
140A Midterm 1 Solutions - Fall 2009

November 20, 2009

Problem 1. Prove that the cube root of 12 is an irrational number.

Proof. Suppose that 121/3 is rational, i.e. there exist relatively prime integers a and b such that

121/3 =
a

b
.

Then
a3 = 12b3 = 223b3.

So 3 divides a3. Since 3 is prime, 3 divides a and so 33 divides a3. Then 33 divides 223b3. Since 3 is
prime, 3 divides b contradicting that a and b are relatively prime.

Problem 2. Describe an explicit method for constructing a bijection between the set of rational numbers

and the set of positive integers.

Proof. The key here is to define some function f : N → Q that hits every element of Q exactly once. We
construct a diagram similar to the one on page 29 of Rudin in the proof of theorem 2.12.

0 −1 1 −2 2 −3 3 . . .
0
2 − 1

2
1
2 − 2

2
2
2 − 3

2
3
2 . . .

0
3 − 1

3
1
3 − 2

3
2
3 − 3

3
3
3 . . .

0
4 − 1

4
1
4 − 2

4
2
4 − 3

4
3
4 . . .

...

Then we define our map to go diagonally as in Rudin’s diagram, skipping repeated elements of Q. Then
we have f(1) = 0, f(2) = −1, f(3) = −1/2, f(4) = 1, f(5) = −1/3, . . .. This gives a bijection from
N → Q

Problem 3. Jane claims that she has found a pair of real numbers a < b such that the interval (a, b) ⊂ R

contains no irrational numbers. Prove that Jane is mistaken.

Proof. Suppose there exist a pair of real numbers a < b such that the interval (a, b) contains no irrational
numbers. Then (a, b) ⊂ Q and hence is countable. This is a contradiction since any interval in R is
uncountable.

Problem 4. Let L denote the x-axis in the usual Cartesian plane R2. Give an example of a closed set

E in the plane which has points arbitrarily close to L, but such that E is disjoin from L. Does such an

example exist if L were the circle x2 + y2 = 1 instead of the x-axis?

Proof. The graph of the function f(x) = 1/x on the interval (0,∞) does the trick, i.e. let

E =

{(

x,
1

x

)

: x > 0

}

.

If L were the circle x2 + y2 = 1, no such example exists. The reason here is because the unit circle
is a compact subset of R2, and then the following theorem applies:
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Theorem 1. Let X be a metric space. L ⊆ X be compact and let E ⊆ X be closed. Then d(L, E) > 0.

Problem 5. Let E be the set of those real numbers in the interval (0, 1) with infinite decimal expansions

.p1p2p3 . . . such that at least one of the digits pi is 0 or 9. Is E open in R? Justify.

Proof. Yes, E is open in R. To do this we show that if p ∈ E then there is a neighborhood of p contained
in E.

Let p = 0.p1p2p3 . . . ∈ E. Then there exists an integer k such that pk is 0 or 9. Let r = 10−(k+1).
Now we have to consider several cases.

If pk+1 is not 0 or 9, it is clear that Nr(p) ⊂ E since every element of Nr(p) has the kth digit equal
to pk.

If pk = 0 and pk+1 = 0, then any element in Nr(p) has the kth digit equal to 0 or 9.
If pk = 0 and pk+1 = 9, then any element in Nr(p) has either the kth digit equal to 0 or the (k+1)th

digit equal to 0.
If pk = 9 and pk+1 = 0, then any element in Nr(p) has either the kth digit equal to 9 or the (k+1)th

digit equal to 9.
If pk = 9 and pk+1 = 9, then any element in Nr(p) has the kth digit equal to 0 or 9.
In any of the above cases, Nr(p) ⊆ E and hence E is open.

Problem 6. Let E be a bounded open subset of R such that 0 ∈ E. Let M = {x ∈ E : [0, x] ⊂ E}. Let

α denote the least upper bound of M in R. Prove that α /∈ M

Proof. Suppose α ∈ M . Then by definition of M , [0, α] ⊂ E, in particular, α ∈ E. Since E is open,
there exists r > 0 such that (α − r, α + r) ⊂ E. Then we have that

[0, α + r/2] ⊂ [0, α + r) = [0, α] ∪ (α − r, α + r) ⊂ E.

Then by definition of M , α + r/2 ∈ M and α + r/2 > α, contradicting that α = supM .
Hence α /∈ M by contradiction.
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