- 1. Page 114: Exercise 4, Exercise 6.
- 2. Page 115: Exercise 11, 15.
- 3. Page 117: Exercise 22.
- 4. Page 138: Exercise 5.
- 5. Let $f(x) = 1 x^{\frac{2}{3}}$. Check that f(-1) = f(1) = 0. Explain why the mean value theorem fails to conclude that there exists $c \in (-1, 1)$ such that f'(c) = 0.
- 6. Assume that f and its derivatives $f^{(j)}$ are continuous on $[x_0, x_n]$ for all $j \le n 1$ and $f^{(n)}$ exists on (x_0, x_n) . Assume that there exist x_j with $x_0 < x_1 < x_2 \cdots < x_{n-1} < x_n$ such that

$$f(x_0) = f(x_1) = \cdots f(x_n).$$

Prove that there exists $c \in (x_0, x_n)$ such that $f^{(n)}(c) = 0$.

7. Let f is a function such that $f^{(j)}$ for $j \leq p+q$ exist on [a,b] and $f^{(p+q+1)}$ exists on (a,b) and

$$f(a) = f'(a) = \cdots f^{(p)}(a) = 0$$

and

$$f(b) = f'(b) = \dots = f^{(q)}(b) = 0.$$

Prove that there exists $c \in (a, b)$ such that $f^{(p+q+1)}(c) = 0$.

8. Assume that φ is a monotonically increasing function and differentiable. Assume further that for $x \ge x_0$, $|f'(x)| \le \varphi'(x)$. Prove that for $x \ge x_0$

$$|f(x) - f(x_0)| \le \varphi(x) - \varphi(x_0).$$

- 9. Page 138: 4, 5, 6, 7, 8
- 10. Prove Theorem 6.12 on page 128.
- 11. Assume that α is monotonically increasing and $\alpha' \in \mathcal{R}$, namely Riemann integrable, on [a, b]. Prove that for any bounded function f prove that

$$\bar{\int}_{a}^{b} f(x) d\alpha = \bar{\int}_{a}^{b} f(x) \alpha'(x) \, dx.$$