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A gradient system

Let φ ∈ R[x1, ..., xn ] be a polynomial that is homogeneous of degree
m such that φ(x) ≥ 0 for all x ∈ Rn. We consider the gradient
system

dx
dt
= −∇φ(x)

Note that
〈∇φ(x), x〉 = mφ(x)

Denoting by F (t, x) the solution to the system near t = 0 with
F (0, x) = x . Then

d
dt
〈F (t, x),F (t, x)〉 = −2 〈∇φ(F (t, x)),F (t, x)〉

= −2mφ(F (t, x)) ≤ 0.
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This implies ‖F (t, x)‖ ≤ ‖x‖ where defined for t ≥ 0 and hence
F (t, x) is defined for all t ≥ 0.

The formula
〈∇φ(x), x〉 = mφ(x)

combined with the Schwarz inequality implies that

‖∇φ(x)‖ ‖x‖ ≥ mφ(x).

The Lojasiewicz gradient inequality implies the following
improvement. There exists 0 < ε ≤ 1

m−1 and C > 0 both depending
only on φ such that

‖∇φ(x)‖1+ε ‖x‖1−(m−1)ε ≥ Cφ(x).
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We take ε and C as above (but allow ε = 0 which is easy). If we
write F for F (t,X ) and H(t) = φ(F (t, x)) then we have

H ′(t) = −dφ(F )∇φ(F ) = −‖∇φ(F )‖2 .

If t ≥ 0 and ‖x‖ ≤ r

‖∇φ(F )‖1+ε r1−(m−1)ε ≥ ‖∇φ(F )‖1+ε ‖F‖1−(m−1)ε ≥ Cφ(x).

We will now run through what has come to be called “the Lojasiewicz
argument”which I learned from a beautiful exposition of Neeman’s
theorem by Gerry Schwarz.
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‖∇φ(F )‖1+ε ≥ C
r1−3ε

φ(F ).

‖∇φ(F )‖2 ≥
(

C
r1−3ε

) 2
1+ε

φ(F )
2
1+ε .

|H ′(t)| ≥ 1
2

(
C
r1−3ε

) 2
1+ε

φ(F )
2
1+ε = C1(r)H(t)

2
1+ε .

Since H ′(t) ≤ 0 for t ≥ 0 we have −H ′(t) ≥ C1(r)H(t)
2
1+ε .

Assuming H(t) > 0 we have

d
dt
H(t)−

1−ε
1+ε = −1− ε

1+ ε

H ′(t)

H(t)
2
1+ε

≥ C1(r)
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H(t)−
1−ε
1+ε ≥ C1(r)t.

H(t) ≤ C2(r)t−
(1+ε)
1−ε ≤ C2(r)t−(1+ε),

This is true if H(t) = 0 so the formula is valid for all t > 0.

This is the first half of the calculus part of the Lojasiewicz argument.
The first implication needs only the easy case ε = 0. If ‖x‖ ≤ r then

φ(F (t, x)) ≤ C (r)
t

so limt→+∞ φ(F (t, x)) = 0 uniformly for x in compacta. We now do
the rest of the Lojasiewicz argument which uses the existence of
ε > 0.
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Let f (t) = t1+δ with 0 < δ < ε then for t > 0

0 < H(t)f ′(t) ≤ C2(r)(1+ δ)t−1−(ε−δ).

H(s)f (s)−H(t)f (t) =
∫ s

t

d
du
(H(u)f (u))du =∫ s

t
H(u)f ′(u)du +

∫ s

t
H ′(u)f (u)du.

−
∫ s

t
H ′(u)f (u)du =

∫ s

t
H(u)f ′(u)du +H(t)f (t)−H(s)f (s).

0 ≤ H(s)f (s) ≤ C2(r)s−(1+ε)s1+δ = C2(r)s−(ε−δ).

lim
s→+∞

∫ s

t

∣∣H ′(u)∣∣ f (u)du = ∫ ∞

t
H(u)f ′(u)du +H(t)f (t).
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Thus
√
|H ′(u)| f (u) is in L2([t,+∞)) for all t > 0 and so√
|H ′(u)| =

√
|H ′(u)| f (u)u−

(1+δ)
2 ∈ L1([t,+∞)).

Theorem. If t > 0 then∫ +∞

t

∥∥∥∥ dduF (u, x)
∥∥∥∥ du

converges uniformly for ‖x‖ ≤ r .∫ ∞

t

d
du
F (u, x)du

converges absolutely and uniformly for ‖x‖ ≤ r .
Noting that if s > t then∫ s

t

d
du
F (u, x)du = F (s, x)− F (t, x)

we have for t > 0

lim
s→∞

F (s, x) =
∫ ∞

t

d
du
F (u, x)du + F (t, x).
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Finally, set L(t, x) = F ( t
1−t , x) and define L(1, x) by the limit above

then L : [0, 1]×Rn → Rn is continuous and since

∇φ(x) = 0⇐⇒ φ(x) = 0

we have

Theorem. L : [0, 1]×Rn → Rn defines a strong deformation
retraction of Rn onto Y = {x ∈ Rn |φ(x) = 0}.
Corollary. If Z ⊂ Rn is closed and such that F (t, z) ∈ Z for t ≥ 0
and z ∈ Z then H : [0, 1]× Z → Z defines a strong deformation
retraction of Z onto Z ∩ Y .
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Kempf-Ness over the reals

Let G be an open subgroup of a Zariski closed subgroup of GL(n,R)
that is closed under real adjoint relative to the standard inner
product,〈..., ...〉, g → g ∗. Let K = G ∩O(n). Then K is a maximal
compact subgroup of G . On g = Lie(G ) we put the inner product
〈X ,Y 〉 = tr(XY ∗), Set p =Lie(K )⊥ relative to this inner product.

We say that an element v ∈ Rn is G -critical if for any X ∈ Lie(G ),
〈Xv , v〉 = 0. The following is an extension of the Kempf-Ness
Theorem first observed by Richardson and Slodoway.

Theorem. Let G ,K be as above. Let v ∈ Rn.

1 If v is critical if and only if ‖gv‖ ≥ ‖v‖for all g ∈ G .
2 If v is critical and if w ∈ Gv is such that ‖v‖ = ‖w‖then w ∈ Kv .
3 If Gv is closed then there exists a critical element in Gv .
4 If v is critical then Gv is closed.
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We set V = Rn as a G—module and CritG (V ) equal to the set of all
critical vectors. If X1, ...,Xr is an orthonormal basis of p then

φ(v) = ∑ 〈Xjv , v〉2

is non-negative homogeneous polynomial of degree 4 defining
CritG (V ).

We consider Rn as n× 1 columns and thus if v ∈ V then v ∗ is v as a
row vector. So for v ,w ∈ V , vw ∗ is an n× n matrix and

〈Xv ,w〉 = trXvw ∗.

Let Pg be the orthogonal projection of Mn(R) onto g then

∇φ(v) = 4Pg(vv ∗)v ∈ Tv (Gv).

Also note that ∇φ(kv) = k∇φ(v) for k ∈ K .
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Let F (t, x) be the gradient flow corresponding to φ. Then we have
shown using freshman calculus that for t > 0 and ‖x‖ ≤ r

φ(F (t, x)) ≤ C (r)
t
.

In addition if Z ⊂ V is closed and G—invariant then F (t,Z ) ⊂ Z and
2 in the real Kempf-Ness theorem implies:
Theorem. Setting L(t,Kv) = KF ( t

1−t , v) 0 ≤ t < 1 then
limt→1 L(t,Kv) converges uniformly on compacta and this yields a
strict deformation retraction of Z/K to (CritG (V ) ∩ Z ) /K for any
G—invariant closed subset of V .
The statement of the next result is simplified.
Corollary. If Z is Zariski closed in V then the GIT quotient, Z//G ,
of Z is a strict deformation retract of Z/K .
This is a very useful result since if G is connected K is connected and
this implies that Z//G has path lifting. In the complex case this is
an important result of Kraft, Petrie and Randall.
We now consider the result implied by using the deep results of
Lojasiewicz.
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The Lojasiewicz argument implies that if we set L(t, v) = F ( t
1−t , v)

then limt→1 H(t, v) converges uniformly on compacta.

Theorem. Let Z ⊂ V be closed and G invariant then
L : [0, 1]× Z → Z defines a strong, K—equivariant deformation
retraction of Z onto Z ∩ CritG (V ).
Over C this result is due to Neeman.
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Cn = V ⊕ iV so as a real vector space we write it as V ⊕ V = R2n.
The real part of the standard Hermitian inner product on Cn becomes
the standard inner product on R2n. Mn(C) becomes the algebra of
2× 2 block n× n matrices [

X −Y
Y X

]
.

Adjoint in Mn(C) becomes transpose in M2n(R).

If X ⊂ Cn is Zariski closed and defined by f1, ..., fk in C[x1, ..., xn ]
then it is defined by φ(x , y) = ∑ |fj (x + iy)|2 as a real variety.
If G ⊂ GL(n,C) is a Zariski closed subgroup invariant under adjoint
then G as a subgroup of GL(2n,R) is invariant under transpose.
Furthermore, if we define the critical set for the action of G on Cn to
be

{v ∈ Cn | 〈Xv , v〉 = 0,X ∈ Lie(G )}
then this set is exactly CritG (R2n).
The original Kempf-Ness theorem is now a special case of the real
Kempf-Ness theorem since Zariski closure of complex orbits is the
same as the closure in the metric topology of R2n.
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The system in the abstract for my talk is just the case of GL(n,C)
acting on Mn(C) by conjugation. Yielding the gradient system

Ẋ = −4[[X ,X ∗],X ].

Writing F∞(X ) = limt→+∞ F (t,X ) then F∞(X ) is a normal operator
with the same eigenvalues as X .
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