140A Midterm 1 Solutions - Fall 2009

November 20, 2009

Problem 1. Prove that the cube root of 12 is an irrational number.
Proof. Suppose that $12^{1 / 3}$ is rational, i.e. there exist relatively prime integers a and b such that

$$
12^{1 / 3}=\frac{a}{b}
$$

Then

$$
a^{3}=12 b^{3}=2^{2} 3 b^{3} .
$$

So 3 divides a^{3}. Since 3 is prime, 3 divides a and so 3^{3} divides a^{3}. Then 3^{3} divides $2^{2} 3 b^{3}$. Since 3 is prime, 3 divides b contradicting that a and b are relatively prime.

Problem 2. Describe an explicit method for constructing a bijection between the set of rational numbers and the set of positive integers.

Proof. The key here is to define some function $f: \mathbb{N} \rightarrow \mathbb{Q}$ that hits every element of \mathbb{Q} exactly once. We construct a diagram similar to the one on page 29 of Rudin in the proof of theorem 2.12.

$$
\begin{array}{cccccccc}
0 & -1 & 1 & -2 & 2 & -3 & 3 & \ldots \\
\frac{0}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{2}{2} & \frac{2}{2} & -\frac{3}{2} & \frac{3}{2} & \ldots \\
\frac{0}{3} & -\frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} & -\frac{3}{3} & \frac{3}{3} & \ldots \\
\frac{0}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{2}{4} & \frac{2}{4} & -\frac{3}{4} & \frac{3}{4} & \ldots
\end{array}
$$

Then we define our map to go diagonally as in Rudin's diagram, skipping repeated elements of \mathbb{Q}. Then we have $f(1)=0, f(2)=-1, f(3)=-1 / 2, f(4)=1, f(5)=-1 / 3, \ldots$ This gives a bijection from $\mathbb{N} \rightarrow \mathbb{Q}$

Problem 3. Jane claims that she has found a pair of real numbers $a<b$ such that the interval $(a, b) \subset \mathbb{R}$ contains no irrational numbers. Prove that Jane is mistaken.

Proof. Suppose there exist a pair of real numbers $a<b$ such that the interval (a, b) contains no irrational numbers. Then $(a, b) \subset \mathbb{Q}$ and hence is countable. This is a contradiction since any interval in \mathbb{R} is uncountable.

Problem 4. Let L denote the x-axis in the usual Cartesian plane \mathbb{R}^{2}. Give an example of a closed set E in the plane which has points arbitrarily close to L, but such that E is disjoin from L. Does such an example exist if L were the circle $x^{2}+y^{2}=1$ instead of the x-axis?

Proof. The graph of the function $f(x)=1 / x$ on the interval $(0, \infty)$ does the trick, i.e. let

$$
E=\left\{\left(x, \frac{1}{x}\right): x>0\right\} .
$$

If L were the circle $x^{2}+y^{2}=1$, no such example exists. The reason here is because the unit circle is a compact subset of \mathbb{R}^{2}, and then the following theorem applies:

Theorem 1. Let X be a metric space. $L \subseteq X$ be compact and let $E \subseteq X$ be closed. Then $d(L, E)>0$.

Problem 5. Let E be the set of those real numbers in the interval $(0,1)$ with infinite decimal expansions . $p_{1} p_{2} p_{3} \ldots$ such that at least one of the digits p_{i} is 0 or 9 . Is E open in \mathbb{R} ? Justify.

Proof. Yes, E is open in \mathbb{R}. To do this we show that if $p \in E$ then there is a neighborhood of p contained in E.

Let $p=0 . p_{1} p_{2} p_{3} \ldots \in E$. Then there exists an integer k such that p_{k} is 0 or 9 . Let $r=10^{-(k+1)}$. Now we have to consider several cases.

If p_{k+1} is not 0 or 9 , it is clear that $N_{r}(p) \subset E$ since every element of $N_{r}(p)$ has the k th digit equal to p_{k}.

If $p_{k}=0$ and $p_{k+1}=0$, then any element in $N_{r}(p)$ has the k th digit equal to 0 or 9.
If $p_{k}=0$ and $p_{k+1}=9$, then any element in $N_{r}(p)$ has either the k th digit equal to 0 or the $(k+1)$ th digit equal to 0 .

If $p_{k}=9$ and $p_{k+1}=0$, then any element in $N_{r}(p)$ has either the k th digit equal to 9 or the $(k+1)$ th digit equal to 9.

If $p_{k}=9$ and $p_{k+1}=9$, then any element in $N_{r}(p)$ has the k th digit equal to 0 or 9 .
In any of the above cases, $N_{r}(p) \subseteq E$ and hence E is open.
Problem 6. Let E be a bounded open subset of \mathbb{R} such that $0 \in E$. Let $M=\{x \in E:[0, x] \subset E\}$. Let α denote the least upper bound of M in \mathbb{R}. Prove that $\alpha \notin M$

Proof. Suppose $\alpha \in M$. Then by definition of $M,[0, \alpha] \subset E$, in particular, $\alpha \in E$. Since E is open, there exists $r>0$ such that $(\alpha-r, \alpha+r) \subset E$. Then we have that

$$
[0, \alpha+r / 2] \subset[0, \alpha+r)=[0, \alpha] \cup(\alpha-r, \alpha+r) \subset E
$$

Then by definition of $M, \alpha+r / 2 \in M$ and $\alpha+r / 2>\alpha$, contradicting that $\alpha=\sup M$.
Hence $\alpha \notin M$ by contradiction.

