## Errata <br> Geometric Invariant Theory

over the real and complex numbers
p. 63 line -8 replace is non-trivial with $\mathcal{O}(V)^{G} \neq \mathbb{C} 1$.
p. 88 line 9 replace $\mathfrak{a}$ with $V$.
p. 97 line 6 delete the $\frac{1}{2}$ in Lemma 3.792.
p. 98 line 9 the right hand side of the equation should say

$$
|W| \sum_{k=1}^{n}\left(\frac{1}{d_{k}}+\frac{d_{k}-1}{2 d_{k}}(1-q)+o(1-q)\right) \prod_{j \neq k} \frac{1-q}{1-q^{d_{j}}}
$$

p. 104-105 Replace Proposition 3.86 with

Lemma 3.86. ( $H, V$ ) be a Vinberg pair with Cartan subspace $\mathfrak{a}$. Then

$$
\operatorname{dim} H+\operatorname{dim} \mathfrak{a} \geq \operatorname{dim} V
$$

If the pair is regular then $\mathfrak{n}=0$ and the inequality is equality.
Proof. We have seen that $H(\mathfrak{a}+\mathfrak{n})$ has non-empty Zariski interior in $V$. Also if

$$
U=\left[C_{G}(\mathfrak{a}), C_{G}(\mathfrak{a})\right], \mathfrak{u}=\operatorname{Lie}(U), M=A d_{\mathfrak{u}}(U)_{\mid \mathfrak{u} \cap V}^{\theta}
$$

then

$$
(M, \mathfrak{u} \cap V)
$$

is a Vinberg pair. We note that $\mathfrak{u} \cap V=\mathfrak{n}$. Thus every element is nilpotent. This implies that $\mathfrak{n}$ consists of a finite number of nilpotent orbits. Hence one of them, $M x$, must be open in $\mathfrak{n}$. This implies that

$$
\operatorname{dim} V=\operatorname{dim} H-\operatorname{dim} C_{G}(\mathfrak{a})_{x}^{\theta}+\operatorname{dim} \mathfrak{a}
$$

If the pair is regular then have $C_{G}(\mathfrak{a})$ has a maximal torus in its centralizer. Since it is reductive and there can't be simi-simple elements in $\operatorname{Lie}\left(C_{G}(\mathfrak{a}), C_{G}(\mathfrak{a})\right)$. We see that $\operatorname{Lie}\left(C_{G}(\mathfrak{a}), C_{G}(\mathfrak{a})\right)=0$. Thus $C_{G}(\mathfrak{a})^{o}=T_{\mathfrak{a}}$. Hence $\operatorname{dim} C_{G}(\mathfrak{a})^{\theta}=0$.
p. 111 line 13 replace $e^{\frac{2 \pi i}{3} a d_{2}}$ with $e^{\frac{2 \pi i}{3} a d H_{2}}$
at the end of theorem 3.100 the 8 should be replaced with 12 .
p. 117 line -3 the sum should be over $k$
line -1 delete the sum in the left side of the equation and the subscript of $h$ in the determinant on the right hand side shoul be a $j$. That is the last line should read

$$
\operatorname{det} \frac{\partial g_{k}}{\partial x_{j}} \operatorname{det} \frac{\partial h_{j}}{\partial t_{k}}\left(x_{i}, g_{1}, \ldots, g_{n}\right)=(-1)^{n} \prod_{i=1}^{n} \frac{\partial h_{i}}{\partial t_{0}}\left(x_{i}, g_{1}, \ldots, g_{n}\right)
$$

