
June 13, 2007

Math 140B – Solutions to Sample Final

1. (20 pts.) Give an example of a sequence {fn} of continuous, real-
valued functions on [0, 1] such that limn→∞ fn(x) = 0 for all x ∈ [0, 1],
but

lim
n→∞

∫ 1

0

fn(x) dx 6= 0.

Explain your example briefly.

Solution: Let fn(0) = 0, fn(1/2n) = n, fn(x) = 0, 1/n ≤ x ≤ 1, with
f(x) linear from 0 to 1/2n and from 1/2n to 1/n. Then by calculating

the area of a triangle of height n and base 1/n,
∫ 1

0
fn(x)dx = 1/2, but

limn→∞ fn(x) = 0.

2. (20 pts.) If f : R → R satisfies

|f(x)− f(y)| ≤ (x− y)2

for all x, y ∈ R, show that f is constant.

Solution: |f(x+h)−f(x)|
|h| ≤ |h|. Hence limh→0

f(x+h)−f(x)
h

exists and is

0. This means that f is differentiable and f ′(x) ≡ 0. By a theorem in
Rudin, f must be constant.

3. (20 pts.) If fn : [a, b] → R is a sequence of continuous functions
such that fn → f uniformly, then the function h(x) : [a, b] → R defined
by

h(x) =

∫ x

a

f(t)dt

is differentiable on (a, b). (You should cite a couple of theorems to do
this problem.)

Solution: The uniform limit of a sequence of continuous functions is
again continuous (theorem in Rudin). Hence f is continuous on [a, b].
By part of the Fundamental Theorem of Calculus, it follows that h is
differentiable (and h′(x) = f(x)).

4. (20 pts.) Suppose that f : (−2, 2) → R is differentiable with
f ′ continuous and f(1/n) = 0 for all positive integers n. Prove that
f ′(0) = 0.

Solution: Since f is continuous, f(0) = limn→∞ f(1/n) = 0. By the

Mean Value Theorem, f(1/n)−f(0)
1/n

= f ′(an) for some an, 0 < an < 1/n.

Hence f ′(an) = 0 with lim an = 0. Since f ′ is continuous, f ′(0) =
lim f ′(an) = 0.
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5. Suppose f : [0, 1] → R satisfies∫ 1

0

f(x)xn dx = 0

for all positive integers n.

(a) (25 pts.)If f is continuous, show that f = 0.

Solution: Let P be the set of all polynomials with real coefficients.
By the linearity of the integral, it follows that

∫ 1

0
f(x)P (x) dx = 0

for all P ∈ P . By the Weierstrass Approximation Theorem, there is
a sequence Pn in P such that Pn → f uniformly. There is a theorem
in Rudin that says that if gn → g uniformly on [a, b] with gn and g

Riemann integrable, then
∫ b

a
gn(x)dx →

∫ b

a
g(x)dx as n → ∞. Hence

as n →∞

0 =

∫ 1

0

f(x)Pn(x) dx →
∫ 1

0

f(x)f(x) dx =

∫ 1

0

f 2(x) dx.

Since f 2 is continuous, nonnegative and
∫ 1

0
f 2(x) dx = 0, I claim that

f ≡ 0. If not, then there exists x0 ∈ [0, 1] such that f 2(x0) = a > 0.
Since f 2 is continuous, there exists δ > 0 such that f 2(x) > a/2 for all
x ∈ (x0 − δ, x0 + δ). Then∫ 1

0

f 2(x)dx ≥
∫ x0+δ

x0−δ

f 2(x)dx ≥ (a/2)(2δ) = aδ > 0,

contradicting the assumption. Therefore f ≡ 0.

(b) (20 pts.) Show by example that the conclusion of (a) need not
follow if f is not continuous. Explain your example briefly.

Solution: Let f(x) = 0, x 6= 1/2, and f(x) = 1, x = 1/2. Then for
any ε > 0, any n ∈ N,∫ 1

0

f(x)xndx =

∫ 1/2+ε/2

1/2−ε/2

|f(x)xn|dx ≤
∫ 1/2+ε/2

1/2−ε/2

1dx = ε.

Since ε is arbitrary, it follows that
∫ 1

0
f(x)xndx = 0 for all n ∈ N.

6. (25 pts.) Show that the series
∞∑

n=1

(−1)n x2 + n

n2
converges uniformly

in the interval [−2, 2].

Solution:
∞∑

n=1

(−1)n x2 + n

n2
=

∞∑
n=1

(−1)n x2

n2
+

∞∑
n=1

(−1)n 1

n
,
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since
∞∑

n=1

(−1)n 1

n
converges (alternating series with decreasing terms).

It is clear that
∞∑

n=1

(−1)n 1

n
converges uniformly, since it is indepen-

dent of x. To show
∞∑

n=1

(−1)n x2

n2
also converges uniformly, note that

|(−1)n x2

n2 | ≤ 4
n2 . Since

∞∑
n=1

4

n2
< ∞, the uniform convergence follows

from the Weierstrass M-test. Since the sum of two uniformly conver-
gent series is uniformly convergent (check it), it follows that the series
is uniformly convergent.

7. (25 pts.) Prove (carefully) that

lim
n→∞

∫ π

0

(sin x)ndx = 0.

Caution: You may not use the Dominated Convergence Theorem,
even if you know what it is!

Solution: You can use the Mean Value Theorem to prove that | sin x| ≤
|x|. (Check it!) Hence |

∫ π

0
(sin x)ndx| ≤

∫ π

0
xndx = πn+1

n+1
→ 0 as

n →∞.
Note: You can also do this without the inequality | sin x| ≤ |x|.

8. (25 pts.) If {fn} is a sequence of continuous, real-valued functions
on [0, 2] such that fn(0) = 0 for all n and

|fn(x)− fn(y)| ≤ |x− y| ∀ x, y ∈ [0, 2],

show that {fn} has a uniformly convergent subsequence.

Solution: I shall show that {fn} is equicontinuous and pointwise
bounded. Then the conclusion will follow immediately from the Arzela-
Ascoli Theorem.
Pointwise bounded:

|fn(x)| = |fn(x)− fn(0)| ≤ |x− 0| ≤ 2 ∀n.

Equicontinuous: Let ε > 0, and take δ < ε. Then

|fn(x)− fn(y)| ≤ |x− y| < ε for |x− y| < δ.


