1 Abstract representation theory

1.1 Basic functional analysis
1.1.1 Locally convex topological spaces

There are many texts on this subject. Two useful references are

Yoshida,K, Functional Analysis, Springer-Verlag, New York, 1974.

Treves, F, Topological Vector Spaces, Distributions and Kernels, Academic
Press, New York,1967.

Let V' be a vector space over FF' =R or C. Then a subset U of V is said to
be convez if whenever x,y € U, (1—t)z+ty € U for all 0 < ¢ < 1. U is said to
be balanced if whenever x € U, zz € U for all |z| < 1. U is said to be absorbing
if whenever z € V' there exists z € F' with z # 0 so that zz € U.

Example 1 V = R" and U = {(z1,...,2,)|> 27 < 1}. Then U is con-
vex,balanced and absorbing.

Example 2 V the space of all continuous F valued functions on R and U =
{fIf(x) =0 if |x| > r}. Then U is convex,balanced but not absorbing.

If U is convex, balanced and absorbing then we define
pu(v) = inf{t > 0]t ‘v € U}.
Notice py(v) is defined for all v since U is absorbing. Also py(0) = 0.. The

function py is called the Minkowski gauge associated with U.

Lemma 3 Let p =py. Then p satisfies
1. p(v) >0 for allv e V.
2. plv+w) < p(v) + p(w) for allv,w € V.
3. p(zv) = |z|p(v) for all z € F andv € V.

Proof. 1. is clear. If z =0 or v = 0 then p(zv) = p(0) = 0 = |z|p(v). So
assume that z % 0. Then since U is balanced the set
{t>0/t 2o e Uy ={t >0t zlv e U}
=|2|{t > 0|t 'v € U}.
Now taking the infema of both sides of the equation proves 3. We now prove
2. Let p(v) = s, and p(w) = t,. Let € > 0 be arbitrary and let s, ¢ be such that

S0 <8< Sg+¢e,to <t <t,+eand s tu,t7lw € U. Then if 0 < u < 1 the
convexity of U implies

(1—u)s o +ut tweU.
Choose u such that ut=! = (1 — u)s~ ! that is u(t~* +s71) = s71. (Note that
this is consistent with 0 < «w < 1.) This implies that
1

tl=01-u)s'= :
u (1—-u)s s




Thus

t+8(v+w)eU.

This implies that p(v +w) < ¢t + s. Now take the limit as ¢ — 0. =

Definition 4 A function, p, from V to R satisfying 1.,2.,3. in the previous
lemma is called a semi-norm on V. If in addition it satisfies the condition
p(v) =0 implies v =0 then p is said to be a norm.

Exercise 5 If p is a semi-norm on V then the sets {v € Vip(v) < 1}, {v €
Vip(v) < 1} are convez, balanced and absorbing. Further, U is a subset of the
latter set.

Definition 6 V is said to be a topological vector space if it is a topological space
such that the operations

VxVi—Veyr—z+y FXV > V,r+— 2z,
are continuous.

Definition 7 We say that V is a locally convex topological vector space if V
s a topological vector space that has a basis of neighborhoods of 0 consisting of
open, convezx, balanced sets.

Example 8 V = F"™ with the usual topology and the neighborhood basis consists
of the open balls centered at 0.

Example 9 More generally if p is a norm on V a vector space over F then
d(v,w) = p(v — w) defines a metric on V. V is a locally convezx, topological
vector space with respect to the metric topology. If V is in addition metrically
complete then V 1is said to be a Banach space.

Example 10 In this ezample F' = C. Let (...,...) be a Hermitian inner product
on V' (that is the function v,w — (v,w) is bilinear over R, linear in the first
variable over C and (w,v) is the complex conjugate of (v, w) and further, (v, v)

is a strictly positive real number if v # 0. If this is so we define ||v|| = (v, v)2.
The Schwarz inequality,

| (v, w) [ < ol flw],
implies the triangle inequality
[v 4wl < [lvf| + [|wl].

Thus v — ||v|| defines a norm on V. The pair (V,(...,...)) is called a pre-
Hilbert space. If V is a Banach space with respect to the norm v — ||v|| then
it is called o Hilbert space.



Example 11 Let S be a set of semi-norms on V' such that if v € V then there
exists p € S such that p(v) > 0. Set U, . = {v € Vip(v) <€} forpe S and
e > 0. Then if we take the sets Up. as a basis of neighborhoods of O in V then
this endows V' with the structure of a locally convex topological vector space.

Lemma 12 FEvery structure of a locally convex vector space on V is obtained
in this manner.

Proof. Let U be a neighborhood basis for 0 in V' consisting of open, convex,
balanced, absorbing sets. If U € U let py be the corresponding Minkowski
gauge. Then we have

U={veVpy) <1}

Indeed, since U is convex if v € U and 0 < ¢ < 1 then t1v+ (1 -1)0 € U. If
v € U then py(v) =t and ¢t < 1. The set {s > 0|]s~ v € U} is open in R. Thus
t<1l m

Lemma 13 Let V and W be locally convex topological spaces. Let T : V —
W be a linear mapping. Then T is continuous on V if and only if for each
continuous semi-norm, q, on W the map v — q(T(v)) defines a continuous
seminorm on V.

Proof. The sufficiency is clear. Since T is linear it is enough to prove that
if the condition is satisfied then T is continuous at 0. But the condition implies
that for each ¢ a semi-norm on W and each ¢ > 0 the set T~'({w € W]q(w) <
€}) is an open neighborhood of 0. m

Example 14 Let X be a locally compact (Hausdorff) topological vector space.
Let C(X, F) denote the space of all continuous functions on X with values in
F. If K is a compact subset of X then to K we assign the semi-norm, px,
defined by pr (f) = maxiek |f(k)|. The corresponding topology on V is called
the topology of uniform convergence on compacta. Note that if X is compact
we need only use the norm px.

If V is a locally convex, topological vector space then a sequence {v;} in V
is said to be Cauchy if for each continuous semi-norm p on V and each € > 0
there exists N such that if 7,5 > N then p(v; — v;) < €. We say that V is
sequentially complete if every Cauchy sequence in V' converges. A sequentially
complete topological vector space is said to be a Fréchet space if the topology
is given by a countable set of semi-norms as in Example 11.

Lemma 15 If V is a locally, convex, topological space with a countable basis of
neighborhoods of 0 the V' is metrizable. Or equivalently if the topology on V is
given as in example 11 with the set S countable then V' is metrizable.



Proof. We will prove the equivalent second statement (see Lemma 12). Let
S ={p;}j<n with N < co. Consider

pi(v—w)
ZQJ (1+pj(v—w))

Since each term in the above series is at most equal to 277 the series converges
uniformly as a series of functions on V' x V. If d(v,w) = 0 then all of the terms
in the series are 0. Thus v = w. That d is a metric follows from the following
exercise. That it gives the topology on V follows from the observation that

hm pk(vj - U) =0

j—o0
for all K =1,2,... if and only if

lim d(vj,v) = 0.

Jj—00

Exercise 16 Assume that p(v+w) < p(v)+p(w) for all v,w € V and p(v) > 0
for allv € V. Define q(v) = % Then q(v4+w) < q(v)+q(w) for allv,w € V.
(Hint: Write out q(v) + q(w) — q(v + w). Put the expression over the obvious

common denominator

(14 p)(A +p(w))(1 +p(v +w))
and see that the numerator is non-negative.)

Example 17 If X, as in example 13, has a countable basis for its topology
then C(X; F) endowed with the topology of uniform convergence on compacta
is a Fréchet space. To see this we mote that there exists a countable collection
{K;} of compact subsets having the property that if x € X and if U is open in
X then there exists j such that x € interior(K;) C K; C U. Let pj; = pk,.
Then these seminorms define the topology on C(X,F). We need only show the
completeness.  This follows from the fact that a uniform limit of continuous
functions is continuous.

We will need just one more general notion. Let V' be a vector space over
F and let I be a partially ordered set. We assume that for each o € I we have
V., C V a subspace that is endowed with a locally convex topology such that

o If a < 8 then V,, C V3 and the subspace topology on V, is the same as
the given topology.

® U(XEI Voa=V.



If these conditions are satisfied then we define a locally convex topology on
V' as follows we take a neighborhood basis for 0 consisting of the subsets U of
V that are convex hulls of subsets of the form Uae] U, where U, is an open,
convex, balanced neighborhood of 0 in V,. V with this topology is called the
(strict) direct limit of {V,}aer. We write

V =1limV,.

Exercise 18 Show that the sets U in the definition of direct limit are con-

vex,balanced and absorbing and that these sets do form a basis for neighborhoods
of 0.

Exercise 19 Show that if
V =1limV,

then a linear map of V to F is continuous if and only if its restriction to each
V., is continuous.

Example 20 X a locally compact topological space. If f € C(X; F) then define
the support of f to be the closure of the set {x € X|f(x) # 0}. Let C.(X; F) be
the space of those elements of compact support. If K is a compact subset of X
then we use the notation Ci(X; F) for the continuous functions with support
contained in K. Then each Cx(X;F) is a Banach space relative to the norm
pr. We give C.(X; F) the direct limit topology (here the compact subsets are
ordered by inclusion).

Lemma 21 Let {f;} be a sequence in Co(X; F) thenlim;_.o fj = fo in Co(X; F)
if and only if there exists an N and a compact subset K of X such that if j > N
then the support of f; is contained in K and lim;_, f; = f, uniformly on K.

Proof. The sufficiency is clear. Replacing f; by f; — f, we may assume
that f, = 0. We assume that there is no such K. Then there is a subsequence
{f;;}, an increasing sequence of compact subsets K; and a sequence of points
x; in X such that x; € K; — Kj—1 (Ko = 0), fj,(z;) # 0 and the sequence is not
contained in any compact subset of X. We define the semi-norm

- |f ()]
=2 su —_—
p(f) lzzlmeKz—I;(zfl |sz (.’L‘l)|
(Notice that this is a finite sum.) Then the set U = {f € C.(X; F)|p(f) < 1}
is an open neighborhood of 0 in C.(X; F') but f;, ¢ U for any [. This proves
the lemma. =
Now assume that X = X7 x X5 with X;, X5 locally compact spaces and
assume that X has been endowed with the product topology. If f € C.(X; F)
then define for x € Xi, f(x,-) to be the function y — f(x,y). We will need
the following result in the next section.



Lemma 22 The function x — f(x,-) is a continuous map from X into

Exercise 23 Give a proof of this lemma. (Hint: Use the fact that a continuous
function on a compact set is uniformly continuous.)

1.1.2 Measures

Let V be a topological vector space over F'. Then we use the notation, V*, for
the usual (algebraic) dual space of V. A € V* will be called a functional. We
use the notation V' for the subspace of continuous elements of V*.

If X is a locally compact topological space and if we endow V = C.(X;C)
with the locally convex topology given in Example 20 in the previous section
then an element, u, of V' is called a complex (Radon) measure. If p # 0 and if
w1(f) is real and non-negative for each f such that f(x) is real and non-negative
for all x € X then p is called a measure.

The simplest examples of measures are given as follows: Let x € X then
define 6, (f) = f(z). Then 6, is continuous on each of the subspaces Ck (X; F)
for K a compact subset of X and thus it defines a continuous functional on
C.(X; F). Hence 6, is a measure on X called the Dirac delta function supported
at x.

Lemma 24 Let 1 be a measure on the locally compact space X. If f € C.(X)
then

()] < u(lf1)-

|f(z)]. The result follows from |f(z)| £+ f(x) > 0 for all f.
0. Hence, u(|f]) = £p(f)-

Example 25 Let X =R and define

Here [f](x) =
Thus pu(|f] £ f) >

wh= [ s

If the support of f is contained in the interval [a,b] (a < b and both finite)

%) b
MMS/ WMM=/UWW§

— o0

b— .
(b= a) max |f(z)]
The last formula defines a continuous semi-norm on C.(R,C). Thus p is a
measure on R. The usual Lebesgue measure.

Example 26 Let X and Y separable, locally compact topological spaces (i.e.
they both have countable bases for their topologies). Let Z = X x'Y with the
product topology. Let p and v be respectively measures on X and Y. We have



seen that if f € C.(Z;C) then the map x — f(x,-) is a continuous from Xy to
C.(X5; C). This implies that © — v(f(z,-)) is a continuous function on X;.
It is not hard to see that this function has compact support. Thus we can define

(wxv)(f) =z — v(f(z,-)))-
Exercise 27 Show that u X v defines a measure on Z.

Example 28 Let X be a locally compact topological space and let' Y be an open
subspace of X. We may thus look upon C.(Y;C) as a topological subspace of
Co(X;C). If pis a complex measure on X then we define By = e, (vs0)-

Obviously the above method of construction of measures on product spaces
extends to a product of arbitrary finite number of spaces. Thus we have the
usual Lebesgue measure on R™. Obviously, this is not a good definition of
Lebesgue measure since it seems to only allow integration of continuous func-
tions of compact support. However, we will assume that the reader is aware
of the actual Lebesgue integral and understands why it is determined by the
corresponding functional.

If G is a topological group and if X is topological space then an action of G
on X is a continuous mapping

F:GxX—-X
with the following properties

o F(l,z) =z forall x € X.
o F(g,F(h,z)) = F(gh,z) forall g,h € G,z € X.

Notice that the two conditions imply that the maps  — F'(g, x) are home-
omorphisms. We will denote this map by Fy(z) or more simply as g-x (or even
gx). If fis a function on X then we will use the notation Ly(f) = fo F,-1.

Example 29 X =G. F(g,z) = gx. The second property is just the associative
law. This action is called the left regular action. There is also the right regular
action given by F(g,r) = zg~".

Example 30 X = R" and G is a closed subgroup of GL(n,R) and F(g,x) =
gx. That is the usual identification of a matrix with a linear map.

Definition 31 Let X be a separable, locally compact space and let G be a sep-
arable locally compact group acting on X. Let u be a non-zero complexr measure
on X. Then p is said to be semi-invariant if for each g € G there is a scalar ¢(g)
such that (L, f) = c(g)p(f) for all f € Co(X,C). It will be called invariant if
c(g) = 1.

Exercise 32 Show that, in the above context, c(gh) = c(g)c(h) for g,h € G.



Lemma 33 Let G, X be as in the previous definition. If f € C.(X;C) then the
map G — C.(X;C) given by g — Ly f is continuous.

This proved by observing that local compactness implies that if a € G then
there is an open neighborhood of a, U, such that the closure, U, of U is compact.
There is thus a compact subset of X, K’, such that the support of all of the
functions Lyf, b € U is contained in K . Now use uniform continuity.

Lemma 34 Let the notation be as in Definition 31. Then the function c is
continuous on G.

This follows by observing that g — u(L, f) is continuous and that if u(f) #
0 then c¢(g) = —9—“&‘)0{).

Exercise 35 Show that if G or X is compact then c(g) =1 for all g € G.

Example 36 Let the notation be as in Example 30. If u is Lebesgue measure
on R™ then the change of variables theorem implies that it is semi-invariant
under the action of GL(n,R) and c¢(g) = | det(g)|.

Example 37 In this example GL(n,R) acts on the n x n matrices, M, (R),
by left multiplication. 2We use the matriz entries as coordinates and thereby
identify M, (R) with R™ . We take p to be Lebesgue measure. In this cas c¢(g) =
| det(g)[".

Although we will be mainly concerned with real groups in these lectures we
will include a few related remarks for other fields. Let F' be a field. Then an
absolute value on F' is a function, x — |x| with values in the non-negative real
numbers and satisfying.

o |z| >0if z #0.
o |xy| = [zly|.
o [z +y| <|z|+]y

The last property of a norm allows us to define a metric on F' by d(z,y) =
|z —y|. We will say that F is a local field if the metric is non-trivial (i.e. |x| # 1
for some x € F — {0}) and if we endow F with the topology induced by the
metric then the set U = {a € F||z| < 1} is compact. In Weil, A., Basic Number
Theory,Second Edition, Springer, 1973 it is shown that these fields coincide (up
to topological isomorphism) with the locally compact, non-discrete fields. Two
absolute values are equivalent if they have the same sets U. In Weil’s book it is
shown there are two types up to equivalence which we will now describe. ( The
proof of this theorem by Weil uses some of the ideas below. However, we will
just fix our attention on these examples and not worry about proving that they
are the only ones.)



1. F isomorphic with R or C and |...| is the usual absolute value.
2. F is non-Archimedian. That is to say |z + y| < max{|z|, |y|} for z,y € F
and the set {log|z||z € F*} is a discrete subset of R.

In case 1. we fix Lebesgue measure on R and we identify C with R? and use
Lebesgue measure. We will denote this measure by u(f) = [ f(x)dz in both
cases. We note that both measures are semi-invariant relative to the action of
GL(1,F) = F* = F — {0}. In the case of R, ¢(z) = |z| in the case of C,
c(z) = |z

In case 2. we need the following theorem of Haar.

Theorem 38 Let G be a locally compact, separable, topological group then there
exists, up to positive scalar a unique measure p on G invariant under the left
reqular action.

With this in hand we can handle case 2. Let p be a choice of left invariant
measure on F thought of as a topological group under addition. Then this
measure (or at least a positive multiple of it) will be denoted

u(h) = [ fa)d.

We note that if a € F* and we recall L, f(x) = f(a~'x) and (so as not to confuse
the two group actions) we set t, f(x) = f(x +y). Then by definition u(t, f) =
w(f). We note that L,(t, f)(z) = t,f(a " z) = fla™ 'z +y) = toy(Laf)(2).
Thus if we set p,(f) = p(Lqf) then

Ma(tyf) = N(tay(Laf)) = p(Laf) = pa(f)-

Thus g, is translation invariant so Haar’s theorem implies that there is a real
valued function that takes positive values on F'*such that p, = c(a)u.

Lemma 39 In case 2. there is a positive real number, r, such that c(a) = |a|".

Proof. Let v(z) = —log|z| for x € F*. The subgroup v(F*) is discrete in
additive group R. It is therefore infinite cyclic (since it is not just {0}). Let &
be a positive generator of this group. Fix m € F such that v(7) = £. We note
that v(m) = e~¢ < 1. The condition 2. above implies that R = {z € F||z| < 1}
is a subring of F'. This ring is compact and since the value set of |...| is discrete
we see that R is open. Also the set p = {z € F||z| < 1} is an ideal in R. Also
observe that m € p. We note that if x € F* then |z| = |7|™ for some integer n.
Thus if z € p, n > 1 thus |7~ x| < 1. Hence 7'z € R. We have shown

1. p=mR.

2. f U = {x € F||z| = 1} then U is a compact open subgroup of F* and
furthermore F* = U{x"|n € Z}.

Finally, we are ready to prove the Lemma. Since U is a compact group and
¢ is continuous and takes positive values we see that c¢(u) = 1 for all u € U.
Now ¢(n™) = ¢(m)™. We observe that we ¢(m) < 1. Indeed, if not then we have

lim ¢(7™) is either 1 or oco.

n—oo



So if f has support in K then L.~ (f) has support in 7" K. As lim,,_,.c 7" =0
this would imply that 0 =lim, . .opu(L.n f) = lim, o c(m™)u(f) for all f €
C.(F;C). But then g = 0 which is a contradiction. Hence ¢(7) < 1. So if
c(r) = e7"¢ = |7|" then r > 0. We have if x € F* then x = 7"u with u € U.
Hence c¢(x) = e(n"u) = ¢(n™) = c¢(m)” = |x|™ = |z|". ®

We will replace |z| for a local field with ¢(z). Thus in the case of C it is
not an absolute value. We will call it a norm in all cases. Notice that in the
non-Archimedian case it is still an absolute value.

We now consider the action of GL(n, F') on F" by the usual action of matrices
on vectors. On F"™ will use the product of the translation invariant measure on
F discussed above. We denote this measure by u. We will write

u(f)= [ fla)de
Fn
Lemma 40 If F is a local field and g € GL(n, F) then

flga)de = |det(g)| ™" | f(x)da.
Fn Fr

Proof. We observe that GL(n, F) is generated by elementary matrices.
That is matrices of the form

1

(with zeros off of the main diagonal, a nonzero a in the i-th diagonal position, all
the rest of the diagonal entries 1) and T;;(y) which is the linear transformation
of F™ such that if T;;(y)x = z then 2z, = x}, for k # j and z; = x; + yx;. The
translation invariance of the measure and the previous lemma imply

[@(y)x)de = | f(z)dx
Fr Fr
and
F(Di(@a)de = || [ f(@)da.
Fr Fr

Since det(T;;(y)) = 1 and det(D;(a)) = a the lemma follows. m

We note that if we look upon GL(n, F) acting on M, (F') (the n X n matri-
ces) by left multiplication then if we identify M, (F') with the n-fold product of
F™ with itself then the matrix of left multiplication by ¢ is the n x n block di-
agonal matrix with diagonal blocks equal to g. With the corresponding product
measure on M, (F') we now have

10



Corollary 41 Notation as above

/ f(gx)dz = | det(g)| " / f(@)de.
M, (F) M, (F)

Lemma 42 Let G be a locally compact, separable, topological group and let w
be a semi-invariant measure under the left reqular representation. If

1Ly f) = c(g)u(f)
then the measure f —— pu(c=1f) defines a Haar (left invariant) measure on G.
Exercise 43 Prove this by the obvious calculation.

Corollary 44 Haar measure on GL(n, F) is given by

_dg
/GL(n,m U Py

Here fGL(n ) f(g)dg means the restriction of the translation invariant measure
on M, (F) (see Example 28).

The following lemma is a special case of a much more general result but it
will be sufficient for our purposes.

Lemma 45 Let X be a locally compact, separable topological space and let G
be a locally compact, separable group acting on X. We assume that the action
is transitive (Gx, = X for some, hence all, x, € X ). We also assume that if
z, € X then

Ga‘,o = {g € G|g$0 = mo)

is compact. Then up to positive multiple there is at most one G-invariant mea-
sure on X.

Proof. For this we need the following fact (which is not completely trivial).
Let x, € X then X is homeomorphic with G/G,_under the map ¢G, — gz,
(for a proof see Helgason,S., Differential geometry, Lie groups, and symmetric
spaces, Academic Press, New York, 1978). Set K = G,,. Fix a Haar measure
on K which will be denoted with the usual integral notation. We define for

feC(G;C),

T(f)(gvo) = /K f(gk)dk.

We leave it to the reader to check that T': C.(G;C) — C.(X;C) is linear and
continuous. Let p be a G-invariant measure on X then we define



for f € C.(G;C). This is easily checked to be left invariant on G. We leave it
to the reader to see that it is a measure on G. The lemma now follows from
Haar’s theorem. m

We conclude this section with a result that will be used often in the rest of
these lectures. First we need a bit more notation. We note that if G is a group
then we can define the right regular action of G on G by r,z = zg=1. We set
R,f(x) = f(zg). We note that if p is a left invariant measure on G then the
measure f — p(Ryf) is also a left invariant measure. Thus Haar’s theorem
implies that

po Ry =6(g)pu.

Definition 46 The function 6 is called the modular function of G. It is con-
tinuous by Lemma 34. If 6 = 1 then we say that G is unimodular.

Exercise 47 Show that the measure f —— ,u(é_lf) is invariant under the right
reqular action. Such a measure will be called Tight invariant.

Proposition 48 Let G be a locally compact, separable, unimodular topological
group and suppose that A and B are two closed subgroups of G such that

AB ={ablac A,be B} =G

and AN B is compact. Then if dg denotes invariant measure on G, da denotes
left invariant measure on A and db right invariant measure on B then up to
constants of normalization

/f dg—//fabdadb

In other words if T : Co.(G) — C.(A x B) is given by T(f)(a,b) = f(ab), if p is
left invariant on A, v is right invariant on B then (u x v) o T is invariant on

G.

Proof. Let A x B act on G by (a,b) - z = axb~!. Then the stability group
of 1is {(k, k)|k € AN B} which is compact. The measure (u x v) o T and Haar
measure are both invariant under this action of A x B. Lemma 45 now implies
the result. m

Addendum

In this addendum we will discuss integration on locally compact, separable
topological spaces in more detail. Fix such an X.

We say that an open covering U of X is locally finite if for each p € X there
is an open neighborhood, U, of p in X such that the set {V e U]V NU # 0}
is finite. A sequence {¢;} in C.(X) is called a partition of unity if there is a
locally finite open covering U = {U;} of X such that for each j, the support of
¢, is contained in {U;} and

12



e ¢;(x) >0foralxeX.
o> pi(x)=1forall z € X.

Notice that the local finiteness assumption implies that for each z € X there
is a neighborhood of x such that the sum in the second part of the definition is
uniformly finite. We say that the partition of unity is subordinate to an open
covering V of X if the U as above is a refinement of V.

Theorem A.1 Let V be an open covering of X then there exists a partition of
unity subordinate to V.

This is a classic theorem of Dieudonne. It is proved in the same way as
the standard differential geometric result using Urysohn’s lemma to construct
“patch functions”. We note that if ¢ € C.(X) and f € C(X) then ¢f € C.(X).

Lemma A.2 Let i be a measure on X. Let f € C(X) then if for some partition
of unity {6}

D_H(;lf]) < o0

then this is so for every partition of unity. Furthermore, under the hypothesis
of the above convergence the series

ZM(¢Jf)

converges absolutely and its value is independent of the choice of partition of
unaty.

Proof. Let {1} be another partition of unity. Then we have for each j and
for each g € C(X)

Z%%’g = ;9
and the sum is finite. Thus we have (using both locally finite conditions)

DIVICTIED ISV NED DIV A BRI

Now |u(é; f)| < u(l9;f]) = 1(¢;]f]). Thus the sum in the second formula is
absolutely convergent. The last assertion is now proved by the same interchange
of orders of integration. m

We say that f € C(G) is p-summable if

ZM(%UD <o
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for some, hence every, partition of unity for X. If f is summable and if {¢,} is
a partition of unity for X then we set

u(f) = Zu(gzsjf)-

The content of the previous result is that this expression is independent of the
choice of partition of unity.

Lemma A.3 If ¢ € C(X) is summable and if f € C(X) satisfies |f(x)] <
|p(x)| for all x € X then f is summable.
Proof. We have 1u(¢;|f]) < p(¢;]¢[). Thus

PV ED SCHED)

A measure, 1, on X is said to be normal if whenever ¢ € C.(X) is such that
¢(x) >0 for all x € X and ¢ # 0 then u(¢) > 0.

Lemma A.4 If G is a group acting transitively on X and if u is a G-invariant
measure on X then u is normal.

Proof. Suppose that f € C.(X) and f(z) > 0 for all z € X and that
f # 0. Assume that u(f) = 0. Then u(Lyf) =0forall g € G. Let U = {z €
X|f(z) > 0}. Then U is open and non-empty. Let {¢;} be a partition of unity
subordinate to the covering {gU}4ei. Then for each j there exists g; € G such
that the support of ¢, is contained in {g;U}. Thus Ly, f(z) > 0 if = is in the
support of ¢, K;. Let ¢; = mingek, f(k). Then c; > 0. We have

Ly, f(2)¢;(x) = ¢j;(x).
Also
Ly, f(x);(x) < Ly, f ().
Putting this together we have
cip(9;) < u((Lg; )o;) < Ly, f) =0.
Hence ju(¢;) = 0 for all j. If g € Co(X) and if C = max,ex |g()|. Then
[1(9,;9)| < (g;l9l) < Cu(é;) = 0.

Thus u(¢;g9) =0. Thus 0=3", u(¢,;9) = u(g). Since g is arbitrary we have a
contradiction to the convention that ©# 0. m

14



1.1.3 Operator algebras

For the rest of these lectures |z| = (22)? for a complex number z.

Let V and W be vector spaces over C. We will use the notation Homgc(V, W)
for the space of all linear maps from V to W. If V and W are topological spaces
then we denote by L(V, W) the subspace of continuous linear maps.

Let V, W be locally convex topological spaces with the topology of V' given
by the semi-norms in the set & and that of W given by the semi-norms in the
set 7 both as in Example 11 We note

Lemma 49 If p is a continuous semi-norm on V then there exists ¢ € S and
A > 0 such that p(v) < Aq(v) for allv € V.

Proof. The sets U, . for ¢ € S and € > 0 form a basis of neighborhoods of
0 in V. Since p is continuous, the set U = {v € V|p(v) < 1} is open in V. This
implies that there exist ¢ € S and € > 0 such that U, CU. Fix 0 <é <e. If
v € V and ¢g(v) > 0 then q(ﬁv) = 6§ < e. Thus p(ﬁv) < 1. Soif ¢(v) > 0
we have p(v) < (%) q(v). If g(v) = 0 then p(tv) < 1 all ¢ > 0. Thus p(v) = 0.
Take A = %. ]

Corollary 50 T € Homg(V,W) is continuous if and only if for every p €
T there exists ¢ € S and C > 0 such that p(Tv) < Cq(v) for allv e V.

This follows from the above lemma and Lemma 13.

Definition 51 Let V and W be locally convexr spaces as above.  Then the
strong (operator) topology on L(V,W) is the locally convex topology defined by
the semi-norms q(Tv) forqe T, ve V.

If V,W are normed spaces with norms by |...|;, and |...|;, respectively then
the condition for continuity is just that there exists A > 0 such that |T'(v)|y, <
Alvly. This is the reason why a continuous linear map is called a bounded linear
operator.

Definition 52 In the context above, if T € L(V,W) we define
|T|| = inf{A > 0| |T'(v)|y,, < Alv|y, forallv € V}.

Exercise 53 Show that this defines a norm on L(V,W) (called the operator
norm). Furthermore, if S € L(W,Z) with Z a normed space then ||S oT|| <
ISTHIT-

We note that if V= W then L(V,V) is an algebra under addition and
composition. This is an example of a normed algebra. We now give the general
definition.

Definition 54 A pair (R, ||...||) of an algebra R over C and a norm ||...|| on R
is said to be a normed algebra if ||ab]| < ||a| ||b]| for all a,b € R. It is called a
Banach algebra if R is a Banach space with respect to ||...|.
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Example 55 Let X a compact topological space then C(X) is a Banach algebra
with respect to the uniform norm px (see Example 14).

Lemma 56 If V,W are Banach spaces then L(V,W) is a Banach space with
respect to the operator norm. In particular, L(V, V') is a Banach algebra.

Proof. Suppose that {7} is a Cauchy sequence in L(V,W). Then if v € V
we have

Tiv = Tyolw = [(Ti = Ti)vlw < |T; = T o]y

Thus {T;v} is a Cauchy sequence in W. Since W is a Banach space the sequence
has a limit. Which is easily seen to define a linear function of v. This we have
S € Home(V, W) such that

lim Tjv = Sv,ve V.

j—o0
By its very definition

lim |Tjvlw = |Svlw,v e V.
j—o0

Thus since |||T;|| — |T5]]| < ||T; — Tj|| we see that the ||T}| form a Cauchy
sequence. Hence this set is bounded which implies that S is bounded and

Jin 1750 = 1S

Finally, if € > 0 is given there exists N such that |T; — T}|| < ¢ for 4,5 > N.
Also, if v € V then there exists Ny > N such that if j > Ny then ||T;v — Sv|| <
elvly. Thusifi > N

I(Ti = S)oll = [I(Ti = Ti)v + (T — S)v|| <
175 = Tjll folv + I(Z; — S)vl| -

Taking j > N; we have the inequality
I(Ti = S)ol| < 2e]v]y-

Hence |T; — S| <2cifi> N. m

If (R, |...]|) is a normed algebra then if we complete the underlying Banach
space the continuity of the algebra structure implies that the complete Banach
space has a structure of a Banach algebra. Which we will call the completion
of that normed algebra R.

We now look at a second important example of a Banach algebra. Let H
be a Hilbert space.

Definition 57 An element T € L(H, H) is said to be completely continuous
(or compact) if whenever S C H is a bounded set then the closure of T'(S) is
compact. T is said to be of finite rank if dimT(H) < co.
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Obviously finite rank implies completely continuous. The converse of this is
also almost true.

Lemma 58 T € L(H, H) is completely continuous if and only if it is a limit in
the norm topology of a sequence of operators of finite rank.

The proof uses the following lemma and in the course of the proof we will
also develop a great deal of the Hilbert space theory that we will be using. We
will use the notation CC(H) for the set of completely continuous operators on
H.

Lemma 59 CC(H) is a closed ideal (right and left) in the Banach algebra
L(H, H).

Proof. It is clear that CC(H) is a subspace. Let T' € L(H,H) and
S € CC(H). If U is a bounded subset of H then so is T(U). Hence S(T(U))
has compact closure. Let W be the closure of S(U). Then T'(S(U)) is compact
since T is continuous and it contains T'S(U). Hence, T'(S(U)) has compact
closure. Thus CC(H) is an ideal. We now prove that it is closed. So assume
that {T;} is a sequence in CC(H) and that lim; .., T; =T € L(H, H). We
prove that if {u,} is an infinite bounded sequence in H then {T'u,} contains
a convergent subsequence. We choose {uy, ,} an infinite subsequence of {u,, }
such that {T1u,, ,} is convergent. We choose {uy, ;} an infinite subsequence of
{tn, ; } such that {Tu,, ;} is convergent, etc. If we set v; = uy,, then {v;} is
an infinite subsequence of {u,} such that {T;v;} converges (in ) for all j.

Let € > 0 be given and let N be such that if j > N then||T — Tj|| < e. Let
N; be such that if n,m > Ny then | Ty (v, — vp)|| < e. If n,m > Ny then

HT(UWL - Un)H = H(T - TN) (um - un) +TN(um - unH S
IT — Tw||2C +¢ < (20 + 1)e.

The result now follows. m

We will also use some aspects of Hilbert space theory that are completely
standard and I will just quote many of them. For example all can be found in
Yoshida’s book.

So for the time being H is a Hilbert space with inner product (...,...).
The most important single result is the Riesz representation theorem (p.82 in
Yoshida).

Theorem 60 Let V be a closed subspace of H and set V+ = {z € H|(z,v) =
0,0 € V}. Then H=V HV+.

This result implies

Corollary 61 If A € H' then there exists a unique element f € H such that
MNz) = (z, f) forallz € H.
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We will do the easy argument that shows how the theorem does imply the
corollary. We may assume that A # 0. Set V' = ker A\ which is closed and
codimension 1. Then V+ is one dimensional. Since A # 0 there is a unique
element v € V- such that A\(u) = 1. Take f = m;

Definition 62 IfV is a closed subspace of H then we define Py : H —V C H
by setting Py(v) = v ifv € V and Py(u) = 0 if u € V+ and extending by
linearity. Py is called the orthogonal projection onto V.

If T € L(H, H) then we note that if w € H the map v — (T'v, w) defines
an element of H'. Hence, there exists a unique element in H, denoted T*(w),
such that

(Tv,w) = (v, T*(w)) .

We note that it is clear that T defines a linear map of H to H. We also note
that if 7*(v) # 0 then

* 2 * * * *
170l = (T, T"v) = (TT"v,v) < [T |T"[| |[o] -

So if we divide ||[T*v|| from both sides we have | T*v|| < ||T||||v||. This T*
is bounded and has norm at most ||T||. Noting that (7*)* = T we see that
17=[] = 1T

Definition 63 The operator T will be called the adjoint of T.

Lemma 64 Let T € CC(H) be such that T = T*. Then there exists an or-
thonormal basis, {v,}, of ker T+ and \; € R such that Tv, = \v, and the
dimension of T+ is infinite then lim,_,. A, = 0.

This result is completely standard. The simplest proof of it that we know
is in N.Wallach, Real Reductive Groupsl, Academic Press, 1988, p.326, 8,A.1.2.

We can now complete the proof of Lemma 58. If T' € CC(H) then T =
L"QL* + Z'T_QT*. Each term is self adjoint and compact. We may therefore
assume that 7" = T™. Let v; be as in Lemma 64. If there are only a finite
number then T has finite rank. So assume that the number is infinite. Let for
each m, V,,, be the span of vy, ..., v;,. Let P, be the orthogonal projection onto
Vin. Then [|P,, T —T| = sup{|A\,]|n > m} — 0 as m — oo. The necessity is a
consequence of Lemma 59.

The upshot of all of this is that CC(H) is an example of a Banach algebra.

We now come to our third main example of a Banach algebra. Let G be
a locally compact separable (i.e countable basis for the topology) group and
let p be a choice of left invariant measure. if f,¢g € C.(G) then we define

g(u) = g(u") and

fxg(x) = p(fL:3).
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In integral notation this says

fr9) = [ fwglu )
G
Let A, B denote the supports of f and g respectively. Then the above expression
is 0if z ¢ AB. Also one sees from the first formula that f * g is continuous and

hence it is an element of C.(G). This element is called the convolution of f and
g. We observe that this bilinear operation is an algebra structure. Indeed,

fi# (fox f3) (@) = /G F1(g0)(fe * f3)(gr ' 2)das
=/ fl(gl)(/ f2(92) f3(95 91 " x)dg2)dan
G G
- / / £1(91) folg2) 3 ((9102) " ) dgadn
GJG
=//f1(91)f2(91_192)f3(92_113)d92d91
GJaG

by the left invariance of the integral in go. The last expression can be written

/(/ S1(g1) 291 92)dgn) f3 (g2~ w)dga = (f1 * fa) = f3().
G JG

We have therefore endowed C.(G) with the structure of an algebra.

Exercise 65 Show that convolution defines a continuous map of Co(G) X C.(G)
to itself. Thus C.(G) is a topological algebra under convolution.

Exercise 66 Show that if f, g € C.(G) then [,(fxg)(x)dx = [, f(z)dz [, g(x)dz.
If f € C.(G) then we set || f||; = p(]f]). This is the usual L'-norm.

Lemma 67 C.(G) endowed with the L*-norm is a normed algebra under con-
volution.

Proof. We have
1% foll, = /G 1 % fol)|de = /G | /G £1(9) fo(g~ ) dg|dx
< /G /G 11(0) folg™"2) dgdz = /G @) /G oy ) |dz)dg
=/ Ifl(g)l/ \fa(@)ldzdg = [ filly | ol -
G G

|
This implies that under convolution C..(G) is a normed algebra relative to the
L'-norm. We denote the corresponding competed algebra by L!(G). One can
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show that elements of L' (G) are represented by functions on G' (not necessarily
continuous, nor of compact support).
If f1, fo € Ce(G) then we define

(i f2) = u(fiT2) = /G 110 F2(@)da.

Then this defines a Hermitian inner product on C.(G) and thereby endows it
with the structure of a pre-Hilbert space. The Hilbert space completion of C.(G)

will be denoted L?(G). As is customary, we write | f||, = (f, f)é.

Definition 68 If(H,(...,...)) is a Hilbert space then an element, T,of Homc(H, H)
is said to be unitary if it is surjective and (T f1,T f2) = (f1, f2) for all f1, fo in
H.

We note that if 7" is unitary on H and if ||...|| is the corresponding norm on
H then ||[Tv|| = ||v|| for all v € H. In particular, T is bounded and injective.
Since it is surjective it is bijective. The inverse is given by T*.

Lemma 69 If g € G then L, defines a unitary operator on L*(G). Further-
more, the map G — L(L*(G),L*(G)), g — L, is continuous if we endow
L(L?(G), L*(Q)) with the strong topology.

We will use some more general concepts to prove this result.

Definition 70 Let G be a locally compact topological group. Then a repre-
sentation of G is a pair (m,V) of a locally conver space V' and a homomor-
phism, w of G into the continuous invertible operators on V such that the map
m: G — L(V,V) is continuous in the strong, operator topology. If V is a Ba-
nach (resp. Hilbert, rep. Fréchet) space then (mw, V') is called a Banach (respect
Hilbert, Fréchet) representation. If V is a Hilbert space and w(g) is a unitary
operator for each g € G then (w,V) is called a unitary representation.

Thus the content of the above lemma is that if we set 7(g) = L, then
(m, L?(@)) is a unitary representation called the left regular representation. No-
tice that in the Banach case we do not use the norm topology on L(V, V).

Remark 71 If we replace left invariant measure with right invariant measure
then R, defines a unitary representation of G on the corresponding L?(Q).

We will be mainly dealing with Hilbert representations in these lectures.
When we need more general spaces it will be because we have imposed stronger
conditions than continuity on our representations. We need a general method
of checking the strong continuity. For this we will use the principle of uniform
boundedness.

Theorem 72 Let VW be Banach spaces and let U be a subset of L(V,W).
Suppose that for each v € V there exists C,, < 0o such that ||Tv|| < Cy ||v|| for
all T € U. Then there exists C < oo such that |T|| < C for oll T € U.
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This surprising theorem is a consequence of the Baire category theorem. A
proof can be found in Yoshida (cited at the beginning of 1.1.1).

Lemma 73 Let H be a Hilbert space, let G a locally compact, separable topolog-
ical group and let m be a homomorphism of G into bounded, invertible operators
on H. Then w defines a representation of G (that is, it is continuous in the
strong topology) if and only if the following two conditions are satisfied

1. There is a dense subspace, V. C H such that if v € V,w € H the function
Cow(g) = (m(g)v, w) is continuous.

2. If K is a compact subset of G then there exists a positive constant Cx
such that ||m(g)|| < Ck for allk € K.

Proof. If (m, H) is a representation then condition 1. is clearly satisfied.
The strong continuity implies that the functions

g — llm(g)v]

are continuous on G. Condition 2 now follows from the principle of uniform
boundedness. We now consider the converse. So we assume the two conditions.
We observe that they imply

1". ¢4 is continuous for all v,w € H.

This is proved by a “3¢ argument”. Let v € H, g € G, {v;} a sequence
in V such that limv; = v, {g,} a sequence in G such that limg,, = g. Then
there exists a compact subset K of G containing g and each of the g,,. We must
show that lim,,— o ¢y,w(gn) = Cvw(g). We note that Condition 2 implies that
| (k)|| < Ck < oo for all k € K. Set C = Ck. We have

|Cv,w(gn) - C’u,w(g)| = |C’u,w(gn) - Cvj,w(gn) + Cvj,w(gn) - Cvj,’w(g) + Cvj,’w(g) - C’u,’w(g)|
< levw(gn) — Cvj,w(gn)| + |Cvj,w(gn) - Cvj,w(g)| + |Cvj,w(g) — couw(9)]
= (7(gn) (v = v5), w) [ + [Cv;,0(gn) = o;w(9)] + [ (7(g)(v; — v),w) |
<20 v =l [[wl] +[ev; a0 (gn) = v; 0 (9)]-

Now let € > 0 be given then there exists N such that if j > N then ||v — v;|| < e.
Fix one such j. There exists Ny such that if n > Ny then |cy; w(gn) — Co;,w(9)] <
¢. Putting all of this together we have that if n > Ny then |cy . (gn) — o0 (9)] <
(2C+"e. This proves 1'.

We will now begin the proof of the lemma. Ideas in this proof will be used
in the next section. Let H, be the subspace of all v € H such that the map
g — m(g)v is continuous from G to H. Then using an argument as in the proof
of 1’. one can show that condition 2. implies that H, is closed. Also, it is not
hard to see that if we can show that H, = H then the result is proved.

If f € Ce(G) then we set

1y (0, w) = /G £(9) (n(g)v, w) dg.
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If the support of f is contained in the compact set K and if ¢ € C.(G) is such
that ¢(k) = 1 for all k € K (such a ¢ exists by Urysohn’s theorem) then we
have

(0, w)| < Cic 6], pc () o] ]

Thus the Riesz representation theorem implies that for each v € H there
exists an element T¢(v) € H such that (T¢(v),w) = ps(v,w). It is easy to
see that T is a linear map of H to H. The estimate above now shows that
|Tr ()| < Ck |16l px(f) ||v]|. Thus the map f —— T of the completion of
C.(G) into L(H, H) is strongly continuous. We note that

TLgf = W(g)Tf.

Hence Ty(H) € H, for all f € C.(G). Now, since G is separable and locally
compact we can find a sequence of open subsets U; C G such that ﬁj is compact,
U; D Uj41 and N;U; = {1}. Urysohn’s lemma implies that there exists ¢; €
C.(G) such that the support of ¢; is contained in Uj, ¢;(x) > 0 for all x € G

and ¢;(z) =1 for all € Uj11. Set uj(x) = ‘T(;(ﬂ) . Then if v,w e H
il

Jim (T, (v), w) = (v,w).

Before we prove this we will show how it completes the proof.

We need to show that Hy = 0. But if w € Hy then (T, (w),w) = 0 for all
j. Hence the limit formula implies that (w,w) = 0.

To prove the limit formula we note that

(T, 0) = (0.0) = [ 13(0)(€00) = cun (D)
Let € > 0 be given then there exists N such that if j > N then
|co,w(g) — cow(1)] < e for g € Uj.
Thus if 7 > N then

[ @) unl) = oo < = [ usta)dg =e.
G G
This completes the proof. m

Definition 74 If (m,H) is a Hilbert representation of G then the operator T
as defined in the above proof will be denoted w(f).

Definition 75 If G is a locally compact separable topological group then a se-
quence {u;} of non-negative functions in Ce(G) such that ||u;l|, = 1 for all j
and there exist open subsets U; of G such that U; is compact, U; D Uj1 and
N,;U; = {1} and the support of u; is contained in U; then {u;} will be called a
delta sequence or approximate identity on G.

Exercise 76 Prove Lemma 69.
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1.2 Basic representation theory
1.2.1 Schur’s lemma.

Throughout this section G will denote a locally compact, separable topological
group.

Perhaps Schur’s lemma (in its many guises) the most fundamental single
result of representation theory. In this section we will give several variants of
this result. The first is the most standard and is a direct consequence of the
spectral theorem. We first need some definitions.

Definition 77 Let (7, V) be a representation of G on a locally convex space V.
A subspace W of V is said to be invariant if w(g)W C W. The representation
is said to be irreducible if the only closed, invariant subspaces are {0} and V.

Definition 78 If (m;,V;), i = 1,2 are respectively representations of G on lo-
cally convex spaces Vi,V then a continuous map T : Vi — Vo will be called a
G-homomorphism or G-intertwining operator if Tom(g) = 7(g)oT forallg € G.
We will use the notation Lg(V1,Va) for the space of all G-homomorphisms from
V1 to Va. The representations are said to be equivalent if there exists an element
then is bijective with continuous inverse in L(Vy, Va).

Remark 79 In the literature the notation Homg(Vh,Va) is often used for what
we are calling Lg(V1, Va).

Here is the first version of Schur’s Lemma which is a direct consequence of
the spectral theorem.

Proposition 80 Let (w, H) be a unitary representation of G. Then it is irre-
ducible if and only if Lq(H,H) =CI.

Proof. Suppose Lg(H,H) = CI. Let V be a closed invariant subspace
of H. Let P denote the orthogonal projection of H onto V. If v € H then
v=1v +v9 withvy; € Vand v, € VL. If w € VL and if v € V then for each
g € G we have 0 = (7(g)v,w) = (v,m(g”")w) by the assumption of unitarity.
But then V1 is an invariant space. Thus 7(g)v; € V and 7(g)v, € V1. Hence
Pr(g)v = 7(g)vy = w(g)Pv. Thus P € Lg(H, H). Thus P = zI, z € C. Since
P is a projection z=0or I. Thus V ={0} or V = H.

We now prove the converse. We first note that if T' € Lg(H, H) then so is T™*.
Since T' = % —H% we must only show that if T"is a self adjoint intertwin-
ing operator then T is a multiple of the identity. So we assume T € Lg(H, H)
and T* = T. To such an operator there is an associated family of spectral
projections, Pg, for S C R a Borel set. (See Reed,M. and Simon,B., Functional
Analysis I,Academic Press,1972., p.234.) The uniqueness of the spectral reso-
lution and the fact that 7(g)Tw(g)~! = T implies that 7(g)Psm(g)~! = Ps for
all S. Then T' = pI if and only if Py, = I. If the real interval [a, b] contains the
spectrum of 7" then Py, ;) = I. Let J; = [a,b]. If we bisect J;, then J; = AUB
and one of P4 or Ppg is non-zero. Thus P4 = I or Pg = I. Let J; be one of
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A, B such that Py, = 1. We can bisect again and get J3 one of the halves such
that P;, = I. We this have a nested sequence of intervals J; D Jo D J3 D ...
such that J; has length 27%(b — a) and P;, = I. We note that N;J; = {p} for
some p € R. The definition of spectral projections implies that the limit of the
Py, in the strong operator topology is Py,). Thus Pp,; = 1. Hence T'=pl. &
We will rephrase this result in the context of operator algebras. Let A C
L(H, H) be a subalgebra. Then it is called a *algebra if whenever T € A,
T* € A. We say that A is an irreducible subalgebra if whenever V C H is a
closed subspace invariant under all the elements of A, V = {0} or V = H.

Definition 81 If A is a subset of L(H, H) then we denote by A’ the set {T €
L(H,H)|Ta=aT,a € A}. A’ is called the commutant of A.

The above is a standard notation. It unfortunately conflicts with our nota-
tion for dual space. It will be able to keep track of this ambiguity through the
context of its usage.

We will now restate Schur’s lemma.

Corollary 82 (to the proof)A *algebra A C L(H, H) is irreducible if and only
if A' =CI.

Proof. We note that if V' C H is a closed subspace invariant under every
element of A then so is V. Thus as above Py, € A’. Thus if A’ = CI. Then A
is irreducible (as above). To prove the converse, we note that if T € A’ then so
is T*. If a € A is such that a* = a then the element

eia _ i (ia)n
N n!

n=0
defines a unitary operator on H. Since

d

ita —ita :
—  e"Te =1(al —Ta).
dt |t=0 ( )

We see that T € A’ if and only if e?*Te~*® =T for all @ € A such that a = a*.
We can now argue in exactly the same way as we did in the proof of the previous
proposition to prove that A’ =CI. m

We now come to the Von Neumann density theorem.

Theorem 83 Let A C L(H,H) be a *subalgebra containing I. Let T € (A’)
and let {x,}>2 be a sequence in H such that Y, | |zn||> < 0o. Then given
e > 0 there exists a € A such that > -, ||[(T — a)z,||” <e.

Proof. Let V be a Hilbert space and let B be a *subalgebra of L(V,V)
containing I. Then

(1) If v € V then (B')'v C Bu.

Indeed, Bu' is B invariant since B is invariant under *. This implies that
if P is the orthogonal projection of V onto Bv then P € B'. Thus if T € (B’)’
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then TP = PT. Hence T(Bv) C Bv. We therefore see that (B')'(Bv) C Bu.
This proves the result since v € Bu.

We will apply this result to the Hilbert space V' that consists of all sequences
{@n} with >0, |#,]|> < oo and inner product ({z,,}, {yn}) = Y (@n,yn). Let
B be the algebra of operators o(a), a € A given by o(a){z,} = {az,}. Let
Pm{mn} = Tm and let Qmm = {6n,m$}7olo:1- Then P;;L = Qm-

Suppose that T € B’ and a € A. Then

P, To(a){xn} = Pno(a)T{z,} = aPnT{z,}.
Also

TQmax =To(a)Qmz = o(a)TQ .

This implies
(2) If T € B’ then P,TQ,, € A’ for all n,m > 1.

This implies that if S € (A’)" then the operator {z,} — {Sz,} is in (B’)’.
Hence if T € (A’)’ then

{Tz,} € B{z,}.

s . . 2
This implies that given e > 0 there exists a € A such that Y~ 7 | (T — a)x, |~ <
e. n

The following result is also referred to as the Von Neumann density theorem
in the literature.

Corollary 84 Let A be a *subalgebra of L(H, H) then if I is in the closure of A
with respect to the strong operator topology then the algebra (A’) is the closure
of A in the strong operator topology.

Proof. Let C = A+ CI. Then the above result implies that (C")" is
contained in the closure of C in the strong topology. Now the closure of C is
the same as the closure of A by our hypothesis. Also it is clear that A’ = C".
Thus (A’)’ is contain in the closure of A. Since the reverse inclusion is clear,
the result follows. m

This result yields an analog of Burnside’s theorem.

Corollary 85 Let A be a *subalgebra of L(H, H) containing the identity in its
closure in the strong operator topology and acting irreducibly on H then the
closure of A in the strong topology is L(H, H).

Proof. A’ =CI. m
At this point we can introduce an important class of algebras for abstract
representation theory.

Definition 86 A *subalgebra of L(H, H) is called a Von Neumann algebra of
it is closed in the strong operator topology and contains the identity.
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The above results imply

Proposition 87 A *subalgebra, A, of L(H,H) is a Von Neumann algebra if
and only if (A') = A.

We will use this result to give a useful variant of Schur’s lemma.

Proposition 88 Let (m, H) be an irreducible unitary representation of G. Let
D be a dense subspace of H such that w(g)D C D for all g € G and let T be a
linear map of D to H such that Tw(g)v = 7(g)Tv for all g € G,v € D. Assume
that there exists a dense subspace D' in H and a linear map S from D' to H
such that

(Tv,w) = (v, Sw)
for allve D, we D'. Then T = M\ for some A € C.

Remark 89 Notice that there is no topology assumed on D or D' and T, S are
general subject to the assumptions in the proposition.

Proof. Assume that v € D and v and T'v are linearly independent. Then
there exists B € L(H, H) with Bv = v, BTv = v. Let A be the subalgebra of
L(H, H) spanned by {7(g)|g € G}. Then A satisfies the hypothesis of Theorem
83. Schur’s lemma implies that (A’) = L(H, H). Hence there exists a sequence
a; € A such that

lim a;v =v, lim a;Tv =v.
oo j=00

On the other hand a;D C D and Ta; = a;T. Thus if w € D’ then

(v,w) = lim (a;Tv,w) = lim (Ta;v,w) = lim (a;v, Sw) = (v, Sw) = (Tv,w) .

J— J—0 J—

Since D’ is dense this yields the absurd conclusion that of v,Tv are linearly
independent then Tv = v. Thus v,Tv are linearly dependent for all v € D.
This implies that T is a scalar multiple of the identity. m

Exercise 90 Show that if V is a vector space and T is a linear operator on V.
(no topology) and if for every v € V, v and Tv are linearly dependent then T is
a multiple of the identity.

We will now give the main application of the preceding generalization of
Schur’s lemma. This application involves the development of the machinery of
C' vectors for representations of Lie groups. We will be assuming the standard,
basic Lie group theory.

Let G be an n-dimensional Lie group with a finite number of connected
components. Then G is a locally compact, separable topological group. Let
Lie(G) denote, as usual, the Lie algebra of G. Let w be a differential form of
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degree n on G such that Ljw = w for all g € G. Here we recall that w is an
assignment x — w, with w, € A" T(G)%: (T(G), the tangent space at x) such
that if X, ..., X, are vector fields on G then the map

T — we ((X1)ay s (Xn)z)

is of class C*°. The condition Liw = w means that

wgw((dLg)x(Xl)wv e (dLg)x(Xn)x) = wo ((X1)zs s (X))

for all x € G (here d, as usual, stands for differential) The standard way
of constructing such an w is to choose a basis X, ..., X,, looked upon as left
invariant vector fields ((dLy), X, = X,.) and choosing n € A" Lie(G)* such
that (X7, ..., X,,) = 1 then we identify Lie(G) with T(G),. We set for Y3, ..., Y,
vector fields on G

Wa((Y1)z -y (Ya)a) = 0((dLa) ™ (V1) ooy (dLa) ™ (V) a)-

We fix an orientation on G (we can choose the one corresponding to w as above).
Then if f € C.(G) we can integrate f with respect to w defining

() = /G fo.

This defines a Haar measure on G. The point here is that the C'°° structure has
been taken into account.

Definition 91 Let (7, V) be a representation of G on a locally convex topologi-
cal space. Then a vector v € V is said to be a C*-vector if the map g — 7(g)v
is a C* map of G into V.

The following observation is due to Garding.

Lemma 92 Let (mw,H) be a Hilbert representation of G. If f € C&(G)(=
C*(G)NC.(Q)) and if v € H then w(f)v is a C* vector.

Proof. Let U be a relatively compact subset of G containing 1. Let L(U)
denote the subspace of all L!-functions on G that are limits of elements of C..(G)
with support in U. Let V be an open subset of U such that it is invariant under
inverse and such that V'V C U. Then we have
L. If f € C2°(V) then the map of V to L'(U) given by  — F(z) = L(z) f is of
class C°. Indeed, if X € Lie(G) then we set L(X)f(g) = %lt:of(exp(—tX)g)
for g € G. Taylor’s theorem with remainder implies that there exists ¢ > 0 and
a function, E, of t, g for |[t| < € such that |E(t, g)] < ¢(g) with ¢ € C.(G) for
[t| < e and

flexp(=tX)g) = f(g) +tL(X)f(9) +*E(t, g)

27



for |t| < e and g € V. This implies that

I1L(2) LX) f = (1/8)(L(z exp(tX)) f — L(z) f)ll, =

IL(X)f = (1/)(L(zexp(tX)) f = L(z) )|, < [¢|C

for |t| < e for C > 0 and appropriate constant. Hence the function F is of class
C'. This argument can be iterated to prove the result. We have seen (at least
implicitly) that the map f — 7(f) is continuous from L' (U) to H. Thus, since
linear continuous maps are smooth, we see that if v € H then the map from V
to H given by x — 7(L(z)f)v is of class C*°. Now w(L(z)f)v = w(z)w(f)v.
The lemma now follows using a partition of unity argument. m

We denote by V> the space of all C*° vectors in V. Now arguing as in the
proof of Lemma 73 we have

Theorem 93 Let (7, H) be a Hilbert representation of G. Then the space of
C™ wvectors in H is dense.

Proof. There exists a Delta sequence {u;} in G with each u; € C°(G). We
have shown

lim (7(u;)v, w) = (v,w)

Jj—oo

for all v,w € H. Now suppose that w € (H*)* then since m(uj)w € H> for
all j we have

0= lim (7(uj)w,w) = (w,w).

j—00
]

If (7, H) is a Hilbert representation of G and if v € H* then we define for
X € Lie(Q)

d
dr(X)v = aﬂ'(exth)v“:O.

We have

o dn(X)H™ C H® for all X € Lie(Q),n(g)H> C H* for g € G.

o dr(aX +bY) =adn(X) +bdn(Y), a,b € R, X, Y € Lie(G).

o dn([X,Y]) =dr(X)dn(Y) — dn(Y)dr(X), for all X,Y € Lie(G).

o If g€ G, X € Lie(G) then 7(g)m(X)v = 7(Ad(g9)X)m(g)v.

We will simplify notation and write 7(X) for dm(X). The first assertion is
clear from the definition of C°°. The second follows from

exp(tX) exp(tY) = exp(t(X +Y) + O(£*)).

28



The third follows from
exp(tX) exp(Y) exp(—tX) = exp(Y + t[X,Y] + O(t?)).
The fourth follows from
exp(tAd(g)X) = glexptX)g™*.

The three bullet items imply that (7, H°°) defines a representation of Lie(G).
The fourth is a compatibility condition that will play a role later. We will also
consider this to be a representation of the complexification of Lie(G), that is
Lie(G)c. Set gc = Lie(Gc). Then (7, H*) extends to a representation of the
universal enveloping algebra, U(gc). We define Zg(gc) to be the subalgebra if
U(gc) consisting of those z such that Ad(g)z = z for all g € G. We define an
involution denoted * on U(gc) by the following rules

o (z1)* =Z1.
o X*=-X for X € Lie(G).
o (zy)* =y*a* for x,y € U(ge).

We note that the anti-homomorphism x —— z* exist by the universal prob-
lem solved by the universal enveloping algebra and also the naturality implies
that if g € G then (Ad(g)z)* = Ad(g)(z*).

Lemma 94 If (w, H) is a unitary representation of G and if v,w € H*® and
x € U(ge) then

(m(@)v,w) = (v, w(x")w) .
Proof. We note that if X € Lie(G) and v,w € H then
(m(exptX)v,w) = (v, w(exp(—tX))w)

for all t € R. If v,w € H* then both sides of the equation are differentiable in
t. Taking the derivative at ¢t = 0 yields

(r(X)v,w) = (v, 7(—=X)w) = (7(z)v, w) = (v, 7(X)w) .

Now use the fact the Lie(G) generates U(gc) over C. m
We now come to the promised application of our generalized Schur’s lemma.

Theorem 95 Let (m,H) be an irreducible unitary representation of G then
there exists an algebra homomorphism n,. : Za(gc) — C such that n(z)v =
N(2)v for all v e H>.

29



Proof. In Proposition 88 take D = D’ to be H*®. If z € Zg(gc) then take
T = m(z). We note that if v € H* then

m(9)T(9)""v = w(g)m(2)m(9) v

=7(Ad(g)z)v = m(z)v = Tw.

Also take S = m(z*). Then the previous lemma implies that the hypotheses of
Proposition 88 are satisfied. Thus m(z) acts as a scalar on H*. Denote this
scalar by n,.(z). ®

Definition 96 The homomorphism n, is called the infinitesimal character of
(m, H).

If (r,H) is a Hilbert representation of G and if x € U(gc) then we denote
by p, the semi-norm on H*defined by p.(v) = ||w(x)v|. We give H> the
corresponding locally convex topology. Notice that if {z;} is a basis of U(gc)
then the semi-norms {p,,} suffice to define the topology. The following result
uses basic calculus in its proof. We will just refer to Real Reductive Groups I,
Academic Press, 1988, Lemma 1.6.2 since the result will not be used in a serious
way here.

Lemma 97 The space H* is a Fréchet space with respect to the locally convex
topology given above. Furthermore, (m, H*), is a smooth Fréchet representation
(i.e. if v € H*® then the map g — w(g)v defines a C°° map from G to H™.

1.2.2 Square integrable representations.
Throughout this section we will assume that G is unimodular.

Definition 98 Let G be a locally compact, separable topological group. Then
an irreducible unitary representation, (w, H), of G is said to be square integrable
if there exists a non-zero v € H such that the matriz coefficient c, . is square
integrable (recall ¢y .,(g) = (m(g)v,w)).

We will now spend a substantial part of this section giving an important
family of examples of square integrable representations. We will be using some
results from later lectures. Let D = {z € C||z| < 1}. We use ordinary Lebesgue
measure on D thinking of z = x+iy as (z,y) € R?. We write dz = dz +idy and
dz = dx — idy then dx A\ dy = QLidE/\dz. Let G be the group SU(1,1). That is
if g € G then

_|lab 2 B2 —
o= |5 o] =1 )
Here the entries a,b € C but the group is a real Lie group. We define an action
of Gon D by

az+b
Z = =
bz +a
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where g is given as in (1). We will use the following formulas.

az+b[>  1—|z?
= =3 (2)
bz+a |bz + al
dz
dlg-z) = ————. 3
(02 = goam (3
Using (2),(3) we have
dzdz / d(g-=z)d(g - 2) / dzdz
) (g = | ¢(2)—=.
IR [E=rEED N S R
Thus
1 dzdz
=— S 4
w0 =5 [ 00T (4)
defines a G-invariant measure on D.
Let H* be the space of all holomorphic functions f : D — C such that
1 9 o dzdz
— 1- A
5 [ @R = ) s < o0
If f1, f2 € H* then we set
dzdz
k
fl f2 /fl f2 |Z| ) m (5)

We define for f € H*, and g as in (1)

m(9)f(2) = (=bz +a) " f(g7" - 2). (6)

Then using formulas (2),(3) as we did in the proof of the invariance of u. We
find that

(m1(9) fr, e (9) fo) = (f1, fo) , f1, fo € HF g € G.

Proposition 99 If k > 2 then H* is a Hilbert space and if k € 7 , k >
2, (mx, H*) is a square integrable representation of G.

Proof. We first show that the space H* is complete. For this we observe
that if 2z, € D and if r = % then the set D, = {z € C||z — 2,| <7} C D.
Then if £ > 2 we have

1 —
(1—1]2[)2> (1 - Z(l 4 |20])?)*2for all z € D,.
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Thus we see that

_1 2,[)2)E—2 ,
(£ = Sy —;Z| DY) /_ |f (2)|*dzdz.

r

On D, the holomorphic function f is given as a series

flz)= Z an(z — 2zo)".

n=0
Then
1 T 27 )
5 | |f(z)|2d2dz:/ / Z AnTms" s e "0 dhsds =
v D 0 0 n,m>0
o [ ont1 o 722 2,2
2772 |an] / s dr = 2772|an| T2 > 2m|ag|®re.

n>0 0 n>0

We therefore see that
1 _
fifhez (=714 |201)%) ¥ 22 £ (20) -

This implies the completeness, since if {f;} is Cauchy in Hy, then it is Cauchy
relative to the topology of uniform convergence on compacta. This implies that
there is a continuous function on D, f, such that lim;_. f;(2) = f(2) uniformly
on compacta of D. But then f is holomorphic on D and it is easy to check
that it is in HF.

Notice that the function f(z) = 1is in H* if k > 2. We calculate the matrix
coefficient (g as in (1))

(malo)1,1) = 57 [ (B @)K (1= )Pz =

1 2 1 27 7
/ / (=bre'® 4+ a)~ k(1 — r>)*2d0rdr = a™* / r(1—r2)k=2 / (—gTew + 1)~ *abdr.
0o Jo 0 0

We observe that since |al? — |b]? = 1, |:%| < 1. Thus if 0 < r < 1 then the
function

b
6(2) = (~rz 4 1)
is holomorphic in z for |z| < . This implies that
27

P(e?)do = 27 (1) = 2.
0

We therefore see that

1
(me(g)1,1), = a~"2r / r(1 = 12)*2dr = ca.
0
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Notice that this is a continuous function of g. Let f(g) = a~* we will show that

/uwW@<m
G

For this we need a formula for the Haar integral analogous to the formula for
polar coordinates. Set

K=o = |l [oem)

and

cosht sinht

+ _ _
AT = {atlar = { sinht cosht

],teR,tZO}.

Then G = KATK (exercise we will see it in general later). Furthermore, if ¢
is summable on G then up to constants of normalization

/G (g)dg = /0 " /0 N /0 T (6, )ark(6)) sinh(26)d, didBy.

This can be proved by observing that K = {g € G|g-0 = 0}. Thusif f € C.(G)
then

ﬂﬂ0=oﬂﬂﬁwwﬁ

Defines a function on D = G - 0. If we write out the invariant measure given
in formula (4) above in polar coordinates and consider the change of variables
r — tanht,t > 0 the formula follows. Now

f(k(01)ark(62)) = ("' coshte™) ",
Thus

/ f(9)Pdg = (27)* /Oo(cosht)_% sinh(2t)dt =
G 0

22
k-1

4 / (cosht)~2* cosh(t) sinh(t)dt =
0

This shows that c; 1 is square integrable. The exercise below proves that 7, is
a representation. We will prove the irreducibility later. m

For later reference we note that ¢, = (1,1), thus we have (up to normaliza-
tion of measures)

2
2w 2

[ 1m0, g = 5 . @
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Exercise 100 Calculate <7Tk(g)zl,zm> forl,m =0,1,2,... as above and show
that it is a continuous function of g. Show that the span of the functions
1,2,2%,... is dense in H* for k > 2. Now use an appropriate extension of
Lemma 73 (allowing the element w in 2. to be taken from a dense subspace) to
show that (w1, H) is a representation for k > 2.

Exercise 101 Give the details of the proof of the integration formula for Haar
measure on G as sketched in the above proof.

We will now prove two basic results about square integrable representations.
We will consider L?(G) as a unitary representation under the right regular
action.

Proposition 102 Let (m, H) be a square integrable representation of G. Then
every matriz entry (cyw, v,w € H) is square integrable. Furthermore, there
exists an element T € Lg(H,L*(G)) with closed range consisting of continu-
ous functions that is a unitary bijection onto its range. The map T can be
implemented as follows: fix v, in H a unit vector then T'(w) = ¢y, -

Proof. Fix v, a unit vector in H such that c,, ., is in L?(G). Let D denote
the space of all v € H such that ¢, ., € L?(G). We note that

Cr(gyvw = LgCow-

Thus D is an invariant non-zero subspace. Since v, € D the irreducibility
implies that D is a dense subspace. On D we put the pre-Hilbert space structure

(va) = <U7w> + <CU7U07cw7U0> :

The last inner product is the L?-inner product the first one on the right hand
side is the inner product on H.

We now come to the key point.
(*) D is complete with respect to (...,...).

Indeed, if {v;} is a Cauchy sequence in D then it is Cauchy in H and
{¢v, 0.} is Cauchy in L?(G). Since H is complete there exists v € H such that
lim;_, o, v; = v. Since L?(G) is complete by definition there exists f € L?(G)
such that lim; o ¢,; ., = f in L?. We note that

[Coj00(9) = Co00(9)] < llvj =0l 9 € G.

Let U be an open subset of G such that U is compact and let ¢ € C.(G)
be such that ¢(x) > 0 for all x € G and ¢(z) = 1 if x € U. We note that
the operator of multiplication by ¢ on C.(G) extends to a bounded operator
T, : L*(G) — L*(G). Now we have lim;_,o ¢cy, o, = ¢Cpy, in L*(G) by the
above uniform convergence. We also have

hm ¢ch7Uo = T¢f
Jj—oo
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in L?(G). Hence we have ¢c, ,, = Ty f. This implies that f is represented by
the continuous function ¢, ,, . But then v € D.
We note that if g € G and v, w € D then

(m(g)v, m(g)w) = (v, w).

Thus the operators m(g)p define unitary operators p(g) on D with respect to
(-eryr). Let S(v) = v for v € D but looked upon as a map of the Hilbert space
D into H. Then

(5(v), 5(v)) < (v,0)

for all v € D. This implies that S extends to a bounded operator from the
Hilbert space completion, D, into H. Furthermore, S o p(g) = m(g) o S. Let
S* : H — D denote the adjoint operator. Then S* o w(g) = p(g) o S* for all
g € G. We therefore see that SS* € Lg(H, H). Schur’s lemma implies that
S§8* = AI and it is clear that A is real and A > 0. Now if v € H then S*(v) € D
so Av = S(S*v) = S*v. But then v € D. Hence D = H. We also note that this
implies that

1

() < 3

(v,v)

for all v € H. Thus HCUWOH; < 1;§\2 |v]|*. Define T(v) = ¢y,. To complete
the proof we note that all we used about v, in the proof above was that the set
{w € Hley ., € L*(G)} is non-zero. By the above this is true for every v € H
since v, is in the corresponding set. m

The next theorem is a general form of the Schur orthogonality relations.

Theorem 103 Let (w, H) and (p,V) be square integrable representations of
G. If m and p are inequivalent then their matriz coefficients are orthogonal.
There exists a positive real number d(m) (which depends only on m and the
normalization of Haar measure) such that if vi, v, w1, wy € H then

e e — 1
/G (m(g)vr, wr) (m(g)v2, wa)dg = M (v1,v2) (wa,w1) .

Proof. Assume that h, € H and v, € V are unit vectors and that there
exists h € H, v € V such that

/G (m(g)h, ho) (p(g)v, vo)dg # 0.

Let T: H— L*(G) and S : V — L*(G) be as in the proof of the preceding
proposition. That is T'(x) = ¢, 5, and S(y) = ¢, ,,. Then we showed that T’
and S respectively define injective intertwining operators from H and V into
L?(H) with closed range. Consider

(x,y) = (T(x),5(y)) -
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Then (h,v) # 0 and (7w(g)z, p(9)y) = (x,y). Finally the pairing is continuous
in x,y. Thus the Riesz representation theorem, for H, implies that (z,y) =
(x,A(y)) with A : V — H a bounded operator. It is easy to see that A €
Lg(V, H). Since A # 0. We see that ker A = 0. We also see that Im A is dense
in H. We also observe that A*A € Lg(V,V) and AA* € Lg(H,H) . Thus
each is a scalar by Schur’s lemma. We conclude that there is a scalar s > 0 such
that sA is a unitary bijection, We therefore conclude that 7 and p are unitarily
equivalent.
To prove the last part we see that

l/@@WhWNﬂQWWﬂ@ZGWzMmeﬂ
G
and
/W@mwﬁﬂmew=WMMme
G

for vy, va, w1y, wy. This implies that a(ws,w) is a positive multiple of (ws,wq).
We call the multiple 4. m

d(m) "
Definition 104 We call the number d(w) the formal degree of .
Example 105 If (), H*) is as above for SU(1,1) then d(my) = 4= .
1.2.3 Representations of compact groups

Unless otherwise specified, throughout this section G will denote a compact,
separable topological group. The following result is Weyl’s “unitarian trick”.

Lemma 106 Let (7, H) be a Hilbert representation of G. Then there exists an
inner product, (...,...) on H that induces the same topology on H and such that
relative to that inner product the representation is unitary.

Proof. We note that since G is compact there exists C' < oo such that
(gl < C

for all g € G (see Lemma 73). We set for v,w € H
v0) = [ (rl@)on(ae) do.
Then the fact that G is unimodular implies that
(r(g)v, m(g)w) = (v,w),g € G,v,w € H.
We also note that (v,v) > 0 if v # 0. Since 7(g)7(g~1) = I we have

1< [m(g)ll[|x(9)~*|| < C lIx(9)ll-
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Hence
¢l < Im(g)l < €.
This implies that
C v, ) < (v,v) < C(v,v).

|
Clearly, an irreducible unitary representation of G is square integrable. We
have

Theorem 107 Let (w, H) be an irreducible Hilbert representation of G. Then
dim H < oo. If (m, H) is unitary and we normalize the Haar measure, p, on G
such that p(1) =1 then d(m) = dim H (recall d(r) is the formal degree).

Proof. We may assume that (7, H) is unitary. Then it is square integrable.
There is therefore an injective intertwining operator T': H — L?(G) with closed
image contained in C(G). We look upon C(G) as a Banach space under the
sup-norm, pg(f) = max,cq |f(z)|. Let V' denote the closure of T(H) in C(G).
Then if we normalize the Haar measure as in the statement of the theorem it is
clear that

1£1l2 < pa(f)-

Thus the map f — f of T(H) to T'(H) extends to a continuous linear map of V'
to T(H) (since T'(H) is closed in L?(G)). The closed graph theorem (Yoshida, p.
79, Theorem 1) implies that this map is continuous. Hence there exists C' < co
such that if f € T(H) then

pa(f) < Clfll, -

We will show that this implies that T'(H), hence H, is finite dimensional.
Let fi,..., fa be orthonormal in T'(H) then if \; € C we have

|Z)\ifi(l‘)| < pG(Z)‘ifi) <C =C <Z|Ai|2> :

Z)\ifi

We apply this with A\; = f;(z). We conclude that

=

SIf@PE<c (Dfi(mn?)

i i

Hence

S lfi@) < 0,

i
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Integrating both sides of the equation over G yields d < C?.
We now calculate the formal degree. Let vq,...,v,, be an orthonormal basis
of H then the matrix [c,, ,,(g)] is unitary for all g € G. Hence

D levws (@F =n
i

for all g € G. If we integrate both sides of this equation and take into account
the Schur orthogonality relations we have

Ly
—n =n.
d(m)
|
If {H, }i<n<n with N < 0o is a sequence of Hilbert spaces then we write

,, . nH, for the space of all sequences {, },,<n such that )" 2] < oo we
define

<{$n}v {yn}> = Z <.”L‘n, yn> .

This endows @n ~nHy with a Hilbert space structure. This construction de-
fines the Hilbert space direct sum. Notice that it is a completion of the algebraic
direct sum.

Definition 108 Let B a locally compact topological group and for each n,1 <
n < N we have a unitary representation (7., H,) of B then the unitary direct

sum of these representations is the representation (B, nyTn, @, o nHn) of B
with

(D, .ym@ia}) = {malo)e. )

Definition 109 Let B be a locally compact, separable topological group then a
unitary representation (w, H) of B is said to be of class CC if w(f) is completely
continuous for all f € Co(B). We say that B is a CCR group if every irreducible
unitary representation of B is of class CC.

One of Harish-Chandra’s basic theorems is that all real reductive groups are
CCR groups.

The next result is a generalization of the Peter-Weyl theorem and is basic to
the theory of automorphic forms (it applies to the so-called cuspidal spectrum).
In the course of the proof of the result we will be using the fact that if B is

unimodular than
b)db = b~ 1)db.
/ f(0) / fo)

Theorem 110 Let B be a locally compact, separable topological group and let
(m,H) be a unitary representation of B of class CC. Then (mw, H) is unitarily
equivalent with a unitary direct sum of irreducible representations of B.
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Before we prove the theorem we will describe the general form of the main
application. Assume that B is unimodular. Let X = B/C with C a closed
unimodular subgroup of B and assume that X is compact and that there exists a
B-invariant measure on X, A (one can show that this is not really an assumption
under our hypotheses on B and C). We will write the measure as

= [ sy

as usual. Let ¢ € C.(B) then we can choose Haar measure on B and C such
that if we set ¢(bC) fc @(be)de (the integration with respect to Haar measure

on C) then
éwwwzéamw

Let H=L*(X) and m(b) = L. We calculate

/ H(b) F(b~ )b = / 6(0)F (b~ 1gC)db

/¢ —%10%_/¢¢ ~10)db
[ oo recrm = | /C Hlgeb1) [ (bC)ded(5C).

A
&
kﬁ-
&
I

Let
ks (gC, bC) = / d(geb!
C

The function k4 € C(X x X) and

(6)f(x) = l{ Feo () £ ().

on L?(X). The lemma below implies that (7, L?(X)) is of class CC.

Lemma 111 Let Y be a locally compact, separable, topological space and let A
be a regular measure on Y. Let k € L*(Y x Y) (with respect to the product
measure). If we define T : L2(Y) — L*>(Y) by T(f)(x) = Xk(x,-)f).then T
defines a compact operator.

Proof. Let {¢,} be an orthonormal basis of L?(Y) consisting of continu-
ous functions (L?(Y') is separable since Y is separable). Define uy, ,,(z,y) =
G ()b, (y). Then {uy, .} is an orthonormal basis of L*(Y x Y). Now

k= E An.mUn,m

n,m
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in L2(Y x Y). Set ky = Zn,mgN Qp.mUn,m- Then the operator

T (f)(x) = / k() £ (0)dy

Y

is of finite rank hence compact. Also

(T — TN)f = Z a7z,7n¢n <f7 ¢m> :

m,n>N

An application of the Schwarz inequality yields

HT_TNHQS Z |anﬂrz|2-

m,n>N

Thus T is in the norm closure of the finite rank operators. Hence it is compact.
|

We will now prove the theorem. Let S denote the set of all closed invariant
subspaces, V', of H such that V is a Hilbert space direct sum of irreducible
subrepresentations ordered by inclusion. If {V,} is a linearly ordered subset of
S then the closure of | J,, Vo is in S (exercise). Hence Zorn’s lemma implies that
there is a maximal element V in S. We will now prove that V' = H and thereby
prove the Theorem. Let W = V4. If u € C.(B) then 7(u)W =W. Letwe W
be a unit vector. Let {u,} be a delta sequence such that u,(z~!) = u,(z) for
all z € B. Then 7(uy)* = w(uy) (exercise)for all n. Now lim,, o m(u,)w = w.
Hence there exists n such that m(u,)w # 0. Fix T = 7(uy)jw. Then T is a
compact, non-zero self-adjoint operator on W. Lemma 64 implies that T has a
nonzero eigenvalue on W. Let Z denote the corresponding eigenspace. Then
Lemma 64 also implies that dim Z < co. Let m > 0 denote the positive minimal
dimension of an intersection of a closed B-invariant subspace with Z. Fix M an
intersection of this type with dim M = m. Let U denote the intersection of all
closed invariant spaces Y such than YNZ = M. Then U is closed and invariant.
If N is a closed invariant subspace of U then both N and N+ are T invariant.
Thus M = MNN@MN N+, But then MNN =M or MN N+t = M. If
MNN =N (resp.M NN+ = M) then N=U (resp. Nt =U) by definition of
U. Thus U is a closed, invariant, irreducible subspace of W and thus VU
is in §. This contradicts the definition of V. Hence W = 0.

Let G denote the set of equivalence classes of irreducible finite dimensional
representations of G. For each v € G we fix (74,V,) € v which we assume is
unitary. If (7, V) is a representation of G then we set V() equal to the sum of
the closed, G-invariant, irreducible subspaces in the class of ~.

Definition 112 The space V(v) is called the ~y-isotypic component of V.

We will now concentrate on L?(G) we first note that since G is compact
the discussion after the statement of Theorem 110 implies that the right (or
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the left) regular representation is of class CC. If v € G then we define a map
Ay VFQV, — L*(G) by

A,(AQv)(9) = Ar(g)v).

Set d(vy) = dimV,,. If A € V¥ then there exists vy € V, such that A\(v) = (v,vx)
for all v. We define (A1, A2) = (vx,, v, ). Then the Schur orthogonality relations
imply that \/d(y)A, is a unitary operator from V* @@V, onto its image. We
also observe that A,(Ao7,(9) ' @v) = L, A, (A Q).

The next result is the Peter-Weyl theorem.

Theorem 113 The y-isotypic component of L?(G) is the image of A. Fur-
thermore, L*(G) is the Hilbert space direct sum of the spaces L?(G)(7y).

Proof. Let V be a closed, invariant, irreducible subspace of L?(G). Then in
particular it is an irreducible unitary representation hence Theorem 107 implies
that dimV < co. If w € C(G) then m(u)V C V. We have seen that the span of
the elements 7(u)v with v € C(G), v € V is dense in V. Hence it is equal to
V. We leave it to the reader to check that this implies that V' C C(G). Define
Af) = f(Q) for f € V. Then A € V* and A(w(9)f) = f(g9). Let T : V, -V
be a bijective intertwining operator. Let & = XA oT~!. Then if T(v) = f,
f=A,(6@uv). The last assertion now follows from Theorem 110. m

Definition 114 If (7,V) is a finite dimensional representation of G then its
character is defined to be the function xy (g) = tr(7(g)).

We note that x,, € C(GQ) and that xy (zgz—1) = x(g) for all z,g € G. We
also observe that if (71,V1) and (72,V2) are equivalent then xy, = xy,. We
will now show that the converse is also true. We first observe that this implies
that if V,V, € v € G then Xv; = Xy, This common value will be denoted
X,- We also set a, = d(7)X,(complex conjugate). We note that the Schur
orthogonality relations imply that

Qy % O = 0y 10Oy
for v,7 € G. Also, since a,(zgr~') = a,(g) for z,g € G we have
m(ay)m(g) = m(g)m(ey)
for all v € G.

Lemma 115 The orthogonal projection of L*(G) onto L*(G)(7) is the operator
Py =m(ay).

Proof. Let vy, ..., v4 be an orthonormal basis of V.. Then o, = d(v) > Ty, 0, -
We thus have

w(a) (@) =) S [ Erl)egdds = d6) | Erlo)Le fa)ds
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If p e G , it # v and f is in the image of A, then the above integral is 0 by
the Schur orthogonality relations and the observation preceding Theorem 113.
If 4 = 7 then assuming that f(g) = (r,(g9)v,w) for some v,w in V, we have
f(zg) = (74(9)v, 7y (x)"*w). The Schur orthogonality relations yield

40) [ (o)L fla)ds
Z (v, v3) {3, T (z) " w)

1) S [ T (7o (g)e, ) ) dg =
<v,77(m)_1w> = (14 (x)v, w) = f(z).

|

Let (m, H) be a Hilbert representation of G. By Lemma 106 we may assume
that the representation is unitary. If v € G then we set E, = w(ay). Then if
v,w € H we have

(Eym(g)v, w) = (Pyco.w)(9)-

Thus if E,v = 0 for all v € G then Cvw = 0 for all v € H. Hence v = 0.
If v € H(y) then ¢y € L*G)(y). Thus we see that E, is the orthogonal
projection of H onto H (7).

We conclude

Proposition 116 Let (7, H) be a Hilbert representation of G then the algebraic
sum of the spaces H(Y), v € G is dense in H. Furthermore, if (w, H) is unitary

~

then H is the Hilbert space direct sum of the spaces H(vy),v € G.

1.2.4 The definition of a (g, K') module.

In this section G will denote a Lie group with a finite number of connected
components. Let K be a compact subgroup of G. Set g = Lie(G) and ¢ =
Lie(K). The most important special case is when K is a maximal compact
subgroup of G.

Definition 117 A (g, K) module is a vector space, V, over C that is a module
for the Lie algebra g and a module for K (as an abstract group) such that

1.k-X - v=(Adk)X) - k-vforke K, Xeg,veV.

2. Ifv € V then W, =spanc{k-v|k € K} is a finite dimensional vector space
such that the map k — k- w, is C* as a map from K to W, for all w e W,.

3. IfY etandv eV then %n:o exp(tY) - v =Ywv (here the differentiation
s as a map into W,.

Our main class of example of (g, K') modules are given as follows. Let (m, H)
be a Hilbert representation of G. Let H* be the space of C'*° vectors of H. We
have seen that this space is dense in H. Then the material after Theorem 93
implies that condition 1. is satisfied. As is condition 3. (but as a map into H).
We set H(OI’}) equal to the space of all v € H* that satisfy 2. Then if v € H&%)
it satisfies 3. The only condition missing is that g still acts.
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Lemma 118 If X € g then XHy CHy

Proof. Let v € HE’}%) then we have a map of g@W, — H™ given by
X @ w — Xw. The compatibility condition 1. implies that the image of this

map is a K-invariant finite dimensional space. It clearly contains Xwv. Thus

Xv e H&?{). [ |

Definition 119 The (g, K) module H{y, is called the underlying (g, K')-module
of (m, H).

The (g, K)-modules form a full subcategory C(g, K) of the category of g and
K modules. That is Homg g)(V, W) =Homgy(V, W)NHomg (V, W). We say
that a (g, K)-module V is irreducible if the only g and K invariant subspaces
are V and 0. R

If V is a (g, K)-module and if v € K then we set V(v) equal to the span of
all v such that the representation W, € ~.

Definition 120 A (g, K)-module V is said to be admissible if dim V() < oo
for allvy € K.

The following result is the easy direction in a necessary and sufficient con-
dition.

Theorem 121 Let (w, H) be a Hilbert representation of G such that the under-
lying (g, K)-module is admissible and irreducible. Then (mw, H) is irreducible.

Proof. Let V = (H*)). Suppose that V is reducible. Let W be a

closed invariant subspace of H. Then w(ay)W C W for all v € K. Since
H® is dense in H and 7(ay)H* C H* this implies that H> N H(y) = H(v)
since 7 is admissible. Now if W(y) = H(y) for all v € K then W = H.
Also as a subrepresentation of H we have W = W N H*°. This implies that
(W) (k) C (H*) k). If the two spaces are equal then the above considerations
imply that (W) gy = (H*) k). Assume W # H. Since (W) x) C (H*) k)
is a g and a K-invariant subspace and (H>°)k is an irreducible (g, K')-module
this implies that (W) k) = (0). Hence W(y) = 0 for all v € K. But than
W = 0. Hence 7 is irreducible as asserted, m

This result allows us to finish the discussion of the holomorphic discrete
series of SU(1,1). Here we take K and much of our notation as in 1.2.2. Since
the map T — K, ¢ — k(0) defines an isomorphism of T = {z € C||z| = 1}
with K. One sees easily that if n,,(k(0)) = e™? then K = {n,In € Z}. From
the definition of (my, H*) we have m(k)z! = n_,_,,(k)z'. Tt is easily seen
that if j # {—k — 2|l € Z,1 > 0} then H*(n;) =0 and that H"(n_, ) = Cz!
otherwise. Thus V' = (H*)%., is just the space of all polynomials in one complex
variable. We will now prove the irreducibility. Set

SN
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Then both are elements of Lie(SU(1,1)). Set ZT = 25 and Z~ = &£ then
ZT =127 272 = (k+ D)2 > 0.

Now suppose that W is an invariant non-zero subspace of V. Then W (vy) # 0
for some 7 € K. This implies that z' € W for some [ > 0. Now (Z1)lz! = [!1.
This1e W. But (Z7)"1=k(k+1)---(k+m—1)z™. Hence 2™ € W for all
m>0so W =V.

1.2.5 A class of induced representations.

Let G be a locally compact, separable, unimodular, topological group and let
K be a compact subgroup and P a closed subgroup such that PK = G. For
example, G is a real reductive group, K is a maximal compact subgroup of G
and P is a standard parabolic subgroup.

We note that we have shown that we may choose Haar measure on G such
that if f € C.(GQ) then

léf@ﬂg=l¥Kf@@@ﬂ:

where the integration in P is relative to left invariant measure and that in K is
relative to normalized invariant measure (Proposition 48).
The following is also standard

Lemma 122 Jf f € C(K N P\K) = C(P\G) then there exists ¢ € C.(G) such
that

ﬂ@ZLﬂMW%

Proof. Consider the map p,k —— pk of P x K onto G. Then if pk = p1k;
with p,p1 € P and k,k; € K then (p1)~'p = kik™' = m € KN P. Hence
p1 = pm~ ! and k; = mk. This implies that if we consider the left action
m(p, k) = (pm~t,mk), m € KNP then G is homeomorphic with KNP\ (Px K).
Let ¢ € C.(P/K N P) and define p(p,k) = ¢(p)f(k). Then ¢(pm.m~1k) =
o(p, k) forallpe P, k€ K, m e PN K. Assume that

memzL

Then the formula in the statement is satisfied. m

The following integration formula is the key to parabolic induction for real
(and p-adic) reductive groups. First we need some notation. If u € C(P) and
u(pm) = u(p) for p € P and m € PN K then we extend u to G by u(pk) = u(p),
forpe Pand k€ K. If h € C(K) and h(mk) = h(k) form € KNP and k € K
then we extend h to G by setting h(pk) = h(k), p € P,k € K. Let 6 be the
modular function of P. Then since é|xnp = 1 we may extend it to G as above.
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Lemma 123 Let f € C(K N P\K) then

/f dk—/fkg (ko)

Proof. Let ¢ be as in the previous lemma. Then

RS /G p(@)dz = /G o(zg)dg.

If © € G then we write x = p(x)k(z) for some choice of p(x) and k(x) the
ambiguity of the choice will be irrelevant in the rest of the argument. We
continue

/G p(rg)dr = [D XKw(plfg)dpdk: [D XKw(pp(k’g)k(kg))dpdk

forall g € G.

[D (b)) (ko) dp = L 5(p(ka)) f (k(kg) k.

Since 6(p(kg)) = 6(kg) and f(k(kg)) = f(kg) the lemma follows. m

We can now define the class of induced representations that are important
to the harmonic analysis of reductive groups. Let (o, H,) be a Hilbert repre-
sentation of P. Lemma 106 implies that we may assume that it is unitary when
restricted to K N P. Let HJ denote the space of all continuous functions

f:G— H,

such that f(pg) = 6(p)%a(p)f(g) for p € P and g € G. We note that if f € H?
and fjg = 0 then f = 0. We endow HJ with a pre-Hilbert space structure by
taking

(1o fo) = A (), fa(k) d

for fi, fo € HY (here the inner product inside the integral is that of H,). Let
H? denote the Hilbert space completion of HJ. If g € G then we define the
operator m,(g) on H? by 7,(g)f(z) = f(xg).

Lemma 124 [fg € G then w(g) extends to a bounded operator on H®. Further-
more, (1, H”) defines a Hilbert representation of G which is unitary if (o, H,)
18 unitary.

Proof. As above, we will write z = p(z)k(z). If Q is a compact subset of G
then since the ambiguity is in K N P we see that p(Q) C Q' a compact subset
of P. Thus there exists a constant C < oo such that ||o(p(z))| < Cq for all
reQ If f e HY then

Ima(g) FI2 = A 1 (kg) | i = A 5(p(ka)) o (p(ke)) f(k(kg)) |2 dk. ()
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Now if g € Q then this last expression is less than or equal to

c3 A 5(p(ka)) |1/ (k(kg))|2 dk = C2 | 1|12

in light of the previous lemma. Thus ||7,(g)|| < Cq. We note that (8) above
combined with the integral formula above implies that 7,(g), for ¢ € G, is
unitary if o is unitary. We leave it to the reader to check that the matrix
coefficients g — (7, (g)u,v) are continuous for u,v € HJ. Thus Lemma 73
(properly extended) implies that 7, defines a representation of G. ®

The representation (7., H?) is usually denoted Ind% (o) or Ind%(H,) and
called an induced representation. We will now study the K-isotypic components
of these representations under the hypothesis that the restriction of o to K N P
has finite multiplicities that is if u € K NP then dim H,(u) < co. We note
that this restriction of m,to K is the K representation Ind% p(co|xnp). We set
M = KNP and 7 = ojgnp. We denote the induced representation to K by

(P, V7).

Lemma 125 The representation (p, V™) is the unitary direct sum of the repre-
sentations Ind% (H, () for € M .

Proof. Set V] equal to the subspace of V7 consisting of continuous ele-
ments. Let P, be the orthogonal projection of H, onto H,(u). If f € V]
then set f*(k) = P,f(k). Then f* € VJ and f = ) f* in V7. Clearly,
f* € Ind¥ (Hy(11)). The lemma follows. m

The next result is a generalization of the classical Frobenius reciprocity.

Proposition 126 Let (v, W) be a finite dimensional representation of K. Then
the set of all p € M such that

L (W, Indy(Hy (1)) # 0

is finite. Furthermore Lx(W,H?) = 3  Lk(W, Ind% (Hy(1))) (a finite sum
by the above). Finally, there is a natural isomorphism of Ly (W, Ind% (H,(1)))
with Ly (W, Hy(11)).

Proof. Let T € Ly (W, Ind% (H,(1))) and let v € K be such that W (y) #
0. Then T(W (7)) C Ind¥ (Hy(1))(y) = 7o (ay) Ind%, (Hy(12)). This space us
contained in HJ. Since dimW < oo this implies that T'(W) is contained in the
continuous elements of Ind% (H,(u)) = W, . Thus if w € W we can define
T(w)(1). We use the notation T(w) for T(w)(1). Then since T(v(k)w)(1) =
T(w)(k) for k € K. The map T — T is injective. We also note that
T € Ly(W, Hy(p)). Since dimW < oo this implies the first assertion of the
proposition. Suppose that S € Ly (W, Hy(1t)) then define g(tﬁ)(k’) = S(v(k)w).
Then S € L (W, Ind% (H,(1))). It is clear that T=TandS=5. m

By analogy with the definition of the last section we will say that a represen-
tation (m, H) of G is K-admissible for K if dim H(vy) < oo for all v € K. This is
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that same as saying that whenever (v, W) is a finite dimensional representation
of K, dim Ly (W, H) < cc.
The above results have the following implication

Corollary 127 If (0, H,) is (KN P)-admissible then Ind$% (o) is K -admissible.

We look at an example. Let G = SL(2,R). Let K = SO(2) and let P denote
the subgroup of upper triangular representations of G. Then K N P = {£I}.

Set
et 0
a=fu=[2 8 s

N:{m:H f]ueR}.

Then P = KNP-A-N and every element can be written uniquely as +a;n,. Let
o denote one of the two characters of K N P. Let v € C and set o, (man,) =
e’to(m) for m € K N P. The series of representations Ind% (o, ) is called the
principal series of G. Notice that if v is purely imaginary this representation
is unitary. It turns out that for v purely imaginary then the only represen-
tation of the form Ind%(o,) that is reducible is the one for o non-trivial and
v = 0. These representations combined with the holomorphic discrete series
(SL(2,R) is isomorphic with SU(1, 1)) and the anti-holomorphic discrete series
(take the other choice of v/—1) give all of the irreducible unitary representations
of G except for the complimentary series (which correspond to a new Hilbert
space structure on Ind%(o,) for v real and —1 < v < 1) and the trivial one
dimensional representation.

Let G be a real reductive group, K a maximal compact subgroup of G and
let P be a standard parabolic subgroup of G. Then P = M AN the standard
Langlands decomposition. Let n = Lie(N) then 6(man) = det(Ad(a),) (=
| det(Ad(man)|pie(py|. Here we are using the fact that for a Lie group, B, the
modular function is |det(Ad(b))|.)

If (0, H,) is a unitary, K N P = K N M-admissible representation of M and
if v € Lie(A)% then we define o, (m(exp H)n) = eH)g(m). If v is purely imag-
inary then the corresponding unitary representation is called a principal series
representation. You will see that irreducible unitary representations of real re-
ductive groups are admissible with respect to maximal compact subgroups and
that the representations Ind% (o, ) are generically irreducible if o is irreducible.
The underlying (Lie(G), K)-module is denoted Ip, .. These modules are basic
ingredients in the general theory...

and
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