Math 142B

Midterm Exam 2 Solution

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Define

$$
G(x)=\int_{0}^{x}(x-t) f(t) d t \quad \text { for all } x .
$$

Use the Second Fundamental Theorem to show that $G^{\prime \prime}(x)=f(x)$ for all x. (Hint: Use the linearity property of the integral to rewrite it in a more convenient form.)
By linearity of the integral, $G(x)=x \int_{0}^{x} f(t) d t-\int_{0}^{x} t f(t) d t$. Then, by the Second Fundamental Theorem,

$$
\begin{aligned}
G^{\prime}(x) & =\int_{0}^{x} f(t) d t+x f(x)-x f(x)=\int_{0}^{x} f(t) d t \\
G^{\prime \prime}(x) & =f(x)
\end{aligned}
$$

2. Let $f(x)=e^{x}$. We have seen that the $n^{\text {th }}$ Taylor polynomial for f at $x=0$ is given by

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}=1+x+\frac{1}{2!} x^{2}+\cdots+\frac{1}{n!} x^{n} .
$$

Prove that for every real number $x, f(x)$ is equal to its Taylor series at $x=0$, that is,

$$
f(x)=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}=1+x+\frac{1}{2!} x^{2}+\cdots+\frac{1}{n!} x^{n}+\cdots .
$$

Let x be arbitrary. By the Lagrange Remainder Theorem, there is a c strictly between 0 and x at which $e^{x}-p_{n}(x)=\frac{e^{c}}{(n+1)!} x^{n+1}$. Since $\lim _{n \rightarrow \infty} \frac{x^{n+1}}{(n+1)!}=0$ for every x (Lemma 8.13), it follows that $\lim _{n \rightarrow \infty} p_{n}(x)=e^{x}$.
3. Use the Lagrange Remainder Theorem to show that

$$
0<x-\ln (1+x)<\frac{1}{2} x^{2} \quad \text { for all } x>0
$$

$p_{0}(x)=0$ and $p_{1}(x)=x$ are the $0^{\text {th }}$ and $1^{\text {st }}$ Taylor polynomials for $\ln (1+x)$ at 0 . Let $x>0$.

- Since $p_{0}(x)=0$, there is a c_{0} with $0<c_{0}<x$ at which $\ln (1+x)-0=\frac{1}{1+c_{0}} x<x$ by the Lagrange Remainder Theorem. Thus, $x-\ln (1+x)>0$.
- Since $p_{1}(x)=x$, there is a c_{1} with $0<c_{1}<x$ at which $\ln (1+x)-x=-\frac{1}{2\left(1+c_{1}\right)^{2}} x^{2}>-\frac{1}{2} x^{2}$ by the Lagrange Remainder Theorem. Thus, $x-\ln (1+x)<\frac{1}{2} x^{2}$

The result follows.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ have derivatives of all orders and satisfy:

$$
\left\{\begin{aligned}
f^{\prime}(x) & =f(x) \quad \text { for all } x, \\
f(0) & =2
\end{aligned}\right.
$$

(a) Find a formula for the coefficients of the $n^{\text {th }}$ Taylor polynomial for f at $x=0$. By induction on $n, f^{(n)}(0)=2$ for every n. Thus, $p_{n}(x)=2 \sum_{k=0}^{n} \frac{1}{k!} x^{k}$ is the $n^{\text {th }}$ Taylor polynomial for f at 0 .
(b) Show that the Taylor series for f at $x=0$ converges for all x.
 (Corollary 9.21). Note: Corollary 9.21 is not part of the material covered on Friday's exam.
5. For each $n \in \mathbb{N}$, define $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{1}{1+x^{n}}$. Determine the function $f:[0, \infty) \rightarrow \mathbb{R}$ to which the sequence of functions $\left\{f_{n}\right\}$ converges pointwise.
(Note: Use the fact that $\lim _{n \rightarrow \infty} x^{n}=0$ for $|x|<1$, and $\lim _{n \rightarrow \infty} x^{n}=\infty$ for $|x|>1$.)
(i) For $0 \leq x<1, \lim _{n \rightarrow \infty} \frac{1}{1+x^{n}}=1$; (ii) For $x=1, \lim _{n \rightarrow \infty} \frac{1}{1+x^{n}}=\frac{1}{2}$; (iii) For $x>1, \lim _{n \rightarrow \infty} \frac{1}{1+x^{n}}=0$. Thus,

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x<1, \\ \frac{1}{2} & \text { if } x=1, \\ 0 & \text { if } x>1\end{cases}
$$

Note: Pointwise convergence is not part of the material covered on Friday's exam.

