1. Page 114: Exercise 4, Exercise 6.
2. Page 115: Exercise 11, 15.
3. Page 117: Exercise 22.
4. Page 138: Exercise 5.
5. Let $f(x)=1-x^{\frac{2}{3}}$. Check that $f(-1)=f(1)=0$. Explain why the mean value theorem fails to conclude that there exists $c \in(-1,1)$ such that $f^{\prime}(c)=0$.
6. Assume that f and its derivatives $f^{(j)}$ are continuous on $\left[x_{0}, x_{n}\right]$ for all $j \leq n-1$ and $f^{(n)}$ exists on $\left(x_{0}, x_{n}\right)$. Assume that there exist x_{j} with $x_{0}<x_{1}<x_{2} \cdots<x_{n-1}<x_{n}$ such that

$$
f\left(x_{0}\right)=f\left(x_{1}\right)=\cdots f\left(x_{n}\right) .
$$

Prove that there exists $c \in\left(x_{0}, x_{n}\right)$ such that $f^{(n)}(c)=0$.
7. Let f is a function such that $f^{(j)}$ for $j \leq p+q$ exist on $[a, b]$ and $f^{(p+q+1)}$ exists on (a, b) and

$$
f(a)=f^{\prime}(a)=\cdots f^{(p)}(a)=0
$$

and

$$
f(b)=f^{\prime}(b)=\cdots=f^{(q)}(b)=0 .
$$

Prove that there exists $c \in(a, b)$ such that $f^{(p+q+1)}(c)=0$.
8. Assume that φ is a monotonically increasing function and differentiable. Assume further that for $x \geq x_{0},\left|f^{\prime}(x)\right| \leq \varphi^{\prime}(x)$. Prove that for $x \geq x_{0}$

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq \varphi(x)-\varphi\left(x_{0}\right)
$$

9. Page 138: $4,5,6,7,8$
10. Prove Theorem 6.12 on page 128.
11. Assume that α is monotonically increasing and $\alpha^{\prime} \in \mathcal{R}$, namely Riemann integrable, on $[a, b]$. Prove that for any bounded function f prove that

$$
\int_{a}^{b} f(x) d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x
$$

