
Math 140A Test 2 100 points November 23, 2009 Professor Evans

Directions: Show all work. In your proofs, state where you use the hypotheses.
Notation: Throughout, z and an (n = 0, 1, 2, 3, . . . ) are complex. (If you can only handle the
real case, you still get considerable partial credit.)
Points: Each problem is worth 20 points.

(1) Given that an → 0, show that (a1 + · · ·+ an)/n→ 0, as n→∞.

Solution: Let ε > 0. Let sn = a1 + · · · + an. There exists an integer N such that |an| < ε for
all n > N . There exists a positive constant M (independent of ε) for which |an| < M for all
n ≤ N . Thus by the triangle inequality, |sn| ≤ NM + (n − N)ε. Thus |sn|/n < NM/n + ε, so
|sn|/n < 2ε for all n > NM/ε. This shows the desired result that sn/n→ 0.

(2) Consider the power series
∑∞

n=0 z
n/(n + 1). Determine the values of z for which the series

(A) diverges (B) converges. Justify briefly.

Solution: It’s easy to see using the ratio test or the root test that the series diverges for |z| > 1
and converges (absolutely) for |z| < 1. (The ROC is 1.) But what happens when |z| = 1? In
that case, the series converges by Dirichlet’s test (Theorem 3.42), unless z = 1, in which case
this series is the divergent harmonic series.

(3) Given that |z| < 1, prove that
∑∞

n=0 z
n = 1/(1− z). Justify every step in the proof.

Solution:
∑T

0 z
n = (1−zT+1)/(1−z), since z is not equal to 1. This is proved by cross-multiplying

and canceling. To find the value of the infinite series, take the limit as T → ∞. Since |z| < 1,
the right side approaches the desired limit (1− 0)/(1− z) = 1/(1− z).

(4) Let {an} be a monotone increasing sequence of reals with least upper bound 5. Prove that
an → 5 as n→∞.

Solution: Let ε > 0. For some N , aN lies in the interval [5− ε, 5], otherwise 5 would not be the
least upper bound of the sequence. Since the sequence is monotone increasing, it follows that an
lies in the interval [5− ε, 5] for all n > N . By definition of a limit of a sequence, it follows that
an → 5.

(5) (A) Give an example of a sequence {an} for which
∑∞

n=1 an converges but
∑∞

n=1 a
2
n diverges.

Justify briefly.
(B) Show that if

∑∞
n=1 an converges absolutely, then

∑∞
n=1 a

2
n converges absolutely as well.

Solution: (A) an = (−1)n/
√
n works, by Dirichlet’s test and the divergence of the harmonic

series.
Solution: (B) Since

∑∞
n=1 |an| converges, an → 0. Thus there is an integer N for which |an| < 1

for all n ≥ N . Therefore |an|2 < |an| for all n ≥ N . Thus by the comparison test,
∑∞

n=N |an|2
converges. Thus

∑∞
n=1 |an|2 converges.


