \le x \le b. \end{cases}$$

Show that there is no point $x_0 \in [a, b]$ at which $f(x_0) = \frac{1}{b-a} \int_a^b f$. Explain why this does not contradict the Mean Value Theorem for Integrals.

4. Prove that $1 + \frac{1}{2}x - \frac{1}{8}x^2 < \sqrt{1+x} < 1 + \frac{1}{2}x$ for every x > 0.

5. Let $p_n(x) = \sum_{k=1}^n \frac{(-1)^{k+1}}{k} x^k$, the *n*th Taylor polynomial for $\ln(1+x)$.

Prove the following inequalities.

- (a) $|\ln(1+x) p_n(x)| \le \frac{1}{1+x} \cdot \frac{|x|^{n+1}}{n+1}$ if $-1 < x \le 0$ (b) $|\ln(1+x) - p_n(x)| \le \frac{x^{n+1}}{n+1}$ if $0 \le x \le 1$
- 6. For each natural number n, define $f_n : \mathbb{R} \to \mathbb{R}$ by

$$f_n(x) = e^{-nx^2}.$$

- (a) Determine the function $f : \mathbb{R} \to \mathbb{R}$ that $\{f_n\}$ converges to pointwise.
- (b) Prove that the convergence is not uniform.
- 7. Exhibit an example of a sequence of differentiable functions $f_n: (-1,1) \to \mathbb{R}$ that converges uniformly but for which f'(0) is unbounded (that is, $\lim_{n\to\infty} |f'_n(0)|$ diverges to ∞).