p. 2. Delete the last sentence of exercise 5 .
p. 3 line 3 replace $U_{p, \varepsilon}$ with $U_{p_{1}, \varepsilon_{1}} \cap U_{p_{1}, \varepsilon_{1}} \cap \cdots \cap U_{p_{1}, \varepsilon_{1}}$ with $p_{1}, \ldots, p_{r} \in \mathcal{S}$ and $\varepsilon_{i}>0$
p. 8 In the statement of Theorem 38, Separable should be interpreted as Hausdorff.
p. 15 replace the statement and proof of Lemma 49 with

Lemma $49 p$ is a continuous seminorm on V if and only if there exists a constant A and elements $p_{1}, \ldots, p_{r} \in S$ such that

$$
p(v) \leq A \sum p_{i}(v), v \in V
$$

Proof. Let $U=\{v \in V \mid p(v)<1\}$. Then since p is continuous there exist $p_{1}, \ldots, p_{r} \in \mathcal{S}$ and $\varepsilon_{i}>0,=1, \ldots, r$ such that

$$
U_{p_{1}, \varepsilon_{1}} \cap U_{p_{1}, \varepsilon_{1}} \cap \cdots \cap U_{p_{1}, \varepsilon_{1}} \subset U
$$

Let $0<\delta<\min \left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$. Let $v \in V$ and assume that $T=\left\{i \mid p_{i}(v) \neq 0\right\} \neq \emptyset$. Let $b=\max \left\{p_{i}(v) \mid i \in T\right\}$. Then if $i \in T$ then

$$
p_{i}\left(\frac{\delta}{b} v\right) \leq \delta<\varepsilon
$$

If $i \notin T$ then $p_{i}(v)=0$ so the above inequality is true for all i. If $T=\emptyset$ then $z v \in U_{p_{1}, \varepsilon_{1}} \cap U_{p_{1}, \varepsilon_{1}} \cap \cdots \cap U_{p_{1}, \varepsilon_{1}}$ for all $z \in \mathbb{C}$ and thus

$$
p(z v)<1
$$

for all $z \in \mathbb{C}$ and this implies that $p(v)=0$. This implies that for all $v \in V$,

$$
p(v) \leq \frac{1}{\delta} \max \left\{p_{i}(v)\right\} \leq \frac{1}{\delta} \sum p_{i}(v)
$$

The converse is obvious.
Replace Definition 51 with:
Definition 51. Let V and W be locally convex spaces as above. Then the strong operator topology on $L(V, W)$ has as a basis of open neighborhoods of 0 the sets $N(A, B)=\{T \in L(V, W) \mid T A \subset B\}$ where B is an open absorbing neighborhood of 0 in W and and A is a bounded subset of V.

Here a set A is bounded if for each open neighborhood of $0, Z$ there exists $r>0$ so that $r A \subset Z$.This topology is the weakest topology on $L(V, W)$ such that the map

$$
L(V, W) \times V \rightarrow W
$$

given by

$$
T, v \longmapsto T v
$$

is continuous in the product topology.
p. 18 In the statement of Lemma 64 there should have also been the statement: Given λ the set $\left\{i \mid \lambda_{i}=\lambda\right\}$ is finite.

In the proof of Lemma 58 we reduce to the case when $T=T^{*}$ tacitly assuming that if T is compact then so is T^{*}. This is true but not completely trivial. A standard proof uses the polar decomposition. We will describe a simple path to this result in our context (the polar decomposition is true for all bounded operators but we will only prove it here for compact operators). A partial isometry of H is a bounded operator $U: H \rightarrow H$ such that if $V=\operatorname{ker} U^{\perp}$ with $U_{\mid V}$ an isometry onto its image. That is, $\langle U v, U w\rangle=\langle v, w\rangle, v, w \in V$. If T is a compact operator then we define $|T|$ as follows $|T|_{\mid \operatorname{ker} T}=0$ and if v_{i}, λ_{i} are as in Lemma 64 for the compact operator $T^{*} T$ then $|T| v_{i}=\sqrt{\lambda_{i}} v_{i}$. (Notice that $\lambda_{i}>0$.) Define U by $U_{\mid \operatorname{ker} T}=0$ and $U v_{i}=\frac{1}{\sqrt{\lambda_{i}} T v_{i} \text {. Then }\left\langle U v_{i}, U v_{j}\right\rangle=}$ $\frac{1}{\sqrt{\lambda_{i} \lambda_{j}}}\left\langle T v_{i}, T v_{j}\right\rangle=\frac{1}{\sqrt{\lambda_{i} \lambda_{j}}}\left\langle T^{*} T v_{i}, v_{j}\right\rangle=\frac{\lambda_{i}}{\sqrt{\lambda_{i} \lambda_{j}}}\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}$. Thus U is a partial isometry and $T=U|T|$. The condition $\lim _{n \rightarrow \infty} \lambda_{i}=0$ and the finiteness assertion on the eigenspaces implies that $|T|$ is compact. But then $T^{*}=|T| U^{*}$ which is also compact.

