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A P P E N D I X A

Introductory Lectures on Real
Analysis

LECTURE 1: THE REAL NUMBERS

We assume without proof the usual properties of the integers: For example, that the integers are
closed under addition and subtraction, that the principle of mathematical induction holds for the
positive integers, and that 1 is the least positive integer.

We also assume the usual field and order properties for the real numbers R. Thus, we accept without
proof that the reals satisfy the field axioms, as follows:

F1 a + b = b + a, ab = ba (commutativity)

F2 a + (b + c) = (a + b)+ c, a(bc) = (ab)c (associativity)

F3 a(b + c) = ab + ac (distributive law)

F4 ∃ elements 0, 1 with 0 �= 1 such that 0+ a = a and 1 · a = a ∀ a ∈ R (additive and multiplica-
tive identities)

F5 ∀ a ∈ R, ∃ an element −a such that a + (−a) = 0 (additive inverse)

F6 ∀ a ∈ R with a �= 0, ∃ an element a−1 such that aa−1 = 1 (multiplicative inverse).

Terminology: a + (−b), ab−1 are usually written a − b , a
b

, respectively. Notice that the latter
makes sense only for b �= 0.

Notice that all the other standard algebraic properties of the reals follow from these. (See Exercise 1.1
below.)

We here also accept without proof that the reals satisfy the following order axioms:

01 For each a ∈ R, exactly one of the possibilities a > 0, a = 0,−a > 0 holds.

02 a > 0 and b > 0 ⇒ ab > 0 and a + b > 0.
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Terminology: a > b means a − b > 0,a ≥ b means that either a > b or a = b,a < b means b > a,
and a ≤ b means b ≥ a.

We claim that all the other standard properties of inequalities follow from these and from F1–F6.
(See Problem 1.2 below.)

Notice also that the above properties (i.e., F1–F6, O1, O2) all hold with the rational numbers
Q ≡ {p

q
: p, q are integers, q �= 0} in place of R. F1–F6 also hold with the complex numbers C =

{x + iy : x, y ∈ R} in place of R, but inequalities like a > b make no sense for complex numbers.

In addition to F1–F6, O1, O2 there is one further key property of the real numbers. To discuss it
we need first to introduce some terminology.

Terminology: If S ⊂ R we say:

(1) S is bounded above if ∃ a number K ∈ R such that x ≤ K ∀ x ∈ S. (Any such number K is called
an upper bound for S.)

(2) S is bounded below if ∃ a number k ∈ R such that x ≥ k ∀ x ∈ S. (Any such number k is called
a lower bound for S.)

(3) S is bounded if it is both bounded above and bounded below. (This is equivalent to the fact that
∃ a positive real number L such that |x| ≤ L ∀ x ∈ S.)

We can now introduce the final key property of the real numbers.

C. (“Completeness property of the reals”): If S ⊂ R is nonempty and bounded above, then S has
a least upper bound.

Notice that the terminology “least upper bound” used here means exactly what it says: a number α

is a least upper bound for a set S ⊂ R if

(i) x ≤ α ∀ x ∈ S i.e., α is an upper bound), and

(ii) if β is any other upper bound for S, then α ≤ β i.e., α is ≤ any other upper bound for S).

Such a least upper bound is unique, because if α1,α2 are both least upper bounds for S, the property (ii)
implies that both α1 ≤ α2 and α2 ≤ α1, so α2 = α1. It therefore makes sense to speak of the least
upper bound of S (also known as “the supremum” of S). The least upper bound of S will henceforth
be denoted sup S. Notice that property C guarantees sup S exists if S is nonempty and bounded
above.

Remark: If S is nonempty and bounded below, then it has a greatest lower bound (or “infimum”),
which we denote inf S. One can prove the existence of inf S (if S is bounded below and nonempty)
by using property C on the set −S = {−x : x ∈ S}. (See Exercise 1.5 below.)

We should be careful to distinguish between the maximum element of a set S (if it exists) and the
supremum of S. Recall that we say a number α is the maximum of S (denoted max S) if
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(i) ′ x ≤ α ∀ x ∈ S (i.e., α is an upper bound for S), and

(ii) ′ α ∈ S.

These two properties say exactly that α is a upper bound for S and also one of the elements of S.
Thus, clearly a maximum α of S, if it exists, satisfies both (i), (ii) and hence must agree with sup S.
But keep in mind that max S may not exist, even if the set S is nonempty and bounded above: for
example, if S = (0, 1) (= {x ∈ R : 0 < x < 1}), then sup S = 1, but max S does not exist, because
1 /∈ S.

Notice that of course any finite nonempty set S ⊂ R has a maximum. One can formally prove this
by induction on the number of elements of the set S. (See Exercise 1.3 below.)

Using the above-mentioned properties of the integers and the reals it is now possible to give formal
rigorous proofs of all the other properties of the reals which are used, even the ones which seem self-
evident. For example, one can actually prove formally, using only the above properties, the fact that
the set of positive integers are not bounded above. (Otherwise there would be a least upper bound
α so, in particular, we would have n ≤ α for each positive integer n and hence, in particular, n ≤ α

hence n+ 1 ≤ α for each n, or in other words n ≤ α − 1 for each positive integer n, contradicting
the fact that α is the least upper bound!) Thus, we have shown rigorously, using only the axioms
F1–F6, O1, O2, and C, that the positive integers are not bounded above. Thus,

∀ positive a ∈ R, ∃ a positive integer n with n > a
(
i.e., 1

n
<

1

a

)
.

This is referred to as “The Archimedean Property” of the reals.

Similarly, using only the axioms F1–F6, O1,2, and C, we can give a formal proof of all the basic
properties of the real numbers—for example, in Problem 1.7 below you are asked to prove that square
roots of positive numbers do indeed exist.

Final notes on the Reals: (1) We have assumed without proof all properties F1–F6, O1,O2 and C. In
a more advanced course we could, starting only with the positive integers, give a rigorous construction
of the real numbers, and prove all the properties F1–F6, O1, O2, and C. Furthermore, one can prove
(in a sense that can be made precise) that the real number system is the unique field with all the
above properties.

(2) You can of course freely use all the standard rules for algebraic manipulation of equations and
inequalities involving the reals; normally you do not need to justify such things in terms of the axioms
F1–F6, O1, O2 unless you are specifically asked to do so.

LECTURE 1 PROBLEMS
1.1 Using only properties F1–F6, prove

(i) a · 0 = 0 ∀ a ∈ R

(ii) ab = 0 ⇒ either a = 0 or b = 0
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(iii) a
b
+ c

d
= ad+bc

bd
∀ a, b, c, d ∈ R with b �= 0, d �= 0.

Note: In each case present your argument in steps, stating which of F1–F6 is used at each step.

Hint for (iii): First show the “cancellation law” that x
y
= xz

yz
for any x, y, z ∈ R with y �= 0, z �= 0.

1.2 Using only properties F1–F6 and O1,O2, (and the agreed terminology) prove the following:

(i) a > 0 ⇒ 0 > −a i.e.,−a < 0)

(ii) a > 0 ⇒ 1
a

> 0

(iii) a > b > 0 ⇒ 1
a

< 1
b

(iv) a > b and c > 0 ⇒ ac > bc.

1.3 If S is a finite nonempty subset of R, prove that max S exists. (Hint: Let n be the number of
elements of S and try using induction on n.)

1.4 Given any number x ∈ R, prove there is an integer n such that n ≤ x < n+ 1.

Hint: Start by proving there is a least integer > x.

Note: 1.4 Establishes rigorously the fact that every real number x can be written in the form x =
integer plus a remainder, with the remainder ∈ [0, 1). The integer is often referred to as the “integer
part of x.” We emphasize once again that such properties are completely standard properties of the
real numbers and can normally be used without comment; the point of the present exercise is to show
that it is indeed possible to rigorously prove such standard properties by using the basic properties
of the integers and the axioms F1–F6, O1,O2, C.

1.5 Given a set S ⊂ R,−S denotes {−x : x ∈ S}. Prove:

(i) S is bounded below if an only if −S is bounded above.

(ii) If S is nonempty and bounded below, then inf S exists and = − sup(−S).

(Hint: Show that α = − sup (−S) has the necessary 2 properties which establish it to be the greatest
lower bound of S.)

1.6 If S ⊂ R is nonempty and bounded above, prove ∃ a sequence a1, a2, . . . of points in S with
lim an = sup S.

Hint: In case sup S /∈ S, let α = sup S, and for each integer j ≥ 1 prove there is at least one element
aj ∈ S with α > aj > α − 1

j
.

1.7 Prove that every positive real number has a positive square root. (That is, for any a > 0, prove
there is a real number α > 0 such that α2 = a.)

Hint: Begin by observing that S = {x ∈ R : x > 0 and x2 < a} is nonempty and bounded above,
and then argue that sup S is the required square root.
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LECTURE 2: SEQUENCES OF REAL NUMBERS AND THE
BOLZANO-WEIERSTRASS THEOREM

Let a1, a2, . . . be a sequence of real numbers;an is called the n-th term of the sequence.We sometimes
use the abbreviation {an} or {an}n=1,2,...

Technically, we should distinguish between the sequence {an} and the set of terms of the sequence—i.e.,
the set S = {a1, a2 . . . }. These are not the same: e.g., the sequence 1, 1, . . . has infinitely many
terms each equal to 1, whereas the set S is just the set {1} containing one element.

Formally, a sequence is a mapping from the positive integers to the real numbers; the nth term an of
the sequence is just the value of this mapping at the integer n. From this point of view—i.e., thinking
of a sequence as a mapping from the integers to the real numbers—a sequence has a graph consisting
of discrete points in R

2, one point of the graph on each of the vertical lines x = n.Thus, for example,
the sequence 1, 1, . . . (each term= 1) has graph consisting of the discrete points marked “⊗” in the
following figure:

Figure A.1: Graph of the trivial sequence {an}n=1,... where an = 1 ∀ n.

Terminology: Recall the following terminology. A sequence a1, a2, . . . is:

(i) bounded above if ∃ a real number K such that an ≤ K ∀ integer n ≥ 1.

(ii) bounded below if ∃ a real number k such that an ≥ k ∀ integer n ≥ 1.

(iii) bounded if it is both bounded above and bounded below. (This is equivalent to the fact that ∃
a real number L such that |an| ≤ L ∀ integer n ≥ 1.)

(iv) increasing if an+1 ≥ an ∀ integer n ≥ 1.

(v) strictly increasing if an+1 > an ∀ integer n ≥ 1.

(vi) decreasing if an+1 ≤ an ∀ integer n ≥ 1.

(vii) strictly decreasing if an+1 < an ∀ integer n ≥ 1.

(viii) monotone if either the sequence is increasing or the sequence is decreasing.



92 APPENDIX A. INTRODUCTORY LECTURES ON REAL ANALYSIS

(ix) We say the sequence has limit � (� a given real number) if for each ε > 0 there is an integer
N ≥ 1 such that

(∗) |an − �| < ε ∀ integer n ≥ N .3

(x) In case the sequence {an} has limit � we write

lim an = � or lim
n→∞ an = � or an → � .

(xi) We say the sequence {an} converges (or “is convergent”) if it has limit � for some � ∈ R.

Theorem 2.1. If {an} is monotone and bounded, then it is convergent. In fact, if S = {a1, a2 . . . } is the
set of terms of the sequence, we have the following:

(i) if {an} is increasing and bounded then lim an = sup S.

(ii) if {an} is decreasing and bounded then lim an = inf S.

Proof: See Exercise 2.2. (Exercise 2.2 proves part (i), but the proof of part (ii) is almost identical.)

Theorem 2.2. If {an} is convergent, then it is bounded.

Proof: Let l = lim an. Using the definition (ix) above with ε = 1, we see that there exists an integer
N ≥ 1 such that |an − l| < 1 whenever n ≥ N . Thus, using the triangle inequality, we have |an| ≡
|(an − l)+ l| ≤ |an − l| + |l| < 1+ |l| ∀ integer n ≥ N . Thus,

|an| ≤ max{|a1|, . . . |aN |, |l| + 1} ∀ integer n ≥ 1 .

Theorem 2.3. If {an}, {bn} are convergent sequences, then the sequences {an + bn}, {anbn} are also
convergent and

lim(an + bn) = lim an + lim bn(i)
lim(anbn) = (lim an) · (lim bn) .(ii)

In addition, if bn �= 0 and lim bn �= 0, then

(iii) lim
an

bn

= lim an

lim bn

.

Proof: We prove (ii); the remaining parts are left as an exercise. First, since {an}, {bn} are convergent,
the previous theorem tells us that there are constants L, M > 0 such that

(∗) |an| ≤ L and |bn| ≤ M ∀ positive integer n .

3 Notice that (∗) is equivalent to �− ε < an < �+ ε ∀ integers n ≥ N .
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Now let l = lim an, m = lim bn and note that by the triangle inequality and (∗),
|anbn − lm| ≡ |anbn − lbn + lbn − lm|

≡ |(an − l)bn + l(bn −m|
≤ |an − l||bn| + |l||bn −m|
≤ M|an − l| + |l||bn −m| ∀ n ≥ 1 .(∗∗)

On the other hand, for any given ε > 0 we use the definition of convergence, i.e., (ix) above) to
deduce that there exist integers N1, N2 ≥ 1 such that

|an − l| < ε

2(1+M + |l|) ∀ integer n ≥ N1

and
|bn −m| < ε

2(1+M + |l|) ∀ integer n ≥ N2 .

Thus, for each integer n ≥ max{N1, N2}, (∗∗) implies

|anbn − lm| < M
ε

2(1+M + |l|) + |l|
ε

2(1+M + |l|)
<

ε

2
+ ε

2
= ε ,

and the proof is complete because we have shown that the definition (ix) is satisfied for the sequence
anbn with lm in place of l.

Remark: Notice that if we take {an} to be the constant sequence −1,−1, . . . (so that trivially
lim an = −1) in part (ii) above, we get

lim(−bn) = − lim bn .

Hence, using part (i) with {−bn} in place of bn we conclude

lim(an − bn) = lim an − lim bn .

By similar argument (i), (ii), imply that

lim(αan + βbn) = α lim an + β lim bn .

For any α, β ∈ R (provided lim an, lim bn both exist).

The following definition of subsequence is important.

Definition: Given a sequence a1, a2, . . . , we say an1, an2, . . . is a subsequence of {an} if n1, n2, . . .

are integers with 1 ≤ n1 < n2 < n3 < . . . . (Note the strict inequalities.)

Thus, {bn}n=1,2,... is a subsequence of {an}n=1,2,... if and only if for each j ≥ 1 both the following
hold:

(i) bj is one of the terms of the sequence a1, a2, . . . , and
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(ii) the real number bj+1 appears later than the real number bj in the sequence a1, a2, . . .

Thus, {a2n}n=1,2,... = a2, a4, a6 . . . is a subsequence of {an}n=1,2,... and 1
2 , 1

3 , 1
4 , 1

5 . . . is a subse-
quence of { 1

n
}n=1,2,... but 1

3 , 1
2 , 1

4 , 1
5 , . . . is not a subsequence of { 1

n
}.

Theorem 2.4. (Bolzano-Weierstrass Theorem.) Any bounded sequence {an} has a convergent subse-
quence.

Proof: (“Method of bisection”) Since {an} is bounded we can find upper and lower bounds, respec-
tively. Thus, ∃ c < d such that

(∗) c ≤ ak ≤ d ∀ integer k ≥ 1 .

Now subdivide the interval [c, d] into the two half intervals [c, c+d
2 ], [ c+d

2 , d]. By (∗), at least one of
these (call it I1 say) has the property that there are infinitely many integers k with ak ∈ I1. Similarly,
we can divide I1 into two equal subintervals (each of length d−c

4 ), at least one of which (call it I2)
has the property that ak ∈ I2 for infinitely many integers k. Proceeding in this way we get a sequence
of intervals {In}n=1,2... with In = [cn, dn] and with the properties that, for each integer n ≥ 1,

length In ≡ dn − cn = d − c

2n
(1)

[cn+1, dn+1] ⊂ [cn, dn] ⊂ [c, d](2)
ak ∈ [cn, dn] for infinitely many integers k ≥ 1 .(3)

(Notice that (3) says cn ≤ ak ≤ dn for infinitely many integers k ≥ 1.)

Using properties (1), (2), (3), we proceed to prove the existence of a convergent subsequence as
follows.

Select any integer k1 ≥ 1 such that ak1 ∈ [c1, d1] (which we can do by (3)). Then select any integer
k2 > k1 with ak2 ∈ [c2, d2]. Such k2 of course exists by (3). Continuing in this way we get integers
1 ≤ k1 < k2 . . . such that akn ∈ [cn, dn] for each integer n ≥ 1. That is,

(4) cn ≤ akn ≤ dn ∀ integer n ≥ 1 .

On the other hand, by (1), (2) we have

(5) c ≤ cn ≤ cn+1 < dn+1 ≤ dn ≤ d ∀ integer n ≥ 1 .

Notice that (5), in particular, guarantees that {cn}, {dn} are bounded sequences which are, respectively,
increasing and decreasing, hence by Thm. 2.1 are convergent. On the other hand, (1) says dn − cn =
d−c
2n (→ 0 as n→∞), hence lim cn = lim dn(= � say). Then by (4) and the Sandwich Theorem

(see Exercise 2.5 below) we see that {akn}n=1,2,... also has limit �.

LECTURE 2 PROBLEMS
2.1 Use the Archimedean property of the reals (Lem. 1.1 of Lecture 1) to prove rigorously
that lim 1

n
= 0.
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2.2 Prove part (i) of Thm. 2.1.

Hint: Let α = sup S, and show first that for each ε > 0, ∃ an integer N ≥ 1 such that aN > α − ε.

2.3 Using the definition (ix) on p. 92 prove that a sequence {an} cannot have more than one limit.

2.4 If {an}, {bn} are given convergent sequences and an ≤ bn ∀ n ≥ 1, prove lim an ≤ lim bn.

Hint: lim(an − bn) = lim an − lim bn, so it suffices to prove that lim cn ≤ 0 whenever {cn} is con-
vergent with cn ≤ 0 ∀ n.

2.5 (“Sandwich Theorem.”) If {an}, {bn} are given convergent sequences with lim an = lim bn,
and if {cn} is any sequence such that an ≤ cn ≤ bn ∀ n ≥ 1, prove that {cn} is convergent and
lim cn = lim an(= lim bn) (Hint: Let l = lim an = lim bn and use the definition (ix) on p. 92.)

2.6 If k is a fixed positive integer and if {an} is any sequence such that 1
nk ≤ an ≤ nk ∀ n ≥ 1,

prove that lim a
1/n
n = 1. (Hint: use 2.5 and the standard limit result that lim n

1
n = 1.)
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LECTURE 3: CONTINUOUS FUNCTIONS

Here we shall mainly be interested in real valued functions for some closed interval [a, b]; thus
f : [a, b] → R. (This is reasonable notation, since for each x ∈ [a, b], f assigns a value f (x) ∈ R.)

First we recall the definition of continuity of such a function.

Definition 1. f : [a, b] → R is said to be continuous at the point c ∈ [a, b], if for each ε > 0 there
is a δ > 0 such that

x ∈ [a, b] with |x − c| < δ ⇒ |f (x)− f (c)| < ε .

Definition 2. We say f : [a, b] → R is continuous if f is continuous at each point c ∈ [a, b].
We want to prove the important theorem that such a continuous function attains both its maximum
and minimum values on [a, b]. We first make the terminology precise.

Terminology: If f : [a, b] → R, then:

(1) f is said to attain its maximum at a point c ∈ [a, b] if f (x) ≤ f (c)∀ x ∈ [a, b];
(2) f is said to attain its minimum at a point c ∈ [a, b] if f (x) ≥ f (c) ∀ x ∈ [a, b].

We shall also need the following lemma, which is of independent importance.

Lemma 3.1. If an ∈ [a, b] ∀n ≥ 1 and if lim an = c ∈ [a, b] and if f : [a, b] → R is continuous at c,
then

lim f (an) = f (c) ,

i.e., the sequence {f (an)}n=1,2... converges to f (c).

Proof: Let ε > 0. By Def. 1 above, ∃ δ > 0 such that

(∗) |f (x)− f (c)| < ε whenever x ∈ [a, b]with |x − c| < δ .

On the other hand, by the definition of lim an = c, with δ in place of ε (i.e., we use the definition
(ix) on p. 92 of Lecture 2 with δ in place of ε ) we can find an integer N ≥ 1 such that

|an − c| < δ whenever n ≥ N .

Then, (since an ∈ [a, b] ∀ n) (∗) tells us that

|f (an)−f (c)| < ε ∀ n ≥ N .

Theorem 3.2. If f : [a, b] → R is continuous, then f is bounded and ∃ points c1, c2,∈ [a, b] such
that f attains its maximum at the point c1 and its minimum at the point c2; that is, f (c) ≤ f (x) ≤
f (c2)∀ x ∈ [a, b].
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Proof: It is enough to prove that f bounded above and that there is a point c1 ∈ [a, b] such that
f attains its maximum at c1 , because we can get the rest of the theorem by applying this results to
−f .

To prove f is bounded above we argue by contradiction. If f is not bounded above, then for each
integer n ≥ 1 we can find a point xn ∈ [a, b] such that f (x) ≥ n. Since xn is a bounded sequence,
by the Bolzano-Weierstrass Theorem (Thm. 2.4 of Lecture 2) we can find a convergent subsequence
xn1, xn2, . . . Let c = lim xnj

Of course, since a ≤ xnj
≤ b ∀j , we must have c ∈ [a, b]. Also, since 1 ≤ n1 < n2 < . . . (and since

n1, n2 . . . are integers), we must have nj+1 ≥ nj + 1 , hence by induction on j

(1) nj ≥ j ∀ integer j ≥ 1 .

Now since xnj
∈ [a, b] and lim xnj

= c ∈ [a, b]we have by Lem. 3.1 that lim f (xnj
) = f (c).Thus,

f (xnj
)
j=1,2,...

is convergent, hence bounded by Thm. 2.2. But by construction f (xnj
) ≥ nj (≥ j by

(1)), hence f (xnj
)
j=1,2...

is not bounded, a contradiction.This completes the proof that f is bounded
above.

We now want to prove f attains its maximum value at some point c1 ∈ [a, b]. Let S = {f (x) : x ∈
[a, b]}. We just proved above that S is bounded above, hence (since it is non empty by definition)
S has a least upper bound which we denote by M . We claim that for each integer n ≥ 1 there is a
point xn ∈ [a, b] such that f (xn) > M − 1

n
. Indeed, otherwise M− 1

n
would be an upper bound for

S, contradicting the fact that M was chosen to be the least upper bound. Again we can use the
Bolzano-Weierstrass Theorem to find a convergent subsequence xn1, xn2 . . . and again (1) holds.
Let c1 = lim xnj

. By Lem. 3.1 again we have

(2) f (c1) = lim f (xnj
) .

However, by construction we have

M ≥ f (xnj
) > M − 1

nj

≥ M − 1

j
(by (1)) .

And hence by the Sandwich Theorem (Exercise 2.4 of Lecture 2) we have lim f (xnj
) = M . By (2)

this gives f (c1) = M . But M is an upper bound for S = {f (x) : x ∈ [a, b]}, hence we have f (x) ≤
f (c1)∀ x ∈ [a, b], as required.

An important consequence of the above theorem is the following.

Lemma (Rolle’s Theorem): If f : [a, b] → R is continuous, if f (a) = f (b) = 0 and if f is differ-
entiable at each point of (a, b), then there is a point c ∈ (a, b) with f ′(c) = 0.

Proof: If f is identically zero then f ′(c) = 0 for every point c ∈ (a, b), so assume f is not identically
zero. Without loss of generality we may assume f (x) > 0 for some x ∈ (a, b) (otherwise this
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property holds with −f in place of f ). Then max f (which exists by Thm. 3.2) is positive and is
attained at some point c ∈ (a, b). We claim that f ′(c) = 0. Indeed, f ′(c) = limx→c

f (x)−f (c)
x−c

=
limx→c+

f (x)−f (c)
x−c

= limx→c−
f (x)−f (c)

x−c
and the latter 2 limits are, respectively, ≤ 0 and ≥ 0. But

they are equal, hence they must both be zero.

Corollary (Mean Value Theorem): If f : [a, b] → R is continuous and f is differentiable at each
point of (a, b), then there is some point c ∈ (a, b) with f ′(c) = f (b)−f (a)

b−a
.

Proof: Apply Rolle’s Theorem to the function f̃ (x) = f (x)− f (a)− f (b)−f (a)
b−a

(x − a).

LECTURE 3 PROBLEMS
3.1 Give an example of a bounded function f : [0, 1] → R such that f is continuous at each
point c ∈ [0, 1] except at c = 0, and such that f attains neither a maximum nor a minimum value.

3.2 Prove carefully (using the definition of continuity on p. 96) that the function f : [−1, 1] → R

defined by

f (x) =
{
+1 if 0 < x ≤ 1

0 if − 1 ≤ x ≤ 0

is not continuous at x = 0. (Hint: Show the definition fails with, e.g., ε = 1
2 .)

3.3 Let f : [a, b] → R be continuous, and let |f | : [a, b] → R be defined by |f |(x) = |f (x)|.
Prove that |f | is continuous.

3.4 Suppose f : [a, b] → R and c ∈ [a, b] are given, and suppose that lim f (xn) = f (c) for
all sequences {xn}n=1,2,... ⊂ [a, b] with lim xn = c. Prove that f is continuous at c. (Hint: If not,
∃ ε > 0 such that (∗) on p. 96 fails for each δ > 0; in particular,∃ ε > 0 such that (∗) fails for δ = 1

n
∀

integer n ≥ 1.)

3.5 If f : [0, 1] → R is defined by

f (x) =
{

1 if x ∈ [0, 1] is a rational number

0 if x ∈ [0, 1] is not rational .

Prove that f is continuous at no point of [0, 1].
Hint: Recall that any interval (c, d) ∈ R (with c < d) contains both rational and irrational numbers.

3.6 Suppose f : (0, 1)→ R is defined by f (x) = 0 if x ∈ (0, 1) is not a rational number, and
f (x) = 1/q if x ∈ (0, 1) can be written in the form x = p

q
with p, q positive integers without

common factors. Prove that f is continuous at each irrational value x ∈ (0, 1).

Hint: First note that for a given ε > 0 there are at most finitely many positive integers q with 1
q
≥ ε.
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3.7 Suppose f : [0, 1] → R is continuous, and f (x) = 0 for each rational point x ∈ [0, 1]. Prove
f (x) = 0 for all x ∈ [0, 1].
3.8 If f : R → R is continuous at each point of R, and if f (x + y) = f (x)+ f (y)∀x, y ∈ R,
prove ∃ a constant a such that f (x) = ax ∀x ∈ R. Show by example that the result is false if we
drop the requirement that f be continuous.
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LECTURE 4: SERIES OF REAL NUMBERS

Consider the series
a1 + a2 + · · · + an + . . .

(usually written with summation notation as
∑∞

n=1 an), where a1, a2, . . . is a given sequence of real
numbers. an is called the n-th term of the series. The sum of the first n terms is

sn =
n∑

k=1

ak ;

sn is called the n-th partial sum of the series. If

sn → s

(i.e., if lim sn = s) for some s ∈ R, then we say the series converges, and has sum s. Also, in this case
we write

s =
∞∑

n=1

an .

If sn does not converge, then we say the series diverges.

Example: If a ∈ R is given, then the series 1+ a + a2 + . . . (i.e., the geometric series) has nth
partial sum

sn = 1+ a + · · · + an−1 =
{

n if a = 1
1−an

1−a
if a �= 1 .

Using the fact that an → 0 if |a| < 1, we thus see that the series converges and has sum 1
1−a

if
|a| < 1, whereas the series diverges for |a| ≥ 1. (Indeed {sn} is unbounded if |a| > 1 or a = 1, and
if a = −1, {sn}n=1,2,... = 1, 0, 1, 0, . . . .)

The following simple lemma is of key importance.

Lemma 4.1. If
∑∞

n=1 an converges, then lim an = 0.

Note: The converse is not true. For example, we check below that
∑∞

n=1
1
n

does not converge, but its
nth term is 1

n
, which does converge to zero.

Proof of Lemma 4.1: Let s = lim sn. Then of course we also have s = lim sn+1. But, sn+1 − sn =
(a1 + a2 + · · · + an+1)− (a1 + a2 + · · · an) = an+1, hence (see the remark following Thm. 2.3 of
Lecture 2) we have lim an+1 = lim sn+1 − lim sn = s − s = 0. i.e., lim an = 0.

The following lemma is of theoretical and practical importance.

Lemma 4.2. If
∑∞

n=1 an,
∑∞

n=1 bn both converge, and have sum s, t , respectively, and if α, β are
real numbers, then

∑∞
n=1(αan + βbn) also converges and has sum αs + βt , i.e.,

∑∞
n=1(αan + βbn) =

α
∑∞

n=1 an + β
∑∞

n=1 bn if both
∑∞

n=1 an,
∑∞

n=1 bn converge.
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Proof: Let sn =∑n
k=1 an , tn =∑n

k=1 bk .We are given sn → s and tn → t , then αsn + βtn → αs +
βt (see the remarks following Thm. 2.3 of Lecture 2). But αsn + βtn = α

∑n
k=1 an + β

∑n
k=1 bk =∑n

k=1(αak + βbk), which is the nth partial sum of
∑∞

n=1(αan + βbn).

There is a very convenient criteria for checking convergence in case all the terms are nonnegative.
Indeed, in this case

sn+1 − sn = an+1 ≥ 0 ∀ n ≥ 1 ,

hence the sequence {sn} is increasing if an ≥ 0. Thus, by Thm. 2.1(i) of Lecture 2 we see that {sn}
converges if and only if it is bounded. That is, we have proved:

Lemma 4.3. If each term of
∑∞

n=1 an is nonnegative (i.e., if an ≥ 0 ∀ n) then the series converges if and
only if the sequence of partial sums (i.e., {sn}n=1,2,...) is bounded.

Example. Using the above criteria, we can discuss convergence of
∑∞

n=1
1
np where p > 0 is given.

The nth partial sum in this case is

sn =
n∑

k=1

1

kp
.

Since 1
xp is a decreasing function of x for x > 0, we have, for each integer k ≥ 1,

1

(k + 1)p
≤ 1

xp
≤ 1

kp
∀ x ∈ [k, k + 1] .

Integrating, this gives

1

(k + 1)p
≡

∫ k+1

k

1

(k + 1)p
≤

∫ k+1

k

1

xp
dx ≤

∫ k+1

k

1

kp
dx ≡ 1

kp
,

so if we sum from k = 1 to n, we get
n∑

k=1

1

(k + 1)p
≤

∫ n+1

1

1

xp
dx ≤

n∑
k=1

1

kp
.

That is,

sn+1 − 1 ≤
∫ n+1

1

1

xp
dx ≤ sn ∀ n ≥ 1 .

But ∫ n+1

1

1

xp
dx =

{
log(n+ 1) if p = 1

(n+1)1−p−1
1−p

if p �= 1 .

Thus, we see that {sn} is unbounded if p ≤ 1 and bounded for p > 1, hence from Lem. 4.2 we
conclude ∞∑

n=1

1

np

{
converges p > 1

diverges p ≤ 1 .
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Remark. The above method can be modified to discuss convergence of other series. See Exercise 4.6
below.

Theorem 4.4. If
∑∞

n=1 |an| converges, then
∑∞

n=1 an converges.

Terminology: If
∑∞

n=1 |an| converges, then we say that
∑∞

n=1 an is absolutely convergent.Thus, with
this terminology, the above theorem just says “absolute convergence⇒ convergence.”

Proof of Theorem 4.4: Let sn =∑n
k=1 ak, tn =∑n

k=1 |ak|. Then we are given tn → t for some
t ∈ R.

For each integer n ≥ 1, let

pn =
{

an if an ≥ 0

0 if an < 0

qn =
{
−an if an ≤ 0

0 if an > 0 ,

and let s+n =
∑n

k=1 pn, s
−
n =

∑n
k=1 qn. Notice that for each n ≥ 1 we then have

an = pn − qn, sn = s+n − s−n
|an| = pn + qn, tn = s+n + s−n ,

and pn, qn ≥ 0. Also,
0 ≤ s+n ≤ tn ≤ t and 0 ≤ s−n ≤ tn ≤ t .

Hence, we have shown that
∑∞

n=1 pn,
∑∞

n=1 qn have bounded partial sums. Hence, by Lem. 4.3,
both

∑∞
n=1 pn,

∑∞
n=1 qn converge. But then (by Lem. 4.2)

∑∞
n=1(pn − qn) converges, i.e.,

∑∞
n=1 an

converges.

Rearrangement of series: We want to show that the terms of an absolutely convergent series can
be rearranged in an arbitrary way without changing the sum. First we make the definition clear.

Definition: Let j1, j2, . . . be any sequence of positive integers in which every positive integer appears
once and only once (i.e., the mapping n→ jn is a 1 : 1 mapping of the positive integers onto the
positive integers). Then the series

∑∞
n=1 ajn is said to be a rearrangement of the series

∑∞
n=1 an.

Theorem 4.5. If
∑∞

n=1 an is absolutely convergent, then any rearrangement
∑∞

n=1 ajn converges, and
has the same sum as

∑∞
n=1 an.

Proof: We give the proof when an ≥ 0 ∀ n (in which case “absolute convergence” just means “con-
vergence”). This extension to the general case is left as a exercise. (See Exercise 4.8 below.)

Hence, assume
∑∞

n=1 an converges, and an ≥ 0 ∀ integer n ≥ 1, and let
∑∞

n=1 ajn be any rearrange-
ment. For each n ≥ 1, let

P(n) = max{j1, . . . , jn} .
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So that
{j1, . . . , jn} ⊂ {1, . . . P (n)} and hence (since an ≥ 0 ∀ k)

aj1 + aj2 + · · · + ajn ≤ a1 + · · · + aP(n) ≤ s ,

where s =∑∞
n=1 an. Thus, we have shown that the partial sums of

∑∞
n=1 ajn are bounded above

by s, hence by Lem. 4.3,
∑∞

n=1 ajn converges, and has sum t satisfying t ≤ s. But
∑∞

n=1 an is a
rearrangement of

∑∞
n=1 ajn (using the rearrangement given by the inverse mapping jn → n), and

hence by the same argument we also have s ≤ t . Hence, s = t as required.

LECTURE 4 PROBLEMS
The first few problems give various criteria to test for absolute convergence (and also, in some cases,
for testing for divergence).

4.1 (i) (Comparison test.) If
∑∞

n=1 an,
∑∞

n=1 bn are given series and if |an| ≤ |bn| ∀ n ≥ 1, prove∑∞
n=1 bn absolutely convergent⇒∑∞

n=1 an absolutely convergent.

(ii) Use this to discuss convergence of:

(a)
∑∞

n=1
sin n

n2

(b)
∑∞

n=1
sin( 1

n
)

n
.

4.2 (Comparison test for divergence.) If
∑∞

n=1 an,
∑∞

n=1 bn are given series with nonnegative
terms, and if an ≥ bn ∀ n ≥ 1, prove

∑∞
n=1 bn diverges⇒ ∑∞

n=1 an diverges.

4.3 (i) (Ratio Test.) If an �= 0 ∀ n, if λ ∈ (0, 1) and if there is an integer N ≥ 1 such that |an+1|
|an| ≤

λ ∀ n ≥ N , prove that
∑∞

n=1 an is absolutely convergent. (Hint: First use induction to show that
|an| ≤ λn−N ∀ n ≥ N .)

(ii) (Ratio test for divergence.) If an �= 0 ∀n and if ∃ an integer N ≥ 1 such that |an+1|
|an| ≥ 1 ∀ n ≥ N

then prove
∑∞

n=1 an diverges.

4.4 (Cauchy root test.) (i) Suppose∃ λ ∈ (0, 1) and an integer N ≥ 1 such that |an| 1
n ≤ λ ∀ n ≥ N .

Prove that
∑∞

n=1 an converges.

(ii) Use the Cauchy root test to discuss convergence of
∑∞

n=1 n2xn. (Here x ∈ R is given—consider
the possibilities |x| < 1, |x| > 1, |x| = 1.)

4.5 Suppose an ≥ 0 ∀ n ≥ 1 and
∑∞

n=1 an diverges. Prove

(i)
∑∞

n=1
an

1+an
diverges

(ii)
∑∞

n=1
an

1+n2an
converges.

4.6 (IntegralTest.) If f : [1,∞)→ R is positive and continuous at each point of [1,∞), and if f is
decreasing, i.e., x < y ⇒ f (y) ≤ f (x), prove using a modification of the argument on pp. 100–102
that

∑∞
n=1 f (n) converges if and only if {∫ n

1 f (x) dx}n=1,2,... is bounded.
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4.7 Using the integral test (in Exercise 4.6 above) to discuss convergence of

(i)
∑∞

n=2
1

n log n

(ii)
∑∞

n=2
1

n(log n)1+ε , where ε > 0 is a given constant.

4.8 Complete the proof of Thm. 4.5 (i.e., discuss the general case when
∑ |an| converges). (Hint:

The theorem has already been established for series of nonnegative terms; use pn, qn as in Thm. 4.4.)
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LECTURE 5: POWER SERIES

A power series is a series of the form
∑∞

n=0 anx
n, where a0, a1, . . . are given real numbers and x is

a real variable. Here we use the standard convention that x0 = 1, so the first term a0x
0 just means

a0.

Notice that for x = 0 the series trivially converges and its sum is a0.

The following lemma describes the key convergence property of such series.

Lemma 1. If the series
∑∞

n=0 anx
n converges for some value x = c, then the series converges absolutely

for every x with |x| < |c|.
Proof:

∑∞
n=0 anc

n converges ⇒ lim anc
n = 0 ⇒ {anc

n}n=1,2,... is a bounded sequence. That is,
there is a fixed constant M > 0 such that |anc

n| ≤ M ∀ n = 0, 1, . . ., and so |x| < |c| ⇒, for any
j = 0, 1, . . .,

|ajx
j | = ∣∣aj c

j
∣∣ ∣∣xj

cj

∣∣ ≤ M
∣∣xj

cj

∣∣ = M
( |x|
|c|

)j = Mrj , r = |x|
|c| < 1 ,

and hence ∑n−1
j=0|ajx

j | ≤ M
∑n−1

j=0r
j = M

1− rn

1− r
≤ M

1− r
, n = 1, 2, . . . .

Thus, the series
∑∞

n=0 |anx
n| is convergent, because it has nonnegative terms and we’ve shown its

partial sums are bounded. This completes the proof.

We can now directly apply the above lemma to establish the following basic property of power series.

Theorem 5.1. For any given power series
∑∞

n=0 anx
n, exactly one of the following 3 possibilities holds:

(i) the series diverges ∀ x �= 0, or

(ii) the series converges absolutely ∀ x ∈ R, or

(iii) ∃ ρ > 0 such that the series converges absolutely ∀ x with |x| < ρ, and diverges ∀ x with |x| > ρ.

Terminology: If (iii) holds, the number ρ is called the radius of convergence and the interval (−ρ, ρ)

is called the interval of convergence. If (i) holds we say the radius of convergence is zero, and if (ii)
holds we say the radius of convergence =∞.

Note: The theorem says nothing about what happens at x = ±ρ in case (iii).

Proof of Theorem 5.1: Consider the set S ⊂ R defined by

S = {|x| :∑∞
n=0anx

n converges} .

Notice that we always have 0 ∈ S, so S is nonempty. If S = {0} then case (i) holds, so we can
assume S contains at least one c with c �= 0. If S is not bounded then by Lem. 1 we have that∑∞

n=0 anx
n is absolutely convergent (A.C.) on (−R, R) for each R > 0, and hence (ii) holds. If
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S �= {0} is bounded then R = sup S exists and is positive. Now for any x ∈ (−R, R) we have c ∈ S

with |c| > |x| (otherwise |c| ≤ |x| for each c ∈ S meaning that |x| would be an upper bound for
S smaller than R, contradicting R = sup S), and hence by Lem. 1

∑
anx

n is A.C. So, in fact,∑∞
n=0 anx

n is A.C. for each x ∈ (−R, R). We must of course also have
∑∞

n=0 anx
n diverges for

each x with |x| > R because otherwise we would have x0 with |x0| > R and
∑∞

n=0 anx
n
0 convergent,

hence |x0| ∈ S, which contradicts the fact that R is an upper bound for S.

Suppose now that a given power series
∑∞

n=0anx
n has radius of convergence ρ > 0 (we include

here the case ρ = ∞, which is to be interpreted to mean that the series converges absolutely for all
x ∈ R).

A reasonable and natural question is whether or not we can also expand f (x) in terms of powers of
x − α for given α ∈ (−ρ, ρ).The following theorem shows that we can do this for |x − α| < ρ − |α|
(and for all x in case ρ = ∞).

Theorem 5.2 (Change of Base-Point.) If f (x) =∑∞
n=0anx

n has radius of convergence ρ > 0 or
ρ = ∞, and if |α| < ρ (and α arbitrary in case ρ = ∞), then we can also write

(∗) f (x) =∑∞
m=0bm(x − α)m ∀ x with |x − α| < ρ − |α| (x, α arbitrary if ρ = ∞) ,

where bm =∑∞
n=m

(
n
m

)
anα

n−m (so, in particular, b0 = f (α)); part of the conclusion here is that the series
for bm converges, and the series

∑∞
m=0bm(x − α)m converges for the stated values of x, α.

Note: The series on the right in (∗) is a power series in powers of x − α, hence the fact that it
converges for |x − α| < ρ − |α|means that it has radius of convergence (as a power series in powers
of x − α) ≥ ρ − |α| (and radius of convergence= ∞ in case ρ = ∞). Thus, in particular, the series
on the right of (∗) automatically converges absolutely for |x − α| < ρ − |α| by Lem. 1.

Proof of Theorem 5.2: We take any α with |α| < ρ and any x with |x − α| < ρ − |α| (α, x are
arbitrary if ρ = ∞), and we look at the partial sum SN =∑N

n=0anx
n. Since the Binomial Theorem

tells us that xn = (α + (x − α))n =∑n
m=0

(
n
m

)
αn−m(x − α)m, we see that SN can be written∑N

n=0anx
n =∑N

n=0an

∑n
m=0

(
n

m

)
αn−m(x − α)m .

Using the interchange of sums formula (see Problem 6.3 below)∑N
n=0

∑n
m=0cnm =∑N

m=0
∑N

n=mcnm ,

this then gives

(1)
∑N

n=0anx
n =∑N

m=0

(∑N
n=m

(
n

m

)
anα

n−m
)
(x − α)m .

Now since
(
n
m

)1/n → 1 as n→∞ for each fixed m, we see that for any ε > 0 we have N such that(
n
m

) ≤ (1+ ε)n for all n ≥ N , hence |an

(
n
m

)
xn| ≤ |an((1+ ε)x)n| ∀ n ≥ N and hence by the com-

parison test
∑∞

n=0

(
n
m

)
anx

n also converges absolutely for all x ∈ (−ρ, ρ) (because |x| < ρ ⇒ (1+
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ε)|x| < ρ for suitable ε > 0).Thus, since |α| < ρ we have, in particular, that
∑(

n
m

)
anα

n is absolutely
convergent and we can substitute

∑N
n=m

(
n
m

)
anα

n−m =∑∞
n=m

(
n
m

)
anα

n−m −∑∞
n=N+1

(
n
m

)
anα

n−m

in (1) above, whence (1) gives∑N
n=0anx

n =∑N
m=0

(∑∞
n=m

(
n

m

)
anα

n−m
)
(x − α)m

−∑N
m=0

(∑∞
n=N+1

(
n

m

)
anα

n−m
)
(x − α)m

and∣∣∣∑N
m=0

(∑∞
n=N+1

(
n

m

)
anα

n−m
)
(x−α)m

∣∣∣≤∑N
m=0

(∑∞
n=N+1

(
n

m

)
|an| |α|n−m|x − α|m

)
≡∑∞

n=N+1

(∑N
m=0

(
n

m

)
|an| |α|n−m|x − α|m

)
≤∑∞

n=N+1

(∑n
m=0

(
n

m

)
|an| |α|n−m|x − α|m

)
≡∑∞

n=N+1|an|(|α|+|x−α|)n, |α|+|x−α|<ρ ,

where we used the Binomial Theorem again in the last line. Now observe that we have∑∞
n=N+1|an|(|α| + |x − α|)n =∑∞

n=1|an|(|α| + |x − α|)n
−∑N

n=1|an|(|α| + |x − α|)n → 0 as N →∞ ,

so the above shows that limN→∞
∑N

m=0bm(x − α)m exists (and is real), i.e., the series
∑∞

m=0bm(x −
α)m converges for |x − α| < ρ − |α|, and that the sum of the series agrees with

∑∞
n=0anx

n, so the
proof of Thm. 5.2 is complete.

LECTURE 5 PROBLEMS
5.1 (i) Suppose the radius of convergence of

∑∞
n=0 anx

n is 1, and the radius of convergence of∑∞
n=0 bnx

n is 2. Prove that
∑∞

n=0(an + bn)x
n has radius of convergence 1.

(Hint: Lemma 1 guarantees that {anx
n}n=1,2,... is unbounded if |x| is greater than the radius of

convergence of
∑∞

n=0 anx
n.)

(ii) If both
∑∞

n=0 anx
n,

∑∞
n=0 bnx

n have radius of convergence = 1, show that

(a) The radius of convergence of
∑∞

n=0(an + bn)x
n is ≥ 1, and

(b) For any given number R > 1 you can construct examples with radius of convergence of∑∞
n=0(an + bn)x

n = R.

5.2 If ∃ constants c, k > 0 such that c−1n−k ≤ |an| ≤ cnk ∀n = 1, 2, . . ., what can you say about
the radius of convergence of

∑∞
n=0 anx

n.
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LECTURE 6: TAYLOR SERIES REPRESENTATIONS

The change of base point theorem proved in Lecture 5 is actually quite strong; for example, it
makes it almost trivial to check that a power series is differentiable arbitrarily many times inside its
interval of convergence (i.e., a power series is “C∞” in its interval of convergence), and furthermore
all the derivatives can be correctly calculated simply by differentiating each term (i.e., “termwise”
differentiation is a valid method for computing the derivatives of a power series in its interval of
convergence). Specifically, we have:

Theorem 6.1. Suppose the power series
∑∞

n=0 anx
n has radius of convergence ρ > 0 (or ρ = ∞), and

let f (x) =∑∞
n=0 anx

n for |x| < ρ. Then all derivatives f (m)(x), m = 1, 2, . . ., exist at every point x

with |x| < ρ, and, in fact,

f (m)(x) =∑∞
n=mn(n− 1) · · · (n−m+ 1)anx

n−m, x ∈ (−ρ, ρ) ,

which says precisely that the derivatives of f can be correctly computed simply by differentiating the series∑∞
n=0anx

n termwise (because n(n− 1) · · · (n−m+ 1)anx
n−m is just the mth derivative of anx

n); that
is, dm

dxm

∑∞
n=0anx

n =∑∞
n=0

dm

dxm anx
n for |x| < ρ.

Proof: It is enough to check the stated result m = 1, because then the general result follows directly
by induction on m.

The proof for m = 1 is an easy consequence of Thm. 5.2 (change of base-point theorem), which
tells us that we can write

(1) f (x)− f (α) =∑∞
m=1bm(x − α)m ≡ (x − α)b1 + (x − α)

∑∞
m=2bm(x − α)m−1

for |x − α| < ρ − |α|, where bm =∑∞
n=m

(
n
m

)
anα

n−m. That is,

(2)
f (x)− f (α)− b1(x − α)

x − α
=∑∞

m=2bm(x − α)m−1, 0 < |x − α| < ρ − |α|

and the expression on the right is a convergent power series with radius of convergence at least
r = ρ − |α| > 0 and hence is A.C. if x − α is in the interval of convergence (−r, r). In particular,
it is A.C. when |x − α| = r/2 and hence (2) shows that

(3)

∣∣∣f (x)− f (α)

x − α
− b1

∣∣∣ ≤∑∞
m=2|bm| |x − α|m−1 ≤ |x − α|∑∞

m=2|bm|(r/2)m−2

for 0 < |x − α| < r/2 (where r = ρ − |α| > 0). Since the right side in (3) → 0 as x → α, this
shows that f ′(α) exists and is equal to b1 =∑∞

n=1nanα
n−1.

We now turn to the important question of which functions f can be expressed as a power series on
some interval. Since we have shown power series are differentiable to all orders in their interval of
convergence, a necessary condition is clearly that f is differentiable to all orders; however, this is not
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sufficient; see Exercise 6.2 below. To get a reasonable sufficient condition, we need the following
theorem.

Theorem 6.2 (Taylor’s Theorem.) Suppose r > 0, α ∈ R and f is differentiable to order m+ 1 on the
interval |x − α| < r . Then ∀ x with |x − α| < r, ∃ c between α and x such that

f (x) =∑m
n=0

f (n)(α)

n! (x − α)n + f (m+1)(c)

(m+ 1)! (x − α)m+1 .

Proof: Fix x with 0 < x − α < r (a similar argument holds in case −r < x − α < 0), and, for
|t − α| < r , define

(1) g(t) = f (t)−∑m
n=0

f (n)(α)

n! (t − α)n −M(t − α)m+1 ,

where M (constant) is chosen so that g(x) = 0, i.e.,

M = (f (x)−∑m
n=0

f (n)(α)
n! (x − α)n)

(x − α)m+1
.

Notice that, by direct computation in (1),

(2)

{
g(n)(α) = 0 ∀ n = 0, . . . , m

g(m+1)(t) = f m+1(t)−M(m+ 1)!, |t − α| < r.

In particular, since g(α) = g(x) = 0, the mean value theorem tells us that there is c1 ∈ (α, x) such
that g ′(c1) = 0. But then g ′(α) = g ′(c1) = 0, and hence again by the mean value theorem there is
a constant c2 ∈ (α, c1) such that g ′′(c2) = 0.

After (m+ 1) such steps we deduce that there is a constant cm+1 ∈ (α, x) such that g(m+1)(cm+1) =
0. However, by (2), g(m+1)(t) = f (m+1)(t)−M(m+ 1)!, hence this gives

M = f (m+1)(cm+1)

(m+ 1)! .

In view of our definition of M , this proves the theorem with c = cm+1.

Theorem 6.2 gives us a satisfactory sufficient condition for writing f in terms of a power series.
Specifically we have:

Theorem 6.3. If f (x) is differentiable to all orders in |x − α| < r , and if there is a constant C > 0 such
that

(∗)
∣∣∣f (n)(x)

n!
∣∣∣ rn ≤ C ∀ n ≥ 0, and ∀ x with |x − α| < r ,

then
∑∞

n=0
f (n)(α)

n! (x − α)n converges, and has sum f (x), for every x with |x − α| < r .
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Note 1: Whether or not (∗) holds, and whether or not
∑∞

n=0
f (n)(α)

n! (x − α)n converges to f (x), we

call the series
∑∞

n=0
f (n)(α)

n! (x − α)n the Taylor series of f about α.

Note 2: Even if the Taylor series converges in some interval x − α < r , it may fail to have sum f (x).
(See Exercise 6.2 below). Of course the above theorem tells us that it will have sum f (x) in case
the additional condition (∗) holds.

Proof of Theorem 6.3: The condition (∗) guarantees that the term f (m+1)(c)
(m+1)! (x − α)m+1 on the right

in Thm. 6.2 has absolute value ≤ C
( |x−α|

r

)m+1 and hence Thm. 6.2, with m = N , ensures∣∣f (x)−∑N
n=0

f (n)(α)

n! (x − α)n
∣∣ ≤ C

( |x − α|
r

)N+1 → 0 as N →∞

if |x − α| < r . Hence,

lim
N→∞

∑N
n=0

f (n)(α)

n! (x − α)n = f (x)

whenever |x − α| < r , i.e.,∑∞
n=0

f (n)(α)

n! (x − α)n = f (x), |x − α| < r .

LECTURE 6 PROBLEMS
6.1 Prove that the function f , defined by

f (x) =
{

e−1/x2
if x �= 0

0 if x = 0 ,

is C∞ on R and satisfies f (m)(0) = 0 ∀m ≥ 0.

Note: This means the Taylor series of f (x) about 0 is zero; i.e., it is an example where the Taylor
series converges, but the sum is not f (x).

6.2 If f is as in 6.1, prove that there does not exist any interval (−ε, ε) on which f is represented
by a power series; that is, there cannot be a power series

∑∞
n=0anx

n such that f (x) =∑∞
n=0anx

n

for all x ∈ (−ε, ε).

6.3 Let bnm be arbitrary real numbers 0 ≤ n ≤ N, 0 ≤ m ≤ n. Prove∑N
n=0

∑n
m=0bnm =∑N

m=0
∑N

n=mbnm .

Hint: Define b̃nm =
{

bnm if m ≤ n

0 if n < m ≤ N.
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6.4 Find the Taylor series about x = 0 of the following functions; in each case prove that the series
converges to the function in the indicated interval.

(i) 1
1−x2 , |x| < 1 (Hint: 1

1−y
= 1+ y + y2 . . . , |y| < 1).

(ii) log(1+ x), |x| < 1

(iii) ex, x ∈ R

(iv) ex2
, x ∈ R (Hint: set y = x2).

6.5 (The analytic definition of the functions cos x, sin x, and the number π.)

Let sin x, cos x be defined by sin x =∑∞
n=0(−1)n x2n+1

(2n+1)! , cos x =∑∞
n=0(−1)n x2n

(2n)! .For convenience
of notation, write C(x) = cos x, S(x) = sin x. Prove:

(i) The series defining S(x), C(x) both have radius of convergence∞, and S ′(x) ≡ C(x), C ′(x) ≡
−S(x) for all x ∈ R.

(ii) S2(x)+ C2(x) ≡ 1 for all x ∈ R. Hint: Differentiate and use (i).

(iii) sin, cos (as defined above) are the unique functions S, C on R with the properties (a) S(0) =
0, C(0) = 1 and (b) S ′(x) = C(x), C ′(x) = −S(x) for all x ∈ R. Hint: Thus, you have to show
that S̃ = S and C̃ = C assuming that properties (a),(b) hold with S̃, C̃ in place of S, C, respectively;
show that Thm. 6.3 is applicable.

(iv) C(2) < 0 and hence there is a p ∈ (0, 2) such that C(p) = 0, S(p) = 1 and C(x) > 0 for all
x ∈ [0, p).

Hint: C(x) can be written 1− x2

2 + x4

24 −
∑∞

k=1

(
x4k+2

(4k+2)! − x4k+4

(4k+4)!
)

.

(v) S, C are periodic on R with period 4p. Hint: Start by defining C̃(x) = S(x + p) and S̃(x) =
−C(x + p) and use the uniqueness result of (iii) above.

Note: The number 2p, i.e., twice the value of the first positive zero of cos x, is rather important, and
we have a special name for it—it usually denoted by π . Calculation shows that π = 3.14159 . . ..

(vi) γ (x) = (C(x), S(x)), x ∈ [0, 2π ] is a C1 curve, the mapping γ |[0, 2π) is a 1:1 map of [0, 2π)

onto the unit circle S1 of R
2, and the arc-length S(t) of the part of the curve γ |[0, t] is t for each

t ∈ [0, 2π ]. (See Figure A.2.)

Remark: Thus, we can geometrically think of the angle between e1 and (C(t), S(t)) as t (that’s t

radians, meaning the arc on the unit circle going from e1 to P = (C(t), S(t)) (counterclockwise) has
length t as you are asked to prove in the above question) and we have the geometric interpretation
that C(t)(= cos t) and S(t)(= sin t) are, respectively, the lengths of the adjacent and the opposite
sides of the right triangle with vertices at (0, 0), (0, C(t)), (C(t), S(t)) and angle t at the vertex
(0, 0), at least if 0 < t < p = π

2 . (Notice this is now a theorem concerning cos t, sin t as distinct
from a definition.)
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Figure A.2:

Note: Part of the conclusion of (vi) is that the length of the unit circle is 2π . (Again, this becomes
a theorem; it is not a definition—π is defined to be 2p, where p, as in (iv), is the first positive zero
of the function cos x =∑∞

n=0(−1)n x2n

(2n)! .)
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LECTURE 7: COMPLEX SERIES, PRODUCTS OF SERIES, AND
COMPLEX EXPONENTIAL SERIES

In Real Analysis Lecture 4 we discussed series
∑∞

n=1 an where an ∈ R. One can analogously consider
complex series, i.e., the case when an ∈ C. The definition of convergence is exactly the same as in
the real case. That is we say the series converges if the nth partial sum (i.e.,

∑n
j=1 aj ) converges;

more precisely:

Definition:
∑∞

n=1 an converges if the sequence of partial sums {∑n
j=1 aj }n=0,1,... is a convergent

sequence in C; that is, there is a complex number s = u+ iv (u, v real) such that limn→∞
∑n

j=1 aj =
s.

Note: Of course here we are using the terminology that a sequence {zn}n=1,2,... ⊂ C converges, with
limit a = α + iβ, if the real sequence |zn − a| has limit zero, i.e., limn→∞ |zn − a| = 0. In terms of
“ε, N” this is the same as saying that for each ε > 0 there is N such that |zn − a| < ε for all n ≥ N .
Writing zn in terms of its real and imaginary parts, zn = un + ivn, then this is the same as saying
un → α and vn → β, so applying this to the sequence of partial sums we see that the complex series∑∞

n=1 an with an = αn + iβn is convergent if and only if both of the real series
∑∞

n=1 αn,
∑∞

n=1 βn

are convergent, and in this case
∑∞

n=1 an =∑∞
n=1 αn + i

∑∞
n=1 βn.

Most of the theorems we proved for real series carry over, with basically the same proofs, to
the complex case. For example, if

∑∞
n=1 an,

∑∞
n=1 bn are convergent complex series then the se-

ries
∑∞

n=1(an + bn) is convergent and its sum (i.e., limn→∞
∑n

j=1(aj + bj )) is just
∑∞

n=1 an +∑∞
n=1 bn.

Also, again analogously to the real case, we say the complex series
∑∞

n=1 an is absolutely convergent
if

∑∞
n=1 |an| is convergent. We claim that just as in the real case absolute convergence implies

convergence.

Lemma 1. The complex series
∑∞

n=1 an is convergent if
∑∞

n=1 |an| is convergent.

Proof: Let αn, βn denote the real and imaginary parts of an, so that an = αn + iβn and |an| =√
α2

n + β2
n ≥ max{|αn|, |βn|}, so

∑∞
n=1 |an| converges ⇒ ∃ a fixed M > 0 such that

∑n
j=1 |aj | ≤

M ∀ n⇒∑n
j=1 |αj | ≤ M ∀ n⇒∑∞

j=1 |αn| is convergent, so
∑∞

n=1 αn is absolutely conver-
gent, hence convergent. Similarly,

∑∞
n=1 βn is convergent. But

∑n
j=1 aj =∑n

j=1 αj + i
∑n

j=1 βj

and so limn→∞
∑n

j=1 an exists and equals limn→∞
∑n

j=1 αj + i limn→∞
∑n

j=1 βj =∑∞
n=1 αn +

i
∑∞

n=1 βn, which completes the proof.

We next want to discuss the important process of multiplying two series: If
∑∞

n=0 an and
∑∞

n=0 bn

are given complex series,we observe that the product of the partial sums, i.e., the product (
∑N

n=0 an) ·
(
∑N

n=0 bn), is just the sum of all the elements in the rectangular array
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aNb0 aNb1 aNb2 · · · · · · · · · aNbN

aN−1b0 aN−1b1 aN−1b2 · · · · · · · · · aN−1bN

...
...

...
...

...
...

...
...

a2b0 a2b1 a2b2 · · · · · · · · · a2bN

a1b0 a1b1 a1b2 · · · · · · · · · a1bN

a0b0 a0b1 a0b2 · · · · · · · · · a0bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
( N∑

n=0

an

)( N∑
n=0

bn

)
=

2N∑
n=0

( ∑
0≤i,j≤N, i+j=n

aibj

)
,

and observe that if i, j ≥ 0 and i + j ≤ N we automatically have i, j ≤ N , and so with cn =∑
i,j≥0, i+j=n aibj (=∑n

i=0 aibn−i ) we see that the right side of the above identity can be written∑N
n=0 cn +∑

0≤i,j≤N, i+j>N aibj , and so we have the identity

(∗)
( N∑

n=0

an

)( N∑
n=0

bn

)
−

N∑
n=0

cn =
∑

0≤i,j≤N, i+j>N

aibj

for each N = 0, 1, . . .. (Geometrically,
∑N

n=0 cn is the sum of the lower triangular elements of the
array, including the leading diagonal, and the term on the right of (∗) is the sum of the remaining,
upper triangular, elements.) If the given series

∑
an,

∑
bn are absolutely convergent, we show

below that the right side of (∗)→ 0 as N →∞, so that
∑∞

n=0 cn converges and has sum equal to
(
∑∞

n=0 an) (
∑∞

n=0 bn). That is:

Lemma (Product Theorem.) If
∑

an and
∑

bn are absolutely convergent complex series, then
(
∑∞

n=0 an)(
∑∞

n=0 bn) =∑∞
n=0 cn, where cn =∑n

i=0 aibn−i for each n = 0, 1, 2, . . .; furthermore,
the series

∑
cn is absolutely convergent.

Proof: By (∗) we have∣∣∣( N∑
i=0

ai

)( N∑
j=0

bj

)
−

N∑
n=0

cn

∣∣∣ = ∣∣∣ ∑
i,j≤N, i+j>N

aibj

∣∣∣ ≤ ∑
i,j≤N, i+j>N

|ai ||bj |

≤
∑

i,j≤N, i>N/2

|ai ||bj | +
∑

i,j≤N, j>N/2

|ai ||bj |

=
( N∑

i=[N/2]+1

|ai |
)( N∑

j=0

|bj |
)( N∑

i=0

|ai |
)( N∑

j=[N/2]+1

|bj |
)
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≤
( ∞∑

i=[N/2]+1

|ai |
)( ∞∑

j=0

|bj |
)
+

( ∞∑
i=0

|ai |
)( ∞∑

j=[N/2]+1

|bj |
)

→ 0 as N →∞ ,

where [N/2] = N
2 if N is even and [N/2] = N−1

2 if N is odd. Notice that in the last line we used
the fact that

∑∞
i=[N/2]+1 |ai | =∑∞

i=0 |ai | −∑[N/2]
i=0 |ai | → 0 as N →∞ because by definition∑∞

n=0 |an| = limJ→∞
∑J

n=0|an|, and similarly,
∑∞

j=[N/2]+1 |bj | =∑∞
j=0 |bj | −∑[N/2]

j=0 |bj | → 0,

because
∑∞

n=0 |bn| = limJ→∞
∑J

n=0 |bn|.
This completes the proof that

∑∞
n=0 cn converges, and

∑∞
n=0 cn = (

∑∞
n=0 an) (

∑∞
n=0 bn).

To prove that
∑∞

n=0 |cn| converges, just note that for each n ≥ 0 we have |cn| ≡
∣∣∑

i+j=n aibj

∣∣
≤∑

i+j=n |ai ||bj | ≡ Cn say, and the above argument, with |ai |, |bj | in place of ai, bj , respectively,
shows that

∑∞
n=0 Cn converges, so by the comparison test

∑∞
n=0 |cn| also converges.

We now define the complex exponential series.

Definition: The complex exponential function exp z (also denoted ez) is defined by exp z =∑∞
n=0

zn

n! .
Observe that this makes sense for all z because the series

∑∞
n=0

|z|n
n! is the real exponential series,

which we know is convergent on all of R, so that the series
∑∞

n=0
zn

n! is absolutely convergent (hence
convergent by Lem. 1) for all z.

We can use the above product theorem to check the following facts, which explains why the notation
ez is sometimes used instead of exp z:

(exp a)(exp (b) = exp(a + b), a, b ∈ C,(i)
exp ix = cos x + i sin x, x ∈ R .(ii)

The proof is left as an exercise (Exercises 7.1 and 7.2 below).

Notice that it follows from (i) that exp z is never zero (because by (i) (exp z) (exp−z) = exp 0 =
1 �= 0 ∀ z ∈ C).

LECTURE 7 PROBLEMS
7.1 Use the product theorem to show that exp a exp b = exp(a + b) for all a, b ∈ C.

7.2 Justify the formula exp ix = cos x + i sin x for all x ∈ R.

Note: cos, sin are defined by cos x =∑∞
k=0(−1)k x2k

(2k)! and sin x =∑∞
k=0(−1)k x2k+1

(2k+1)! for all real x.


