Math 142B Midterm Exam 2 Solution

1. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Define

$$G(x) = \int_0^x (x-t) f(t) dt \text{ for all } x.$$

Use the Second Fundamental Theorem to show that G''(x) = f(x) for all x. (Hint: Use the linearity property of the integral to rewrite it in a more convenient form.) By linearity of the integral, $G(x) = x \int_0^x f(t) dt - \int_0^x tf(t) dt$. Then, by the Second Fundamental Theorem,

$$G'(x) = \int_0^x f(t) \, dt + x f(x) - x f(x) = \int_0^x f(t) \, dt$$
$$G''(x) = f(x)$$

2. Let $f(x) = e^x$. We have seen that the nth Taylor polynomial for f at x = 0 is given by

$$p_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k = 1 + x + \frac{1}{2!} x^2 + \dots + \frac{1}{n!} x^n.$$

Prove that for every real number x, f(x) is equal to its Taylor series at x = 0, that is,

$$f(x) = \sum_{k=0}^{\infty} \frac{1}{k!} x^k = 1 + x + \frac{1}{2!} x^2 + \dots + \frac{1}{n!} x^n + \dots$$

Let x be arbitrary. By the Lagrange Remainder Theorem, there is a c strictly between 0 and x at which $e^x - p_n(x) = \frac{e^c}{(n+1)!} x^{n+1}$. Since $\lim_{n\to\infty} \frac{x^{n+1}}{(n+1)!} = 0$ for every x (Lemma 8.13), it follows that $\lim_{n\to\infty} p_n(x) = e^x$.

3. Use the Lagrange Remainder Theorem to show that

$$0 < x - \ln(1+x) < \frac{1}{2}x^2$$
 for all $x > 0$.

 $p_0(x) = 0$ and $p_1(x) = x$ are the 0th and 1st Taylor polynomials for $\ln(1+x)$ at 0. Let x > 0.

- Since $p_0(x) = 0$, there is a c_0 with $0 < c_0 < x$ at which $\ln(1+x) 0 = \frac{1}{1+c_0}x < x$ by the Lagrange Remainder Theorem. Thus, $x \ln(1+x) > 0$.
- Since $p_1(x) = x$, there is a c_1 with $0 < c_1 < x$ at which $\ln(1+x) x = -\frac{1}{2(1+c_1)^2}x^2 > -\frac{1}{2}x^2$ by the Lagrange Remainder Theorem. Thus, $x \ln(1+x) < \frac{1}{2}x^2$

The result follows.

4. Let $f : \mathbb{R} \to \mathbb{R}$ have derivatives of all orders and satisfy:

$$\begin{cases} f'(x) = f(x) & \text{for all } x, \\ f(0) = 2. \end{cases}$$

- (a) Find a formula for the coefficients of the n^{th} Taylor polynomial for f at x = 0. By induction on n, $f^{(n)}(0) = 2$ for every n. Thus, $p_n(x) = 2\sum_{k=0}^n \frac{1}{k!} x^k$ is the n^{th} Taylor polynomial for f at 0.
- (b) Show that the Taylor series for f at x = 0 converges for all x. Since $\left|\frac{x^{n+1}}{\frac{x^n}{n!}}\right| = \frac{|x|}{n+1} \to 0$ as $n \to \infty$ for every x, $p_n(x)$ converges for every x by the Ratio Test (Corollary 9.21). Note: Corollary 9.21 is not part of the material covered on Friday's exam.
- 5. For each $n \in \mathbb{N}$, define $f_n : [0, \infty) \to \mathbb{R}$ by $f_n(x) = \frac{1}{1+x^n}$. Determine the function $f : [0, \infty) \to \mathbb{R}$ to which the sequence of functions $\{f_n\}$ converges pointwise. (Note: Use the fact that $\lim_{n \to \infty} x^n = 0$ for |x| < 1, and $\lim_{n \to \infty} x^n = \infty$ for |x| > 1.) (i) For $0 \le x < 1$, $\lim_{n \to \infty} \frac{1}{1+x^n} = 1$; (ii) For x = 1, $\lim_{n \to \infty} \frac{1}{1+x^n} = \frac{1}{2}$; (iii) For x > 1, $\lim_{n \to \infty} \frac{1}{1+x^n} = 0$. Thus, $\begin{cases} 1 & \text{if } 0 \le x < 1, \end{cases}$

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1 \\ \frac{1}{2} & \text{if } x = 1, \\ 0 & \text{if } x > 1. \end{cases}$$

Note: Pointwise convergence is not part of the material covered on Friday's exam.