- 1. Exercise 8 of Ch4.
- 2. Exercise 14 of Ch4.
- 3. Exercise 18 of Ch4.
- 4. Exercise 19 of Ch4.
- 5. Find the limit

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{(1+x)^{1/3} - (1-x)^{1/3}}.$$

6. Assume that the sequence $\{a_n\}$ is convergence and $a_n > 0$. Prove that

$$\lim_{n\to\infty} (a_1 \cdot a_2 \cdot \dots \cdot a_n)^{1/n} = \lim_{n\to\infty} a_n.$$

- 7. Assume that $\{a_n\}$ satisfies that $0 \le a_{n+m} \le a_n + a_m$. Prove that $\{\frac{a_n}{n}\}$ converges.
- 8. For any true statement below, prove it. For any false statement below find an example, or prove it false if you prefer.
 - (i) $\liminf_{n\to\infty} x_n + \liminf_{n\to\infty} y_n \le \liminf_{n\to\infty} (x_n + y_n) \le \liminf_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.
 - (ii) $\liminf_{n\to\infty} x_n + \limsup_{n\to\infty} y_n \le \limsup_{n\to\infty} (x_n + y_n) \le \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.
 - (iii) Assume that $x_n, y_n \ge 0$. Then $\liminf_{n\to\infty} x_n \cdot \liminf_{n\to\infty} y_n \le \liminf_{n\to\infty} (x_n \cdot y_n) \le \liminf_{n\to\infty} x_n \cdot \limsup_{n\to\infty} y_n$.
 - (iv) Assume that $x_n, y_n \geq 0$. Then $\liminf_{n \to \infty} x_n \cdot \limsup_{n \to \infty} y_n \leq \limsup_{n \to \infty} (x_n \cdot y_n) \leq \limsup_{n \to \infty} x_n \cdot \limsup_{n \to \infty} y_n$.
- 9. Prove that if for a nonnegative sequence $\{a_n\}$ it holds that for any sequence $\{b_n\}$,

$$\lim \sup_{n \to \infty} (a_n + b_n) = \lim \sup_{n \to \infty} a_n + \lim \sup_{n \to \infty} b_n$$

and

$$\lim \sup_{n \to \infty} (a_n \cdot b_n) = \lim \sup_{n \to \infty} a_n \cdot \lim \sup_{n \to \infty} b_n.$$

then $\{a_n\}$ must converges.

10. For a sequence $\{a_n\}$ with $a_n > 0$, if

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a$$

then

$$\lim_{n \to \infty} a_n^{\frac{1}{n}} = a.$$

You need to show that $\{a_n^{\frac{1}{n}}\}$ converges.

11. Prove that for function f(x) defined on $[a, +\infty)$, satisfying that f(x) is bounded on any finite (a, b). Then

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} f(x+1) - f(x).$$

Here we assume that both limit exist. You only need to show that they are the same.