```
p.17, l.-1
                      the right side is missing the term 1/\epsilon
p.37, 1.22
                      is a right process satisfies HD2
                      replace line with "Show that if f \in p\mathcal{E}^u satisfies (10.31i), then"
p.57, l.-4
p.97, l.-13
p.100, l.8
                      the proof of assertion (ii) is suspect, and (ii) should be discounted
                      replace "\omega/t/\theta_t\omega'" with "\omega/t/\theta_t\omega"
p.118, l.-1
p.132, l.16
                      should read \mathfrak{X}_{-}^{e} := \sigma\{f(X)_{-} : f \in b(\cup_{\alpha} \mathcal{S}^{\alpha})\}
                      , and once this is chosen, (ii) will follow
p.133, l.6
p.133, l.15
                      append "As f(X) is a.s. rell, the proof of (24.27) shows that \alpha U^{\alpha} f(x) \to f pointwise and
                      boundedly as \alpha \to \infty. It follows that p(\alpha U^{\alpha} f \circ X) \to p(f \circ X) as \alpha \to \infty, so the argument
                      above shows \alpha U^{\alpha} f(X)_{-} \to f(X)_{-}, up to evanescence, establishing f(X)_{-} \in \mathfrak{X}_{-}^{e} \vee \mathcal{I}."
                      left side should read \mathbf{P}^{\mu}\{Z_T 1_{\{T<\infty\}} \mid \mathcal{F}_{T-}^{\mu}\}
p.133, l.10
                      replace "T_n \uparrow \infty in T" with "T_n \uparrow \infty in T"
p.176, l.-8
p.185, l.15
                      potentials potential
p.194, l.-10
                      the term \lim_{s \perp \perp t} should be \limsup_{s \perp \perp t}
                      In (40.8), "proportional to \bar{P}_t(x,\cdot)" should read "proportional to \eta_t"
p.199, 1.7
                      should be "Let Z be a positive right continuous ..."
p.255, l.6
p.264, l.4
                      should be "By (55.4iii), a.s., s \to m_{[s,t]} is increasing ..."
p.264, l.5
                      should be "\psi_{s,t} is increasing in s and decreasing in t for s < t \dots"
                      the text starting here and ending 7 lines below after "\omega \in \Omega_0." should be cut and pasted in at the
p.264, l.10
                      beginning of line 4 on this page.
p.265, l.-8
                      replace m_{[r,t]} by m_{[r,s]}
p.266, 1.7,8
                      replace m_{[r,t]} by m_{[r,s]}
p.266, l.-17
                      decreasing on [0,t[ increasing on [0,t[
p.284, l.-7
                      replace "(3.10)" with "(3.9)"
                      replace "(3.10)" with "(3.9)"
p.284, l.-1
p.285, l.1
                      insert "weak" before MF
                      replace "(57.9)" by "(56.9)"
p.285, l.9
p.294, 1.9
                      insert "of (62.10)" following "process A"
                      insert "}" following "1_{\{T < \zeta\}}"
p.298, l.-11
                      insert \mathbf{P}^x on right side of equality
p.299, 1.5
                      replace (R, B) with (R, X)
p.299, l.-14
                      replace E_B with E \cup E_B
p.302, l.-1
                      replace \mathbf{R}^+ with \mathbf{R}^+ \times \Omega
p.303, l.2
p.308, l.11
                      insert \alpha on right side of equality
                      insert \alpha on left term in display
p.308, l.12
                      replace X_u with X_s
p.310, l.7
                      insert "u be" following "Let"
p.312, l.-14
p.312, l.-6
                      replace u_A^{\alpha} with u_B^{\alpha}
p.313, l.15
                      \mathcal{O}\cap
                      replace (35.10) with (35.12)
p.313, l.15
                      replace A^b – with A^b =
p.313, l.17
                      replace \lambda(s) with \lambda(t)
p.315, l.16
p.316, l.2
                      insert "in the leading case" following "In addition,"
                      replace \lambda(s) with \lambda(t)
p.316, l.17
p.317, l.-8
                      insert "on M" following "of \mu"
                      replace \bar{E} \times E with E \times \bar{E}
p.319, l.4
                      insert "optional," before "homogeneous random set"
p.320, l.14
                      replace \mathbf{P}^x with \mathbf{P}^y
p.324, l.14
                      replace \theta_{\tau_s} with \theta_{\tau_t}
p.325, l.13
                      insert "a uniform motion" before "process"
p.332, l.1
p.336, l.-9
                      replace dA_u with dA_t and insert du before e^{-\alpha t}
```

```
(45.10). for (X,S). Then (40.16) for (X,S). Then the
p.338, l.-13
                      replace X_n with X_u
p.339, l.-9
                      replace T^n and T^{n-1} with T^k and T^{k-1}
p.339, l.-8
p.340, l.-4
                      definition definite
                      replace B (twice) by some other symbol
p.340, l.-2
p.341, l.12
                      replace bp\mathcal{B}(\mathbf{R}^d) with p\mathcal{B}(\mathbf{R}^d)
p.341, l.-6
                      left term of display should be (h(X_{-}) * A)_{t}^{p}
                      replace "his" with "this"
p.342, 110
p.343, l.-8
                      is a Lusinian
                      replace s > 0 with s \in J
p.343, l.-3
p.344, l.1
                      replace J_n(\omega) with J_n
                      H=1 Y=1
p.346, l.13
                      replace \{N^0(x, \{x\}) > 0\} with \{N^0(x, \{x\}) = 0\}
p.346, l.15
                      replace \rho(X_{t-}(\omega), X_t(\omega)) with \rho(X_{T-}(\omega), X_T(\omega))
p.347, l.-2
                      insert \mathbf{P}^x before \int_0^{\zeta}
p.351, l.-18
                      defines an
p.352, l.-15
                      replace \mathbf{P}^{X_s}(G) dB_s with \mathbf{P}^{X_t}(G) dB_t
p.355, l.-3
                      replace \bar{\mathbf{P}} with \mathbf{P}
p.357, l.-11
                      \alpha U^{\alpha} \xi should be \alpha \xi U^{\alpha}
p.360, l.13
                      replace f(X_t) \kappa(dt) with f(X_s) \kappa(ds)
p.360, l.-1
p.361, l.10
                      The statement and proof of (75.9) are most charitably described as muddled.
                      The next 5 corrections attempt a quick fix.
                      with u_A^1 bounded, and
p.361, l.13
p.261, l.-7
                      replace \beta \geq 0 with \beta \geq \alpha
p.361, l.-6
                      insert \beta following \beta \to \infty,
                      change "finite" to "\xi-integrable"
p.362, l.5
                      change C to B, and append "But dB^p = \bar{P}_0 1_{E_n} \circ X_- dA, and Y := \sum_{n=0}^{\infty} 2^{-n} \bar{P}_0 1_{E_n} \circ X_- / n \in \mathfrak{H}^g is
p.362, l.7
                      strictly positive and Y_t dA_t is, by the preceding argument, \xi-integrable.
p.373, l.16
                      fromf from
p.404, l.-12
                      R. G. Blumenthal R. M. Blumenthal
                      \hat{\mathcal{M}}, \hat{\mathcal{O}} and \hat{\mathcal{P}} should be added with a reference to page 150
p.412
```