A dynamical system related to GIT

Nolan R. Wallach

June 4,2015

A gradient system

- Let $\phi \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial that is homogeneous of degree m such that $\phi(x) \geq 0$ for all $x \in \mathbb{R}^{n}$. We consider the gradient system

$$
\frac{d x}{d t}=-\nabla \phi(x)
$$

A gradient system

- Let $\phi \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial that is homogeneous of degree m such that $\phi(x) \geq 0$ for all $x \in \mathbb{R}^{n}$. We consider the gradient system

$$
\frac{d x}{d t}=-\nabla \phi(x)
$$

- Note that

$$
\langle\nabla \phi(x), x\rangle=m \phi(x)
$$

Denoting by $F(t, x)$ the solution to the system near $t=0$ with $F(0, x)=x$. Then

$$
\begin{gathered}
\frac{d}{d t}\langle F(t, x), F(t, x)\rangle=-2\langle\nabla \phi(F(t, x)), F(t, x)\rangle \\
=-2 m \phi(F(t, x)) \leq 0
\end{gathered}
$$

- This implies $\|F(t, x)\| \leq\|x\|$ where defined for $t \geq 0$ and hence $F(t, x)$ is defined for all $t \geq 0$.
- This implies $\|F(t, x)\| \leq\|x\|$ where defined for $t \geq 0$ and hence $F(t, x)$ is defined for all $t \geq 0$.
- The formula

$$
\langle\nabla \phi(x), x\rangle=m \phi(x)
$$

combined with the Schwarz inequality implies that

$$
\|\nabla \phi(x)\|\|x\| \geq m \phi(x)
$$

- This implies $\|F(t, x)\| \leq\|x\|$ where defined for $t \geq 0$ and hence $F(t, x)$ is defined for all $t \geq 0$.
- The formula

$$
\langle\nabla \phi(x), x\rangle=m \phi(x)
$$

combined with the Schwarz inequality implies that

$$
\|\nabla \phi(x)\|\|x\| \geq m \phi(x)
$$

- The Lojasiewicz gradient inequality implies the following improvement. There exists $0<\varepsilon \leq \frac{1}{m-1}$ and $C>0$ both depending only on ϕ such that

$$
\|\nabla \phi(x)\|^{1+\varepsilon}\|x\|^{1-(m-1) \varepsilon} \geq C \phi(x)
$$

- We take ε and C as above (but allow $\varepsilon=0$ which is easy). If we write F for $F(t, X)$ and $H(t)=\phi(F(t, x))$ then we have

$$
H^{\prime}(t)=-d \phi(F) \nabla \phi(F)=-\|\nabla \phi(F)\|^{2}
$$

- We take ε and C as above (but allow $\varepsilon=0$ which is easy). If we write F for $F(t, X)$ and $H(t)=\phi(F(t, x))$ then we have

$$
H^{\prime}(t)=-d \phi(F) \nabla \phi(F)=-\|\nabla \phi(F)\|^{2}
$$

- If $t \geq 0$ and $\|x\| \leq r$

$$
\|\nabla \phi(F)\|^{1+\varepsilon} r^{1-(m-1) \varepsilon} \geq\|\nabla \phi(F)\|^{1+\varepsilon}\|F\|^{1-(m-1) \varepsilon} \geq C \phi(x) .
$$

- We take ε and C as above (but allow $\varepsilon=0$ which is easy). If we write F for $F(t, X)$ and $H(t)=\phi(F(t, x))$ then we have

$$
H^{\prime}(t)=-d \phi(F) \nabla \phi(F)=-\|\nabla \phi(F)\|^{2} .
$$

- If $t \geq 0$ and $\|x\| \leq r$

$$
\|\nabla \phi(F)\|^{1+\varepsilon} r^{1-(m-1) \varepsilon} \geq\|\nabla \phi(F)\|^{1+\varepsilon}\|F\|^{1-(m-1) \varepsilon} \geq C \phi(x) .
$$

- We will now run through what has come to be called "the Lojasiewicz argument" which I learned from a beautiful exposition of Neeman's theorem by Gerry Schwarz.

$$
\|\nabla \phi(F)\|^{1+\varepsilon} \geq \frac{C}{r^{1-3 \varepsilon}} \phi(F) .
$$

$$
\|\nabla \phi(F)\|^{1+\varepsilon} \geq \frac{C}{r^{1-3 \varepsilon}} \phi(F) .
$$

$$
\|\nabla \phi(F)\|^{2} \geq\left(\frac{C}{r^{1-3 \varepsilon}}\right)^{\frac{2}{1+\varepsilon}} \phi(F)^{\frac{2}{1+\varepsilon}} .
$$

$$
\begin{gathered}
\|\nabla \phi(F)\|^{1+\varepsilon} \geq \frac{C}{r^{1-3 \varepsilon}} \phi(F) . \\
\|\nabla \phi(F)\|^{2} \geq\left(\frac{C}{r^{1-3 \varepsilon}}\right)^{\frac{2}{1+\varepsilon}} \phi(F)^{\frac{2}{1+\varepsilon}} \\
\left|H^{\prime}(t)\right| \geq \frac{1}{2}\left(\frac{C}{r^{1-3 \varepsilon}}\right)^{\frac{2}{1+\varepsilon}} \phi(F)^{\frac{2}{1+\varepsilon}}=C_{1}(r) H(t)^{\frac{2}{1+\varepsilon}} .
\end{gathered}
$$

$$
\begin{gathered}
\|\nabla \phi(F)\|^{1+\varepsilon} \geq \frac{C}{r^{1-3 \varepsilon}} \phi(F) \\
\|\nabla \phi(F)\|^{2} \geq\left(\frac{C}{r^{1-3 \varepsilon}}\right)^{\frac{2}{1+\varepsilon}} \phi(F)^{\frac{2}{1+\varepsilon}} \\
\left|H^{\prime}(t)\right| \geq \frac{1}{2}\left(\frac{C}{r^{1-3 \varepsilon}}\right)^{\frac{2}{1+\varepsilon}} \phi(F)^{\frac{2}{1+\varepsilon}}=C_{1}(r) H(t)^{\frac{2}{1+\varepsilon}} .
\end{gathered}
$$

- Since $H^{\prime}(t) \leq 0$ for $t \geq 0$ we have $-H^{\prime}(t) \geq C_{1}(r) H(t)^{\frac{2}{1+\varepsilon}}$. Assuming $H(t)>0$ we have

$$
\begin{gathered}
\|\nabla \phi(F)\|^{1+\varepsilon} \geq \frac{C}{r^{1-3 \varepsilon}} \phi(F) \\
\|\nabla \phi(F)\|^{2} \geq\left(\frac{C}{r^{1-3 \varepsilon}}\right)^{\frac{2}{1+\varepsilon}} \phi(F)^{\frac{2}{1+\varepsilon}} \\
\left|H^{\prime}(t)\right| \geq \frac{1}{2}\left(\frac{C}{r^{1-3 \varepsilon}}\right)^{\frac{2}{1+\varepsilon}} \phi(F)^{\frac{2}{1+\varepsilon}}=C_{1}(r) H(t)^{\frac{2}{1+\varepsilon}} .
\end{gathered}
$$

- Since $H^{\prime}(t) \leq 0$ for $t \geq 0$ we have $-H^{\prime}(t) \geq C_{1}(r) H(t)^{\frac{2}{1+\varepsilon}}$. Assuming $H(t)>0$ we have

$$
\frac{d}{d t} H(t)^{-\frac{1-\varepsilon}{1+\varepsilon}}=-\frac{1-\varepsilon}{1+\varepsilon} \frac{H^{\prime}(t)}{H(t)^{\frac{2}{1+\varepsilon}}} \geq C_{1}(r)
$$

$$
H(t)^{-\frac{1-\varepsilon}{1+\varepsilon}} \geq C_{1}(r) t .
$$

$$
H(t)^{-\frac{1-\varepsilon}{1+\varepsilon}} \geq C_{1}(r) t .
$$

$$
H(t) \leq C_{2}(r) t^{-\frac{(1+\varepsilon)}{1-\varepsilon}} \leq C_{2}(r) t^{-(1+\varepsilon)},
$$

$$
\begin{gathered}
H(t)^{-\frac{1-\varepsilon}{1+\varepsilon}} \geq C_{1}(r) t \\
H(t) \leq C_{2}(r) t^{-\frac{(1+\varepsilon)}{1-\varepsilon}} \leq C_{2}(r) t^{-(1+\varepsilon)}
\end{gathered}
$$

- This is true if $H(t)=0$ so the formula is valid for all $t>0$.

$$
\begin{gathered}
H(t)^{-\frac{1-\varepsilon}{1+\varepsilon}} \geq C_{1}(r) t \\
H(t) \leq C_{2}(r) t^{-\frac{(1+\varepsilon)}{1-\varepsilon}} \leq C_{2}(r) t^{-(1+\varepsilon)}
\end{gathered}
$$

- This is true if $H(t)=0$ so the formula is valid for all $t>0$.
- This is the first half of the calculus part of the Lojasiewicz argument. The first implication needs only the easy case $\varepsilon=0$. If $\|x\| \leq r$ then

$$
\phi(F(t, x)) \leq \frac{C(r)}{t}
$$

so $\lim _{t \rightarrow+\infty} \phi(F(t, x))=0$ uniformly for x in compacta. We now do the rest of the Lojasiewicz argument which uses the existence of $\varepsilon>0$.

- Let $f(t)=t^{1+\delta}$ with $0<\delta<\varepsilon$ then for $t>0$

$$
0<H(t) f^{\prime}(t) \leq C_{2}(r)(1+\delta) t^{-1-(\varepsilon-\delta)} .
$$

- Let $f(t)=t^{1+\delta}$ with $0<\delta<\varepsilon$ then for $t>0$

$$
0<H(t) f^{\prime}(t) \leq C_{2}(r)(1+\delta) t^{-1-(\varepsilon-\delta)}
$$

$$
\begin{gathered}
H(s) f(s)-H(t) f(t)=\int_{t}^{s} \frac{d}{d u}(H(u) f(u)) d u= \\
\int_{t}^{s} H(u) f^{\prime}(u) d u+\int_{t}^{s} H^{\prime}(u) f(u) d u
\end{gathered}
$$

- Let $f(t)=t^{1+\delta}$ with $0<\delta<\varepsilon$ then for $t>0$

$$
0<H(t) f^{\prime}(t) \leq C_{2}(r)(1+\delta) t^{-1-(\varepsilon-\delta)}
$$

$$
\begin{gathered}
H(s) f(s)-H(t) f(t)=\int_{t}^{s} \frac{d}{d u}(H(u) f(u)) d u= \\
\int_{t}^{s} H(u) f^{\prime}(u) d u+\int_{t}^{s} H^{\prime}(u) f(u) d u
\end{gathered}
$$

$$
\begin{gathered}
-\int_{t}^{s} H^{\prime}(u) f(u) d u=\int_{t}^{s} H(u) f^{\prime}(u) d u+H(t) f(t)-H(s) f(s) \\
0 \leq H(s) f(s) \leq C_{2}(r) s^{-(1+\varepsilon)} s^{1+\delta}=C_{2}(r) s^{-(\varepsilon-\delta)}
\end{gathered}
$$

- Let $f(t)=t^{1+\delta}$ with $0<\delta<\varepsilon$ then for $t>0$

$$
0<H(t) f^{\prime}(t) \leq C_{2}(r)(1+\delta) t^{-1-(\varepsilon-\delta)}
$$

$$
\begin{gathered}
H(s) f(s)-H(t) f(t)=\int_{t}^{s} \frac{d}{d u}(H(u) f(u)) d u= \\
\int_{t}^{s} H(u) f^{\prime}(u) d u+\int_{t}^{s} H^{\prime}(u) f(u) d u
\end{gathered}
$$

$$
\begin{gathered}
-\int_{t}^{s} H^{\prime}(u) f(u) d u=\int_{t}^{s} H(u) f^{\prime}(u) d u+H(t) f(t)-H(s) f(s) \\
0 \leq H(s) f(s) \leq C_{2}(r) s^{-(1+\varepsilon)} s^{1+\delta}=C_{2}(r) s^{-(\varepsilon-\delta)}
\end{gathered}
$$

$$
\lim _{s \rightarrow+\infty} \int_{t}^{s}\left|H^{\prime}(u)\right| f(u) d u=\int_{t}^{\infty} H(u) f^{\prime}(u) d u+H(t) f(t)
$$

- Thus $\sqrt{\left|H^{\prime}(u)\right| f(u)}$ is in $L^{2}([t,+\infty))$ for all $t>0$ and so

$$
\sqrt{\left|H^{\prime}(u)\right|}=\sqrt{\left|H^{\prime}(u)\right| f(u)} u^{-\frac{(1+\delta)}{2}} \in L^{1}([t,+\infty)) .
$$

- Thus $\sqrt{\left|H^{\prime}(u)\right| f(u)}$ is in $L^{2}([t,+\infty))$ for all $t>0$ and so

$$
\sqrt{\left|H^{\prime}(u)\right|}=\sqrt{\left|H^{\prime}(u)\right| f(u)} u^{-\frac{(1+\delta)}{2}} \in L^{1}([t,+\infty)) .
$$

- Theorem. If $t>0$ then

$$
\int_{t}^{+\infty}\left\|\frac{d}{d u} F(u, x)\right\| d u
$$

converges uniformly for $\|x\| \leq r$.

- Thus $\sqrt{\left|H^{\prime}(u)\right| f(u)}$ is in $L^{2}([t,+\infty))$ for all $t>0$ and so

$$
\sqrt{\left|H^{\prime}(u)\right|}=\sqrt{\left|H^{\prime}(u)\right| f(u)} u^{-\frac{(1+\delta)}{2}} \in L^{1}([t,+\infty)) .
$$

- Theorem. If $t>0$ then

$$
\int_{t}^{+\infty}\left\|\frac{d}{d u} F(u, x)\right\| d u
$$

converges uniformly for $\|x\| \leq r$.

$$
\int_{t}^{\infty} \frac{d}{d u} F(u, x) d u
$$

converges absolutely and uniformly for $\|x\| \leq r$.

- Thus $\sqrt{\left|H^{\prime}(u)\right| f(u)}$ is in $L^{2}([t,+\infty))$ for all $t>0$ and so

$$
\sqrt{\left|H^{\prime}(u)\right|}=\sqrt{\left|H^{\prime}(u)\right| f(u)} u^{-\frac{(1+\delta)}{2}} \in L^{1}([t,+\infty))
$$

- Theorem. If $t>0$ then

$$
\int_{t}^{+\infty}\left\|\frac{d}{d u} F(u, x)\right\| d u
$$

converges uniformly for $\|x\| \leq r$.

$$
\int_{t}^{\infty} \frac{d}{d u} F(u, x) d u
$$

converges absolutely and uniformly for $\|x\| \leq r$.

- Noting that if $s>t$ then

$$
\int_{t}^{s} \frac{d}{d u} F(u, x) d u=F(s, x)-F(t, x)
$$

we have for $t>0$

$$
\lim _{s \rightarrow \infty} F(s, x)=\int_{t}^{\infty} \frac{d}{d u} F(u, x) d u+F(t, x)
$$

- Finally, set $L(t, x)=F\left(\frac{t}{1-t}, x\right)$ and define $L(1, x)$ by the limit above then $L:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous and since

$$
\nabla \phi(x)=0 \Longleftrightarrow \phi(x)=0
$$

we have

- Finally, set $L(t, x)=F\left(\frac{t}{1-t}, x\right)$ and define $L(1, x)$ by the limit above then $L:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous and since

$$
\nabla \phi(x)=0 \Longleftrightarrow \phi(x)=0
$$

we have

- Theorem. $L:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defines a strong deformation retraction of \mathbb{R}^{n} onto $Y=\left\{x \in \mathbb{R}^{n} \mid \phi(x)=0\right\}$.
- Finally, set $L(t, x)=F\left(\frac{t}{1-t}, x\right)$ and define $L(1, x)$ by the limit above then $L:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous and since

$$
\nabla \phi(x)=0 \Longleftrightarrow \phi(x)=0
$$

we have

- Theorem. $L:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defines a strong deformation retraction of \mathbb{R}^{n} onto $Y=\left\{x \in \mathbb{R}^{n} \mid \phi(x)=0\right\}$.
- Corollary. If $Z \subset \mathbb{R}^{n}$ is closed and such that $F(t, z) \in Z$ for $t \geq 0$ and $z \in Z$ then $H:[0,1] \times Z \rightarrow Z$ defines a strong deformation retraction of Z onto $Z \cap Y$.

Kempf-Ness over the reals

- Let G be an open subgroup of a Zariski closed subgroup of $G L(n, \mathbb{R})$ that is closed under real adjoint relative to the standard inner product, $\langle\ldots, \ldots\rangle, g \rightarrow g^{*}$. Let $K=G \cap O(n)$. Then K is a maximal compact subgroup of G. On $\mathfrak{g}=\operatorname{Lie}(G)$ we put the inner product $\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right)$, Set $\mathfrak{p}=\operatorname{Lie}(K)^{\perp}$ relative to this inner product.

Kempf-Ness over the reals

- Let G be an open subgroup of a Zariski closed subgroup of $G L(n, \mathbb{R})$ that is closed under real adjoint relative to the standard inner product, $\langle\ldots, \ldots\rangle, g \rightarrow g^{*}$. Let $K=G \cap O(n)$. Then K is a maximal compact subgroup of G. On $\mathfrak{g}=\operatorname{Lie}(G)$ we put the inner product $\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right)$, Set $\mathfrak{p}=\operatorname{Lie}(K)^{\perp}$ relative to this inner product.
- We say that an element $v \in \mathbb{R}^{n}$ is G-critical if for any $X \in \operatorname{Lie}(G)$, $\langle X v, v\rangle=0$. The following is an extension of the Kempf-Ness Theorem first observed by Richardson and Slodoway.

Kempf-Ness over the reals

- Let G be an open subgroup of a Zariski closed subgroup of $G L(n, \mathbb{R})$ that is closed under real adjoint relative to the standard inner product, $\langle\ldots, \ldots\rangle, g \rightarrow g^{*}$. Let $K=G \cap O(n)$. Then K is a maximal compact subgroup of G. On $\mathfrak{g}=\operatorname{Lie}(G)$ we put the inner product $\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right)$, Set $\mathfrak{p}=\operatorname{Lie}(K)^{\perp}$ relative to this inner product.
- We say that an element $v \in \mathbb{R}^{n}$ is G-critical if for any $X \in \operatorname{Lie}(G)$, $\langle X v, v\rangle=0$. The following is an extension of the Kempf-Ness Theorem first observed by Richardson and Slodoway.
- Theorem. Let G, K be as above. Let $v \in \mathbb{R}^{n}$.

Kempf-Ness over the reals

- Let G be an open subgroup of a Zariski closed subgroup of $G L(n, \mathbb{R})$ that is closed under real adjoint relative to the standard inner product, $\langle\ldots, \ldots\rangle, g \rightarrow g^{*}$. Let $K=G \cap O(n)$. Then K is a maximal compact subgroup of G. On $\mathfrak{g}=\operatorname{Lie}(G)$ we put the inner product $\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right)$, Set $\mathfrak{p}=\operatorname{Lie}(K)^{\perp}$ relative to this inner product.
- We say that an element $v \in \mathbb{R}^{n}$ is G-critical if for any $X \in \operatorname{Lie}(G)$, $\langle X v, v\rangle=0$. The following is an extension of the Kempf-Ness Theorem first observed by Richardson and Slodoway.
- Theorem. Let G, K be as above. Let $v \in \mathbb{R}^{n}$.
(1) If v is critical if and only if $\|g v\| \geq\|v\|$ for all $g \in G$.

Kempf-Ness over the reals

- Let G be an open subgroup of a Zariski closed subgroup of $G L(n, \mathbb{R})$ that is closed under real adjoint relative to the standard inner product, $\langle\ldots, \ldots\rangle, g \rightarrow g^{*}$. Let $K=G \cap O(n)$. Then K is a maximal compact subgroup of G. On $\mathfrak{g}=\operatorname{Lie}(G)$ we put the inner product $\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right)$, Set $\mathfrak{p}=\operatorname{Lie}(K)^{\perp}$ relative to this inner product.
- We say that an element $v \in \mathbb{R}^{n}$ is G-critical if for any $X \in \operatorname{Lie}(G)$, $\langle X v, v\rangle=0$. The following is an extension of the Kempf-Ness Theorem first observed by Richardson and Slodoway.
- Theorem. Let G, K be as above. Let $v \in \mathbb{R}^{n}$.
(1) If v is critical if and only if $\|g v\| \geq\|v\|$ for all $g \in G$.
(2) If v is critical and if $w \in G v$ is such that $\|v\|=\|w\|$ then $w \in K v$.

Kempf-Ness over the reals

- Let G be an open subgroup of a Zariski closed subgroup of $G L(n, \mathbb{R})$ that is closed under real adjoint relative to the standard inner product, $\langle\ldots, \ldots\rangle, g \rightarrow g^{*}$. Let $K=G \cap O(n)$. Then K is a maximal compact subgroup of G. On $\mathfrak{g}=\operatorname{Lie}(G)$ we put the inner product $\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right)$, Set $\mathfrak{p}=\operatorname{Lie}(K)^{\perp}$ relative to this inner product.
- We say that an element $v \in \mathbb{R}^{n}$ is G-critical if for any $X \in \operatorname{Lie}(G)$, $\langle X v, v\rangle=0$. The following is an extension of the Kempf-Ness Theorem first observed by Richardson and Slodoway.
- Theorem. Let G, K be as above. Let $v \in \mathbb{R}^{n}$.
(1) If v is critical if and only if $\|g v\| \geq\|v\|$ for all $g \in G$.
(2) If v is critical and if $w \in G v$ is such that $\|v\|=\|w\|$ then $w \in K v$.
(3) If $G v$ is closed then there exists a critical element in $G v$.

Kempf-Ness over the reals

- Let G be an open subgroup of a Zariski closed subgroup of $G L(n, \mathbb{R})$ that is closed under real adjoint relative to the standard inner product, $\langle\ldots, \ldots\rangle, g \rightarrow g^{*}$. Let $K=G \cap O(n)$. Then K is a maximal compact subgroup of G. On $\mathfrak{g}=\operatorname{Lie}(G)$ we put the inner product $\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right)$, Set $\mathfrak{p}=\operatorname{Lie}(K)^{\perp}$ relative to this inner product.
- We say that an element $v \in \mathbb{R}^{n}$ is G-critical if for any $X \in \operatorname{Lie}(G)$, $\langle X v, v\rangle=0$. The following is an extension of the Kempf-Ness Theorem first observed by Richardson and Slodoway.
- Theorem. Let G, K be as above. Let $v \in \mathbb{R}^{n}$.
(1) If v is critical if and only if $\|g v\| \geq\|v\|$ for all $g \in G$.
(2) If v is critical and if $w \in G v$ is such that $\|v\|=\|w\|$ then $w \in K v$.
(3) If $G v$ is closed then there exists a critical element in $G v$.
(9) If v is critical then $G v$ is closed.
- We set $V=\mathbb{R}^{n}$ as a G-module and $\operatorname{Crit}_{G}(V)$ equal to the set of all critical vectors. If X_{1}, \ldots, X_{r} is an orthonormal basis of \mathfrak{p} then

$$
\phi(v)=\sum\left\langle X_{j} v, v\right\rangle^{2}
$$

is non-negative homogeneous polynomial of degree 4 defining Crit $_{G}(V)$.

- We set $V=\mathbb{R}^{n}$ as a G-module and $\operatorname{Crit}_{G}(V)$ equal to the set of all critical vectors. If X_{1}, \ldots, X_{r} is an orthonormal basis of \mathfrak{p} then

$$
\phi(v)=\sum\left\langle X_{j} v, v\right\rangle^{2}
$$

is non-negative homogeneous polynomial of degree 4 defining Crit $_{G}(V)$.

- We consider \mathbb{R}^{n} as $n \times 1$ columns and thus if $v \in V$ then v^{*} is v as a row vector. So for $v, w \in V, v w^{*}$ is an $n \times n$ matrix and

$$
\langle X v, w\rangle=\operatorname{tr} X v w^{*}
$$

- We set $V=\mathbb{R}^{n}$ as a G-module and $\operatorname{Crit}_{G}(V)$ equal to the set of all critical vectors. If X_{1}, \ldots, X_{r} is an orthonormal basis of \mathfrak{p} then

$$
\phi(v)=\sum\left\langle X_{j} v, v\right\rangle^{2}
$$

is non-negative homogeneous polynomial of degree 4 defining Crit $_{G}(V)$.

- We consider \mathbb{R}^{n} as $n \times 1$ columns and thus if $v \in V$ then v^{*} is v as a row vector. So for $v, w \in V, v w^{*}$ is an $n \times n$ matrix and

$$
\langle X v, w\rangle=\operatorname{tr} X v w^{*}
$$

- Let $P_{\mathfrak{g}}$ be the orthogonal projection of $M_{n}(\mathbb{R})$ onto \mathfrak{g} then

$$
\nabla \phi(v)=4 P_{\mathfrak{g}}\left(v v^{*}\right) v \in T_{v}(G v)
$$

- We set $V=\mathbb{R}^{n}$ as a G-module and $\operatorname{Crit}_{G}(V)$ equal to the set of all critical vectors. If X_{1}, \ldots, X_{r} is an orthonormal basis of \mathfrak{p} then

$$
\phi(v)=\sum\left\langle X_{j} v, v\right\rangle^{2}
$$

is non-negative homogeneous polynomial of degree 4 defining Crit $_{G}(V)$.

- We consider \mathbb{R}^{n} as $n \times 1$ columns and thus if $v \in V$ then v^{*} is v as a row vector. So for $v, w \in V, v w^{*}$ is an $n \times n$ matrix and

$$
\langle X v, w\rangle=\operatorname{tr} X v w^{*}
$$

- Let $P_{\mathfrak{g}}$ be the orthogonal projection of $M_{n}(\mathbb{R})$ onto \mathfrak{g} then

$$
\nabla \phi(v)=4 P_{\mathfrak{g}}\left(v v^{*}\right) v \in T_{v}(G v)
$$

- Also note that $\nabla \phi(k v)=k \nabla \phi(v)$ for $k \in K$.
- Let $F(t, x)$ be the gradient flow corresponding to ϕ. Then we have shown using freshman calculus that for $t>0$ and $\|x\| \leq r$

$$
\phi(F(t, x)) \leq \frac{C(r)}{t}
$$

- Let $F(t, x)$ be the gradient flow corresponding to ϕ. Then we have shown using freshman calculus that for $t>0$ and $\|x\| \leq r$

$$
\phi(F(t, x)) \leq \frac{C(r)}{t}
$$

- In addition if $Z \subset V$ is closed and G-invariant then $F(t, Z) \subset Z$ and 2 in the real Kempf-Ness theorem implies:
- Let $F(t, x)$ be the gradient flow corresponding to ϕ. Then we have shown using freshman calculus that for $t>0$ and $\|x\| \leq r$

$$
\phi(F(t, x)) \leq \frac{C(r)}{t}
$$

- In addition if $Z \subset V$ is closed and G-invariant then $F(t, Z) \subset Z$ and 2 in the real Kempf-Ness theorem implies:
- Theorem. Setting $L(t, K v)=K F\left(\frac{t}{1-t}, v\right) 0 \leq t<1$ then $\lim _{t \rightarrow 1} L(t, K v)$ converges uniformly on compacta and this yields a strict deformation retraction of Z / K to $\left(\operatorname{Crit}_{G}(V) \cap Z\right) / K$ for any G-invariant closed subset of V.
- Let $F(t, x)$ be the gradient flow corresponding to ϕ. Then we have shown using freshman calculus that for $t>0$ and $\|x\| \leq r$

$$
\phi(F(t, x)) \leq \frac{C(r)}{t}
$$

- In addition if $Z \subset V$ is closed and G-invariant then $F(t, Z) \subset Z$ and 2 in the real Kempf-Ness theorem implies:
- Theorem. Setting $L(t, K v)=K F\left(\frac{t}{1-t}, v\right) 0 \leq t<1$ then $\lim _{t \rightarrow 1} L(t, K v)$ converges uniformly on compacta and this yields a strict deformation retraction of Z / K to $\left(\operatorname{Crit}_{G}(V) \cap Z\right) / K$ for any G-invariant closed subset of V.
- The statement of the next result is simplified.
- Let $F(t, x)$ be the gradient flow corresponding to ϕ. Then we have shown using freshman calculus that for $t>0$ and $\|x\| \leq r$

$$
\phi(F(t, x)) \leq \frac{C(r)}{t}
$$

- In addition if $Z \subset V$ is closed and G-invariant then $F(t, Z) \subset Z$ and 2 in the real Kempf-Ness theorem implies:
- Theorem. Setting $L(t, K v)=K F\left(\frac{t}{1-t}, v\right) 0 \leq t<1$ then $\lim _{t \rightarrow 1} L(t, K v)$ converges uniformly on compacta and this yields a strict deformation retraction of Z / K to $\left(\operatorname{Crit}_{G}(V) \cap Z\right) / K$ for any G-invariant closed subset of V.
- The statement of the next result is simplified.
- Corollary. If Z is Zariski closed in V then the GIT quotient, $Z / / G$, of Z is a strict deformation retract of Z / K.
- Let $F(t, x)$ be the gradient flow corresponding to ϕ. Then we have shown using freshman calculus that for $t>0$ and $\|x\| \leq r$

$$
\phi(F(t, x)) \leq \frac{C(r)}{t}
$$

- In addition if $Z \subset V$ is closed and G-invariant then $F(t, Z) \subset Z$ and 2 in the real Kempf-Ness theorem implies:
- Theorem. Setting $L(t, K v)=K F\left(\frac{t}{1-t}, v\right) 0 \leq t<1$ then $\lim _{t \rightarrow 1} L(t, K v)$ converges uniformly on compacta and this yields a strict deformation retraction of Z / K to $\left(\operatorname{Crit}_{G}(V) \cap Z\right) / K$ for any G-invariant closed subset of V.
- The statement of the next result is simplified.
- Corollary. If Z is Zariski closed in V then the GIT quotient, $Z / / G$, of Z is a strict deformation retract of Z / K.
- This is a very useful result since if G is connected K is connected and this implies that $Z / / G$ has path lifting. In the complex case this is an important result of Kraft, Petrie and Randall.
- Let $F(t, x)$ be the gradient flow corresponding to ϕ. Then we have shown using freshman calculus that for $t>0$ and $\|x\| \leq r$

$$
\phi(F(t, x)) \leq \frac{C(r)}{t}
$$

- In addition if $Z \subset V$ is closed and G-invariant then $F(t, Z) \subset Z$ and 2 in the real Kempf-Ness theorem implies:
- Theorem. Setting $L(t, K v)=K F\left(\frac{t}{1-t}, v\right) 0 \leq t<1$ then $\lim _{t \rightarrow 1} L(t, K v)$ converges uniformly on compacta and this yields a strict deformation retraction of Z / K to $\left(\operatorname{Crit}_{G}(V) \cap Z\right) / K$ for any G-invariant closed subset of V.
- The statement of the next result is simplified.
- Corollary. If Z is Zariski closed in V then the GIT quotient, $Z / / G$, of Z is a strict deformation retract of Z / K.
- This is a very useful result since if G is connected K is connected and this implies that $Z / / G$ has path lifting. In the complex case this is an important result of Kraft, Petrie and Randall.
- We now consider the result implied by using the deep results of Lojasiewicz.
- The Lojasiewicz argument implies that if we set $L(t, v)=F\left(\frac{t}{1-t}, v\right)$ then $\lim _{t \rightarrow 1} H(t, v)$ converges uniformly on compacta.
- The Lojasiewicz argument implies that if we set $L(t, v)=F\left(\frac{t}{1-t}, v\right)$ then $\lim _{t \rightarrow 1} H(t, v)$ converges uniformly on compacta.
- Theorem. Let $Z \subset V$ be closed and G invariant then $L:[0,1] \times Z \rightarrow Z$ defines a strong, K-equivariant deformation retraction of Z onto $Z \cap \operatorname{Crit}_{G}(V)$.
- The Lojasiewicz argument implies that if we set $L(t, v)=F\left(\frac{t}{1-t}, v\right)$ then $\lim _{t \rightarrow 1} H(t, v)$ converges uniformly on compacta.
- Theorem. Let $Z \subset V$ be closed and G invariant then $L:[0,1] \times Z \rightarrow Z$ defines a strong, K-equivariant deformation retraction of Z onto $Z \cap C r i t_{G}(V)$.
- Over \mathbb{C} this result is due to Neeman.
- $\mathbb{C}^{n}=V \oplus i V$ so as a real vector space we write it as $V \oplus V=\mathbb{R}^{2 n}$. The real part of the standard Hermitian inner product on \mathbb{C}^{n} becomes the standard inner product on $\mathbb{R}^{2 n} . M_{n}(\mathbb{C})$ becomes the algebra of 2×2 block $n \times n$ matrices

$$
\left[\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right]
$$

Adjoint in $M_{n}(\mathbb{C})$ becomes transpose in $M_{2 n}(\mathbb{R})$.

- $\mathbb{C}^{n}=V \oplus i V$ so as a real vector space we write it as $V \oplus V=\mathbb{R}^{2 n}$. The real part of the standard Hermitian inner product on \mathbb{C}^{n} becomes the standard inner product on $\mathbb{R}^{2 n} . M_{n}(\mathbb{C})$ becomes the algebra of 2×2 block $n \times n$ matrices

$$
\left[\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right]
$$

Adjoint in $M_{n}(\mathbb{C})$ becomes transpose in $M_{2 n}(\mathbb{R})$.

- If $X \subset \mathbb{C}^{n}$ is Zariski closed and defined by f_{1}, \ldots, f_{k} in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ then it is defined by $\phi(x, y)=\sum\left|f_{j}(x+i y)\right|^{2}$ as a real variety.
- $\mathbb{C}^{n}=V \oplus i V$ so as a real vector space we write it as $V \oplus V=\mathbb{R}^{2 n}$. The real part of the standard Hermitian inner product on \mathbb{C}^{n} becomes the standard inner product on $\mathbb{R}^{2 n} . M_{n}(\mathbb{C})$ becomes the algebra of 2×2 block $n \times n$ matrices

$$
\left[\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right]
$$

Adjoint in $M_{n}(\mathbb{C})$ becomes transpose in $M_{2 n}(\mathbb{R})$.

- If $X \subset \mathbb{C}^{n}$ is Zariski closed and defined by f_{1}, \ldots, f_{k} in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ then it is defined by $\phi(x, y)=\sum\left|f_{j}(x+i y)\right|^{2}$ as a real variety.
- If $G \subset G L(n, \mathbb{C})$ is a Zariski closed subgroup invariant under adjoint then G as a subgroup of $G L(2 n, \mathbb{R})$ is invariant under transpose. Furthermore, if we define the critical set for the action of G on \mathbb{C}^{n} to be

$$
\left\{v \in \mathbb{C}^{n} \mid\langle X v, v\rangle=0, X \in \operatorname{Lie}(G)\right\}
$$

then this set is exactly $\operatorname{Crit}_{G}\left(\mathbb{R}^{2 n}\right)$.

- $\mathbb{C}^{n}=V \oplus i V$ so as a real vector space we write it as $V \oplus V=\mathbb{R}^{2 n}$. The real part of the standard Hermitian inner product on \mathbb{C}^{n} becomes the standard inner product on $\mathbb{R}^{2 n} . M_{n}(\mathbb{C})$ becomes the algebra of 2×2 block $n \times n$ matrices

$$
\left[\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right]
$$

Adjoint in $M_{n}(\mathbb{C})$ becomes transpose in $M_{2 n}(\mathbb{R})$.

- If $X \subset \mathbb{C}^{n}$ is Zariski closed and defined by f_{1}, \ldots, f_{k} in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ then it is defined by $\phi(x, y)=\sum\left|f_{j}(x+i y)\right|^{2}$ as a real variety.
- If $G \subset G L(n, \mathbb{C})$ is a Zariski closed subgroup invariant under adjoint then G as a subgroup of $G L(2 n, \mathbb{R})$ is invariant under transpose. Furthermore, if we define the critical set for the action of G on \mathbb{C}^{n} to be

$$
\left\{v \in \mathbb{C}^{n} \mid\langle X v, v\rangle=0, X \in \operatorname{Lie}(G)\right\}
$$

then this set is exactly $\operatorname{Crit}_{G}\left(\mathbb{R}^{2 n}\right)$.

- The original Kempf-Ness theorem is now a special case of the real Kempf-Ness theorem since Zariski closure of complex orbits is the same as the closure in the metric topology of $\mathbb{R}^{2 n}$
- The system in the abstract for my talk is just the case of $G L(n, \mathbb{C})$ acting on $M_{n}(\mathbb{C})$ by conjugation. Yielding the gradient system

$$
\dot{X}=-4\left[\left[X, X^{*}\right], X\right] .
$$

- The system in the abstract for my talk is just the case of $G L(n, \mathbb{C})$ acting on $M_{n}(\mathbb{C})$ by conjugation. Yielding the gradient system

$$
\dot{X}=-4\left[\left[X, X^{*}\right], X\right] .
$$

- Writing $F_{\infty}(X)=\lim _{t \rightarrow+\infty} F(t, X)$ then $F_{\infty}(X)$ is a normal operator with the same eigenvalues as X.
$g^{\prime} \subset M_{n}(\mathbb{C}), x \in \neq y$ $x^{*} \in G$. $\operatorname{tr} X Y^{*}=\left\langle_{1}\right\rangle$.
$\forall:$ of \rightarrow of antrounghib,
of ondenion >0.

$$
\begin{aligned}
& y=g^{\theta} \quad V=\{x \in g \mid \\
& \left.y=e^{2 \pi i / n} \quad \forall x=\varphi x\right\}
\end{aligned}
$$

$H=$ eounected sulequerp wherp to b.
$A R(H)$ a ts $m V$.

$$
\text { of } x, y \in \mathbb{V},\left[x, x_{1}^{x}\right] \in b
$$

or can ve chosen so that $\operatorname{crit}_{G}(\omega)=K \cdot \sigma$.

